gsl 1.12.109 → 1.14.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (511) hide show
  1. data/AUTHORS +6 -0
  2. data/COPYING +339 -0
  3. data/ChangeLog +556 -0
  4. data/{README.rdoc → README} +3 -0
  5. data/Rakefile +54 -10
  6. data/THANKS +17 -0
  7. data/VERSION +1 -2
  8. data/examples/alf/alf.gp +15 -0
  9. data/examples/alf/alf.rb +32 -0
  10. data/examples/blas/blas.rb +13 -0
  11. data/examples/blas/dnrm2.rb +16 -0
  12. data/examples/blas/level1.rb +81 -0
  13. data/examples/blas/level2.rb +11 -0
  14. data/examples/blas/level3.rb +12 -0
  15. data/examples/bspline.rb +57 -0
  16. data/examples/cdf.rb +16 -0
  17. data/examples/cheb.rb +21 -0
  18. data/examples/combination.rb +23 -0
  19. data/examples/complex/RC-lpf.rb +47 -0
  20. data/examples/complex/add.rb +36 -0
  21. data/examples/complex/coerce.rb +14 -0
  22. data/examples/complex/complex.rb +25 -0
  23. data/examples/complex/fpmi.rb +70 -0
  24. data/examples/complex/functions.rb +77 -0
  25. data/examples/complex/michelson.rb +36 -0
  26. data/examples/complex/mul.rb +28 -0
  27. data/examples/complex/oscillator.rb +17 -0
  28. data/examples/complex/set.rb +37 -0
  29. data/examples/const/physconst.rb +151 -0
  30. data/examples/const/travel.rb +45 -0
  31. data/examples/deriv/demo.rb +13 -0
  32. data/examples/deriv/deriv.rb +36 -0
  33. data/examples/deriv/diff.rb +35 -0
  34. data/examples/dht.rb +42 -0
  35. data/examples/dirac.rb +56 -0
  36. data/examples/eigen/eigen.rb +34 -0
  37. data/examples/eigen/herm.rb +22 -0
  38. data/examples/eigen/narray.rb +9 -0
  39. data/examples/eigen/nonsymm.rb +37 -0
  40. data/examples/eigen/nonsymmv.rb +43 -0
  41. data/examples/eigen/qhoscillator.gp +35 -0
  42. data/examples/eigen/qhoscillator.rb +90 -0
  43. data/examples/eigen/vander.rb +41 -0
  44. data/examples/fft/fft.rb +17 -0
  45. data/examples/fft/fft2.rb +17 -0
  46. data/examples/fft/forward.rb +25 -0
  47. data/examples/fft/forward2.rb +26 -0
  48. data/examples/fft/radix2.rb +18 -0
  49. data/examples/fft/real-halfcomplex.rb +33 -0
  50. data/examples/fft/real-halfcomplex2.rb +30 -0
  51. data/examples/fft/realradix2.rb +19 -0
  52. data/examples/fft/sunspot.dat +256 -0
  53. data/examples/fft/sunspot.rb +16 -0
  54. data/examples/fit/expdata.dat +20 -0
  55. data/examples/fit/expfit.rb +31 -0
  56. data/examples/fit/gaussfit.rb +29 -0
  57. data/examples/fit/gaussian_2peaks.rb +34 -0
  58. data/examples/fit/hillfit.rb +40 -0
  59. data/examples/fit/lognormal.rb +26 -0
  60. data/examples/fit/lorentzfit.rb +22 -0
  61. data/examples/fit/multifit.rb +72 -0
  62. data/examples/fit/ndlinear.rb +133 -0
  63. data/examples/fit/nonlinearfit.rb +89 -0
  64. data/examples/fit/plot.gp +36 -0
  65. data/examples/fit/polyfit.rb +9 -0
  66. data/examples/fit/powerfit.rb +21 -0
  67. data/examples/fit/sigmoidfit.rb +40 -0
  68. data/examples/fit/sinfit.rb +22 -0
  69. data/examples/fit/wlinear.rb +46 -0
  70. data/examples/fresnel.rb +11 -0
  71. data/examples/function/function.rb +36 -0
  72. data/examples/function/log.rb +7 -0
  73. data/examples/function/min.rb +33 -0
  74. data/examples/function/sin.rb +10 -0
  75. data/examples/function/synchrotron.rb +18 -0
  76. data/examples/gallery/butterfly.rb +7 -0
  77. data/examples/gallery/cayley.rb +12 -0
  78. data/examples/gallery/cornu.rb +23 -0
  79. data/examples/gallery/eight.rb +11 -0
  80. data/examples/gallery/koch.rb +40 -0
  81. data/examples/gallery/lemniscate.rb +11 -0
  82. data/examples/gallery/polar.rb +11 -0
  83. data/examples/gallery/rgplot/cossin.rb +35 -0
  84. data/examples/gallery/rgplot/rgplot.replaced +0 -0
  85. data/examples/gallery/rgplot/roesller.rb +55 -0
  86. data/examples/gallery/roesller.rb +39 -0
  87. data/examples/gallery/scarabaeus.rb +14 -0
  88. data/examples/histogram/cauchy.rb +27 -0
  89. data/examples/histogram/cauchy.sh +2 -0
  90. data/examples/histogram/exponential.rb +19 -0
  91. data/examples/histogram/gauss.rb +16 -0
  92. data/examples/histogram/gsl-histogram.rb +40 -0
  93. data/examples/histogram/histo2d.rb +31 -0
