gsl 1.12.109 → 1.14.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (511) hide show
  1. data/AUTHORS +6 -0
  2. data/COPYING +339 -0
  3. data/ChangeLog +556 -0
  4. data/{README.rdoc → README} +3 -0
  5. data/Rakefile +54 -10
  6. data/THANKS +17 -0
  7. data/VERSION +1 -2
  8. data/examples/alf/alf.gp +15 -0
  9. data/examples/alf/alf.rb +32 -0
  10. data/examples/blas/blas.rb +13 -0
  11. data/examples/blas/dnrm2.rb +16 -0
  12. data/examples/blas/level1.rb +81 -0
  13. data/examples/blas/level2.rb +11 -0
  14. data/examples/blas/level3.rb +12 -0
  15. data/examples/bspline.rb +57 -0
  16. data/examples/cdf.rb +16 -0
  17. data/examples/cheb.rb +21 -0
  18. data/examples/combination.rb +23 -0
  19. data/examples/complex/RC-lpf.rb +47 -0
  20. data/examples/complex/add.rb +36 -0
  21. data/examples/complex/coerce.rb +14 -0
  22. data/examples/complex/complex.rb +25 -0
  23. data/examples/complex/fpmi.rb +70 -0
  24. data/examples/complex/functions.rb +77 -0
  25. data/examples/complex/michelson.rb +36 -0
  26. data/examples/complex/mul.rb +28 -0
  27. data/examples/complex/oscillator.rb +17 -0
  28. data/examples/complex/set.rb +37 -0
  29. data/examples/const/physconst.rb +151 -0
  30. data/examples/const/travel.rb +45 -0
  31. data/examples/deriv/demo.rb +13 -0
  32. data/examples/deriv/deriv.rb +36 -0
  33. data/examples/deriv/diff.rb +35 -0
  34. data/examples/dht.rb +42 -0
  35. data/examples/dirac.rb +56 -0
  36. data/examples/eigen/eigen.rb +34 -0
  37. data/examples/eigen/herm.rb +22 -0
  38. data/examples/eigen/narray.rb +9 -0
  39. data/examples/eigen/nonsymm.rb +37 -0
  40. data/examples/eigen/nonsymmv.rb +43 -0
  41. data/examples/eigen/qhoscillator.gp +35 -0
  42. data/examples/eigen/qhoscillator.rb +90 -0
  43. data/examples/eigen/vander.rb +41 -0
  44. data/examples/fft/fft.rb +17 -0
  45. data/examples/fft/fft2.rb +17 -0
  46. data/examples/fft/forward.rb +25 -0
  47. data/examples/fft/forward2.rb +26 -0
  48. data/examples/fft/radix2.rb +18 -0
  49. data/examples/fft/real-halfcomplex.rb +33 -0
  50. data/examples/fft/real-halfcomplex2.rb +30 -0
  51. data/examples/fft/realradix2.rb +19 -0
  52. data/examples/fft/sunspot.dat +256 -0
  53. data/examples/fft/sunspot.rb +16 -0
  54. data/examples/fit/expdata.dat +20 -0
  55. data/examples/fit/expfit.rb +31 -0
  56. data/examples/fit/gaussfit.rb +29 -0
  57. data/examples/fit/gaussian_2peaks.rb +34 -0
  58. data/examples/fit/hillfit.rb +40 -0
  59. data/examples/fit/lognormal.rb +26 -0
  60. data/examples/fit/lorentzfit.rb +22 -0
  61. data/examples/fit/multifit.rb +72 -0
  62. data/examples/fit/ndlinear.rb +133 -0
  63. data/examples/fit/nonlinearfit.rb +89 -0
  64. data/examples/fit/plot.gp +36 -0
  65. data/examples/fit/polyfit.rb +9 -0
  66. data/examples/fit/powerfit.rb +21 -0
  67. data/examples/fit/sigmoidfit.rb +40 -0
  68. data/examples/fit/sinfit.rb +22 -0
  69. data/examples/fit/wlinear.rb +46 -0
  70. data/examples/fresnel.rb +11 -0
  71. data/examples/function/function.rb +36 -0
  72. data/examples/function/log.rb +7 -0
  73. data/examples/function/min.rb +33 -0
  74. data/examples/function/sin.rb +10 -0
  75. data/examples/function/synchrotron.rb +18 -0
  76. data/examples/gallery/butterfly.rb +7 -0
  77. data/examples/gallery/cayley.rb +12 -0
  78. data/examples/gallery/cornu.rb +23 -0
  79. data/examples/gallery/eight.rb +11 -0
  80. data/examples/gallery/koch.rb +40 -0
  81. data/examples/gallery/lemniscate.rb +11 -0
  82. data/examples/gallery/polar.rb +11 -0
  83. data/examples/gallery/rgplot/cossin.rb +35 -0
  84. data/examples/gallery/rgplot/rgplot.replaced +0 -0
  85. data/examples/gallery/rgplot/roesller.rb +55 -0
  86. data/examples/gallery/roesller.rb +39 -0
  87. data/examples/gallery/scarabaeus.rb +14 -0
  88. data/examples/histogram/cauchy.rb +27 -0
  89. data/examples/histogram/cauchy.sh +2 -0
  90. data/examples/histogram/exponential.rb +19 -0
  91. data/examples/histogram/gauss.rb +16 -0
  92. data/examples/histogram/gsl-histogram.rb +40 -0
  93. data/examples/histogram/histo2d.rb +31 -0
  94. data/examples/histogram/histo3d.rb +34 -0
  95. data/examples/histogram/histogram-pdf.rb +27 -0
  96. data/examples/histogram/histogram.rb +26 -0
  97. data/examples/histogram/integral.rb +28 -0
  98. data/examples/histogram/poisson.rb +27 -0
  99. data/examples/histogram/power.rb +25 -0
  100. data/examples/histogram/rebin.rb +17 -0
  101. data/examples/histogram/smp.dat +5 -0
  102. data/examples/histogram/xexp.rb +21 -0
  103. data/examples/integration/ahmed.rb +21 -0
  104. data/examples/integration/cosmology.rb +75 -0
  105. data/examples/integration/friedmann.gp +16 -0
  106. data/examples/integration/friedmann.rb +35 -0
  107. data/examples/integration/gamma-zeta.rb +35 -0
  108. data/examples/integration/integration.rb +22 -0
  109. data/examples/integration/qag.rb +8 -0
  110. data/examples/integration/qag2.rb +14 -0
  111. data/examples/integration/qag3.rb +8 -0
  112. data/examples/integration/qagi.rb +28 -0
  113. data/examples/integration/qagi2.rb +49 -0
  114. data/examples/integration/qagiu.rb +29 -0
  115. data/examples/integration/qagp.rb +20 -0
  116. data/examples/integration/qags.rb +14 -0
  117. data/examples/integration/qawc.rb +18 -0
  118. data/examples/integration/qawf.rb +41 -0
  119. data/examples/integration/qawo.rb +29 -0
  120. data/examples/integration/qaws.rb +30 -0
  121. data/examples/integration/qng.rb +17 -0
