svmkit 0.7.3 → 0.8.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,90 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
# This module consists of the classes that implement optimizers adaptively tuning hyperparameters.
|
8
|
-
module Optimizer
|
9
|
-
# Nadam is a class that implements Nadam optimizer.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# optimizer = SVMKit::Optimizer::Nadam.new(learning_rate: 0.01, momentum: 0.9, decay1: 0.9, decay2: 0.999)
|
13
|
-
# estimator = SVMKit::LinearModel::LinearRegression.new(optimizer: optimizer, random_seed: 1)
|
14
|
-
# estimator.fit(samples, values)
|
15
|
-
#
|
16
|
-
# *Reference*
|
17
|
-
# - T. Dozat, "Incorporating Nesterov Momentum into Adam," Tech. Repo. Stanford University, 2015.
|
18
|
-
class Nadam
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Validation
|
21
|
-
|
22
|
-
# Create a new optimizer with Nadam
|
23
|
-
#
|
24
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
25
|
-
# @param momentum [Float] The initial value of momentum.
|
26
|
-
# @param decay1 [Float] The smoothing parameter for the first moment.
|
27
|
-
# @param decay2 [Float] The smoothing parameter for the second moment.
|
28
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay1: 0.9, decay2: 0.999)
|
29
|
-
check_params_float(learning_rate: learning_rate, momentum: momentum, decay1: decay1, decay2: decay2)
|
30
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay1: decay1, decay2: decay2)
|
31
|
-
@params = {}
|
32
|
-
@params[:learning_rate] = learning_rate
|
33
|
-
@params[:momentum] = momentum
|
34
|
-
@params[:decay1] = decay1
|
35
|
-
@params[:decay2] = decay2
|
36
|
-
@fst_moment = nil
|
37
|
-
@sec_moment = nil
|
38
|
-
@decay1_prod = 1.0
|
39
|
-
@iter = 0
|
40
|
-
end
|
41
|
-
|
42
|
-
# Calculate the updated weight with Nadam adaptive learning rate.
|
43
|
-
#
|
44
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
45
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
46
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
47
|
-
def call(weight, gradient)
|
48
|
-
@fst_moment ||= Numo::DFloat.zeros(weight.shape[0])
|
49
|
-
@sec_moment ||= Numo::DFloat.zeros(weight.shape[0])
|
50
|
-
|
51
|
-
@iter += 1
|
52
|
-
|
53
|
-
decay1_curr = @params[:decay1] * (1.0 - 0.5 * 0.96**(@iter * 0.004))
|
54
|
-
decay1_next = @params[:decay1] * (1.0 - 0.5 * 0.96**((@iter + 1) * 0.004))
|
55
|
-
decay1_prod_curr = @decay1_prod * decay1_curr
|
56
|
-
decay1_prod_next = @decay1_prod * decay1_curr * decay1_next
|
57
|
-
@decay1_prod = decay1_prod_curr
|
58
|
-
|
59
|
-
@fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
|
60
|
-
@sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
|
61
|
-
nm_gradient = gradient / (1.0 - decay1_prod_curr)
|
62
|
-
nm_fst_moment = @fst_moment / (1.0 - decay1_prod_next)
|
63
|
-
nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
|
64
|
-
|
65
|
-
weight - (@params[:learning_rate] / (nm_sec_moment**0.5 + 1e-8)) * ((1 - decay1_curr) * nm_gradient + decay1_next * nm_fst_moment)
|
66
|
-
end
|
67
|
-
|
68
|
-
# Dump marshal data.
|
69
|
-
# @return [Hash] The marshal data.
|
70
|
-
def marshal_dump
|
71
|
-
{ params: @params,
|
72
|
-
fst_moment: @fst_moment,
|
73
|
-
sec_moment: @sec_moment,
|
74
|
-
decay1_prod: @decay1_prod,
|
75
|
-
iter: @iter }
|
76
|
-
end
|
77
|
-
|
78
|
-
# Load marshal data.
|
79
|
-
# @return [nil]
|
80
|
-
def marshal_load(obj)
|
81
|
-
@params = obj[:params]
|
82
|
-
@fst_moment = obj[:fst_moment]
|
83
|
-
@sec_moment = obj[:sec_moment]
|
84
|
-
@decay1_prod = obj[:decay1_prod]
|
85
|
-
@iter = obj[:iter]
|
86
|
-
nil
|
87
|
-
end
|
88
|
-
end
|
89
|
-
end
|
90
|
-
end
|
@@ -1,69 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
module Optimizer
|
8
|
-
# RMSProp is a class that implements RMSProp optimizer.
|
9
|
-
#
|
10
|
-
# @example
|
11
|
-
# optimizer = SVMKit::Optimizer::RMSProp.new(learning_rate: 0.01, momentum: 0.9, decay: 0.9)
|
12
|
-
# estimator = SVMKit::LinearModel::LinearRegression.new(optimizer: optimizer, random_seed: 1)
|
13
|
-
# estimator.fit(samples, values)
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning," Proc. ICML' 13, pp. 1139--1147, 2013.