  94. data/examples/histogram/histo3d.rb +34 -0
  95. data/examples/histogram/histogram-pdf.rb +27 -0
  96. data/examples/histogram/histogram.rb +26 -0
  97. data/examples/histogram/integral.rb +28 -0
  98. data/examples/histogram/poisson.rb +27 -0
  99. data/examples/histogram/power.rb +25 -0
  100. data/examples/histogram/rebin.rb +17 -0
  101. data/examples/histogram/smp.dat +5 -0
  102. data/examples/histogram/xexp.rb +21 -0
  103. data/examples/integration/ahmed.rb +21 -0
  104. data/examples/integration/cosmology.rb +75 -0
  105. data/examples/integration/friedmann.gp +16 -0
  106. data/examples/integration/friedmann.rb +35 -0
  107. data/examples/integration/gamma-zeta.rb +35 -0
  108. data/examples/integration/integration.rb +22 -0
  109. data/examples/integration/qag.rb +8 -0
  110. data/examples/integration/qag2.rb +14 -0
  111. data/examples/integration/qag3.rb +8 -0
  112. data/examples/integration/qagi.rb +28 -0
  113. data/examples/integration/qagi2.rb +49 -0
  114. data/examples/integration/qagiu.rb +29 -0
  115. data/examples/integration/qagp.rb +20 -0
  116. data/examples/integration/qags.rb +14 -0
  117. data/examples/integration/qawc.rb +18 -0
  118. data/examples/integration/qawf.rb +41 -0
  119. data/examples/integration/qawo.rb +29 -0
  120. data/examples/integration/qaws.rb +30 -0
  121. data/examples/integration/qng.rb +17 -0
  122. data/examples/interp/demo.gp +20 -0
  123. data/examples/interp/demo.rb +45 -0
  124. data/examples/interp/interp.rb +37 -0
  125. data/examples/interp/points +10 -0
  126. data/examples/interp/spline.rb +20 -0
  127. data/examples/jacobi/deriv.rb +40 -0
  128. data/examples/jacobi/integrate.rb +34 -0
  129. data/examples/jacobi/interp.rb +43 -0
  130. data/examples/jacobi/jacobi.rb +11 -0
  131. data/examples/linalg/HH.rb +15 -0
  132. data/examples/linalg/HH_narray.rb +13 -0
  133. data/examples/linalg/LQ_solve.rb +73 -0
  134. data/examples/linalg/LU.rb +84 -0
  135. data/examples/linalg/LU2.rb +31 -0
  136. data/examples/linalg/LU_narray.rb +24 -0
  137. data/examples/linalg/PTLQ.rb +47 -0
  138. data/examples/linalg/QR.rb +18 -0
  139. data/examples/linalg/QRPT.rb +47 -0
  140. data/examples/linalg/QR_solve.rb +78 -0
  141. data/examples/linalg/QR_solve_narray.rb +13 -0
  142. data/examples/linalg/SV.rb +16 -0
  143. data/examples/linalg/SV_narray.rb +12 -0
  144. data/examples/linalg/SV_solve.rb +49 -0
  145. data/examples/linalg/chol.rb +29 -0
  146. data/examples/linalg/chol_narray.rb +15 -0
  147. data/examples/linalg/complex.rb +57 -0
  148. data/examples/linalg/invert_narray.rb +10 -0
  149. data/examples/math/const.rb +67 -0
  150. data/examples/math/elementary.rb +35 -0
  151. data/examples/math/functions.rb +41 -0
  152. data/examples/math/inf_nan.rb +34 -0
  153. data/examples/math/minmax.rb +22 -0
  154. data/examples/math/power.rb +18 -0
  155. data/examples/math/test.rb +31 -0
  156. data/examples/matrix/a.dat +0 -0
  157. data/examples/matrix/add.rb +45 -0
  158. data/examples/matrix/b.dat +4 -0
  159. data/examples/matrix/cat.rb +31 -0
  160. data/examples/matrix/colvectors.rb +24 -0
  161. data/examples/matrix/complex.rb +41 -0
  162. data/examples/matrix/det.rb +29 -0
  163. data/examples/matrix/diagonal.rb +23 -0
  164. data/examples/matrix/get_all.rb +159 -0
  165. data/examples/matrix/hilbert.rb +31 -0
  166. data/examples/matrix/iterator.rb +19 -0
  167. data/examples/matrix/matrix.rb +57 -0
  168. data/examples/matrix/minmax.rb +53 -0
  169. data/examples/matrix/mul.rb +39 -0
  170. data/examples/matrix/rand.rb +20 -0
  171. data/examples/matrix/read.rb +29 -0
  172. data/examples/matrix/rowcol.rb +47 -0
  173. data/examples/matrix/set.rb +41 -0
  174. data/examples/matrix/set_all.rb +100 -0
  175. data/examples/matrix/view.rb +32 -0
  176. data/examples/matrix/view_all.rb +148 -0
  177. data/examples/matrix/write.rb +23 -0
  178. data/examples/min.rb +29 -0
  179. data/examples/monte/miser.rb +47 -0
  180. data/examples/monte/monte.rb +47 -0
  181. data/examples/monte/plain.rb +47 -0