  122. data/examples/interp/demo.gp +20 -0
  123. data/examples/interp/demo.rb +45 -0
  124. data/examples/interp/interp.rb +37 -0
  125. data/examples/interp/points +10 -0
  126. data/examples/interp/spline.rb +20 -0
  127. data/examples/jacobi/deriv.rb +40 -0
  128. data/examples/jacobi/integrate.rb +34 -0
  129. data/examples/jacobi/interp.rb +43 -0
  130. data/examples/jacobi/jacobi.rb +11 -0
  131. data/examples/linalg/HH.rb +15 -0
  132. data/examples/linalg/HH_narray.rb +13 -0
  133. data/examples/linalg/LQ_solve.rb +73 -0
  134. data/examples/linalg/LU.rb +84 -0
  135. data/examples/linalg/LU2.rb +31 -0
  136. data/examples/linalg/LU_narray.rb +24 -0
  137. data/examples/linalg/PTLQ.rb +47 -0
  138. data/examples/linalg/QR.rb +18 -0
  139. data/examples/linalg/QRPT.rb +47 -0
  140. data/examples/linalg/QR_solve.rb +78 -0
  141. data/examples/linalg/QR_solve_narray.rb +13 -0
  142. data/examples/linalg/SV.rb +16 -0
  143. data/examples/linalg/SV_narray.rb +12 -0
  144. data/examples/linalg/SV_solve.rb +49 -0
  145. data/examples/linalg/chol.rb +29 -0
  146. data/examples/linalg/chol_narray.rb +15 -0
  147. data/examples/linalg/complex.rb +57 -0
  148. data/examples/linalg/invert_narray.rb +10 -0
  149. data/examples/math/const.rb +67 -0
  150. data/examples/math/elementary.rb +35 -0
  151. data/examples/math/functions.rb +41 -0
  152. data/examples/math/inf_nan.rb +34 -0
  153. data/examples/math/minmax.rb +22 -0
  154. data/examples/math/power.rb +18 -0
  155. data/examples/math/test.rb +31 -0
  156. data/examples/matrix/a.dat +0 -0
  157. data/examples/matrix/add.rb +45 -0
  158. data/examples/matrix/b.dat +4 -0
  159. data/examples/matrix/cat.rb +31 -0
  160. data/examples/matrix/colvectors.rb +24 -0
  161. data/examples/matrix/complex.rb +41 -0
  162. data/examples/matrix/det.rb +29 -0
  163. data/examples/matrix/diagonal.rb +23 -0
  164. data/examples/matrix/get_all.rb +159 -0
  165. data/examples/matrix/hilbert.rb +31 -0
  166. data/examples/matrix/iterator.rb +19 -0
  167. data/examples/matrix/matrix.rb +57 -0
  168. data/examples/matrix/minmax.rb +53 -0
  169. data/examples/matrix/mul.rb +39 -0
  170. data/examples/matrix/rand.rb +20 -0
  171. data/examples/matrix/read.rb +29 -0
  172. data/examples/matrix/rowcol.rb +47 -0
  173. data/examples/matrix/set.rb +41 -0
  174. data/examples/matrix/set_all.rb +100 -0
  175. data/examples/matrix/view.rb +32 -0
  176. data/examples/matrix/view_all.rb +148 -0
  177. data/examples/matrix/write.rb +23 -0
  178. data/examples/min.rb +29 -0
  179. data/examples/monte/miser.rb +47 -0
  180. data/examples/monte/monte.rb +47 -0
  181. data/examples/monte/plain.rb +47 -0
  182. data/examples/monte/vegas.rb +46 -0
  183. data/examples/multimin/bundle.rb +66 -0
  184. data/examples/multimin/cqp.rb +109 -0
  185. data/examples/multimin/fdfminimizer.rb +40 -0
  186. data/examples/multimin/fminimizer.rb +41 -0
  187. data/examples/multiroot/demo.rb +36 -0
  188. data/examples/multiroot/fdfsolver.rb +50 -0
  189. data/examples/multiroot/fsolver.rb +33 -0
  190. data/examples/multiroot/fsolver2.rb +32 -0
  191. data/examples/multiroot/fsolver3.rb +26 -0
  192. data/examples/narray/histogram.rb +14 -0
  193. data/examples/narray/mandel.rb +27 -0
  194. data/examples/narray/narray.rb +28 -0
  195. data/examples/narray/narray2.rb +44 -0
  196. data/examples/narray/sf.rb +26 -0
  197. data/examples/ntuple/create.rb +17 -0
  198. data/examples/ntuple/project.rb +31 -0
  199. data/examples/odeiv/binarysystem.gp +23 -0
  200. data/examples/odeiv/binarysystem.rb +104 -0
  201. data/examples/odeiv/demo.gp +24 -0
  202. data/examples/odeiv/demo.rb +69 -0
  203. data/examples/odeiv/demo2.gp +26 -0
  204. data/examples/odeiv/duffing.rb +45 -0
  205. data/examples/odeiv/frei1.rb +109 -0
  206. data/examples/odeiv/frei2.rb +76 -0
  207. data/examples/odeiv/legendre.rb +52 -0
  208. data/examples/odeiv/odeiv.rb +32 -0
  209. data/examples/odeiv/odeiv2.rb +45 -0
  210. data/examples/odeiv/oscillator.rb +42 -0
  211. data/examples/odeiv/sedov.rb +97 -0
  212. data/examples/odeiv/whitedwarf.gp +40 -0
  213. data/examples/odeiv/whitedwarf.rb +158 -0
  214. data/examples/ool/conmin.rb +100 -0
  215. data/examples/ool/gencan.rb +99 -0
  216. data/examples/ool/pgrad.rb +100 -0
  217. data/examples/ool/spg.rb +100 -0
  218. data/examples/pdf/bernoulli.rb +5 -0
  219. data/examples/pdf/beta.rb +7 -0
  220. data/examples/pdf/binomiral.rb +10 -0
  221. data/examples/pdf/cauchy.rb +6 -0
  222. data/examples/pdf/chisq.rb +8 -0
  223. data/examples/pdf/exponential.rb +7 -0
  224. data/examples/pdf/exppow.rb +6 -0
  225. data/examples/pdf/fdist.rb +7 -0
  226. data/examples/pdf/flat.rb +7 -0
  227. data/examples/pdf/gamma.rb +8 -0
  228. data/examples/pdf/gauss-tail.rb +5 -0
  229. data/examples/pdf/gauss.rb +6 -0
  230. data/examples/pdf/geometric.rb +5 -0
  231. data/examples/pdf/gumbel.rb +6 -0
  232. data/examples/pdf/hypergeometric.rb +11 -0
  233. data/examples/pdf/landau.rb +5 -0
  234. data/examples/pdf/laplace.rb +7 -0
  235. data/examples/pdf/logarithmic.rb +5 -0
  236. data/examples/pdf/logistic.rb +6 -0
  237. data/examples/pdf/lognormal.rb +6 -0
  238. data/examples/pdf/neg-binomiral.rb +10 -0
  239. data/examples/pdf/pareto.rb +7 -0
  240. data/examples/pdf/pascal.rb +10 -0
  241. data/examples/pdf/poisson.rb +5 -0
  242. data/examples/pdf/rayleigh-tail.rb +6 -0