|
17
|
-
# - G. Hinton, N. Srivastava, and K. Swersky, "Lecture 6e rmsprop," Neural Networks for Machine Learning, 2012.
|
18
|
-
class RMSProp
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Validation
|
21
|
-
|
22
|
-
# Create a new optimizer with RMSProp.
|
23
|
-
#
|
24
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
25
|
-
# @param momentum [Float] The initial value of momentum.
|
26
|
-
# @param decay [Float] The smooting parameter.
|
27
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.9)
|
28
|
-
check_params_float(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
29
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
30
|
-
@params = {}
|
31
|
-
@params[:learning_rate] = learning_rate
|
32
|
-
@params[:momentum] = momentum
|
33
|
-
@params[:decay] = decay
|
34
|
-
@moment = nil
|
35
|
-
@update = nil
|
36
|
-
end
|
37
|
-
|
38
|
-
# Calculate the updated weight with RMSProp adaptive learning rate.
|
39
|
-
#
|
40
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
41
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
42
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
43
|
-
def call(weight, gradient)
|
44
|
-
@moment ||= Numo::DFloat.zeros(weight.shape[0])
|
45
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
46
|
-
@moment = @params[:decay] * @moment + (1.0 - @params[:decay]) * gradient**2
|
47
|
-
@update = @params[:momentum] * @update - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
|
48
|
-
weight + @update
|
49
|
-
end
|
50
|
-
|
51
|
-
# Dump marshal data.
|
52
|
-
# @return [Hash] The marshal data.
|
53
|
-
def marshal_dump
|
54
|
-
{ params: @params,
|
55
|
-
moment: @moment,
|
56
|
-
update: @update }
|
57
|
-
end
|
58
|
-
|
59
|
-
# Load marshal data.
|
60
|
-
# @return [nil]
|
61
|
-
def marshal_load(obj)
|
62
|
-
@params = obj[:params]
|
63
|
-
@moment = obj[:moment]
|
64
|
-
@update = obj[:update]
|
65
|
-
nil
|
66
|
-
end
|
67
|
-
end
|
68
|
-
end
|
69
|
-
end
|
data/lib/svmkit/optimizer/sgd.rb
DELETED
@@ -1,65 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
module Optimizer
|
8
|
-
# SGD is a class that implements SGD optimizer.
|
9
|
-
#
|
10
|
-
# @example
|
11
|
-
# optimizer = SVMKit::Optimizer::SGD.new(learning_rate: 0.01, momentum: 0.9, decay: 0.9)
|
12
|
-
# estimator = SVMKit::LinearModel::LinearRegression.new(optimizer: optimizer, random_seed: 1)
|
13
|
-
# estimator.fit(samples, values)
|
14
|
-
class SGD
|
15
|
-
include Base::BaseEstimator
|
16
|
-
include Validation
|
17
|
-
|
18
|
-
# Create a new optimizer with SGD.
|
19
|
-
#
|
20
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
21
|
-
# @param momentum [Float] The initial value of momentum.
|
22
|
-
# @param decay [Float] The smooting parameter.
|
23
|
-
def initialize(learning_rate: 0.01, momentum: 0.0, decay: 0.0)
|
24
|
-
check_params_float(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
25
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
26
|
-
@params = {}
|
27
|
-
@params[:learning_rate] = learning_rate
|
28
|
-
@params[:momentum] = momentum
|
29
|
-
@params[:decay] = decay
|
30
|
-
@iter = 0
|
31
|
-
@update = nil
|
32
|
-
end
|
33
|
-
|
34
|
-
# Calculate the updated weight with SGD.
|
35
|
-
#
|
36
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
37
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
38
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
39
|
-
def call(weight, gradient)
|
40
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
41
|
-
current_learning_rate = @params[:learning_rate] / (1.0 + @params[:decay] * @iter)