  182. data/examples/monte/vegas.rb +46 -0
  183. data/examples/multimin/bundle.rb +66 -0
  184. data/examples/multimin/cqp.rb +109 -0
  185. data/examples/multimin/fdfminimizer.rb +40 -0
  186. data/examples/multimin/fminimizer.rb +41 -0
  187. data/examples/multiroot/demo.rb +36 -0
  188. data/examples/multiroot/fdfsolver.rb +50 -0
  189. data/examples/multiroot/fsolver.rb +33 -0
  190. data/examples/multiroot/fsolver2.rb +32 -0
  191. data/examples/multiroot/fsolver3.rb +26 -0
  192. data/examples/narray/histogram.rb +14 -0
  193. data/examples/narray/mandel.rb +27 -0
  194. data/examples/narray/narray.rb +28 -0
  195. data/examples/narray/narray2.rb +44 -0
  196. data/examples/narray/sf.rb +26 -0
  197. data/examples/ntuple/create.rb +17 -0
  198. data/examples/ntuple/project.rb +31 -0
  199. data/examples/odeiv/binarysystem.gp +23 -0
  200. data/examples/odeiv/binarysystem.rb +104 -0
  201. data/examples/odeiv/demo.gp +24 -0
  202. data/examples/odeiv/demo.rb +69 -0
  203. data/examples/odeiv/demo2.gp +26 -0
  204. data/examples/odeiv/duffing.rb +45 -0
  205. data/examples/odeiv/frei1.rb +109 -0
  206. data/examples/odeiv/frei2.rb +76 -0
  207. data/examples/odeiv/legendre.rb +52 -0
  208. data/examples/odeiv/odeiv.rb +32 -0
  209. data/examples/odeiv/odeiv2.rb +45 -0
  210. data/examples/odeiv/oscillator.rb +42 -0
  211. data/examples/odeiv/sedov.rb +97 -0
  212. data/examples/odeiv/whitedwarf.gp +40 -0
  213. data/examples/odeiv/whitedwarf.rb +158 -0
  214. data/examples/ool/conmin.rb +100 -0
  215. data/examples/ool/gencan.rb +99 -0
  216. data/examples/ool/pgrad.rb +100 -0
  217. data/examples/ool/spg.rb +100 -0
  218. data/examples/pdf/bernoulli.rb +5 -0
  219. data/examples/pdf/beta.rb +7 -0
  220. data/examples/pdf/binomiral.rb +10 -0
  221. data/examples/pdf/cauchy.rb +6 -0
  222. data/examples/pdf/chisq.rb +8 -0
  223. data/examples/pdf/exponential.rb +7 -0
  224. data/examples/pdf/exppow.rb +6 -0
  225. data/examples/pdf/fdist.rb +7 -0
  226. data/examples/pdf/flat.rb +7 -0
  227. data/examples/pdf/gamma.rb +8 -0
  228. data/examples/pdf/gauss-tail.rb +5 -0
  229. data/examples/pdf/gauss.rb +6 -0
  230. data/examples/pdf/geometric.rb +5 -0
  231. data/examples/pdf/gumbel.rb +6 -0
  232. data/examples/pdf/hypergeometric.rb +11 -0
  233. data/examples/pdf/landau.rb +5 -0
  234. data/examples/pdf/laplace.rb +7 -0
  235. data/examples/pdf/logarithmic.rb +5 -0
  236. data/examples/pdf/logistic.rb +6 -0
  237. data/examples/pdf/lognormal.rb +6 -0
  238. data/examples/pdf/neg-binomiral.rb +10 -0
  239. data/examples/pdf/pareto.rb +7 -0
  240. data/examples/pdf/pascal.rb +10 -0
  241. data/examples/pdf/poisson.rb +5 -0
  242. data/examples/pdf/rayleigh-tail.rb +6 -0
  243. data/examples/pdf/rayleigh.rb +6 -0
  244. data/examples/pdf/tdist.rb +6 -0
  245. data/examples/pdf/weibull.rb +8 -0
  246. data/examples/permutation/ex1.rb +22 -0
  247. data/examples/permutation/permutation.rb +16 -0
  248. data/examples/poly/bell.rb +6 -0
  249. data/examples/poly/bessel.rb +6 -0
  250. data/examples/poly/cheb.rb +6 -0
  251. data/examples/poly/cheb_II.rb +6 -0
  252. data/examples/poly/cubic.rb +9 -0
  253. data/examples/poly/demo.rb +20 -0
  254. data/examples/poly/eval.rb +28 -0
  255. data/examples/poly/eval_derivs.rb +14 -0
  256. data/examples/poly/fit.rb +21 -0
  257. data/examples/poly/hermite.rb +6 -0
  258. data/examples/poly/poly.rb +13 -0
  259. data/examples/poly/quadratic.rb +25 -0
  260. data/examples/random/diffusion.rb +34 -0
  261. data/examples/random/gaussian.rb +9 -0
  262. data/examples/random/generator.rb +27 -0
  263. data/examples/random/hdsobol.rb +21 -0
  264. data/examples/random/poisson.rb +9 -0
  265. data/examples/random/qrng.rb +19 -0
  266. data/examples/random/randomwalk.rb +37 -0
  267. data/examples/random/randomwalk2d.rb +19 -0
  268. data/examples/random/rayleigh.rb +36 -0
  269. data/examples/random/rng.rb +33 -0
  270. data/examples/random/rngextra.rb +14 -0
  271. data/examples/roots/bisection.rb +25 -0
  272. data/examples/roots/brent.rb +43 -0