  243. data/examples/pdf/rayleigh.rb +6 -0
  244. data/examples/pdf/tdist.rb +6 -0
  245. data/examples/pdf/weibull.rb +8 -0
  246. data/examples/permutation/ex1.rb +22 -0
  247. data/examples/permutation/permutation.rb +16 -0
  248. data/examples/poly/bell.rb +6 -0
  249. data/examples/poly/bessel.rb +6 -0
  250. data/examples/poly/cheb.rb +6 -0
  251. data/examples/poly/cheb_II.rb +6 -0
  252. data/examples/poly/cubic.rb +9 -0
  253. data/examples/poly/demo.rb +20 -0
  254. data/examples/poly/eval.rb +28 -0
  255. data/examples/poly/eval_derivs.rb +14 -0
  256. data/examples/poly/fit.rb +21 -0
  257. data/examples/poly/hermite.rb +6 -0
  258. data/examples/poly/poly.rb +13 -0
  259. data/examples/poly/quadratic.rb +25 -0
  260. data/examples/random/diffusion.rb +34 -0
  261. data/examples/random/gaussian.rb +9 -0
  262. data/examples/random/generator.rb +27 -0
  263. data/examples/random/hdsobol.rb +21 -0
  264. data/examples/random/poisson.rb +9 -0
  265. data/examples/random/qrng.rb +19 -0
  266. data/examples/random/randomwalk.rb +37 -0
  267. data/examples/random/randomwalk2d.rb +19 -0
  268. data/examples/random/rayleigh.rb +36 -0
  269. data/examples/random/rng.rb +33 -0
  270. data/examples/random/rngextra.rb +14 -0
  271. data/examples/roots/bisection.rb +25 -0
  272. data/examples/roots/brent.rb +43 -0
  273. data/examples/roots/demo.rb +30 -0
  274. data/examples/roots/newton.rb +46 -0
  275. data/examples/roots/recombination.gp +12 -0
  276. data/examples/roots/recombination.rb +61 -0
  277. data/examples/roots/steffenson.rb +48 -0
  278. data/examples/sf/ShiChi.rb +6 -0
  279. data/examples/sf/SiCi.rb +6 -0
  280. data/examples/sf/airy_Ai.rb +8 -0
  281. data/examples/sf/airy_Bi.rb +8 -0
  282. data/examples/sf/bessel_IK.rb +12 -0
  283. data/examples/sf/bessel_JY.rb +13 -0
  284. data/examples/sf/beta_inc.rb +9 -0
  285. data/examples/sf/clausen.rb +6 -0
  286. data/examples/sf/dawson.rb +5 -0
  287. data/examples/sf/debye.rb +9 -0
  288. data/examples/sf/dilog.rb +6 -0
  289. data/examples/sf/ellint.rb +6 -0
  290. data/examples/sf/expint.rb +8 -0
  291. data/examples/sf/fermi.rb +10 -0
  292. data/examples/sf/gamma_inc_P.rb +9 -0
  293. data/examples/sf/gegenbauer.rb +8 -0
  294. data/examples/sf/hyperg.rb +7 -0
  295. data/examples/sf/laguerre.rb +19 -0
  296. data/examples/sf/lambertW.rb +5 -0
  297. data/examples/sf/legendre_P.rb +10 -0
  298. data/examples/sf/lngamma.rb +5 -0
  299. data/examples/sf/psi.rb +54 -0
  300. data/examples/sf/sphbessel.gp +27 -0
  301. data/examples/sf/sphbessel.rb +30 -0
  302. data/examples/sf/synchrotron.rb +5 -0
  303. data/examples/sf/transport.rb +10 -0
  304. data/examples/sf/zetam1.rb +5 -0
  305. data/examples/siman.rb +44 -0
  306. data/examples/sort/heapsort.rb +23 -0
  307. data/examples/sort/heapsort_vector_complex.rb +21 -0
  308. data/examples/sort/sort.rb +23 -0
  309. data/examples/sort/sort2.rb +16 -0
  310. data/examples/stats/mean.rb +17 -0
  311. data/examples/stats/statistics.rb +18 -0
  312. data/examples/stats/test.rb +9 -0
  313. data/examples/sum.rb +34 -0
  314. data/examples/tamu_anova.rb +18 -0
  315. data/examples/vector/a.dat +0 -0
  316. data/examples/vector/add.rb +56 -0
  317. data/examples/vector/b.dat +4 -0
  318. data/examples/vector/c.dat +3 -0
  319. data/examples/vector/collect.rb +26 -0
  320. data/examples/vector/compare.rb +28 -0
  321. data/examples/vector/complex.rb +51 -0
  322. data/examples/vector/complex_get_all.rb +85 -0
  323. data/examples/vector/complex_set_all.rb +131 -0
  324. data/examples/vector/complex_view_all.rb +77 -0
  325. data/examples/vector/connect.rb +22 -0
  326. data/examples/vector/decimate.rb +38 -0
  327. data/examples/vector/diff.rb +31 -0
  328. data/examples/vector/filescan.rb +17 -0
  329. data/examples/vector/floor.rb +23 -0
  330. data/examples/vector/get_all.rb +82 -0
  331. data/examples/vector/gnuplot.rb +38 -0
  332. data/examples/vector/graph.rb +28 -0
  333. data/examples/vector/histogram.rb +22 -0
  334. data/examples/vector/linspace.rb +24 -0
  335. data/examples/vector/log.rb +17 -0
  336. data/examples/vector/logic.rb +33 -0
  337. data/examples/vector/logspace.rb +25 -0
  338. data/examples/vector/minmax.rb +47 -0
  339. data/examples/vector/mul.rb +49 -0
  340. data/examples/vector/narray.rb +46 -0
  341. data/examples/vector/read.rb +29 -0
  342. data/examples/vector/set.rb +35 -0
  343. data/examples/vector/set_all.rb +121 -0
  344. data/examples/vector/smpv.dat +15 -0
  345. data/examples/vector/test.rb +43 -0
  346. data/examples/vector/test_gslblock.rb +58 -0
  347. data/examples/vector/vector.rb +110 -0
  348. data/examples/vector/view.rb +35 -0
  349. data/examples/vector/view_all.rb +73 -0
  350. data/examples/vector/where.rb +29 -0
  351. data/examples/vector/write.rb +24 -0
  352. data/examples/vector/zip.rb +34 -0
  353. data/examples/wavelet/ecg.dat +256 -0
  354. data/examples/wavelet/wavelet1.rb +50 -0
  355. data/ext/extconf.rb +9 -0
  356. data/ext/gsl.c +10 -1
  357. data/ext/histogram.c +6 -2
  358. data/ext/integration.c +39 -0
  359. data/ext/matrix_complex.c +1 -1
  360. data/ext/multiset.c +214 -0
  361. data/ext/nmf.c +4 -0
  362. data/ext/nmf_wrap.c +3 -0
  363. data/ext/vector_complex.c +1 -1
  364. data/ext/vector_double.c +3 -3
  365. data/ext/vector_source.c +6 -6
  366. data/include/rb_gsl.h +7 -0
  367. data/include/rb_gsl_common.h +6 -0
