svmkit 0.7.3 → 0.8.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,251 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/regressor'
|
6
|
-
require 'svmkit/tree/node'
|
7
|
-
|
8
|
-
module SVMKit
|
9
|
-
module Tree
|
10
|
-
# DecisionTreeRegressor is a class that implements decision tree for regression.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator =
|
14
|
-
# SVMKit::Tree::DecisionTreeRegressor.new(
|
15
|
-
# max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
16
|
-
# estimator.fit(training_samples, traininig_values)
|
17
|
-
# results = estimator.predict(testing_samples)
|
18
|
-
#
|
19
|
-
class DecisionTreeRegressor
|
20
|
-
include Base::BaseEstimator
|
21
|
-
include Base::Regressor
|
22
|
-
include Validation
|
23
|
-
|
24
|
-
# Return the importance for each feature.
|
25
|
-
# @return [Numo::DFloat] (size: n_features)
|
26
|
-
attr_reader :feature_importances
|
27
|
-
|
28
|
-
# Return the learned tree.
|
29
|
-
# @return [Node]
|
30
|
-
attr_reader :tree
|
31
|
-
|
32
|
-
# Return the random generator for random selection of feature index.
|
33
|
-
# @return [Random]
|
34
|
-
attr_reader :rng
|
35
|
-
|
36
|
-
# Return the values assigned each leaf.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_leafs, n_outputs])
|
38
|
-
attr_reader :leaf_values
|
39
|
-
|
40
|
-
# Create a new regressor with decision tree algorithm.
|
41
|
-
#
|
42
|
-
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'mae' and 'mse'.
|
43
|
-
# @param max_depth [Integer] The maximum depth of the tree.
|
44
|
-
# If nil is given, decision tree grows without concern for depth.
|
45
|
-
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
46
|
-
# If nil is given, number of leaves is not limited.
|
47
|
-
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
48
|
-
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
49
|
-
# If nil is given, split process considers all features.
|
50
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
51
|
-
# It is used to randomly determine the order of features when deciding spliting point.
|
52
|
-
def initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
53
|
-
random_seed: nil)
|
54
|
-
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
55
|
-
max_features: max_features, random_seed: random_seed)
|
56
|
-
check_params_integer(min_samples_leaf: min_samples_leaf)
|
57
|
-
check_params_string(criterion: criterion)
|
58
|
-
check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
59
|
-
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
60
|
-
@params = {}
|
61
|
-
@params[:criterion] = criterion
|
62
|
-
@params[:max_depth] = max_depth
|
63
|
-
@params[:max_leaf_nodes] = max_leaf_nodes
|
64
|
-
@params[:min_samples_leaf] = min_samples_leaf
|
65
|
-
@params[:max_features] = max_features
|
66
|
-
@params[:random_seed] = random_seed
|
67
|
-
@params[:random_seed] ||= srand
|
68
|
-
@criterion = :mse
|
69
|
-
@criterion = :mae if @params[:criterion] == 'mae'
|
70
|
-
@tree = nil
|
71
|
-
@feature_importances = nil
|
72
|
-
@n_leaves = nil
|
73
|
-
@leaf_values = nil
|
74
|
-
@rng = Random.new(@params[:random_seed])
|
75
|
-
end
|
76
|
-
|
77
|
-
# Fit the model with given training data.
|
78
|
-
#
|
79
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
80
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
81
|
-
# @return [DecisionTreeRegressor] The learned regressor itself.
|
82
|
-
def fit(x, y)
|
83
|
-
check_sample_array(x)
|
84
|
-
check_tvalue_array(y)
|
85
|
-
check_sample_tvalue_size(x, y)
|
86
|
-
single_target = y.shape[1].nil?
|
87
|
-
y = y.expand_dims(1) if single_target
|
88
|
-
n_samples, n_features = x.shape
|
89
|
-
@params[:max_features] = n_features if @params[:max_features].nil?