  273. data/examples/roots/demo.rb +30 -0
  274. data/examples/roots/newton.rb +46 -0
  275. data/examples/roots/recombination.gp +12 -0
  276. data/examples/roots/recombination.rb +61 -0
  277. data/examples/roots/steffenson.rb +48 -0
  278. data/examples/sf/ShiChi.rb +6 -0
  279. data/examples/sf/SiCi.rb +6 -0
  280. data/examples/sf/airy_Ai.rb +8 -0
  281. data/examples/sf/airy_Bi.rb +8 -0
  282. data/examples/sf/bessel_IK.rb +12 -0
  283. data/examples/sf/bessel_JY.rb +13 -0
  284. data/examples/sf/beta_inc.rb +9 -0
  285. data/examples/sf/clausen.rb +6 -0
  286. data/examples/sf/dawson.rb +5 -0
  287. data/examples/sf/debye.rb +9 -0
  288. data/examples/sf/dilog.rb +6 -0
  289. data/examples/sf/ellint.rb +6 -0
  290. data/examples/sf/expint.rb +8 -0
  291. data/examples/sf/fermi.rb +10 -0
  292. data/examples/sf/gamma_inc_P.rb +9 -0
  293. data/examples/sf/gegenbauer.rb +8 -0
  294. data/examples/sf/hyperg.rb +7 -0
  295. data/examples/sf/laguerre.rb +19 -0
  296. data/examples/sf/lambertW.rb +5 -0
  297. data/examples/sf/legendre_P.rb +10 -0
  298. data/examples/sf/lngamma.rb +5 -0
  299. data/examples/sf/psi.rb +54 -0
  300. data/examples/sf/sphbessel.gp +27 -0
  301. data/examples/sf/sphbessel.rb +30 -0
  302. data/examples/sf/synchrotron.rb +5 -0
  303. data/examples/sf/transport.rb +10 -0
  304. data/examples/sf/zetam1.rb +5 -0
  305. data/examples/siman.rb +44 -0
  306. data/examples/sort/heapsort.rb +23 -0
  307. data/examples/sort/heapsort_vector_complex.rb +21 -0
  308. data/examples/sort/sort.rb +23 -0
  309. data/examples/sort/sort2.rb +16 -0
  310. data/examples/stats/mean.rb +17 -0
  311. data/examples/stats/statistics.rb +18 -0
  312. data/examples/stats/test.rb +9 -0
  313. data/examples/sum.rb +34 -0
  314. data/examples/tamu_anova.rb +18 -0
  315. data/examples/vector/a.dat +0 -0
  316. data/examples/vector/add.rb +56 -0
  317. data/examples/vector/b.dat +4 -0
  318. data/examples/vector/c.dat +3 -0
  319. data/examples/vector/collect.rb +26 -0
  320. data/examples/vector/compare.rb +28 -0
  321. data/examples/vector/complex.rb +51 -0
  322. data/examples/vector/complex_get_all.rb +85 -0
  323. data/examples/vector/complex_set_all.rb +131 -0
  324. data/examples/vector/complex_view_all.rb +77 -0
  325. data/examples/vector/connect.rb +22 -0
  326. data/examples/vector/decimate.rb +38 -0
  327. data/examples/vector/diff.rb +31 -0
  328. data/examples/vector/filescan.rb +17 -0
  329. data/examples/vector/floor.rb +23 -0
  330. data/examples/vector/get_all.rb +82 -0
  331. data/examples/vector/gnuplot.rb +38 -0
  332. data/examples/vector/graph.rb +28 -0
  333. data/examples/vector/histogram.rb +22 -0
  334. data/examples/vector/linspace.rb +24 -0
  335. data/examples/vector/log.rb +17 -0
  336. data/examples/vector/logic.rb +33 -0
  337. data/examples/vector/logspace.rb +25 -0
  338. data/examples/vector/minmax.rb +47 -0
  339. data/examples/vector/mul.rb +49 -0
  340. data/examples/vector/narray.rb +46 -0
  341. data/examples/vector/read.rb +29 -0
  342. data/examples/vector/set.rb +35 -0
  343. data/examples/vector/set_all.rb +121 -0
  344. data/examples/vector/smpv.dat +15 -0
  345. data/examples/vector/test.rb +43 -0
  346. data/examples/vector/test_gslblock.rb +58 -0
  347. data/examples/vector/vector.rb +110 -0
  348. data/examples/vector/view.rb +35 -0
  349. data/examples/vector/view_all.rb +73 -0
  350. data/examples/vector/where.rb +29 -0
  351. data/examples/vector/write.rb +24 -0
  352. data/examples/vector/zip.rb +34 -0
  353. data/examples/wavelet/ecg.dat +256 -0
  354. data/examples/wavelet/wavelet1.rb +50 -0
  355. data/ext/extconf.rb +9 -0
  356. data/ext/gsl.c +10 -1
  357. data/ext/histogram.c +6 -2
  358. data/ext/integration.c +39 -0
  359. data/ext/matrix_complex.c +1 -1
  360. data/ext/multiset.c +214 -0
  361. data/ext/nmf.c +4 -0
  362. data/ext/nmf_wrap.c +3 -0
  363. data/ext/vector_complex.c +1 -1
  364. data/ext/vector_double.c +3 -3
  365. data/ext/vector_source.c +6 -6
  366. data/include/rb_gsl.h +7 -0
  367. data/include/rb_gsl_common.h +6 -0