  368. data/rdoc/alf.rdoc +77 -0
  369. data/rdoc/blas.rdoc +269 -0
  370. data/rdoc/bspline.rdoc +42 -0
  371. data/rdoc/changes.rdoc +164 -0
  372. data/rdoc/cheb.rdoc +99 -0
  373. data/rdoc/cholesky_complex.rdoc +46 -0
  374. data/rdoc/combi.rdoc +125 -0
  375. data/rdoc/complex.rdoc +210 -0
  376. data/rdoc/const.rdoc +546 -0
  377. data/rdoc/dht.rdoc +122 -0
  378. data/rdoc/diff.rdoc +133 -0
  379. data/rdoc/ehandling.rdoc +50 -0
  380. data/rdoc/eigen.rdoc +401 -0
  381. data/rdoc/fft.rdoc +535 -0
  382. data/rdoc/fit.rdoc +284 -0
  383. data/rdoc/function.rdoc +94 -0
  384. data/rdoc/graph.rdoc +137 -0
  385. data/rdoc/hist.rdoc +409 -0
  386. data/rdoc/hist2d.rdoc +279 -0
  387. data/rdoc/hist3d.rdoc +112 -0
  388. data/rdoc/index.rdoc +62 -0
  389. data/rdoc/integration.rdoc +398 -0
  390. data/rdoc/interp.rdoc +231 -0
  391. data/rdoc/intro.rdoc +27 -0
  392. data/rdoc/linalg.rdoc +681 -0
  393. data/rdoc/linalg_complex.rdoc +88 -0
  394. data/rdoc/math.rdoc +276 -0
  395. data/rdoc/matrix.rdoc +1093 -0
  396. data/rdoc/min.rdoc +189 -0
  397. data/rdoc/monte.rdoc +234 -0
  398. data/rdoc/multimin.rdoc +312 -0
  399. data/rdoc/multiroot.rdoc +293 -0
  400. data/rdoc/narray.rdoc +173 -0
  401. data/rdoc/ndlinear.rdoc +247 -0
  402. data/rdoc/nonlinearfit.rdoc +348 -0
  403. data/rdoc/ntuple.rdoc +88 -0
  404. data/rdoc/odeiv.rdoc +378 -0
  405. data/rdoc/perm.rdoc +221 -0
  406. data/rdoc/poly.rdoc +335 -0
  407. data/rdoc/qrng.rdoc +90 -0
  408. data/rdoc/randist.rdoc +233 -0
  409. data/rdoc/ref.rdoc +93 -0
  410. data/rdoc/rng.rdoc +203 -0
  411. data/rdoc/rngextra.rdoc +11 -0
  412. data/rdoc/roots.rdoc +305 -0
  413. data/rdoc/screenshot.rdoc +40 -0
  414. data/rdoc/sf.rdoc +1622 -0
  415. data/rdoc/siman.rdoc +89 -0
  416. data/rdoc/sort.rdoc +94 -0
  417. data/rdoc/start.rdoc +16 -0
  418. data/rdoc/stats.rdoc +219 -0
  419. data/rdoc/sum.rdoc +65 -0
  420. data/rdoc/tensor.rdoc +251 -0
  421. data/rdoc/tut.rdoc +5 -0
  422. data/rdoc/use.rdoc +177 -0
  423. data/rdoc/vector.rdoc +1243 -0
  424. data/rdoc/vector_complex.rdoc +347 -0
  425. data/rdoc/wavelet.rdoc +218 -0
  426. data/setup.rb +1585 -0
  427. data/tests/blas/amax.rb +14 -0
  428. data/tests/blas/asum.rb +16 -0
  429. data/tests/blas/axpy.rb +25 -0
  430. data/tests/blas/copy.rb +23 -0
  431. data/tests/blas/dot.rb +23 -0
  432. data/tests/bspline.rb +53 -0
  433. data/tests/cdf.rb +1388 -0
  434. data/tests/cheb.rb +112 -0
  435. data/tests/combination.rb +123 -0
  436. data/tests/complex.rb +17 -0
  437. data/tests/const.rb +24 -0
  438. data/tests/deriv.rb +85 -0
  439. data/tests/dht/dht1.rb +17 -0
  440. data/tests/dht/dht2.rb +23 -0
  441. data/tests/dht/dht3.rb +23 -0
  442. data/tests/dht/dht4.rb +23 -0
  443. data/tests/diff.rb +78 -0
  444. data/tests/eigen/eigen.rb +220 -0
  445. data/tests/eigen/gen.rb +105 -0
  446. data/tests/eigen/genherm.rb +66 -0
  447. data/tests/eigen/gensymm.rb +68 -0
  448. data/tests/eigen/nonsymm.rb +53 -0
  449. data/tests/eigen/nonsymmv.rb +53 -0
  450. data/tests/eigen/symm-herm.rb +74 -0
  451. data/tests/err.rb +58 -0
  452. data/tests/fit.rb +124 -0
  453. data/tests/gsl_test.rb +118 -0
  454. data/tests/gsl_test2.rb +107 -0
  455. data/tests/histo.rb +12 -0
  456. data/tests/integration/integration1.rb +72 -0
  457. data/tests/integration/integration2.rb +71 -0
  458. data/tests/integration/integration3.rb +71 -0
  459. data/tests/integration/integration4.rb +71 -0
  460. data/tests/interp.rb +45 -0
  461. data/tests/linalg/HH.rb +64 -0
  462. data/tests/linalg/LU.rb +47 -0
  463. data/tests/linalg/QR.rb +77 -0
  464. data/tests/linalg/SV.rb +24 -0
  465. data/tests/linalg/TDN.rb +116 -0
  466. data/tests/linalg/TDS.rb +122 -0
  467. data/tests/linalg/bidiag.rb +73 -0
  468. data/tests/linalg/cholesky.rb +20 -0
  469. data/tests/linalg/linalg.rb +158 -0
  470. data/tests/matrix/matrix_nmf_test.rb +39 -0
  471. data/tests/matrix/matrix_test.rb +48 -0
  472. data/tests/min.rb +99 -0
  473. data/tests/monte/miser.rb +31 -0
  474. data/tests/monte/vegas.rb +45 -0
  475. data/tests/multifit/test_2dgauss.rb +112 -0
  476. data/tests/multifit/test_brown.rb +90 -0
  477. data/tests/multifit/test_enso.rb +246 -0
  478. data/tests/multifit/test_filip.rb +155 -0
  479. data/tests/multifit/test_gauss.rb +97 -0
  480. data/tests/multifit/test_longley.rb +110 -0
  481. data/tests/multifit/test_multifit.rb +52 -0
  482. data/tests/multimin.rb +139 -0
  483. data/tests/multiroot.rb +131 -0
  484. data/tests/multiset.rb +52 -0
  485. data/tests/odeiv.rb +353 -0
  486. data/tests/poly/poly.rb +242 -0
  487. data/tests/poly/special.rb +65 -0
  488. data/tests/qrng.rb +131 -0
  489. data/tests/quartic.rb +29 -0
  490. data/tests/randist.rb +134 -0
  491. data/tests/rng.rb +305 -0
  492. data/tests/roots.rb +76 -0
  493. data/tests/run-test.sh +17 -0
  494. data/tests/sf/gsl_test_sf.rb +249 -0
  495. data/tests/sf/test_airy.rb +83 -0
  496. data/tests/sf/test_bessel.rb +306 -0
  497. data/tests/sf/test_coulomb.rb +17 -0
  498. data/tests/sf/test_dilog.rb +25 -0
  499. data/tests/sf/test_gamma.rb +209 -0
  500. data/tests/sf/test_hyperg.rb +356 -0
  501. data/tests/sf/test_legendre.rb +227 -0
  502. data/tests/sf/test_mathieu.rb +59 -0
  503. data/tests/sf/test_sf.rb +839 -0
  504. data/tests/stats.rb +174 -0
  505. data/tests/sum.rb +98 -0
  506. data/tests/sys.rb +323 -0
  507. data/tests/tensor.rb +419 -0
