gsl 1.12.109 → 1.14.5
Sign up to get free protection for your applications and to get access to all the features.
- data/AUTHORS +6 -0
- data/COPYING +339 -0
- data/ChangeLog +556 -0
- data/{README.rdoc → README} +3 -0
- data/Rakefile +54 -10
- data/THANKS +17 -0
- data/VERSION +1 -2
- data/examples/alf/alf.gp +15 -0
- data/examples/alf/alf.rb +32 -0
- data/examples/blas/blas.rb +13 -0
- data/examples/blas/dnrm2.rb +16 -0
- data/examples/blas/level1.rb +81 -0
- data/examples/blas/level2.rb +11 -0
- data/examples/blas/level3.rb +12 -0
- data/examples/bspline.rb +57 -0
- data/examples/cdf.rb +16 -0
- data/examples/cheb.rb +21 -0
- data/examples/combination.rb +23 -0
- data/examples/complex/RC-lpf.rb +47 -0
- data/examples/complex/add.rb +36 -0
- data/examples/complex/coerce.rb +14 -0
- data/examples/complex/complex.rb +25 -0
- data/examples/complex/fpmi.rb +70 -0
- data/examples/complex/functions.rb +77 -0
- data/examples/complex/michelson.rb +36 -0
- data/examples/complex/mul.rb +28 -0
- data/examples/complex/oscillator.rb +17 -0
- data/examples/complex/set.rb +37 -0
- data/examples/const/physconst.rb +151 -0
- data/examples/const/travel.rb +45 -0
- data/examples/deriv/demo.rb +13 -0
- data/examples/deriv/deriv.rb +36 -0
- data/examples/deriv/diff.rb +35 -0
- data/examples/dht.rb +42 -0
- data/examples/dirac.rb +56 -0
- data/examples/eigen/eigen.rb +34 -0
- data/examples/eigen/herm.rb +22 -0
- data/examples/eigen/narray.rb +9 -0
- data/examples/eigen/nonsymm.rb +37 -0
- data/examples/eigen/nonsymmv.rb +43 -0
- data/examples/eigen/qhoscillator.gp +35 -0
- data/examples/eigen/qhoscillator.rb +90 -0
- data/examples/eigen/vander.rb +41 -0
- data/examples/fft/fft.rb +17 -0
- data/examples/fft/fft2.rb +17 -0
- data/examples/fft/forward.rb +25 -0
- data/examples/fft/forward2.rb +26 -0
- data/examples/fft/radix2.rb +18 -0
- data/examples/fft/real-halfcomplex.rb +33 -0
- data/examples/fft/real-halfcomplex2.rb +30 -0
- data/examples/fft/realradix2.rb +19 -0
- data/examples/fft/sunspot.dat +256 -0
- data/examples/fft/sunspot.rb +16 -0
- data/examples/fit/expdata.dat +20 -0
- data/examples/fit/expfit.rb +31 -0
- data/examples/fit/gaussfit.rb +29 -0
- data/examples/fit/gaussian_2peaks.rb +34 -0
- data/examples/fit/hillfit.rb +40 -0
- data/examples/fit/lognormal.rb +26 -0
- data/examples/fit/lorentzfit.rb +22 -0
- data/examples/fit/multifit.rb +72 -0
- data/examples/fit/ndlinear.rb +133 -0
- data/examples/fit/nonlinearfit.rb +89 -0
- data/examples/fit/plot.gp +36 -0
- data/examples/fit/polyfit.rb +9 -0
- data/examples/fit/powerfit.rb +21 -0
- data/examples/fit/sigmoidfit.rb +40 -0
- data/examples/fit/sinfit.rb +22 -0
- data/examples/fit/wlinear.rb +46 -0
- data/examples/fresnel.rb +11 -0
- data/examples/function/function.rb +36 -0
- data/examples/function/log.rb +7 -0
- data/examples/function/min.rb +33 -0
- data/examples/function/sin.rb +10 -0
- data/examples/function/synchrotron.rb +18 -0
- data/examples/gallery/butterfly.rb +7 -0
- data/examples/gallery/cayley.rb +12 -0
- data/examples/gallery/cornu.rb +23 -0
- data/examples/gallery/eight.rb +11 -0
- data/examples/gallery/koch.rb +40 -0
- data/examples/gallery/lemniscate.rb +11 -0
- data/examples/gallery/polar.rb +11 -0
- data/examples/gallery/rgplot/cossin.rb +35 -0
- data/examples/gallery/rgplot/rgplot.replaced +0 -0
- data/examples/gallery/rgplot/roesller.rb +55 -0
- data/examples/gallery/roesller.rb +39 -0
- data/examples/gallery/scarabaeus.rb +14 -0
- data/examples/histogram/cauchy.rb +27 -0
- data/examples/histogram/cauchy.sh +2 -0
- data/examples/histogram/exponential.rb +19 -0
- data/examples/histogram/gauss.rb +16 -0
- data/examples/histogram/gsl-histogram.rb +40 -0
- data/examples/histogram/histo2d.rb +31 -0
- data/examples/histogram/histo3d.rb +34 -0
- data/examples/histogram/histogram-pdf.rb +27 -0
- data/examples/histogram/histogram.rb +26 -0
- data/examples/histogram/integral.rb +28 -0
- data/examples/histogram/poisson.rb +27 -0
- data/examples/histogram/power.rb +25 -0
- data/examples/histogram/rebin.rb +17 -0
- data/examples/histogram/smp.dat +5 -0
- data/examples/histogram/xexp.rb +21 -0
- data/examples/integration/ahmed.rb +21 -0
- data/examples/integration/cosmology.rb +75 -0
- data/examples/integration/friedmann.gp +16 -0
- data/examples/integration/friedmann.rb +35 -0
- data/examples/integration/gamma-zeta.rb +35 -0
- data/examples/integration/integration.rb +22 -0
- data/examples/integration/qag.rb +8 -0
- data/examples/integration/qag2.rb +14 -0
- data/examples/integration/qag3.rb +8 -0
- data/examples/integration/qagi.rb +28 -0
- data/examples/integration/qagi2.rb +49 -0
- data/examples/integration/qagiu.rb +29 -0
- data/examples/integration/qagp.rb +20 -0
- data/examples/integration/qags.rb +14 -0
- data/examples/integration/qawc.rb +18 -0
- data/examples/integration/qawf.rb +41 -0
- data/examples/integration/qawo.rb +29 -0
- data/examples/integration/qaws.rb +30 -0
- data/examples/integration/qng.rb +17 -0
- data/examples/interp/demo.gp +20 -0
- data/examples/interp/demo.rb +45 -0
- data/examples/interp/interp.rb +37 -0
- data/examples/interp/points +10 -0
- data/examples/interp/spline.rb +20 -0
- data/examples/jacobi/deriv.rb +40 -0
- data/examples/jacobi/integrate.rb +34 -0
- data/examples/jacobi/interp.rb +43 -0
- data/examples/jacobi/jacobi.rb +11 -0
- data/examples/linalg/HH.rb +15 -0
- data/examples/linalg/HH_narray.rb +13 -0