|
42
|
-
@iter += 1
|
43
|
-
@update = @params[:momentum] * @update - current_learning_rate * gradient
|
44
|
-
weight + @update
|
45
|
-
end
|
46
|
-
|
47
|
-
# Dump marshal data.
|
48
|
-
# @return [Hash] The marshal data.
|
49
|
-
def marshal_dump
|
50
|
-
{ params: @params,
|
51
|
-
iter: @iter,
|
52
|
-
update: @update }
|
53
|
-
end
|
54
|
-
|
55
|
-
# Load marshal data.
|
56
|
-
# @return [nil]
|
57
|
-
def marshal_load(obj)
|
58
|
-
@params = obj[:params]
|
59
|
-
@iter = obj[:iter]
|
60
|
-
@update = obj[:update]
|
61
|
-
nil
|
62
|
-
end
|
63
|
-
end
|
64
|
-
end
|
65
|
-
end
|
@@ -1,144 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
module Optimizer
|
8
|
-
# YellowFin is a class that implements YellowFin optimizer.
|
9
|
-
#
|
10
|
-
# @example
|
11
|
-
# optimizer = SVMKit::Optimizer::YellowFin.new(learning_rate: 0.01, momentum: 0.9, decay: 0.999, window_width: 20)
|
12
|
-
# estimator = SVMKit::LinearModel::LinearRegression.new(optimizer: optimizer, random_seed: 1)
|
13
|
-
# estimator.fit(samples, values)
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - J. Zhang and I. Mitliagkas, "YellowFin and the Art of Momentum Tuning," CoRR abs/1706.03471, 2017.
|
17
|
-
class YellowFin
|
18
|
-
include Base::BaseEstimator
|
19
|
-
include Validation
|
20
|
-
|
21
|
-
# Create a new optimizer with YellowFin.
|
22
|
-
#
|
23
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
24
|
-
# @param momentum [Float] The initial value of momentum.
|
25
|
-
# @param decay [Float] The smooting parameter.
|
26
|
-
# @param window_width [Integer] The sliding window width for searching curvature range.
|
27
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.999, window_width: 20)
|
28
|
-
check_params_float(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
29
|
-
check_params_integer(window_width: window_width)
|
30
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
|
31
|
-
@params = {}
|
32
|
-
@params[:learning_rate] = learning_rate
|
33
|
-
@params[:momentum] = momentum
|
34
|
-
@params[:decay] = decay
|
35
|
-
@params[:window_width] = window_width
|
36
|
-
@smth_learning_rate = learning_rate
|
37
|
-
@smth_momentum = momentum
|
38
|
-
@grad_norms = nil
|
39
|
-
@grad_norm_min = 0.0
|
40
|
-
@grad_norm_max = 0.0
|
41
|
-
@grad_mean_sqr = 0.0
|
42
|
-
@grad_mean = 0.0
|
43
|
-
@grad_var = 0.0
|
44
|
-
@grad_norm_mean = 0.0
|
45
|
-
@curve_mean = 0.0
|
46
|
-
@distance_mean = 0.0
|
47
|
-
@update = nil
|
48
|
-
end
|
49
|
-
|
50
|
-
# Calculate the updated weight with adaptive momentum coefficient and learning rate.
|
51
|
-
#
|
52
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
53
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
54
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
55
|
-
def call(weight, gradient)
|
56
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
57
|
-
curvature_range(gradient)
|
58
|
-
gradient_variance(gradient)
|
59
|
-
distance_to_optimum(gradient)
|
60
|
-
@smth_momentum = @params[:decay] * @smth_momentum + (1 - @params[:decay]) * current_momentum
|
61
|
-
@smth_learning_rate = @params[:decay] * @smth_learning_rate + (1 - @params[:decay]) * current_learning_rate
|
62
|
-
@update = @smth_momentum * @update - @smth_learning_rate * gradient
|
63
|
-
weight + @update
|
64
|
-
end
|
65
|
-
|
66
|
-
private
|
67
|
-
|
68
|
-
def current_momentum
|
69
|
-
dr = Math.sqrt(@grad_norm_max / @grad_norm_min + 1.0e-8)
|
70
|
-
[cubic_root**2, ((dr - 1) / (dr + 1))**2].max
|
71
|
-
end
|
72
|
-
|