  508. data/tests/vector/vector_complex_test.rb +101 -0
  509. data/tests/vector/vector_test.rb +141 -0
  510. data/tests/wavelet.rb +142 -0
  511. metadata +596 -15
@@ -0,0 +1,221 @@
1
+ #
2
+ # = Permutations
3
+ # Contents:
4
+ # 1. {Permuation allocations}[link:files/rdoc/perm_rdoc.html#1]
5
+ # 1. {Methods}[link:files/rdoc/perm_rdoc.html#2]
6
+ # 1. {Accessing permutation elements}[link:files/rdoc/perm_rdoc.html#2.1]
7
+ # 1. {Permuation properties}[link:files/rdoc/perm_rdoc.html#2.2]
8
+ # 1. {Permuation functions}[link:files/rdoc/perm_rdoc.html#2.3]
9
+ # 1. {Reading and writing permutations}[link:files/rdoc/perm_rdoc.html#2.4]
10
+ # 1. {Permutations in cyclic form}[link:files/rdoc/perm_rdoc.html#2.5]
11
+ # 1. {Applying Permutations}[link:files/rdoc/perm_rdoc.html#3]
12
+ #
13
+ # == {}[link:index.html"name="1] Permuation allocations
14
+ # ---
15
+ # * GSL::Permutation.alloc(n)
16
+ #
17
+ # These functions create a new permutation of size <tt>n</tt>.
18
+ # The permutation is not initialized and its elements are undefined.
19
+ # Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
20
+ # which is initialized to the identity.
21
+ #
22
+ # ---
23
+ # * GSL::Permutation.calloc(n)
24
+ #
25
+ # This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
26
+ #
27
+ # == {}[link:index.html"name="2] Methods
28
+ # ---
29
+ # * GSL::Permutation#init()
30
+ #
31
+ # This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
32
+ #
33
+ # ---
34
+ # * GSL::Permutation.memcpy(dest, src)
35
+ #
36
+ # This method copies the elements of the permutation <tt>src</tt>
37
+ # into the permutation <tt>dest</tt>. The two permutations must have the same size.
38
+ #
39
+ # ---
40
+ # * GSL::Permutation#clone
41
+ #
42
+ # This creates a new permutation with the same elements of <tt>self</tt>.
43
+ #
44
+ # === {}[link:index.html"name="2.1] Accessing permutation elements
45
+ #
46
+ # ---
47
+ # * GSL::Permutation#get(i)
48
+ #
49
+ # Returns the value of the <tt>i</tt>-th element of the permutation.
50
+ #
51
+ # ---
52
+ # * GSL::Permutation#swap(i, j)
53
+ #
54
+ # This exchanges the <tt>i</tt>-th and <tt>j</tt>-th elements of the permutation.
55
+ #
56
+ # === {}[link:index.html"name="2.2] Permutation properties
57
+ # ---
58
+ # * GSL::Permutation#size
59
+ #
60
+ # Returns the size of the permutation.
61
+ # ---
62
+ # * GSL::Permutation#valid
63
+ #
64
+ # This checks that the permutation <tt>self</tt> is valid.
65
+ # The n elements should contain each of the numbers 0 .. n-1 once and only once.
66
+ #
67
+ # ---
68
+ # * GSL::Permutation#valid?
69
+ #
70
+ # This returns true if the permutation <tt>self</tt> is valid, and false otherwise.
71
+ #
72
+ # === {}[link:index.html"name="2.3] Permutation functions
73
+ #
74
+ # ---
75
+ # * GSL::Permutation#reverse
76
+ #
77
+ # This reverses the elements of the permutation <tt>self</tt>.
78
+ # ---
79
+ # * GSL::Permutation#inverse
80
+ #
81
+ # This computes the inverse of the permutation <tt>self</tt>, and returns
82
+ # as a new permutation.
83
+ #
84
+ # ---
85
+ # * GSL::Permutation#next
86
+ #
87
+ # This method advances the permutation <tt>self</tt> to the next permutation in
88
+ # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
89
+ # are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
90
+ # Starting with the identity permutation and repeatedly applying this function
91
+ # will iterate through all possible permutations of a given order.
92
+ # ---
93
+ # * GSL::Permutation#prev
94
+ #
95
+ # This method steps backwards from the permutation <tt>self</tt> to the previous
96
+ # permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
97
+ # If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
98
+ # and leaves <tt>self</tt> unmodified.
99
+ #
100
+ # === {}[link:index.html"name="2.4] Reading and writing permutations
101
+ # ---
102
+ # * GSL::Permutation#fwrite(io)
103
+ # * GSL::Permutation#fwrite(filename)
104
+ # * GSL::Permutation#fread(io)
105
+ # * GSL::Permutation#fread(filename)
106
+ # * GSL::Permutation#fprintf(io, format = "%u\n")
107
+ # * GSL::Permutation#fprintf(filename, format = "%u\n")
108
+ # * GSL::Permutation#fscanf(io)
109
+ # * GSL::Permutation#fscanf(filename)
110
+ #
111
+ #
112
+ # === {}[link:index.html"name="2.5] Permutations in cyclic Form
113
+ # A permutation can be represented in both <tt>linear</tt> and
114
+ # <tt>cyclic</tt> notations. The functions described in this section convert
115
+ # between the two forms. The linear notation is an index mapping, and has
116
+ # already been described above. The cyclic notation expresses a
117
+ # permutation as a series of circular rearrangements of groups
118
+ # of elements, or <tt>cycles</tt>.
119
+ #
120
+ # For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
121
+ # by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
122
+ # sets of elements can be combined independently, for example (1 2 3) (4 5)
123
+ # combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
124
+ # elements 4 and 5. A cycle of length one represents an element which is
125
+ # unchanged by the permutation and is referred to as a <tt>singleton</tt>.
126
+ #
127
+ # It can be shown that every permutation can be decomposed into combinations
128
+ # of cycles. The decomposition is not unique, but can always be rearranged
129
+ # into a standard <tt>canonical form</tt> by a reordering of elements.