- data/examples/linalg/LQ_solve.rb +73 -0
- data/examples/linalg/LU.rb +84 -0
- data/examples/linalg/LU2.rb +31 -0
- data/examples/linalg/LU_narray.rb +24 -0
- data/examples/linalg/PTLQ.rb +47 -0
- data/examples/linalg/QR.rb +18 -0
- data/examples/linalg/QRPT.rb +47 -0
- data/examples/linalg/QR_solve.rb +78 -0
- data/examples/linalg/QR_solve_narray.rb +13 -0
- data/examples/linalg/SV.rb +16 -0
- data/examples/linalg/SV_narray.rb +12 -0
- data/examples/linalg/SV_solve.rb +49 -0
- data/examples/linalg/chol.rb +29 -0
- data/examples/linalg/chol_narray.rb +15 -0
- data/examples/linalg/complex.rb +57 -0
- data/examples/linalg/invert_narray.rb +10 -0
- data/examples/math/const.rb +67 -0
- data/examples/math/elementary.rb +35 -0
- data/examples/math/functions.rb +41 -0
- data/examples/math/inf_nan.rb +34 -0
- data/examples/math/minmax.rb +22 -0
- data/examples/math/power.rb +18 -0
- data/examples/math/test.rb +31 -0
- data/examples/matrix/a.dat +0 -0
- data/examples/matrix/add.rb +45 -0
- data/examples/matrix/b.dat +4 -0
- data/examples/matrix/cat.rb +31 -0
- data/examples/matrix/colvectors.rb +24 -0
- data/examples/matrix/complex.rb +41 -0
- data/examples/matrix/det.rb +29 -0
- data/examples/matrix/diagonal.rb +23 -0
- data/examples/matrix/get_all.rb +159 -0
- data/examples/matrix/hilbert.rb +31 -0
- data/examples/matrix/iterator.rb +19 -0
- data/examples/matrix/matrix.rb +57 -0
- data/examples/matrix/minmax.rb +53 -0
- data/examples/matrix/mul.rb +39 -0
- data/examples/matrix/rand.rb +20 -0
- data/examples/matrix/read.rb +29 -0
- data/examples/matrix/rowcol.rb +47 -0
- data/examples/matrix/set.rb +41 -0
- data/examples/matrix/set_all.rb +100 -0
- data/examples/matrix/view.rb +32 -0
- data/examples/matrix/view_all.rb +148 -0
- data/examples/matrix/write.rb +23 -0
- data/examples/min.rb +29 -0
- data/examples/monte/miser.rb +47 -0
- data/examples/monte/monte.rb +47 -0
- data/examples/monte/plain.rb +47 -0
- data/examples/monte/vegas.rb +46 -0
- data/examples/multimin/bundle.rb +66 -0
- data/examples/multimin/cqp.rb +109 -0
- data/examples/multimin/fdfminimizer.rb +40 -0
- data/examples/multimin/fminimizer.rb +41 -0
- data/examples/multiroot/demo.rb +36 -0
- data/examples/multiroot/fdfsolver.rb +50 -0
- data/examples/multiroot/fsolver.rb +33 -0
- data/examples/multiroot/fsolver2.rb +32 -0
- data/examples/multiroot/fsolver3.rb +26 -0
- data/examples/narray/histogram.rb +14 -0
- data/examples/narray/mandel.rb +27 -0
- data/examples/narray/narray.rb +28 -0
- data/examples/narray/narray2.rb +44 -0
- data/examples/narray/sf.rb +26 -0
- data/examples/ntuple/create.rb +17 -0
- data/examples/ntuple/project.rb +31 -0
- data/examples/odeiv/binarysystem.gp +23 -0
- data/examples/odeiv/binarysystem.rb +104 -0
- data/examples/odeiv/demo.gp +24 -0
- data/examples/odeiv/demo.rb +69 -0
- data/examples/odeiv/demo2.gp +26 -0
- data/examples/odeiv/duffing.rb +45 -0
- data/examples/odeiv/frei1.rb +109 -0
- data/examples/odeiv/frei2.rb +76 -0
- data/examples/odeiv/legendre.rb +52 -0
- data/examples/odeiv/odeiv.rb +32 -0
- data/examples/odeiv/odeiv2.rb +45 -0
- data/examples/odeiv/oscillator.rb +42 -0
- data/examples/odeiv/sedov.rb +97 -0
- data/examples/odeiv/whitedwarf.gp +40 -0
- data/examples/odeiv/whitedwarf.rb +158 -0
- data/examples/ool/conmin.rb +100 -0
- data/examples/ool/gencan.rb +99 -0
- data/examples/ool/pgrad.rb +100 -0
- data/examples/ool/spg.rb +100 -0
- data/examples/pdf/bernoulli.rb +5 -0
- data/examples/pdf/beta.rb +7 -0
- data/examples/pdf/binomiral.rb +10 -0
- data/examples/pdf/cauchy.rb +6 -0
- data/examples/pdf/chisq.rb +8 -0
- data/examples/pdf/exponential.rb +7 -0
- data/examples/pdf/exppow.rb +6 -0
- data/examples/pdf/fdist.rb +7 -0
- data/examples/pdf/flat.rb +7 -0
- data/examples/pdf/gamma.rb +8 -0
- data/examples/pdf/gauss-tail.rb +5 -0
- data/examples/pdf/gauss.rb +6 -0
- data/examples/pdf/geometric.rb +5 -0
- data/examples/pdf/gumbel.rb +6 -0
- data/examples/pdf/hypergeometric.rb +11 -0
- data/examples/pdf/landau.rb +5 -0
- data/examples/pdf/laplace.rb +7 -0
- data/examples/pdf/logarithmic.rb +5 -0
- data/examples/pdf/logistic.rb +6 -0
- data/examples/pdf/lognormal.rb +6 -0
- data/examples/pdf/neg-binomiral.rb +10 -0
- data/examples/pdf/pareto.rb +7 -0
- data/examples/pdf/pascal.rb +10 -0
- data/examples/pdf/poisson.rb +5 -0
- data/examples/pdf/rayleigh-tail.rb +6 -0
- data/examples/pdf/rayleigh.rb +6 -0
- data/examples/pdf/tdist.rb +6 -0
- data/examples/pdf/weibull.rb +8 -0
- data/examples/permutation/ex1.rb +22 -0
- data/examples/permutation/permutation.rb +16 -0
- data/examples/poly/bell.rb +6 -0
- data/examples/poly/bessel.rb +6 -0
- data/examples/poly/cheb.rb +6 -0
- data/examples/poly/cheb_II.rb +6 -0
- data/examples/poly/cubic.rb +9 -0
- data/examples/poly/demo.rb +20 -0
- data/examples/poly/eval.rb +28 -0
- data/examples/poly/eval_derivs.rb +14 -0
- data/examples/poly/fit.rb +21 -0
- data/examples/poly/hermite.rb +6 -0
- data/examples/poly/poly.rb +13 -0
- data/examples/poly/quadratic.rb +25 -0
- data/examples/random/diffusion.rb +34 -0
- data/examples/random/gaussian.rb +9 -0
- data/examples/random/generator.rb +27 -0
- data/examples/random/hdsobol.rb +21 -0
- data/examples/random/poisson.rb +9 -0
- data/examples/random/qrng.rb +19 -0
- data/examples/random/randomwalk.rb +37 -0
- data/examples/random/randomwalk2d.rb +19 -0
- data/examples/random/rayleigh.rb +36 -0