73
|
-
def current_learning_rate
|
74
|
-
(1.0 - Math.sqrt(@params[:momentum]))**2 / (@grad_norm_min + 1.0e-8)
|
75
|
-
end
|
76
|
-
|
77
|
-
def cubic_root
|
78
|
-
p = (@distance_mean**2 * @grad_norm_min**2) / (2 * @grad_var + 1.0e-8)
|
79
|
-
w3 = (-Math.sqrt(p**2 + 4.fdiv(27) * p**3) - p).fdiv(2)
|
80
|
-
w = (w3 >= 0.0 ? 1 : -1) * w3.abs**1.fdiv(3)
|
81
|
-
y = w - p / (3 * w + 1.0e-8)
|
82
|
-
y + 1
|
83
|
-
end
|
84
|
-
|
85
|
-
def curvature_range(gradient)
|
86
|
-
@grad_norms ||= []
|
87
|
-
@grad_norms.push((gradient**2).sum)
|
88
|
-
@grad_norms.shift(@grad_norms.size - @params[:window_width]) if @grad_norms.size > @params[:window_width]
|
89
|
-
@grad_norm_min = @params[:decay] * @grad_norm_min + (1 - @params[:decay]) * @grad_norms.min
|
90
|
-
@grad_norm_max = @params[:decay] * @grad_norm_max + (1 - @params[:decay]) * @grad_norms.max
|
91
|
-
end
|
92
|
-
|
93
|
-
def gradient_variance(gradient)
|
94
|
-
@grad_mean_sqr = @params[:decay] * @grad_mean_sqr + (1 - @params[:decay]) * gradient**2
|
95
|
-
@grad_mean = @params[:decay] * @grad_mean + (1 - @params[:decay]) * gradient
|
96
|
-
@grad_var = (@grad_mean_sqr - @grad_mean**2).sum
|
97
|
-
end
|
98
|
-
|
99
|
-
def distance_to_optimum(gradient)
|
100
|
-
grad_sqr = (gradient**2).sum
|
101
|
-
@grad_norm_mean = @params[:decay] * @grad_norm_mean + (1 - @params[:decay]) * Math.sqrt(grad_sqr + 1.0e-8)
|
102
|
-
@curve_mean = @params[:decay] * @curve_mean + (1 - @params[:decay]) * grad_sqr
|
103
|
-
@distance_mean = @params[:decay] * @distance_mean + (1 - @params[:decay]) * (@grad_norm_mean / @curve_mean)
|
104
|
-
end
|
105
|
-
|
106
|
-
# Dump marshal data.
|
107
|
-
# @return [Hash] The marshal data.
|
108
|
-
def marshal_dump
|
109
|
-
{ params: @params,
|
110
|
-
smth_learning_rate: @smth_learning_rate,
|
111
|
-
smth_momentum: @smth_momentum,
|
112
|
-
grad_norms: @grad_norms,
|
113
|
-
grad_norm_min: @grad_norm_min,
|
114
|
-
grad_norm_max: @grad_norm_max,
|
115
|
-
grad_mean_sqr: @grad_mean_sqr,
|
116
|
-
grad_mean: @grad_mean,
|
117
|
-
grad_var: @grad_var,
|
118
|
-
grad_norm_mean: @grad_norm_mean,
|
119
|
-
curve_mean: @curve_mean,
|
120
|
-
distance_mean: @distance_mean,
|
121
|
-
update: @update }
|
122
|
-
end
|
123
|
-
|
124
|
-
# Load marshal data.
|
125
|
-
# @return [nis]
|
126
|
-
def marshal_load(obj)
|
127
|
-
@params = obj[:params]
|
128
|
-
@smth_learning_rate = obj[:smth_learning_rate]
|
129
|
-
@smth_momentum = obj[:smth_momentum]
|
130
|
-
@grad_norms = obj[:grad_norms]
|
131
|
-
@grad_norm_min = obj[:grad_norm_min]
|
132
|
-
@grad_norm_max = obj[:grad_norm_max]
|
133
|
-
@grad_mean_sqr = obj[:grad_mean_sqr]
|
134
|
-
@grad_mean = obj[:grad_mean]
|
135
|
-
@grad_var = obj[:grad_var]
|
136
|
-
@grad_norm_mean = obj[:grad_norm_mean]
|
137
|
-
@curve_mean = obj[:curve_mean]
|
138
|
-
@distance_mean = obj[:distance_mean]
|
139
|
-
@update = obj[:update]
|
140
|
-
nil
|
141
|
-
end
|
142
|
-
end
|
143
|
-
end
|
144
|
-
end
|
@@ -1,91 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
|
5
|
-
module SVMKit
|
6
|
-
# Module for calculating pairwise distances, similarities, and kernels.
|
7
|
-
module PairwiseMetric
|
8
|
-
class << self
|
9
|
-
# Calculate the pairwise euclidean distances between x and y.
|
10
|
-
#
|
11
|
-
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
12
|
-
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
13
|
-
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
14
|
-
def euclidean_distance(x, y = nil)
|
15
|
-
y = x if y.nil?