|
90
|
-
@params[:max_features] = [@params[:max_features], n_features].min
|
91
|
-
build_tree(x, y)
|
92
|
-
@leaf_values = @leaf_values[true] if single_target
|
93
|
-
eval_importance(n_samples, n_features)
|
94
|
-
self
|
95
|
-
end
|
96
|
-
|
97
|
-
# Predict values for samples.
|
98
|
-
#
|
99
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
100
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
101
|
-
def predict(x)
|
102
|
-
check_sample_array(x)
|
103
|
-
@leaf_values.shape[1].nil? ? @leaf_values[apply(x)] : @leaf_values[apply(x), true]
|
104
|
-
end
|
105
|
-
|
106
|
-
# Return the index of the leaf that each sample reached.
|
107
|
-
#
|
108
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
109
|
-
# @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample.
|
110
|
-
def apply(x)
|
111
|
-
check_sample_array(x)
|
112
|
-
Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })]
|
113
|
-
end
|
114
|
-
|
115
|
-
# Dump marshal data.
|
116
|
-
# @return [Hash] The marshal data about DecisionTreeRegressor
|
117
|
-
def marshal_dump
|
118
|
-
{ params: @params,
|
119
|
-
criterion: @criterion,
|
120
|
-
tree: @tree,
|
121
|
-
feature_importances: @feature_importances,
|
122
|
-
leaf_values: @leaf_values,
|
123
|
-
rng: @rng }
|
124
|
-
end
|
125
|
-
|
126
|
-
# Load marshal data.
|
127
|
-
# @return [nil]
|
128
|
-
def marshal_load(obj)
|
129
|
-
@params = obj[:params]
|
130
|
-
@criterion = obj[:criterion]
|
131
|
-
@tree = obj[:tree]
|
132
|
-
@feature_importances = obj[:feature_importances]
|
133
|
-
@leaf_values = obj[:leaf_values]
|
134
|
-
@rng = obj[:rng]
|
135
|
-
nil
|
136
|
-
end
|
137
|
-
|
138
|
-
private
|
139
|
-
|
140
|
-
def apply_at_node(node, sample)
|
141
|
-
return node.leaf_id if node.leaf
|
142
|
-
return apply_at_node(node.left, sample) if node.right.nil?
|
143
|
-
return apply_at_node(node.right, sample) if node.left.nil?
|
144
|
-
if sample[node.feature_id] <= node.threshold
|
145
|
-
apply_at_node(node.left, sample)
|
146
|
-
else
|
147
|
-
apply_at_node(node.right, sample)
|
148
|
-
end
|
149
|
-
end
|
150
|
-
|
151
|
-
def build_tree(x, y)
|
152
|
-
@n_leaves = 0
|
153
|
-
@leaf_values = []
|
154
|
-
@tree = grow_node(0, x, y, impurity(y))
|
155
|
-
@leaf_values = Numo::DFloat.cast(@leaf_values)
|
156
|
-
nil
|
157
|
-
end
|
158
|
-
|
159
|
-
def grow_node(depth, x, y, whole_impurity)
|
160
|
-
unless @params[:max_leaf_nodes].nil?
|
161
|
-
return nil if @n_leaves >= @params[:max_leaf_nodes]
|
162
|
-
end
|
163
|
-
|
164
|
-
n_samples, n_features = x.shape
|
165
|
-
return nil if n_samples <= @params[:min_samples_leaf]
|
166
|
-
|
167
|
-
node = Node.new(depth: depth, impurity: whole_impurity, n_samples: n_samples)
|
168
|
-
|
169
|
-
return put_leaf(node, y) if (y - y.mean(0)).sum.abs.zero?
|
170
|
-
|
171
|
-
unless @params[:max_depth].nil?
|
172
|
-
return put_leaf(node, y) if depth == @params[:max_depth]
|
173
|
-
end
|
174
|
-
|
175
|
-
feature_id, threshold, left_ids, right_ids, left_impurity, right_impurity, gain =
|
176
|
-
rand_ids(n_features).map { |f_id| [f_id, *best_split(x[true, f_id], y, whole_impurity)] }.max_by(&:last)
|
177
|
-
|
178
|
-
return put_leaf(node, y) if gain.nil? || gain.zero?