- data/examples/random/rng.rb +33 -0
- data/examples/random/rngextra.rb +14 -0
- data/examples/roots/bisection.rb +25 -0
- data/examples/roots/brent.rb +43 -0
- data/examples/roots/demo.rb +30 -0
- data/examples/roots/newton.rb +46 -0
- data/examples/roots/recombination.gp +12 -0
- data/examples/roots/recombination.rb +61 -0
- data/examples/roots/steffenson.rb +48 -0
- data/examples/sf/ShiChi.rb +6 -0
- data/examples/sf/SiCi.rb +6 -0
- data/examples/sf/airy_Ai.rb +8 -0
- data/examples/sf/airy_Bi.rb +8 -0
- data/examples/sf/bessel_IK.rb +12 -0
- data/examples/sf/bessel_JY.rb +13 -0
- data/examples/sf/beta_inc.rb +9 -0
- data/examples/sf/clausen.rb +6 -0
- data/examples/sf/dawson.rb +5 -0
- data/examples/sf/debye.rb +9 -0
- data/examples/sf/dilog.rb +6 -0
- data/examples/sf/ellint.rb +6 -0
- data/examples/sf/expint.rb +8 -0
- data/examples/sf/fermi.rb +10 -0
- data/examples/sf/gamma_inc_P.rb +9 -0
- data/examples/sf/gegenbauer.rb +8 -0
- data/examples/sf/hyperg.rb +7 -0
- data/examples/sf/laguerre.rb +19 -0
- data/examples/sf/lambertW.rb +5 -0
- data/examples/sf/legendre_P.rb +10 -0
- data/examples/sf/lngamma.rb +5 -0
- data/examples/sf/psi.rb +54 -0
- data/examples/sf/sphbessel.gp +27 -0
- data/examples/sf/sphbessel.rb +30 -0
- data/examples/sf/synchrotron.rb +5 -0
- data/examples/sf/transport.rb +10 -0
- data/examples/sf/zetam1.rb +5 -0
- data/examples/siman.rb +44 -0
- data/examples/sort/heapsort.rb +23 -0
- data/examples/sort/heapsort_vector_complex.rb +21 -0
- data/examples/sort/sort.rb +23 -0
- data/examples/sort/sort2.rb +16 -0
- data/examples/stats/mean.rb +17 -0
- data/examples/stats/statistics.rb +18 -0
- data/examples/stats/test.rb +9 -0
- data/examples/sum.rb +34 -0
- data/examples/tamu_anova.rb +18 -0
- data/examples/vector/a.dat +0 -0
- data/examples/vector/add.rb +56 -0
- data/examples/vector/b.dat +4 -0
- data/examples/vector/c.dat +3 -0
- data/examples/vector/collect.rb +26 -0
- data/examples/vector/compare.rb +28 -0
- data/examples/vector/complex.rb +51 -0
- data/examples/vector/complex_get_all.rb +85 -0
- data/examples/vector/complex_set_all.rb +131 -0
- data/examples/vector/complex_view_all.rb +77 -0
- data/examples/vector/connect.rb +22 -0
- data/examples/vector/decimate.rb +38 -0
- data/examples/vector/diff.rb +31 -0
- data/examples/vector/filescan.rb +17 -0
- data/examples/vector/floor.rb +23 -0
- data/examples/vector/get_all.rb +82 -0
- data/examples/vector/gnuplot.rb +38 -0
- data/examples/vector/graph.rb +28 -0
- data/examples/vector/histogram.rb +22 -0
- data/examples/vector/linspace.rb +24 -0
- data/examples/vector/log.rb +17 -0
- data/examples/vector/logic.rb +33 -0
- data/examples/vector/logspace.rb +25 -0
- data/examples/vector/minmax.rb +47 -0
- data/examples/vector/mul.rb +49 -0
- data/examples/vector/narray.rb +46 -0
- data/examples/vector/read.rb +29 -0
- data/examples/vector/set.rb +35 -0
- data/examples/vector/set_all.rb +121 -0
- data/examples/vector/smpv.dat +15 -0
- data/examples/vector/test.rb +43 -0
- data/examples/vector/test_gslblock.rb +58 -0
- data/examples/vector/vector.rb +110 -0
- data/examples/vector/view.rb +35 -0
- data/examples/vector/view_all.rb +73 -0
- data/examples/vector/where.rb +29 -0
- data/examples/vector/write.rb +24 -0
- data/examples/vector/zip.rb +34 -0
- data/examples/wavelet/ecg.dat +256 -0
- data/examples/wavelet/wavelet1.rb +50 -0
- data/ext/extconf.rb +9 -0
- data/ext/gsl.c +10 -1
- data/ext/histogram.c +6 -2
- data/ext/integration.c +39 -0
- data/ext/matrix_complex.c +1 -1
- data/ext/multiset.c +214 -0
- data/ext/nmf.c +4 -0
- data/ext/nmf_wrap.c +3 -0
- data/ext/vector_complex.c +1 -1
- data/ext/vector_double.c +3 -3
- data/ext/vector_source.c +6 -6
- data/include/rb_gsl.h +7 -0
- data/include/rb_gsl_common.h +6 -0
- data/rdoc/alf.rdoc +77 -0
- data/rdoc/blas.rdoc +269 -0
- data/rdoc/bspline.rdoc +42 -0
- data/rdoc/changes.rdoc +164 -0
- data/rdoc/cheb.rdoc +99 -0
- data/rdoc/cholesky_complex.rdoc +46 -0
- data/rdoc/combi.rdoc +125 -0
- data/rdoc/complex.rdoc +210 -0
- data/rdoc/const.rdoc +546 -0
- data/rdoc/dht.rdoc +122 -0
- data/rdoc/diff.rdoc +133 -0
- data/rdoc/ehandling.rdoc +50 -0
- data/rdoc/eigen.rdoc +401 -0
- data/rdoc/fft.rdoc +535 -0
- data/rdoc/fit.rdoc +284 -0
- data/rdoc/function.rdoc +94 -0
- data/rdoc/graph.rdoc +137 -0
- data/rdoc/hist.rdoc +409 -0
- data/rdoc/hist2d.rdoc +279 -0
- data/rdoc/hist3d.rdoc +112 -0
- data/rdoc/index.rdoc +62 -0
- data/rdoc/integration.rdoc +398 -0
- data/rdoc/interp.rdoc +231 -0
- data/rdoc/intro.rdoc +27 -0
- data/rdoc/linalg.rdoc +681 -0
- data/rdoc/linalg_complex.rdoc +88 -0
- data/rdoc/math.rdoc +276 -0
- data/rdoc/matrix.rdoc +1093 -0
- data/rdoc/min.rdoc +189 -0
- data/rdoc/monte.rdoc +234 -0
- data/rdoc/multimin.rdoc +312 -0
- data/rdoc/multiroot.rdoc +293 -0
- data/rdoc/narray.rdoc +173 -0
- data/rdoc/ndlinear.rdoc +247 -0
- data/rdoc/nonlinearfit.rdoc +348 -0
- data/rdoc/ntuple.rdoc +88 -0
- data/rdoc/odeiv.rdoc +378 -0
- data/rdoc/perm.rdoc +221 -0
- data/rdoc/poly.rdoc +335 -0
- data/rdoc/qrng.rdoc +90 -0
- data/rdoc/randist.rdoc +233 -0
- data/rdoc/ref.rdoc +93 -0
- data/rdoc/rng.rdoc +203 -0
- data/rdoc/rngextra.rdoc +11 -0
- data/rdoc/roots.rdoc +305 -0
- data/rdoc/screenshot.rdoc +40 -0
- data/rdoc/sf.rdoc +1622 -0
- data/rdoc/siman.rdoc +89 -0
- data/rdoc/sort.rdoc +94 -0
- data/rdoc/start.rdoc +16 -0
- data/rdoc/stats.rdoc +219 -0