130
+ # The library uses the canonical form defined in Knuth's
131
+ # <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
132
+ #
133
+ # The procedure for obtaining the canonical form given by Knuth is,
134
+ #
135
+ #
136
+ # 1. Write all singleton cycles explicitly
137
+ # 1. Within each cycle, put the smallest number first
138
+ # 1. Order the cycles in decreasing order of the first number in the cycle.
139
+ #
140
+ # For example, the linear representation (2 4 3 0 1) is represented as
141
+ # (1 4) (0 2 3) in canonical form. The permutation corresponds to an
142
+ # exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
143
+ #
144
+ # The important property of the canonical form is that it can be reconstructed
145
+ # from the contents of each cycle without the brackets. In addition, by removing
146
+ # the brackets it can be considered as a linear representation of a different
147
+ # permutation. In the example given above the permutation (2 4 3 0 1) would
148
+ # become (1 4 0 2 3). This mapping has many applications in the theory of
149
+ # permutations.
150
+ #
151
+ # ---
152
+ # * GSL::Permutation#linear_to_canonical
153
+ # * GSL::Permutation#to_canonical
154
+ #
155
+ # Computes the canonical form of the permutation <tt>self</tt> and
156
+ # returns it as a new <tt>GSL::Permutation</tt>.
157
+ #
158
+ # ---
159
+ # * GSL::Permutation#canonical_to_linear
160
+ # * GSL::Permutation#to_linear
161
+ #
162
+ # Converts a permutation <tt>self</tt> in canonical form back into linear
163
+ # form and returns it as a new <tt>GSL::Permutation</tt>.
164
+ #
165
+ #
166
+ # ---
167
+ # * GSL::Permutation#inversions
168
+ #
169
+ # Counts the number of inversions in the permutation <tt>self</tt>.
170
+ # An inversion is any pair of elements that are not in order.
171
+ # For example, the permutation 2031 has three inversions, corresponding
172
+ # to the pairs (2,0) (2,1) and (3,1).
173
+ # The identity permutation has no inversions.
174
+ #
175
+ # ---
176
+ # * GSL::Permutation#linear_cycles
177
+ #
178
+ # Counts the number of cycles in the permutation <tt>self</tt>,
179
+ # given in linear form.
180
+ #
181
+ # ---
182
+ # * GSL::Permutation#canonical_cycles
183
+ #
184
+ # Counts the number of cycles in the permutation <tt>self</tt>,
185
+ # given in canonical form.
186
+ #
187
+ # == {}[link:index.html"name="3] Applying Permutations
188
+ # ---
189
+ # * GSL::Permutation::permute(v)
190
+ #
191
+ # Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
192
+ # considered as a row-vector acted on by a permutation matrix from the
193
+ # right, v' = v P. The j-th column of the permutation matrix P is
194
+ # given by the p_j-th column of the identity matrix.
195
+ # The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
196
+ # ---
197
+ # * GSL::Permutation::permute_inverse(v)
198
+ #
199
+ # Applies the inverse of the permutation <tt>self</tt> to the elements of
200
+ # the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
201
+ # permutation matrix from the right, v' = v P^T.
202
+ # Note that for permutation matrices the inverse is the same as the
203
+ # transpose. The j-th column of the permutation matrix P is given by
204
+ # the p_j-th column of the identity matrix.
205
+ # The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
206
+ # ---
207
+ # * GSL::Permutation.mul(pa, pb)
208
+ #
209
+ # Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
210
+ # permutation <tt>p</tt> and returns it.
211
+ # The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
212
+ # and then <tt>pa</tt>.
213
+ #
214
+ #
215
+ # {prev}[link:files/rdoc/matrix_rdoc.html]
216
+ # {next}[link:files/rdoc/combi_rdoc.html]
217
+ #
218
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
219
+ # {top}[link:files/rdoc/index_rdoc.html]
220
+ #
221
+ #
@@ -0,0 +1,335 @@
1
+ #
2
+ # = Polynomials
3
+ # Contents:
4
+ # 1. {Polynomial Evaluation}[link:files/rdoc/poly_rdoc.html#1]
5
+ # 1. {Solving polynomial equations}[link:files/rdoc/poly_rdoc.html#2]
6
+ # 1. {Quadratic Equations}[link:files/rdoc/poly_rdoc.html#2.1]
7
+ # 1. {Cubic Equations}[link:files/rdoc/poly_rdoc.html#2.2]
8
+ # 1. {General Polynomial Equations}[link:files/rdoc/poly_rdoc.html#2.3]
9
+ # 1. {GSL::Poly Class}[link:files/rdoc/poly_rdoc.html#3]
10
+ # 1. {Constructors}[link:files/rdoc/poly_rdoc.html#3.1]
11
+ # 1. {Methods}[link:files/rdoc/poly_rdoc.html#3.2]
12
+ # 1. {Polynomial Fitting}[link:files/rdoc/poly_rdoc.html#4]
13
+ # 1. {Divided-difference representations}[link:files/rdoc/poly_rdoc.html#5]
14
+ # 1. {Extensions}[link:files/rdoc/poly_rdoc.html#6]
15
+ # 1. {Special Polynomials}[link:files/rdoc/poly_rdoc.html#6.1]
16
+ # 1. {Polynomial Operations}[link:files/rdoc/poly_rdoc.html#6.2]
17
+ #
18
+ # == {}[link:index.html"name="1] Polynomial Evaluation
19
+ # ---
20
+ # * GSL::Poly.eval(c, x)
21
+ #
22
+ # Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
23
+ # The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
24
+ # a <tt>GSL::Vector</tt>, or an <tt>NArray</tt>. The evaluation point <tt>x</tt>
25
+ # is a <tt>Numeric</tt>, <tt>Array</tt>, <tt>GSL::Vector</tt> or <tt>NArray</tt>.
26
+ # From GSL 1.11, <tt>x</tt> can be a complex number, and <tt>c</tt> can be a complex polynomial given by a <tt>GSL::Vector::Complex</tt> or an <tt>Array</tt>.
27
+ #
28
+ # Ex)
29
+ # >> require("gsl")
30
+ # => true
31
+ # >> GSL::Poly.eval([1, 2, 3], 2)
32
+ # => 17.0
33
+ # >> GSL::Poly.eval(GSL::Vector[1, 2, 3], 2)
34
+ # => 17.0
35
+ # >> GSL::Poly.eval(NArray[1.0, 2, 3], 2)
36
+ # => 17.0
37
+ # >> GSL::Poly.eval([1, 2, 3], [1, 2, 3])
38
+ # => [6.0, 17.0, 34.0]
39
+ # >> GSL::Poly.eval([1, 2, 3], GSL::Vector[1, 2, 3])
40
+ # => GSL::Vector
41
+ # [ 6.000e+00 1.700e+01 3.400e+01 ]
42
+ # >> GSL::Poly.eval([1, 2, 3], NArray[1.0, 2, 3])
43
+ # => NArray.float(3):
44
+ # [ 6.0, 17.0, 34.0 ]
45
+ #
46
+ # ---
47
+ # * GSL::Poly.eval_derivs(c, x)
48
+ # * GSL::Poly.eval_derivs(c, x, lenres)
49
+ #
50
+ # (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. The input polynomial <tt>c</tt> can be an <tt>Array</tt>, <tt>GSL::Poly</tt> or an <tt>NArray</tt>. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(c) + 1</tt> is used, therefore the last element of the output is 0.