  368. data/rdoc/alf.rdoc +77 -0
  369. data/rdoc/blas.rdoc +269 -0
  370. data/rdoc/bspline.rdoc +42 -0
  371. data/rdoc/changes.rdoc +164 -0
  372. data/rdoc/cheb.rdoc +99 -0
  373. data/rdoc/cholesky_complex.rdoc +46 -0
  374. data/rdoc/combi.rdoc +125 -0
  375. data/rdoc/complex.rdoc +210 -0
  376. data/rdoc/const.rdoc +546 -0
  377. data/rdoc/dht.rdoc +122 -0
  378. data/rdoc/diff.rdoc +133 -0
  379. data/rdoc/ehandling.rdoc +50 -0
  380. data/rdoc/eigen.rdoc +401 -0
  381. data/rdoc/fft.rdoc +535 -0
  382. data/rdoc/fit.rdoc +284 -0
  383. data/rdoc/function.rdoc +94 -0
  384. data/rdoc/graph.rdoc +137 -0
  385. data/rdoc/hist.rdoc +409 -0
  386. data/rdoc/hist2d.rdoc +279 -0
  387. data/rdoc/hist3d.rdoc +112 -0
  388. data/rdoc/index.rdoc +62 -0
  389. data/rdoc/integration.rdoc +398 -0
  390. data/rdoc/interp.rdoc +231 -0
  391. data/rdoc/intro.rdoc +27 -0
  392. data/rdoc/linalg.rdoc +681 -0
  393. data/rdoc/linalg_complex.rdoc +88 -0
  394. data/rdoc/math.rdoc +276 -0
  395. data/rdoc/matrix.rdoc +1093 -0
  396. data/rdoc/min.rdoc +189 -0
  397. data/rdoc/monte.rdoc +234 -0
  398. data/rdoc/multimin.rdoc +312 -0
  399. data/rdoc/multiroot.rdoc +293 -0
  400. data/rdoc/narray.rdoc +173 -0
  401. data/rdoc/ndlinear.rdoc +247 -0
  402. data/rdoc/nonlinearfit.rdoc +348 -0
  403. data/rdoc/ntuple.rdoc +88 -0
  404. data/rdoc/odeiv.rdoc +378 -0
  405. data/rdoc/perm.rdoc +221 -0
  406. data/rdoc/poly.rdoc +335 -0
  407. data/rdoc/qrng.rdoc +90 -0
  408. data/rdoc/randist.rdoc +233 -0
  409. data/rdoc/ref.rdoc +93 -0
  410. data/rdoc/rng.rdoc +203 -0
  411. data/rdoc/rngextra.rdoc +11 -0
  412. data/rdoc/roots.rdoc +305 -0
  413. data/rdoc/screenshot.rdoc +40 -0
  414. data/rdoc/sf.rdoc +1622 -0
  415. data/rdoc/siman.rdoc +89 -0
  416. data/rdoc/sort.rdoc +94 -0
  417. data/rdoc/start.rdoc +16 -0
  418. data/rdoc/stats.rdoc +219 -0
  419. data/rdoc/sum.rdoc +65 -0
  420. data/rdoc/tensor.rdoc +251 -0
  421. data/rdoc/tut.rdoc +5 -0
  422. data/rdoc/use.rdoc +177 -0
  423. data/rdoc/vector.rdoc +1243 -0
  424. data/rdoc/vector_complex.rdoc +347 -0
  425. data/rdoc/wavelet.rdoc +218 -0
  426. data/setup.rb +1585 -0
  427. data/tests/blas/amax.rb +14 -0
  428. data/tests/blas/asum.rb +16 -0
  429. data/tests/blas/axpy.rb +25 -0
  430. data/tests/blas/copy.rb +23 -0
  431. data/tests/blas/dot.rb +23 -0
  432. data/tests/bspline.rb +53 -0
  433. data/tests/cdf.rb +1388 -0
  434. data/tests/cheb.rb +112 -0
  435. data/tests/combination.rb +123 -0
  436. data/tests/complex.rb +17 -0
  437. data/tests/const.rb +24 -0
  438. data/tests/deriv.rb +85 -0
  439. data/tests/dht/dht1.rb +17 -0
  440. data/tests/dht/dht2.rb +23 -0
  441. data/tests/dht/dht3.rb +23 -0
  442. data/tests/dht/dht4.rb +23 -0
  443. data/tests/diff.rb +78 -0
  444. data/tests/eigen/eigen.rb +220 -0
  445. data/tests/eigen/gen.rb +105 -0
  446. data/tests/eigen/genherm.rb +66 -0
  447. data/tests/eigen/gensymm.rb +68 -0
  448. data/tests/eigen/nonsymm.rb +53 -0
  449. data/tests/eigen/nonsymmv.rb +53 -0
  450. data/tests/eigen/symm-herm.rb +74 -0
  451. data/tests/err.rb +58 -0
  452. data/tests/fit.rb +124 -0
  453. data/tests/gsl_test.rb +118 -0
  454. data/tests/gsl_test2.rb +107 -0
  455. data/tests/histo.rb +12 -0
  456. data/tests/integration/integration1.rb +72 -0
  457. data/tests/integration/integration2.rb +71 -0
  458. data/tests/integration/integration3.rb +71 -0
  459. data/tests/integration/integration4.rb +71 -0
  460. data/tests/interp.rb +45 -0
  461. data/tests/linalg/HH.rb +64 -0
  462. data/tests/linalg/LU.rb +47 -0
  463. data/tests/linalg/QR.rb +77 -0
  464. data/tests/linalg/SV.rb +24 -0
  465. data/tests/linalg/TDN.rb +116 -0
  466. data/tests/linalg/TDS.rb +122 -0
  467. data/tests/linalg/bidiag.rb +73 -0
  468. data/tests/linalg/cholesky.rb +20 -0
  469. data/tests/linalg/linalg.rb +158 -0
  470. data/tests/matrix/matrix_nmf_test.rb +39 -0
  471. data/tests/matrix/matrix_test.rb +48 -0
  472. data/tests/min.rb +99 -0
  473. data/tests/monte/miser.rb +31 -0
  474. data/tests/monte/vegas.rb +45 -0