- data/rdoc/sum.rdoc +65 -0
- data/rdoc/tensor.rdoc +251 -0
- data/rdoc/tut.rdoc +5 -0
- data/rdoc/use.rdoc +177 -0
- data/rdoc/vector.rdoc +1243 -0
- data/rdoc/vector_complex.rdoc +347 -0
- data/rdoc/wavelet.rdoc +218 -0
- data/setup.rb +1585 -0
- data/tests/blas/amax.rb +14 -0
- data/tests/blas/asum.rb +16 -0
- data/tests/blas/axpy.rb +25 -0
- data/tests/blas/copy.rb +23 -0
- data/tests/blas/dot.rb +23 -0
- data/tests/bspline.rb +53 -0
- data/tests/cdf.rb +1388 -0
- data/tests/cheb.rb +112 -0
- data/tests/combination.rb +123 -0
- data/tests/complex.rb +17 -0
- data/tests/const.rb +24 -0
- data/tests/deriv.rb +85 -0
- data/tests/dht/dht1.rb +17 -0
- data/tests/dht/dht2.rb +23 -0
- data/tests/dht/dht3.rb +23 -0
- data/tests/dht/dht4.rb +23 -0
- data/tests/diff.rb +78 -0
- data/tests/eigen/eigen.rb +220 -0
- data/tests/eigen/gen.rb +105 -0
- data/tests/eigen/genherm.rb +66 -0
- data/tests/eigen/gensymm.rb +68 -0
- data/tests/eigen/nonsymm.rb +53 -0
- data/tests/eigen/nonsymmv.rb +53 -0
- data/tests/eigen/symm-herm.rb +74 -0
- data/tests/err.rb +58 -0
- data/tests/fit.rb +124 -0
- data/tests/gsl_test.rb +118 -0
- data/tests/gsl_test2.rb +107 -0
- data/tests/histo.rb +12 -0
- data/tests/integration/integration1.rb +72 -0
- data/tests/integration/integration2.rb +71 -0
- data/tests/integration/integration3.rb +71 -0
- data/tests/integration/integration4.rb +71 -0
- data/tests/interp.rb +45 -0
- data/tests/linalg/HH.rb +64 -0
- data/tests/linalg/LU.rb +47 -0
- data/tests/linalg/QR.rb +77 -0
- data/tests/linalg/SV.rb +24 -0
- data/tests/linalg/TDN.rb +116 -0
- data/tests/linalg/TDS.rb +122 -0
- data/tests/linalg/bidiag.rb +73 -0
- data/tests/linalg/cholesky.rb +20 -0
- data/tests/linalg/linalg.rb +158 -0
- data/tests/matrix/matrix_nmf_test.rb +39 -0
- data/tests/matrix/matrix_test.rb +48 -0
- data/tests/min.rb +99 -0
- data/tests/monte/miser.rb +31 -0
- data/tests/monte/vegas.rb +45 -0
- data/tests/multifit/test_2dgauss.rb +112 -0
- data/tests/multifit/test_brown.rb +90 -0
- data/tests/multifit/test_enso.rb +246 -0
- data/tests/multifit/test_filip.rb +155 -0
- data/tests/multifit/test_gauss.rb +97 -0
- data/tests/multifit/test_longley.rb +110 -0
- data/tests/multifit/test_multifit.rb +52 -0
- data/tests/multimin.rb +139 -0
- data/tests/multiroot.rb +131 -0
- data/tests/multiset.rb +52 -0
- data/tests/odeiv.rb +353 -0
- data/tests/poly/poly.rb +242 -0
- data/tests/poly/special.rb +65 -0
- data/tests/qrng.rb +131 -0
- data/tests/quartic.rb +29 -0
- data/tests/randist.rb +134 -0
- data/tests/rng.rb +305 -0
- data/tests/roots.rb +76 -0
- data/tests/run-test.sh +17 -0
- data/tests/sf/gsl_test_sf.rb +249 -0
- data/tests/sf/test_airy.rb +83 -0
- data/tests/sf/test_bessel.rb +306 -0
- data/tests/sf/test_coulomb.rb +17 -0
- data/tests/sf/test_dilog.rb +25 -0
- data/tests/sf/test_gamma.rb +209 -0
- data/tests/sf/test_hyperg.rb +356 -0
- data/tests/sf/test_legendre.rb +227 -0
- data/tests/sf/test_mathieu.rb +59 -0
- data/tests/sf/test_sf.rb +839 -0
- data/tests/stats.rb +174 -0
- data/tests/sum.rb +98 -0
- data/tests/sys.rb +323 -0
- data/tests/tensor.rb +419 -0
- data/tests/vector/vector_complex_test.rb +101 -0
- data/tests/vector/vector_test.rb +141 -0
- data/tests/wavelet.rb +142 -0
- metadata +596 -15
data/rdoc/perm.rdoc
ADDED
@@ -0,0 +1,221 @@
|
|
1
|
+
#
|
2
|
+
# = Permutations
|
3
|
+
# Contents:
|
4
|
+
# 1. {Permuation allocations}[link:files/rdoc/perm_rdoc.html#1]
|
5
|
+
# 1. {Methods}[link:files/rdoc/perm_rdoc.html#2]
|
6
|
+
# 1. {Accessing permutation elements}[link:files/rdoc/perm_rdoc.html#2.1]
|
7
|
+
# 1. {Permuation properties}[link:files/rdoc/perm_rdoc.html#2.2]
|
8
|
+
# 1. {Permuation functions}[link:files/rdoc/perm_rdoc.html#2.3]
|
9
|
+
# 1. {Reading and writing permutations}[link:files/rdoc/perm_rdoc.html#2.4]
|
10
|
+
# 1. {Permutations in cyclic form}[link:files/rdoc/perm_rdoc.html#2.5]
|
11
|
+
# 1. {Applying Permutations}[link:files/rdoc/perm_rdoc.html#3]
|
12
|
+
#
|
13
|
+
# == {}[link:index.html"name="1] Permuation allocations
|
14
|
+
# ---
|
15
|
+
# * GSL::Permutation.alloc(n)
|
16
|
+
#
|
17
|
+
# These functions create a new permutation of size <tt>n</tt>.
|
18
|
+
# The permutation is not initialized and its elements are undefined.
|
19
|
+
# Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
|
20
|
+
# which is initialized to the identity.
|
21
|
+
#
|
22
|
+
# ---
|
23
|
+
# * GSL::Permutation.calloc(n)
|
24
|
+
#
|
25
|
+
# This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
|
26
|
+
#
|
27
|
+
# == {}[link:index.html"name="2] Methods
|
28
|
+
# ---
|
29
|
+
# * GSL::Permutation#init()
|
30
|
+
#
|
31
|
+
# This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
|
32
|
+
#
|
33
|
+
# ---
|
34
|
+
# * GSL::Permutation.memcpy(dest, src)
|
35
|
+
#
|
36
|
+
# This method copies the elements of the permutation <tt>src</tt>
|
37
|
+
# into the permutation <tt>dest</tt>. The two permutations must have the same size.
|
38
|
+
#
|
39
|
+
# ---
|
40
|
+
# * GSL::Permutation#clone
|
41
|
+
#
|
42
|
+
# This creates a new permutation with the same elements of <tt>self</tt>.
|
43
|
+
#
|
44
|
+
# === {}[link:index.html"name="2.1] Accessing permutation elements
|
45
|
+
#
|
46
|
+
# ---
|
47
|
+
# * GSL::Permutation#get(i)
|
48
|
+
#
|
49
|
+
# Returns the value of the <tt>i</tt>-th element of the permutation.
|
50
|
+
#
|
51
|
+
# ---
|
52
|
+
# * GSL::Permutation#swap(i, j)
|