51
+ #
52
+ # ---
53
+ # * GSL::Poly#eval_derivs(x)
54
+ # * GSL::Poly#eval_derivs(x, lenres)
55
+ #
56
+ # (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(self) + 1</tt> is used, therefore the last element of the output is 0.
57
+ #
58
+ # Ex.)
59
+ # >> ary = [1, 2, 3]
60
+ # => [1, 2, 3]
61
+ # >> GSL::Poly.eval_derivs(ary, 1)
62
+ # => [6.0, 8.0, 6.0, 0.0]
63
+ # >> na = NArray[1.0, 2, 3]
64
+ # => NArray.float(3):
65
+ # [ 1.0, 2.0, 3.0 ]
66
+ # >> GSL::Poly.eval_derivs(na, 1)
67
+ # => NArray.float(4):
68
+ # [ 6.0, 8.0, 6.0, 0.0 ]
69
+ # >> poly = GSL::Poly[1.0, 2, 3]
70
+ # => GSL::Poly
71
+ # [ 1.000e+00 2.000e+00 3.000e+00 ]
72
+ # >> GSL::Poly.eval_derivs(poly, 1)
73
+ # => GSL::Poly
74
+ # [ 6.000e+00 8.000e+00 6.000e+00 0.000e+00 ]
75
+ # >> poly.eval_derivs(1)
76
+ # => GSL::Poly
77
+ # [ 6.000e+00 8.000e+00 6.000e+00 0.000e+00 ]
78
+ # >> poly.eval_derivs(1, 3)
79
+ # => GSL::Poly
80
+ # [ 6.000e+00 8.000e+00 6.000e+00 ]
81
+ #
82
+ # == {}[link:index.html"name="2] Solving polynomial equations
83
+ # === {}[link:index.html"name="2.1] Quadratic Equations
84
+ # ---
85
+ # * GSL::Poly::solve_quadratic(a, b, c)
86
+ # * GSL::Poly::solve_quadratic([a, b, c])
87
+ #
88
+ # Find the real roots of the quadratic equation,
89
+ # a x^2 + b x + c = 0
90
+ # The coefficients are given by 3 numbers, or a Ruby array,
91
+ # or a <tt>GSL::Vector</tt> object. The roots are returned as a <tt>GSL::Vector</tt>.
92
+ #
93
+ # * Ex: z^2 - 3z + 2 = 0
94
+ # >> GSL::Poly::solve_quadratic(1, -3, 2)
95
+ # => GSL::Vector:
96
+ # [ 1.000e+00 2.000e+00 ]
97
+ #
98
+ #
99
+ # ---
100
+ # * GSL::Poly::complex_solve_quadratic(a, b, c)
101
+ # * GSL::Poly::complex_solve_quadratic([a, b, c])
102
+ #
103
+ # Find the complex roots of the quadratic equation,
104
+ # a z^2 + b z + z = 0
105
+ # The coefficients are given by 3 numbers or a Ruby array, or a
106
+ # <tt>GSL::Vector</tt>.
107
+ # The roots are returned as a <tt>GSL::Vector::Complex</tt> of two elements.
108
+ #
109
+ # * Ex: z^2 - 3z + 2 = 0
110
+ # >> require("gsl")
111
+ # => true
112
+ # >> GSL::Poly::complex_solve_quadratic(1, -3, 2)
113
+ # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
114
+ # => #<GSL::Vector::Complex:0x764014>
115
+ # >> GSL::Poly::complex_solve_quadratic(1, -3, 2).real <--- Real part
116
+ # => GSL::Vector::View:
117
+ # [ 1.000e+00 2.000e+00 ]
118
+ #
119
+ # === {}[link:index.html"name="2.2] Cubic Equations
120
+ # ---
121
+ # * GSL::Poly::solve_cubic(same as solve_quadratic)
122
+ #
123
+ # This method finds the real roots of the cubic equation,
124
+ # x^3 + a x^2 + b x + c = 0
125
+ #
126
+ # ---
127
+ # * GSL::Poly::complex_solve_cubic(same as solve_cubic)
128
+ #
129
+ # This method finds the complex roots of the cubic equation,
130
+ # z^3 + a z^2 + b z + c = 0
131
+ #
132
+ # === {}[link:index.html"name="2.3] General Polynomial Equations
133
+ # ---
134
+ # * GSL::Poly::complex_solve(c0, c1, c2,,, )
135
+ # * GSL::Poly::solve(c0, c1, c2,,, )
136
+ #
137
+ # Find the complex roots of the polynomial equation. Note that
138
+ # the coefficients are given by "ascending" order.
139
+ #
140
+ # * Ex: x^2 - 3 x + 2 == 0
141
+ # >> GSL::Poly::complex_solve(2, -3, 1) <--- different from Poly::quadratic_solve
142
+ # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
143
+ # => #<GSL::Vector::Complex:0x75e614>
144
+ #
145
+ # == {}[link:index.html"name="3] GSL::Poly Class
146
+ # This class expresses polynomials of arbitrary orders.
147
+ #
148
+ # === {}[link:index.html"name="3.1] Constructors
149
+ # ---
150
+ # * GSL::Poly.alloc(c0, c1, c2, ....)
151
+ # * GSL::Poly[c0, c1, c2, ....]
152
+ #
153
+ # This creates an instance of the <tt>GSL::Poly</tt> class,
154
+ # which represents a polynomial
155
+ # c0 + c1 x + c2 x^2 + ....
156
+ # This class is derived from <tt>GSL::Vector</tt>.
157
+ #
158
+ # * Ex: x^2 - 3 x + 2
159
+ # poly = GSL::Poly.alloc([2, -3, 1])
160
+ #
161
+ # === {}[link:index.html"name="3.2] Instance Methods
162
+ # ---
163
+ # * GSL::Poly#eval(x)
164
+ # * GSL::Poly#at(x)
165
+ #
166
+ # Evaluates the polynomial
167
+ # c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}
168
+ # using Horner's method for stability. The argument <tt>x</tt> is a
169
+ # <tt>Numeric</tt>, <tt>GSL::Vector, Matrix</tt> or an <tt>Array</tt>.
170
+ #
171
+ # ---
172
+ # * GSL::Poly#solve_quadratic
173
+ #
174
+ # Solve the quadratic equation.
175
+ #
176
+ # * Ex: z^2 - 3 z + 2 = 0:
177
+ # >> a = GSL::Poly[2, -3, 1]
178
+ # => GSL::Poly:
179
+ # [ 2.000e+00 -3.000e+00 1.000e+00 ]
180
+ # >> a.solve_quadratic
181
+ # => GSL::Vector:
182
+ # [ 1.000e+00 2.000e+00 ]
183
+ #
184
+ # ---
185
+ # * GSL::Poly#solve_cubic
186
+ #
187
+ # Solve the cubic equation.