  475. data/tests/multifit/test_2dgauss.rb +112 -0
  476. data/tests/multifit/test_brown.rb +90 -0
  477. data/tests/multifit/test_enso.rb +246 -0
  478. data/tests/multifit/test_filip.rb +155 -0
  479. data/tests/multifit/test_gauss.rb +97 -0
  480. data/tests/multifit/test_longley.rb +110 -0
  481. data/tests/multifit/test_multifit.rb +52 -0
  482. data/tests/multimin.rb +139 -0
  483. data/tests/multiroot.rb +131 -0
  484. data/tests/multiset.rb +52 -0
  485. data/tests/odeiv.rb +353 -0
  486. data/tests/poly/poly.rb +242 -0
  487. data/tests/poly/special.rb +65 -0
  488. data/tests/qrng.rb +131 -0
  489. data/tests/quartic.rb +29 -0
  490. data/tests/randist.rb +134 -0
  491. data/tests/rng.rb +305 -0
  492. data/tests/roots.rb +76 -0
  493. data/tests/run-test.sh +17 -0
  494. data/tests/sf/gsl_test_sf.rb +249 -0
  495. data/tests/sf/test_airy.rb +83 -0
  496. data/tests/sf/test_bessel.rb +306 -0
  497. data/tests/sf/test_coulomb.rb +17 -0
  498. data/tests/sf/test_dilog.rb +25 -0
  499. data/tests/sf/test_gamma.rb +209 -0
  500. data/tests/sf/test_hyperg.rb +356 -0
  501. data/tests/sf/test_legendre.rb +227 -0
  502. data/tests/sf/test_mathieu.rb +59 -0
  503. data/tests/sf/test_sf.rb +839 -0
  504. data/tests/stats.rb +174 -0
  505. data/tests/sum.rb +98 -0
  506. data/tests/sys.rb +323 -0
  507. data/tests/tensor.rb +419 -0
  508. data/tests/vector/vector_complex_test.rb +101 -0
  509. data/tests/vector/vector_test.rb +141 -0
  510. data/tests/wavelet.rb +142 -0
  511. metadata +596 -15
@@ -0,0 +1,122 @@
1
+ #
2
+ # = Discrete Hankel Transforms
3
+ # This chapter describes functions for performing Discrete Hankel Transforms
4
+ # (DHTs).
5
+ #
6
+ # 1. {Definitions}[link:files/rdoc/dht_rdoc.html#1]
7
+ # 1. {Initialization}[link:files/rdoc/dht_rdoc.html#2]
8
+ # 1. {Methods}[link:files/rdoc/dht_rdoc.html#3]
9
+ #
10
+ # == {}[link:index.html"name="1] Definitions
11
+ # The discrete Hankel transform acts on a vector of sampled data, where the
12
+ # samples are assumed to have been taken at points related to the zeroes of a
13
+ # Bessel function of fixed order; compare this to the case of the discrete
14
+ # Fourier transform, where samples are taken at points related to the zeroes
15
+ # of the sine or cosine function.
16
+ #
17
+ # Specifically, let f(t) be a function on the unit interval. Then the finite
18
+ # \nu-Hankel transform of f(t) is defined to be the set of numbers g_m given by,
19
+ # so that, Suppose that f is band-limited in the sense that g_m=0 for m > M.
20
+ # Then we have the following fundamental sampling theorem. It is this discrete
21
+ # expression which defines the discrete Hankel transform. The kernel in the
22
+ # summation above defines the matrix of the \nu-Hankel transform of size M-1.
23
+ # The coefficients of this matrix, being dependent on \nu and M, must be
24
+ # precomputed and stored; the <tt>GSL::Dht</tt> object encapsulates this data.
25
+ # The constructor <tt>GSL::Dht.alloc</tt> returns a <tt>GSL::Dht</tt> object
26
+ # which must be properly initialized with <tt>GSL::Dht#init</tt> before
27
+ # it can be used to perform transforms on data sample vectors,
28
+ # for fixed \nu and M, using the <tt>GSL::Dht#apply</tt> method.
29
+ # The implementation allows a scaling of the fundamental
30
+ # interval, for convenience, so that one can assume the function is defined on
31
+ # the interval [0,X], rather than the unit interval.
32
+ #
33
+ # Notice that by assumption f(t) vanishes at the endpoints of the interval,
34
+ # consistent with the inversion formula and the sampling formula given above.
35
+ # Therefore, this transform corresponds to an orthogonal expansion in
36
+ # eigenfunctions of the Dirichlet problem for the Bessel differential equation.
37
+ #
38
+ #
39
+ # == {}[link:index.html"name="2] Initialization
40
+ #
41
+ # ---
42
+ # * GSL::Dht.alloc(size)
43
+ # * GSL::Dht.alloc(size, nu, xmax)
44
+ #
45
+ # These methods allocate a Discrete Hankel transform object <tt>GSL::Dht</tt>
46
+ # of size <tt>size</tt>.