|
16
|
-
SVMKit::Validation.check_sample_array(x)
|
17
|
-
SVMKit::Validation.check_sample_array(y)
|
18
|
-
sum_x_vec = (x**2).sum(1)
|
19
|
-
sum_y_vec = (y**2).sum(1)
|
20
|
-
dot_xy_mat = x.dot(y.transpose)
|
21
|
-
distance_matrix = dot_xy_mat * -2.0 +
|
22
|
-
sum_x_vec.tile(y.shape[0], 1).transpose +
|
23
|
-
sum_y_vec.tile(x.shape[0], 1)
|
24
|
-
Numo::NMath.sqrt(distance_matrix.abs)
|
25
|
-
end
|
26
|
-
|
27
|
-
# Calculate the rbf kernel between x and y.
|
28
|
-
#
|
29
|
-
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
30
|
-
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
31
|
-
# @param gamma [Float] The parameter of rbf kernel, if nil it is 1 / n_features.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
33
|
-
def rbf_kernel(x, y = nil, gamma = nil)
|
34
|
-
y = x if y.nil?
|
35
|
-
gamma ||= 1.0 / x.shape[1]
|
36
|
-
SVMKit::Validation.check_sample_array(x)
|
37
|
-
SVMKit::Validation.check_sample_array(y)
|
38
|
-
SVMKit::Validation.check_params_float(gamma: gamma)
|
39
|
-
distance_matrix = euclidean_distance(x, y)
|
40
|
-
Numo::NMath.exp((distance_matrix**2) * -gamma)
|
41
|
-
end
|
42
|
-
|
43
|
-
# Calculate the linear kernel between x and y.
|
44
|
-
#
|
45
|
-
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
46
|
-
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
47
|
-
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
48
|
-
def linear_kernel(x, y = nil)
|
49
|
-
y = x if y.nil?
|
50
|
-
SVMKit::Validation.check_sample_array(x)
|
51
|
-
SVMKit::Validation.check_sample_array(y)
|
52
|
-
x.dot(y.transpose)
|
53
|
-
end
|
54
|
-
|
55
|
-
# Calculate the polynomial kernel between x and y.
|
56
|
-
#
|
57
|
-
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
58
|
-
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
59
|
-
# @param degree [Integer] The parameter of polynomial kernel.
|
60
|
-
# @param gamma [Float] The parameter of polynomial kernel, if nil it is 1 / n_features.
|
61
|
-
# @param coef [Integer] The parameter of polynomial kernel.
|
62
|
-
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
63
|
-
def polynomial_kernel(x, y = nil, degree = 3, gamma = nil, coef = 1)
|
64
|
-
y = x if y.nil?
|
65
|
-
gamma ||= 1.0 / x.shape[1]
|
66
|
-
SVMKit::Validation.check_sample_array(x)
|
67
|
-
SVMKit::Validation.check_sample_array(y)
|
68
|
-
SVMKit::Validation.check_params_float(gamma: gamma)
|
69
|
-
SVMKit::Validation.check_params_integer(degree: degree, coef: coef)
|
70
|
-
(x.dot(y.transpose) * gamma + coef)**degree
|
71
|
-
end
|
72
|
-
|
73
|
-
# Calculate the sigmoid kernel between x and y.
|
74
|
-
#
|
75
|
-
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
|
76
|
-
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
|
77
|
-
# @param gamma [Float] The parameter of polynomial kernel, if nil it is 1 / n_features.
|
78
|
-
# @param coef [Integer] The parameter of polynomial kernel.
|
79
|
-
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
|
80
|
-
def sigmoid_kernel(x, y = nil, gamma = nil, coef = 1)
|
81
|
-
y = x if y.nil?
|
82
|
-
gamma ||= 1.0 / x.shape[1]
|
83
|
-
SVMKit::Validation.check_sample_array(x)
|
84
|
-
SVMKit::Validation.check_sample_array(y)
|
85
|
-
SVMKit::Validation.check_params_float(gamma: gamma)
|
86
|
-
SVMKit::Validation.check_params_integer(coef: coef)
|
87
|
-
Numo::NMath.tanh(x.dot(y.transpose) * gamma + coef)
|
88
|
-
end
|
89
|
-
end
|
90
|
-
end
|
91
|
-
end
|