53
|
+
#
|
54
|
+
# This exchanges the <tt>i</tt>-th and <tt>j</tt>-th elements of the permutation.
|
55
|
+
#
|
56
|
+
# === {}[link:index.html"name="2.2] Permutation properties
|
57
|
+
# ---
|
58
|
+
# * GSL::Permutation#size
|
59
|
+
#
|
60
|
+
# Returns the size of the permutation.
|
61
|
+
# ---
|
62
|
+
# * GSL::Permutation#valid
|
63
|
+
#
|
64
|
+
# This checks that the permutation <tt>self</tt> is valid.
|
65
|
+
# The n elements should contain each of the numbers 0 .. n-1 once and only once.
|
66
|
+
#
|
67
|
+
# ---
|
68
|
+
# * GSL::Permutation#valid?
|
69
|
+
#
|
70
|
+
# This returns true if the permutation <tt>self</tt> is valid, and false otherwise.
|
71
|
+
#
|
72
|
+
# === {}[link:index.html"name="2.3] Permutation functions
|
73
|
+
#
|
74
|
+
# ---
|
75
|
+
# * GSL::Permutation#reverse
|
76
|
+
#
|
77
|
+
# This reverses the elements of the permutation <tt>self</tt>.
|
78
|
+
# ---
|
79
|
+
# * GSL::Permutation#inverse
|
80
|
+
#
|
81
|
+
# This computes the inverse of the permutation <tt>self</tt>, and returns
|
82
|
+
# as a new permutation.
|
83
|
+
#
|
84
|
+
# ---
|
85
|
+
# * GSL::Permutation#next
|
86
|
+
#
|
87
|
+
# This method advances the permutation <tt>self</tt> to the next permutation in
|
88
|
+
# lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
|
89
|
+
# are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
|
90
|
+
# Starting with the identity permutation and repeatedly applying this function
|
91
|
+
# will iterate through all possible permutations of a given order.
|
92
|
+
# ---
|
93
|
+
# * GSL::Permutation#prev
|
94
|
+
#
|
95
|
+
# This method steps backwards from the permutation <tt>self</tt> to the previous
|
96
|
+
# permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
|
97
|
+
# If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
|
98
|
+
# and leaves <tt>self</tt> unmodified.
|
99
|
+
#
|
100
|
+
# === {}[link:index.html"name="2.4] Reading and writing permutations
|
101
|
+
# ---
|
102
|
+
# * GSL::Permutation#fwrite(io)
|
103
|
+
# * GSL::Permutation#fwrite(filename)
|
104
|
+
# * GSL::Permutation#fread(io)
|
105
|
+
# * GSL::Permutation#fread(filename)
|
106
|
+
# * GSL::Permutation#fprintf(io, format = "%u\n")
|
107
|
+
# * GSL::Permutation#fprintf(filename, format = "%u\n")
|
108
|
+
# * GSL::Permutation#fscanf(io)
|
109
|
+
# * GSL::Permutation#fscanf(filename)
|
110
|
+
#
|
111
|
+
#
|
112
|
+
# === {}[link:index.html"name="2.5] Permutations in cyclic Form
|
113
|
+
# A permutation can be represented in both <tt>linear</tt> and
|
114
|
+
# <tt>cyclic</tt> notations. The functions described in this section convert
|
115
|
+
# between the two forms. The linear notation is an index mapping, and has
|
116
|
+
# already been described above. The cyclic notation expresses a
|
117
|
+
# permutation as a series of circular rearrangements of groups
|
118
|
+
# of elements, or <tt>cycles</tt>.
|
119
|
+
#
|
120
|
+
# For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
|
121
|
+
# by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
|
122
|
+
# sets of elements can be combined independently, for example (1 2 3) (4 5)
|
123
|
+
# combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
|
124
|
+
# elements 4 and 5. A cycle of length one represents an element which is
|
125
|
+
# unchanged by the permutation and is referred to as a <tt>singleton</tt>.
|
126
|
+
#
|
127
|
+
# It can be shown that every permutation can be decomposed into combinations
|
128
|
+
# of cycles. The decomposition is not unique, but can always be rearranged
|
129
|
+
# into a standard <tt>canonical form</tt> by a reordering of elements.
|
130
|
+
# The library uses the canonical form defined in Knuth's
|
131
|
+
# <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
|
132
|
+
#
|
133
|
+
# The procedure for obtaining the canonical form given by Knuth is,
|
134
|
+
#
|
135
|
+
#
|
136
|
+
# 1. Write all singleton cycles explicitly
|
137
|
+
# 1. Within each cycle, put the smallest number first
|
138
|
+
# 1. Order the cycles in decreasing order of the first number in the cycle.
|
139
|
+
#
|
140
|
+
# For example, the linear representation (2 4 3 0 1) is represented as
|
141
|
+
# (1 4) (0 2 3) in canonical form. The permutation corresponds to an
|
142
|
+
# exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
|
143
|
+
#
|
144
|
+
# The important property of the canonical form is that it can be reconstructed
|
145
|
+
# from the contents of each cycle without the brackets. In addition, by removing
|
146
|
+
# the brackets it can be considered as a linear representation of a different
|
147
|
+
# permutation. In the example given above the permutation (2 4 3 0 1) would
|
148
|
+
# become (1 4 0 2 3). This mapping has many applications in the theory of
|
149
|
+
# permutations.
|
150
|
+
#
|
151
|
+
# ---
|
152
|
+
# * GSL::Permutation#linear_to_canonical
|
153
|
+
# * GSL::Permutation#to_canonical
|
154
|
+
#
|
155
|
+
# Computes the canonical form of the permutation <tt>self</tt> and
|
156
|
+
# returns it as a new <tt>GSL::Permutation</tt>.
|
157
|
+
#
|
158
|
+
# ---
|
159
|
+
# * GSL::Permutation#canonical_to_linear
|
160
|
+
# * GSL::Permutation#to_linear
|
161
|
+
#
|
162
|
+
# Converts a permutation <tt>self</tt> in canonical form back into linear
|
163
|
+
# form and returns it as a new <tt>GSL::Permutation</tt>.
|
164
|