47
+ # If three arguments are given, the object is initialized with the values of
48
+ # <tt>nu, xmax</tt>.
49
+ #
50
+ # ---
51
+ # * GSL::Dht#init(nu, xmax)
52
+ #
53
+ # This initializes the transform <tt>self</tt> for the given values of <tt>nu</tt> and <tt>xmax</tt>.
54
+ #
55
+ # == {}[link:index.html"name="3] Methods
56
+ # ---
57
+ # * GSL::Dht#apply(vin, vout)
58
+ # * GSL::Dht#apply(vin)
59
+ #
60
+ # This applies the transform <tt>self</tt> to the vector <tt>vin</tt> whose size is
61
+ # equal to the size of the transform.
62
+ #
63
+ # ---
64
+ # * GSL::Dht#x_sample(n)
65
+ #
66
+ # This method returns the value of the n'th sample point in the unit interval,
67
+ # (j_{nu,n+1}/j_{nu,M}) X. These are the points where the function f(t) is
68
+ # assumed to be sampled.
69
+ #
70
+ # ---
71
+ # * GSL::Dht#k_sample(n)
72
+ #
73
+ # This method returns the value of the n'th sample point in "k-space",
74
+ # j_{nu,n+1}/X.
75
+ #
76
+ # ---
77
+ # * GSL::Dht#size
78
+ #
79
+ # Returns the size of the sample arrays to be transformed
80
+ # ---
81
+ # * GSL::Dht#nu
82
+ #
83
+ # Returns the Bessel function order
84
+ # ---
85
+ # * GSL::Dht#xmax
86
+ #
87
+ # Returns the upper limit to the x-sampling domain
88
+ # ---
89
+ # * GSL::Dht#kmax
90
+ #
91
+ # Returns the upper limit to the k-sampling domain
92
+ #
93
+ # ---
94
+ # * GSL::Dht#j
95
+ #
96
+ # Returns an array of computed J_nu zeros, j_{nu,s} = j[s]
97
+ # as a <tt>GSL::Vector::View</tt>.
98
+ #
99
+ # ---
100
+ # * GSL::Dht#Jjj
101
+ #
102
+ # Returns an array of transform numerator, J_nu(j_i j_m / j_N)
103
+ # as a <tt>GSL::Vector::View</tt>.
104
+ #
105
+ # ---
106
+ # * GSL::Dht#J2
107
+ #
108
+ # Returns an array of transform numerator, J_nu(j_i j_m / j_N).
109
+ #
110
+ # ---
111
+ # * GSL::Dht#coef
112
+ # * GSL::Dht#coef(n, m)
113
+ #
114
+ # Return the (n,m)-th transform coefficient.
115
+ #
116
+ # {prev}[link:files/rdoc/sum_rdoc.html]
117
+ # {next}[link:files/rdoc/roots_rdoc.html]
118
+ #
119
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
120
+ # {top}[link:files/rdoc/index_rdoc.html]
121
+ #
122
+ #
@@ -0,0 +1,133 @@
1
+ #
2
+ # = Numerical Differentiation
3
+ # The functions described in this chapter compute numerical derivatives by
4
+ # finite differencing. An adaptive algorithm is used to find the best choice
5
+ # of finite difference and to estimate the error in the derivative.
6
+ #
7
+ # Contentes:
8
+ # 1. {Deriv methods}[link:files/rdoc/diff_rdoc.html#1]
9
+ # 1. {Diff methods}[link:files/rdoc/diff_rdoc.html#2]
10
+ #
11
+ # == {}[link:index.html"name="1] Deriv methods (for GSL 1.4.90 or later)
12
+ # Numerical derivatives should now be calculated using the
13
+ # <tt>GSL::Deriv.forward, GSL::Deriv.central</tt> and <tt>GSL::Deriv.backward</tt> methods,
14
+ # which accept a step-size argument in addition to the position x. The
15
+ # original <tt>GSL::Diff</tt> methods (without the step-size) are deprecated.
16
+ #
17
+ # ---
18
+ # * GSL::Deriv.central(f, x, h = 1e-8)
19
+ # * GSL::Function#deriv_central(x, h = 1e-8)
20
+ #
21
+ # These methods compute the numerical derivative of the function <tt>f</tt>
22
+ # at the point <tt>x</tt> using an adaptive central difference algorithm with a
23
+ # step-size of <tt>h</tt>. If a scalar <tt>x</tt> is given, the derivative and an
24
+ # estimate of its absolute error are returned as an array, [<tt>result, abserr, status</tt>].
25
+ # If a vector/matrix/array <tt>x</tt> is given, an array of two elements are returned,
26
+ # [<tt>result, abserr</tt>], here each them is also a vector/matrix/array of the same
27
+ # dimension of <tt>x</tt>.
28
+ #
29
+ # The initial value of <tt>h</tt> is used to estimate an optimal step-size,
30
+ # based on the scaling of the truncation error and round-off error in the
31
+ # derivative calculation. The derivative is computed using a 5-point rule for
32
+ # equally spaced abscissae at x-h, x-h/2, x, x+h/2, x, with an error estimate
33
+ # taken from the difference between the 5-point rule and the corresponding 3-point
34
+ # rule x-h, x, x+h. Note that the value of the function at x does not contribute
35
+ # to the derivative calculation, so only 4-points are actually used.