|
179
|
-
|
180
|
-
node.left = grow_node(depth + 1, x[left_ids, true], y[left_ids, true], left_impurity)
|
181
|
-
node.right = grow_node(depth + 1, x[right_ids, true], y[right_ids, true], right_impurity)
|
182
|
-
|
183
|
-
return put_leaf(node, y) if node.left.nil? && node.right.nil?
|
184
|
-
|
185
|
-
node.feature_id = feature_id
|
186
|
-
node.threshold = threshold
|
187
|
-
node.leaf = false
|
188
|
-
node
|
189
|
-
end
|
190
|
-
|
191
|
-
def put_leaf(node, values)
|
192
|
-
node.probs = nil
|
193
|
-
node.leaf = true
|
194
|
-
node.leaf_id = @n_leaves
|
195
|
-
@n_leaves += 1
|
196
|
-
@leaf_values.push(values.mean(0))
|
197
|
-
node
|
198
|
-
end
|
199
|
-
|
200
|
-
def rand_ids(n)
|
201
|
-
[*0...n].sample(@params[:max_features], random: @rng)
|
202
|
-
end
|
203
|
-
|
204
|
-
def best_split(features, values, whole_impurity)
|
205
|
-
n_samples = values.shape[0]
|
206
|
-
features.to_a.uniq.sort.each_cons(2).map do |l, r|
|
207
|
-
threshold = 0.5 * (l + r)
|
208
|
-
left_ids = features.le(threshold).where
|
209
|
-
right_ids = features.gt(threshold).where
|
210
|
-
left_impurity = impurity(values[left_ids, true])
|
211
|
-
right_impurity = impurity(values[right_ids, true])
|
212
|
-
gain = whole_impurity -
|
213
|
-
left_impurity * left_ids.size.fdiv(n_samples) -
|
214
|
-
right_impurity * right_ids.size.fdiv(n_samples)
|
215
|
-
[threshold, left_ids, right_ids, left_impurity, right_impurity, gain]
|
216
|
-
end.max_by(&:last)
|
217
|
-
end
|
218
|
-
|
219
|
-
def impurity(values)
|
220
|
-
send(@criterion, values)
|
221
|
-
end
|
222
|
-
|
223
|
-
def mse(values)
|
224
|
-
((values - values.mean(0))**2).mean
|
225
|
-
end
|
226
|
-
|
227
|
-
def mae(values)
|
228
|
-
(values - values.mean(0)).abs.mean
|
229
|
-
end
|
230
|
-
|
231
|
-
def eval_importance(n_samples, n_features)
|
232
|
-
@feature_importances = Numo::DFloat.zeros(n_features)
|
233
|
-
eval_importance_at_node(@tree)
|
234
|
-
@feature_importances /= n_samples
|
235
|
-
normalizer = @feature_importances.sum
|
236
|
-
@feature_importances /= normalizer if normalizer > 0.0
|
237
|
-
nil
|
238
|
-
end
|
239
|
-
|
240
|
-
def eval_importance_at_node(node)
|
241
|
-
return nil if node.leaf
|
242
|
-
return nil if node.left.nil? || node.right.nil?
|
243
|
-
gain = node.n_samples * node.impurity -
|
244
|
-
node.left.n_samples * node.left.impurity - node.right.n_samples * node.right.impurity
|
245
|
-
@feature_importances[node.feature_id] += gain
|
246
|
-
eval_importance_at_node(node.left)
|
247
|
-
eval_importance_at_node(node.right)