+
#
|
165
|
+
#
|
166
|
+
# ---
|
167
|
+
# * GSL::Permutation#inversions
|
168
|
+
#
|
169
|
+
# Counts the number of inversions in the permutation <tt>self</tt>.
|
170
|
+
# An inversion is any pair of elements that are not in order.
|
171
|
+
# For example, the permutation 2031 has three inversions, corresponding
|
172
|
+
# to the pairs (2,0) (2,1) and (3,1).
|
173
|
+
# The identity permutation has no inversions.
|
174
|
+
#
|
175
|
+
# ---
|
176
|
+
# * GSL::Permutation#linear_cycles
|
177
|
+
#
|
178
|
+
# Counts the number of cycles in the permutation <tt>self</tt>,
|
179
|
+
# given in linear form.
|
180
|
+
#
|
181
|
+
# ---
|
182
|
+
# * GSL::Permutation#canonical_cycles
|
183
|
+
#
|
184
|
+
# Counts the number of cycles in the permutation <tt>self</tt>,
|
185
|
+
# given in canonical form.
|
186
|
+
#
|
187
|
+
# == {}[link:index.html"name="3] Applying Permutations
|
188
|
+
# ---
|
189
|
+
# * GSL::Permutation::permute(v)
|
190
|
+
#
|
191
|
+
# Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
|
192
|
+
# considered as a row-vector acted on by a permutation matrix from the
|
193
|
+
# right, v' = v P. The j-th column of the permutation matrix P is
|
194
|
+
# given by the p_j-th column of the identity matrix.
|
195
|
+
# The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
|
196
|
+
# ---
|
197
|
+
# * GSL::Permutation::permute_inverse(v)
|
198
|
+
#
|
199
|
+
# Applies the inverse of the permutation <tt>self</tt> to the elements of
|
200
|
+
# the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
|
201
|
+
# permutation matrix from the right, v' = v P^T.
|
202
|
+
# Note that for permutation matrices the inverse is the same as the
|
203
|
+
# transpose. The j-th column of the permutation matrix P is given by
|
204
|
+
# the p_j-th column of the identity matrix.
|
205
|
+
# The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
|
206
|
+
# ---
|
207
|
+
# * GSL::Permutation.mul(pa, pb)
|
208
|
+
#
|
209
|
+
# Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
|
210
|
+
# permutation <tt>p</tt> and returns it.
|
211
|
+
# The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
|
212
|
+
# and then <tt>pa</tt>.
|
213
|
+
#
|
214
|
+
#
|
215
|
+
# {prev}[link:files/rdoc/matrix_rdoc.html]
|
216
|
+
# {next}[link:files/rdoc/combi_rdoc.html]
|
217
|
+
#
|
218
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
219
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
220
|
+
#
|
221
|
+
#
|
data/rdoc/poly.rdoc
ADDED
@@ -0,0 +1,335 @@
|
|
1
|
+
#
|
2
|
+
# = Polynomials
|
3
|
+
# Contents:
|
4
|
+
# 1. {Polynomial Evaluation}[link:files/rdoc/poly_rdoc.html#1]
|
5
|
+
# 1. {Solving polynomial equations}[link:files/rdoc/poly_rdoc.html#2]
|
6
|
+
# 1. {Quadratic Equations}[link:files/rdoc/poly_rdoc.html#2.1]
|
7
|
+
# 1. {Cubic Equations}[link:files/rdoc/poly_rdoc.html#2.2]
|
8
|
+
# 1. {General Polynomial Equations}[link:files/rdoc/poly_rdoc.html#2.3]
|
9
|
+
# 1. {GSL::Poly Class}[link:files/rdoc/poly_rdoc.html#3]
|
10
|
+
# 1. {Constructors}[link:files/rdoc/poly_rdoc.html#3.1]
|
11
|
+
# 1. {Methods}[link:files/rdoc/poly_rdoc.html#3.2]
|
12
|
+
# 1. {Polynomial Fitting}[link:files/rdoc/poly_rdoc.html#4]
|
13
|
+
# 1. {Divided-difference representations}[link:files/rdoc/poly_rdoc.html#5]
|
14
|
+
# 1. {Extensions}[link:files/rdoc/poly_rdoc.html#6]
|
15
|
+
# 1. {Special Polynomials}[link:files/rdoc/poly_rdoc.html#6.1]
|
16
|
+
# 1. {Polynomial Operations}[link:files/rdoc/poly_rdoc.html#6.2]
|
17
|
+
#
|
18
|
+
# == {}[link:index.html"name="1] Polynomial Evaluation
|
19
|
+
# ---
|
20
|
+
# * GSL::Poly.eval(c, x)
|
21
|
+
#
|
22
|
+
# Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
|
23
|
+
# The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
|
24
|
+
# a <tt>GSL::Vector</tt>, or an <tt>NArray</tt>. The evaluation point <tt>x</tt>
|
25
|
+
# is a <tt>Numeric</tt>, <tt>Array</tt>, <tt>GSL::Vector</tt> or <tt>NArray</tt>.
|
26
|
+
# From GSL 1.11, <tt>x</tt> can be a complex number, and <tt>c</tt> can be a complex polynomial given by a <tt>GSL::Vector::Complex</tt> or an <tt>Array</tt>.
|
27
|
+
#
|
28
|
+
# Ex)
|
29
|
+
# >> require("gsl")
|
30
|
+
# => true
|
31
|
+
# >> GSL::Poly.eval([1, 2, 3], 2)
|
32
|
+
# => 17.0
|
33
|
+
# >> GSL::Poly.eval(GSL::Vector[1, 2, 3], 2)
|
34
|
+
# => 17.0
|
35
|
+
# >> GSL::Poly.eval(NArray[1.0, 2, 3], 2)
|
36
|
+
# => 17.0
|
37
|
+
# >> GSL::Poly.eval([1, 2, 3], [1, 2, 3])
|
38
|
+
# => [6.0, 17.0, 34.0]
|
39
|
+
# >> GSL::Poly.eval([1, 2, 3], GSL::Vector[1, 2, 3])
|
40
|
+
# => GSL::Vector
|
41
|
+
# [ 6.000e+00 1.700e+01 3.400e+01 ]
|
42
|
+
# >> GSL::Poly.eval([1, 2, 3], NArray[1.0, 2, 3])
|
43
|
+
# => NArray.float(3):
|
44
|
+
# [ 6.0, 17.0, 34.0 ]
|
45
|
+
#
|
46
|
+
# ---
|
47
|
+
# * GSL::Poly.eval_derivs(c, x)
|
48
|
+
# * GSL::Poly.eval_derivs(c, x, lenres)
|
49
|
+
#
|
50
|
+
# (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. The input polynomial <tt>c</tt> can be an <tt>Array</tt>, <tt>GSL::Poly</tt> or an <tt>NArray</tt>. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(c) + 1</tt> is used, therefore the last element of the output is 0.
|
51
|
+
#
|
52
|
+
# ---
|
53
|
+
# * GSL::Poly#eval_derivs(x)
|
54
|
+
# * GSL::Poly#eval_derivs(x, lenres)
|
55
|
+
#
|
56
|
+
# (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(self) + 1</tt> is used, therefore the last element of the output is 0.