188
+ #
189
+ # ---
190
+ # * GSL::Poly#complex_solve
191
+ # * GSL::Poly#solve
192
+ # * GSL::Poly#roots
193
+ #
194
+ # These methods find the complex roots of the quadratic equation,
195
+ # c0 + c1 z + c2 z^2 + .... = 0
196
+ #
197
+ # * Ex: z^2 - 3 z + 2 = 0:
198
+ # >> a = GSL::Poly[2, -3, 1]
199
+ # => GSL::Poly:
200
+ # [ 2.000e+00 -3.000e+00 1.000e+00 ]
201
+ # >> a.solve
202
+ # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
203
+ # => #<GSL::Vector::Complex:0x35db28>
204
+ #
205
+ # == {}[link:index.html"name="4] Polynomial fitting
206
+ # ---
207
+ # * GSL::Poly.fit(x, y, order)
208
+ # * GSL::Poly.wfit(x, w, y, order)
209
+ #
210
+ # Finds the coefficient of a polynomial of order <tt>order</tt>
211
+ # that fits the vector data (<tt>x, y</tt>) in a least-square sense.
212
+ # This provides a higher-level interface to the method
213
+ # {GSL::Multifit#linear}[link:files/rdoc/fit_rdoc.html] in a case of polynomial fitting.
214
+ #
215
+ # Example:
216
+ # #!/usr/bin/env ruby
217
+ # require("gsl")
218
+ #
219
+ # x = GSL::Vector[1, 2, 3, 4, 5]
220
+ # y = GSL::Vector[5.5, 43.1, 128, 290.7, 498.4]
221
+ # # The results are stored in a polynomial "coef"
222
+ # coef, cov, chisq, status = Poly.fit(x, y, 3)
223
+ #
224
+ # x2 = GSL::Vector.linspace(1, 5, 20)
225
+ # graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
226
+ #
227
+ # == {}[link:index.html"name="5] Divided-difference representations
228
+ #
229
+ # ---
230
+ # * GSL::Poly::dd_init(xa, ya)
231
+ #
232
+ # This method computes a divided-difference representation of the
233
+ # interpolating polynomial for the points <tt>(xa, ya)</tt>.
234
+ #
235
+ # ---
236
+ # * GSL::Poly::DividedDifference#eval(x)
237
+ #
238
+ # This method evaluates the polynomial stored in divided-difference form
239
+ # <tt>self</tt> at the point <tt>x</tt>.
240
+ #
241
+ # ---
242
+ # * GSL::Poly::DividedDifference#taylor(xp)
243
+ #
244
+ # This method converts the divided-difference representation of a polynomial
245
+ # to a Taylor expansion. On output the Taylor coefficients of the polynomial
246
+ # expanded about the point <tt>xp</tt> are returned.
247
+ #
248
+ # == {}[link:index.html"name="6] Extensions
249
+ # === {}[link:index.html"name="6.1] Special Polynomials
250
+ # ---
251
+ # * GSL::Poly.hermite(n)
252
+ #
253
+ # This returns coefficients of the <tt>n</tt>-th order Hermite polynomial, <tt>H(x; n)</tt>.
254
+ # For order of <tt>n</tt> >= 3, this method uses the recurrence relation
255
+ # H(x; n+1) = 2 x H(x; n) - 2 n H(x; n-1)
256
+ # * Ex:
257
+ # >> GSL::Poly.hermite(2)
258
+ # => GSL::Poly::Int:
259
+ # [ -2 0 4 ] <----- 4x^2 - 2
260
+ # >> GSL::Poly.hermite(5)
261
+ # => GSL::Poly::Int:
262
+ # [ 0 120 0 -160 0 32 ] <----- 32x^5 - 160x^3 + 120x
263
+ # >> GSL::Poly.hermite(7)
264
+ # => GSL::Poly::Int:
265
+ # [ 0 -1680 0 3360 0 -1344 0 128 ]
266
+ #
267
+ # ---
268
+ # * GSL::Poly.cheb(n)
269
+ # * GSL::Poly.chebyshev(n)
270
+ #
271
+ # Return the coefficients of the <tt>n</tt>-th order Chebyshev polynomial, <tt>T(x; n</tt>.
272
+ # For order of <tt>n</tt> >= 3, this method uses the recurrence relation
273
+ # T(x; n+1) = 2 x T(x; n) - T(x; n-1)
274
+ #
275
+ # ---
276
+ # * GSL::Poly.cheb_II(n)
277
+ # * GSL::Poly.chebyshev_II(n)
278
+ #
279
+ # Return the coefficients of the <tt>n</tt>-th order Chebyshev polynomial of type II,
280
+ # <tt>U(x; n</tt>.
281
+ # U(x; n+1) = 2 x U(x; n) - U(x; n-1)
282
+ #
283
+ # ---
284
+ # * GSL::Poly.bell(n)
285
+ #
286
+ # Bell polynomial
287
+ #
288
+ # ---
289
+ # * GSL::Poly.bessel(n)
290
+ #
291
+ # Bessel polynomial
292
+ #
293
+ # ---
294
+ # * GSL::Poly.laguerre(n)
295
+ #
296
+ # Retunrs the coefficients of the <tt>n</tt>-th order Laguerre polynomial
297
+ # multiplied by n!.
298
+ #
299
+ # Ex:
300
+ # rb(main):001:0> require("gsl")
301
+ # => true
302
+ # >> GSL::Poly.laguerre(0)
303
+ # => GSL::Poly::Int:
304
+ # [ 1 ] <--- 1
305
+ # >> GSL::Poly.laguerre(1)
306
+ # => GSL::Poly::Int:
307
+ # [ 1 -1 ] <--- -x + 1
308
+ # >> GSL::Poly.laguerre(2)
309
+ # => GSL::Poly::Int:
310
+ # [ 2 -4 1 ] <--- (x^2 - 4x + 2)/2!
311
+ # >> GSL::Poly.laguerre(3)
312
+ # => GSL::Poly::Int:
313
+ # [ 6 -18 9 -1 ] <--- (-x^3 + 9x^2 - 18x + 6)/3!
314
+ # >> GSL::Poly.laguerre(4)
315
+ # => GSL::Poly::Int:
316
+ # [ 24 -96 72 -16 1 ] <--- (x^4 - 16x^3 + 72x^2 - 96x + 24)/4!
317
+ #
318
+ # === {}[link:index.html"name="6.2] Polynomial Operations
319
+ # ---
320
+ # * GSL::Poly#conv
321
+ # * GSL::Poly#deconv
322
+ # * GSL::Poly#reduce
323
+ # * GSL::Poly#deriv
324
+ # * GSL::Poly#integ
325
+ # * GSL::Poly#compan
326
+ #
327
+ #
328
+ # {prev}[link:files/rdoc/complex_rdoc.html]
329
+ # {next}[link:files/rdoc/sf_rdoc.html]
330
+ #
331
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
332
+ # {top}[link:files/rdoc/index_rdoc.html]
333
+ #
334
+ #
335
+ #