|
248
|
-
end
|
249
|
-
end
|
250
|
-
end
|
251
|
-
end
|
data/lib/svmkit/tree/node.rb
DELETED
@@ -1,70 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
module SVMKit
|
4
|
-
module Tree
|
5
|
-
# Node is a class that implements node used for construction of decision tree.
|
6
|
-
# This class is used for internal data structures.
|
7
|
-
class Node
|
8
|
-
# @!visibility private
|
9
|
-
attr_accessor :depth, :impurity, :n_samples, :probs, :leaf, :leaf_id, :left, :right, :feature_id, :threshold
|
10
|
-
|
11
|
-
# Create a new node for decision tree.
|
12
|
-
#
|
13
|
-
# @param depth [Integer] The depth of the node in tree.
|
14
|
-
# @param impurity [Float] The impurity of the node.
|
15
|
-
# @param n_samples [Integer] The number of the samples in the node.
|
16
|
-
# @param probs [Float] The probability of the node.
|
17
|
-
# @param leaf [Boolean] The flag indicating whether the node is a leaf.
|
18
|
-
# @param leaf_id [Integer] The leaf index of the node.
|
19
|
-
# @param left [Node] The left node.
|
20
|
-
# @param right [Node] The right node.
|
21
|
-
# @param feature_id [Integer] The feature index used for evaluation.
|
22
|
-
# @param threshold [Float] The threshold value of the feature for splitting the node.
|
23
|
-
def initialize(depth: 0, impurity: 0.0, n_samples: 0, probs: 0.0,
|
24
|
-
leaf: true, leaf_id: 0,
|
25
|
-
left: nil, right: nil, feature_id: 0, threshold: 0.0)
|
26
|
-
@depth = depth
|
27
|
-
@impurity = impurity
|
28
|
-
@n_samples = n_samples
|
29
|
-
@probs = probs
|
30
|
-
@leaf = leaf
|
31
|
-
@leaf_id = leaf_id
|
32
|
-
@left = left
|
33
|
-
@right = right
|
34
|
-
@feature_id = feature_id
|
35
|
-
@threshold = threshold
|
36
|
-
end
|
37
|
-
|
38
|
-
# Dump marshal data.
|
39
|
-
# @return [Hash] The marshal data about Node
|
40
|
-
def marshal_dump
|
41
|
-
{ depth: @depth,
|
42
|
-
impurity: @impurity,
|
43
|
-
n_samples: @n_samples,
|
44
|
-
probs: @probs,
|
45
|
-
leaf: @leaf,
|
46
|
-
leaf_id: @leaf_id,
|
47
|
-
left: @left,
|
48
|
-
right: @right,
|
49
|
-
feature_id: @feature_id,
|
50
|
-
threshold: @threshold }
|
51
|
-
end
|
52
|
-
|
53
|
-
# Load marshal data.
|
54
|
-
# @return [nil]
|
55
|
-
def marshal_load(obj)
|
56
|
-
@depth = obj[:depth]
|
57
|
-
@impurity = obj[:impurity]
|
58
|
-
@n_samples = obj[:n_samples]
|
59
|
-
@probs = obj[:probs]
|
60
|
-
@leaf = obj[:leaf]
|
61
|
-
@leaf_id = obj[:leaf_id]
|
62
|
-
@left = obj[:left]
|
63
|
-
@right = obj[:right]
|
64
|
-
@feature_id = obj[:feature_id]
|
65
|
-
@threshold = obj[:threshold]
|
66
|
-
nil
|
67
|
-
end
|
68
|
-
end
|
69
|
-
end
|
70
|
-
end
|
data/lib/svmkit/utils.rb
DELETED
@@ -1,22 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
module SVMKit
|
4
|
-
# @!visibility private
|
5
|
-
module Utils
|
6
|
-
module_function
|
7
|
-
|
8
|
-
# @!visibility private
|
9
|
-
def choice_ids(size, probs, rng = nil)
|
10
|
-
rng ||= Random.new
|
11
|
-
Array.new(size) do
|
12
|
-
target = rng.rand
|
13
|
-
chosen = 0
|
14
|
-
probs.each_with_index do |p, idx|
|
15
|
-
break (chosen = idx) if target <= p
|
16
|