|
57
|
+
#
|
58
|
+
# Ex.)
|
59
|
+
# >> ary = [1, 2, 3]
|
60
|
+
# => [1, 2, 3]
|
61
|
+
# >> GSL::Poly.eval_derivs(ary, 1)
|
62
|
+
# => [6.0, 8.0, 6.0, 0.0]
|
63
|
+
# >> na = NArray[1.0, 2, 3]
|
64
|
+
# => NArray.float(3):
|
65
|
+
# [ 1.0, 2.0, 3.0 ]
|
66
|
+
# >> GSL::Poly.eval_derivs(na, 1)
|
67
|
+
# => NArray.float(4):
|
68
|
+
# [ 6.0, 8.0, 6.0, 0.0 ]
|
69
|
+
# >> poly = GSL::Poly[1.0, 2, 3]
|
70
|
+
# => GSL::Poly
|
71
|
+
# [ 1.000e+00 2.000e+00 3.000e+00 ]
|
72
|
+
# >> GSL::Poly.eval_derivs(poly, 1)
|
73
|
+
# => GSL::Poly
|
74
|
+
# [ 6.000e+00 8.000e+00 6.000e+00 0.000e+00 ]
|
75
|
+
# >> poly.eval_derivs(1)
|
76
|
+
# => GSL::Poly
|
77
|
+
# [ 6.000e+00 8.000e+00 6.000e+00 0.000e+00 ]
|
78
|
+
# >> poly.eval_derivs(1, 3)
|
79
|
+
# => GSL::Poly
|
80
|
+
# [ 6.000e+00 8.000e+00 6.000e+00 ]
|
81
|
+
#
|
82
|
+
# == {}[link:index.html"name="2] Solving polynomial equations
|
83
|
+
# === {}[link:index.html"name="2.1] Quadratic Equations
|
84
|
+
# ---
|
85
|
+
# * GSL::Poly::solve_quadratic(a, b, c)
|
86
|
+
# * GSL::Poly::solve_quadratic([a, b, c])
|
87
|
+
#
|
88
|
+
# Find the real roots of the quadratic equation,
|
89
|
+
# a x^2 + b x + c = 0
|
90
|
+
# The coefficients are given by 3 numbers, or a Ruby array,
|
91
|
+
# or a <tt>GSL::Vector</tt> object. The roots are returned as a <tt>GSL::Vector</tt>.
|
92
|
+
#
|
93
|
+
# * Ex: z^2 - 3z + 2 = 0
|
94
|
+
# >> GSL::Poly::solve_quadratic(1, -3, 2)
|
95
|
+
# => GSL::Vector:
|
96
|
+
# [ 1.000e+00 2.000e+00 ]
|
97
|
+
#
|
98
|
+
#
|
99
|
+
# ---
|
100
|
+
# * GSL::Poly::complex_solve_quadratic(a, b, c)
|
101
|
+
# * GSL::Poly::complex_solve_quadratic([a, b, c])
|
102
|
+
#
|
103
|
+
# Find the complex roots of the quadratic equation,
|
104
|
+
# a z^2 + b z + z = 0
|
105
|
+
# The coefficients are given by 3 numbers or a Ruby array, or a
|
106
|
+
# <tt>GSL::Vector</tt>.
|
107
|
+
# The roots are returned as a <tt>GSL::Vector::Complex</tt> of two elements.
|
108
|
+
#
|
109
|
+
# * Ex: z^2 - 3z + 2 = 0
|
110
|
+
# >> require("gsl")
|
111
|
+
# => true
|
112
|
+
# >> GSL::Poly::complex_solve_quadratic(1, -3, 2)
|
113
|
+
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
114
|
+
# => #<GSL::Vector::Complex:0x764014>
|
115
|
+
# >> GSL::Poly::complex_solve_quadratic(1, -3, 2).real <--- Real part
|
116
|
+
# => GSL::Vector::View:
|
117
|
+
# [ 1.000e+00 2.000e+00 ]
|
118
|
+
#
|
119
|
+
# === {}[link:index.html"name="2.2] Cubic Equations
|
120
|
+
# ---
|
121
|
+
# * GSL::Poly::solve_cubic(same as solve_quadratic)
|
122
|
+
#
|
123
|
+
# This method finds the real roots of the cubic equation,
|
124
|
+
# x^3 + a x^2 + b x + c = 0
|
125
|
+
#
|
126
|
+
# ---
|
127
|
+
# * GSL::Poly::complex_solve_cubic(same as solve_cubic)
|
128
|
+
#
|
129
|
+
# This method finds the complex roots of the cubic equation,
|
130
|
+
# z^3 + a z^2 + b z + c = 0
|
131
|
+
#
|
132
|
+
# === {}[link:index.html"name="2.3] General Polynomial Equations
|
133
|
+
# ---
|
134
|
+
# * GSL::Poly::complex_solve(c0, c1, c2,,, )
|
135
|
+
# * GSL::Poly::solve(c0, c1, c2,,, )
|
136
|
+
#
|
137
|
+
# Find the complex roots of the polynomial equation. Note that
|
138
|
+
# the coefficients are given by "ascending" order.
|
139
|
+
#
|
140
|
+
# * Ex: x^2 - 3 x + 2 == 0
|
141
|
+
# >> GSL::Poly::complex_solve(2, -3, 1) <--- different from Poly::quadratic_solve
|
142
|
+
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
143
|
+
# => #<GSL::Vector::Complex:0x75e614>
|
144
|
+
#
|
145
|
+
# == {}[link:index.html"name="3] GSL::Poly Class
|
146
|
+
# This class expresses polynomials of arbitrary orders.
|
147
|
+
#
|
148
|
+
# === {}[link:index.html"name="3.1] Constructors
|
149
|
+
# ---
|
150
|
+
# * GSL::Poly.alloc(c0, c1, c2, ....)
|
151
|
+
# * GSL::Poly[c0, c1, c2, ....]
|
152
|
+
#
|
153
|
+
# This creates an instance of the <tt>GSL::Poly</tt> class,
|
154
|
+
# which represents a polynomial
|
155
|
+
# c0 + c1 x + c2 x^2 + ....
|
156
|
+
# This class is derived from <tt>GSL::Vector</tt>.
|
157
|
+
#
|
158
|
+
# * Ex: x^2 - 3 x + 2
|
159
|
+
# poly = GSL::Poly.alloc([2, -3, 1])
|
160
|
+
#
|
161
|
+
# === {}[link:index.html"name="3.2] Instance Methods
|
162
|
+
# ---
|
163
|
+
# * GSL::Poly#eval(x)
|
164
|
+
# * GSL::Poly#at(x)
|
165
|
+
#
|
166
|
+
# Evaluates the polynomial
|
167
|
+
# c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}
|
168
|
+
# using Horner's method for stability. The argument <tt>x</tt> is a
|
169
|
+
# <tt>Numeric</tt>, <tt>GSL::Vector, Matrix</tt> or an <tt>Array</tt>.
|
170
|
+
#
|
171
|
+
# ---
|
172
|
+
# * GSL::Poly#solve_quadratic
|
173
|
+
#
|
174
|
+
# Solve the quadratic equation.
|
175
|
+
#
|
176
|
+
# * Ex: z^2 - 3 z + 2 = 0:
|
177
|
+
# >> a = GSL::Poly[2, -3, 1]
|
178
|
+
# => GSL::Poly:
|
179
|
+
# [ 2.000e+00 -3.000e+00 1.000e+00 ]
|
180
|
+
# >> a.solve_quadratic
|
181
|
+
# => GSL::Vector:
|
182
|
+
# [ 1.000e+00 2.000e+00 ]
|
183
|
+
#
|
184
|
+
# ---
|
185
|
+
# * GSL::Poly#solve_cubic
|
186
|
+
#
|
187
|
+
# Solve the cubic equation.
|
188
|
+
#
|
189
|
+
# ---
|
190
|
+
# * GSL::Poly#complex_solve
|
191
|
+
# * GSL::Poly#solve
|
192
|
+
# * GSL::Poly#roots
|
193
|
+
#
|
194
|
+
# These methods find the complex roots of the quadratic equation,
|
195
|
+
# c0 + c1 z + c2 z^2 + .... = 0
|
196
|
+
#
|
197
|
+
# * Ex: z^2 - 3 z + 2 = 0:
|
198
|
+
# >> a = GSL::Poly[2, -3, 1]
|
199
|
+
# => GSL::Poly:
|
200
|
+
# [ 2.000e+00 -3.000e+00 1.000e+00 ]
|
201
|
+
# >> a.solve
|
202
|
+
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
203
|
+
# => #<GSL::Vector::Complex:0x35db28>
|
204
|
+
#
|
205
|
+
# == {}[link:index.html"name="4] Polynomial fitting
|
206
|
+
# ---
|
207
|
+
# * GSL::Poly.fit(x, y, order)
|
208
|
+
# * GSL::Poly.wfit(x, w, y, order)
|
209
|
+
#
|
210
|
+
# Finds the coefficient of a polynomial of order <tt>order</tt>
|
211
|
+
# that fits the vector data (<tt>x, y</tt>) in a least-square sense.
|
212
|
+
# This provides a higher-level interface to the method
|
213
|
+
# {GSL::Multifit#linear}[link:files/rdoc/fit_rdoc.html] in a case of polynomial fitting.
|
214
|
+
#
|
215
|
+
# Example:
|
216
|
+
# #!/usr/bin/env ruby
|
217
|
+
# require("gsl")
|
218
|
+
#
|
219
|
+
# x = GSL::Vector[1, 2, 3, 4, 5]
|
220
|
+
# y = GSL::Vector[5.5, 43.1, 128, 290.7, 498.4]
|
221
|
+
# # The results are stored in a polynomial "coef"
|
222
|
+
# coef, cov, chisq, status = Poly.fit(x, y, 3)
|
223
|
+
#
|
224
|
+
# x2 = GSL::Vector.linspace(1, 5, 20)
|
225
|
+
# graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
|
226
|
+
#
|
227
|
+
# == {}[link:index.html"name="5] Divided-difference representations
|
228
|
+
#
|
229
|
+
# ---
|
230
|
+
# * GSL::Poly::dd_init(xa, ya)
|
231
|
+
#
|
232
|
+
# This method computes a divided-difference representation of the
|
233
|
+
# interpolating polynomial for the points <tt>(xa, ya)</tt>.
|
234
|
+
#
|
235
|
+
# ---
|
236
|
+
# * GSL::Poly::DividedDifference#eval(x)
|
237
|
+
#
|
238
|
+
# This method evaluates the polynomial stored in divided-difference form
|
239
|
+
# <tt>self</tt> at the point <tt>x</tt>.
|
240
|
+
#
|
241
|
+
# ---
|
242
|
+
# * GSL::Poly::DividedDifference#taylor(xp)
|
243
|
+
#
|
244
|
+
# This method converts the divided-difference representation of a polynomial
|
245
|
+
# to a Taylor expansion. On output the Taylor coefficients of the polynomial
|
246
|
+
# expanded about the point <tt>xp</tt> are returned.
|
247
|
+
#
|
248
|
+
# == {}[link:index.html"name="6] Extensions
|
249
|
+
# === {}[link:index.html"name="6.1] Special Polynomials
|
250
|
+
# ---
|
251
|
+
# * GSL::Poly.hermite(n)
|
252
|
+
#
|
253
|
+
# This returns coefficients of the <tt>n</tt>-th order Hermite polynomial, <tt>H(x; n)</tt>.
|
254
|
+
# For order of <tt>n</tt> >= 3, this method uses the recurrence relation
|
255
|
+
# H(x; n+1) = 2 x H(x; n) - 2 n H(x; n-1)
|
256
|
+
# * Ex:
|
257
|
+
# >> GSL::Poly.hermite(2)
|
258
|
+
# => GSL::Poly::Int:
|
259
|
+
# [ -2 0 4 ] <----- 4x^2 - 2
|
260
|
+
# >> GSL::Poly.hermite(5)
|
261
|
+
# => GSL::Poly::Int:
|
262
|
+
# [ 0 120 0 -160 0 32 ] <----- 32x^5 - 160x^3 + 120x
|
263
|
+
# >> GSL::Poly.hermite(7)
|
264
|
+
# => GSL::Poly::Int:
|
265
|
+
# [ 0 -1680 0 3360 0 -1344 0 128 ]
|
266
|
+
#
|
267
|
+
# ---
|
268
|
+
# * GSL::Poly.cheb(n)
|
269
|
+
# * GSL::Poly.chebyshev(n)
|
270
|
+
#
|
271
|
+
# Return the coefficients of the <tt>n</tt>-th order Chebyshev polynomial, <tt>T(x; n</tt>.
|
272
|
+
# For order of <tt>n</tt> >= 3, this method uses the recurrence relation
|
273
|
+
# T(x; n+1) = 2 x T(x; n) - T(x; n-1)
|
274
|
+
#
|
275
|
+
# ---
|
276
|
+
# * GSL::Poly.cheb_II(n)
|
277
|
+
# * GSL::Poly.chebyshev_II(n)
|
278
|
+
#
|
279
|
+
# Return the coefficients of the <tt>n</tt>-th order Chebyshev polynomial of type II,
|
280
|
+
# <tt>U(x; n</tt>.
|
281
|
+
# U(x; n+1) = 2 x U(x; n) - U(x; n-1)
|
282
|
+
#
|
283
|
+
# ---
|
284
|
+
# * GSL::Poly.bell(n)
|
285
|
+
#
|
286
|
+
# Bell polynomial
|
287
|
+
#
|
288
|
+
# ---
|
289
|
+
# * GSL::Poly.bessel(n)
|
290
|
+
#
|
291
|
+
# Bessel polynomial
|
292
|
+
#
|
293
|
+
# ---
|
294
|
+
# * GSL::Poly.laguerre(n)
|
295
|
+
#
|
296
|
+
# Retunrs the coefficients of the <tt>n</tt>-th order Laguerre polynomial
|
297
|
+
# multiplied by n!.
|
298
|
+
#
|
299
|
+
# Ex:
|
300
|
+
# rb(main):001:0> require("gsl")
|
301
|
+
# => true
|
302
|
+
# >> GSL::Poly.laguerre(0)
|
303
|
+
# => GSL::Poly::Int:
|
304
|
+
# [ 1 ] <--- 1
|
305
|
+
# >> GSL::Poly.laguerre(1)
|
306
|
+
# => GSL::Poly::Int:
|
307
|
+
# [ 1 -1 ] <--- -x + 1
|
308
|
+
# >> GSL::Poly.laguerre(2)
|
309
|
+
# => GSL::Poly::Int:
|
310
|
+
# [ 2 -4 1 ] <--- (x^2 - 4x + 2)/2!
|
311
|
+
# >> GSL::Poly.laguerre(3)
|
312
|
+
# => GSL::Poly::Int:
|
313
|
+
# [ 6 -18 9 -1 ] <--- (-x^3 + 9x^2 - 18x + 6)/3!
|
314
|
+
# >> GSL::Poly.laguerre(4)
|
315
|
+
# => GSL::Poly::Int:
|
316
|
+
# [ 24 -96 72 -16 1 ] <--- (x^4 - 16x^3 + 72x^2 - 96x + 24)/4!
|
317
|
+
#
|
318
|
+
# === {}[link:index.html"name="6.2] Polynomial Operations
|
319
|
+
# ---
|
320
|
+
# * GSL::Poly#conv
|
321
|
+
# * GSL::Poly#deconv
|
322
|
+
# * GSL::Poly#reduce
|
323
|
+
# * GSL::Poly#deriv
|
324
|
+
# * GSL::Poly#integ
|
325
|
+
# * GSL::Poly#compan
|
326
|
+
#
|
327
|
+
#
|
328
|
+
# {prev}[link:files/rdoc/complex_rdoc.html]
|
329
|
+
# {next}[link:files/rdoc/sf_rdoc.html]
|
330
|
+
#
|
331
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
332
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
333
|
+
#
|
334
|
+
#
|
335
|
+
#
|