-
target -= p
|
17
|
-
end
|
18
|
-
chosen
|
19
|
-
end
|
20
|
-
end
|
21
|
-
end
|
22
|
-
end
|
data/lib/svmkit/validation.rb
DELETED
@@ -1,79 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
module SVMKit
|
4
|
-
# @!visibility private
|
5
|
-
module Validation
|
6
|
-
module_function
|
7
|
-
|
8
|
-
# @!visibility private
|
9
|
-
def check_sample_array(x)
|
10
|
-
raise TypeError, 'Expect class of sample matrix to be Numo::DFloat' unless x.is_a?(Numo::DFloat)
|
11
|
-
raise ArgumentError, 'Expect sample matrix to be 2-D array' unless x.shape.size == 2
|
12
|
-
nil
|
13
|
-
end
|
14
|
-
|
15
|
-
# @!visibility private
|
16
|
-
def check_label_array(y)
|
17
|
-
raise TypeError, 'Expect class of label vector to be Numo::Int32' unless y.is_a?(Numo::Int32)
|
18
|
-
raise ArgumentError, 'Expect label vector to be 1-D arrray' unless y.shape.size == 1
|
19
|
-
nil
|
20
|
-
end
|
21
|
-
|
22
|
-
# @!visibility private
|
23
|
-
def check_tvalue_array(y)
|
24
|
-
raise TypeError, 'Expect class of target value vector to be Numo::DFloat' unless y.is_a?(Numo::DFloat)
|
25
|
-
nil
|
26
|
-
end
|
27
|
-
|
28
|
-
# @!visibility private
|
29
|
-
def check_sample_label_size(x, y)
|
30
|
-
raise ArgumentError, 'Expect to have the same number of samples for sample matrix and label vector' unless x.shape[0] == y.shape[0]
|
31
|
-
nil
|
32
|
-
end
|
33
|
-
|
34
|
-
# @!visibility private
|
35
|
-
def check_sample_tvalue_size(x, y)
|
36
|
-
raise ArgumentError, 'Expect to have the same number of samples for sample matrix and target value vector' unless x.shape[0] == y.shape[0]
|
37
|
-
nil
|
38
|
-
end
|
39
|
-
|
40
|
-
# @!visibility private
|
41
|
-
def check_params_type(type, params = {})
|
42
|
-
params.each { |k, v| raise TypeError, "Expect class of #{k} to be #{type}" unless v.is_a?(type) }
|
43
|
-
nil
|
44
|
-
end
|
45
|
-
|
46
|
-
# @!visibility private
|
47
|
-
def check_params_type_or_nil(type, params = {})
|
48
|
-
params.each { |k, v| raise TypeError, "Expect class of #{k} to be #{type} or nil" unless v.is_a?(type) || v.is_a?(NilClass) }
|
49
|
-
nil
|
50
|
-
end
|
51
|
-
|
52
|
-
# @!visibility private
|
53
|
-
def check_params_float(params = {})
|
54
|
-
check_params_type(Float, params)
|
55
|
-
end
|
56
|
-
|
57
|
-
# @!visibility private
|
58
|
-
def check_params_integer(params = {})
|
59
|
-
check_params_type(Integer, params)
|
60
|
-
end
|
61
|
-
|
62
|
-
# @!visibility private
|
63
|
-
def check_params_string(params = {})
|
64
|
-
check_params_type(String, params)
|
65
|
-
end
|
66
|
-
|
67
|
-
# @!visibility private
|
68
|
-
def check_params_boolean(params = {})
|
69
|
-
params.each { |k, v| raise TypeError, "Expect class of #{k} to be Boolean" unless v.is_a?(FalseClass) || v.is_a?(TrueClass) }
|
70
|
-
nil
|
71
|
-
end
|
72
|
-
|
73
|
-
# @!visibility private
|
74
|
-
def check_params_positive(params = {})
|
75
|
-
params.reject { |_, v| v.nil? }.each { |k, v| raise ArgumentError, "Expect #{k} to be positive value" if v < 0 }
|
76
|
-
nil
|
77
|
-
end
|
78
|
-
end
|
79
|
-
end
|
data/lib/svmkit/values.rb
DELETED