36
+ #
37
+ # ---
38
+ # * GSL::Deriv.forward(f, x, h = 1e-8)
39
+ # * GSL::Function#deriv_forward(x, h = 1e-8)
40
+ #
41
+ # These methods compute the numerical derivative of the function <tt>f</tt> at
42
+ # the point <tt>x</tt> using an adaptive forward difference algorithm with a step-size
43
+ # of <tt>h</tt>. The function is evaluated only at points greater than <tt>x</tt>,
44
+ # and never at <tt>x</tt> itself. The derivative and an estimate of its absolute error
45
+ # are returned as an array, [<tt>result, abserr</tt>].
46
+ # These methods should be used if f(x) has a
47
+ # discontinuity at <tt>x</tt>, or is undefined for values less than <tt>x</tt>.
48
+ #
49
+ # The initial value of <tt>h</tt> is used to estimate an optimal step-size, based on the
50
+ # scaling of the truncation error and round-off error in the derivative calculation.
51
+ # The derivative at x is computed using an "open" 4-point rule for equally spaced
52
+ # abscissae at x+h/4, x+h/2, x+3h/4, x+h, with an error estimate taken from the
53
+ # difference between the 4-point rule and the corresponding 2-point rule x+h/2, x+h.
54
+ #
55
+ # ---
56
+ # * GSL::Deriv.backward(f, x, h)
57
+ # * GSL::Function#deriv_backward(x, h)
58
+ #
59
+ # These methods compute the numerical derivative of the function <tt>f</tt> at the
60
+ # point <tt>x</tt> using an adaptive backward difference algorithm with a step-size
61
+ # of <tt>h</tt>. The function is evaluated only at points less than <tt>x</tt>,
62
+ # and never at <tt>x</tt> itself. The derivative and an estimate of its absolute error
63
+ # are returned as an array, [<tt>result, abserr</tt>].
64
+ # This function should be used if f(x) has a discontinuity at <tt>x</tt>,
65
+ # or is undefined for values greater than <tt>x</tt>.
66
+ #
67
+ # These methods are equivalent to calling the method <tt>forward</tt>
68
+ # with a negative step-size.
69
+ #
70
+ # == {}[link:index.html"name="2] Diff Methods (obsolete)
71
+ #
72
+ # ---
73
+ # * GSL::Diff.central(f, x)
74
+ # * GSL::Function#diff_central(x)
75
+ #
76
+ # These compute the numerical derivative of the function <tt>f</tt> ( {GSL::Function}[link:files/rdoc/function_rdoc.html] object) at the point <tt>x</tt>
77
+ # using an adaptive central difference algorithm. The result is returned as an array
78
+ # which contains the derivative and an estimate of its absolute error.
79
+ #
80
+ # ---
81
+ # * GSL::Diff.forward(f, x)
82
+ # * GSL::Function#diff_forward(x)
83
+ #
84
+ # These compute the numerical derivative of the function at the point x using an adaptive forward difference algorithm.
85
+ #
86
+ # ---
87
+ # * GSL::Diff.backward(f, x)
88
+ # * GSL::Function#diff_backward(x)
89
+ #
90
+ # These compute the numerical derivative of the function at the point x using an adaptive backward difference algorithm.
91
+ #
92
+ # == {}[link:index.html"name="3] Example
93
+ #
94
+ # #!/usr/bin/env ruby
95
+ # require "gsl"
96
+ #
97
+ # f = GSL::Function.alloc { |x|
98
+ # pow(x, 1.5)
99
+ # }
100
+ #
101
+ # printf ("f(x) = x^(3/2)\n");
102
+ #
103
+ # x = 2.0
104
+ # h = 1e-8
105
+ # result, abserr = f.deriv_central(x, h)
106
+ # printf("x = 2.0\n");
107
+ # printf("f'(x) = %.10f +/- %.10f\n", result, abserr);
108
+ # printf("exact = %.10f\n\n", 1.5 * Math::sqrt(2.0));
109
+ #
110
+ # x = 0.0
111
+ # result, abserr = Deriv.forward(f, x, h) # equivalent to f.deriv_forward(x, h)
112
+ # printf("x = 0.0\n");
113
+ # printf("f'(x) = %.10f +/- %.10f\n", result, abserr);
114
+ # printf("exact = %.10f\n", 0.0);
115
+ #
116
+ # The results are
117
+ #
118
+ # f(x) = x^(3/2)
119
+ # x = 2.0
120
+ # f'(x) = 2.1213203120 +/- 0.0000004064
121
+ # exact = 2.1213203436
122
+ #
123
+ # x = 0.0
124
+ # f'(x) = 0.0000000160 +/- 0.0000000339
125
+ # exact = 0.0000000000
126
+ #
127
+ # {prev}[link:files/rdoc/interp_rdoc.html]
128
+ # {next}[link:files/rdoc/cheb_rdoc.html]
129
+ #
130
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
131
+ # {top}[link:files/rdoc/index_rdoc.html]
132
+ #
133
+ #
@@ -0,0 +1,50 @@
1
+ #
2
+ # = Error Handling
3
+ #
4
+ # == {}[link:index.html"name="1] Error codes
5
+ # The GSL routines report an error whenever they cannot perform the task
6
+ # requested of them. For example, a root-finding function would return a
7
+ # non-zero error code if could not converge to the requested accuracy,
8
+ # or exceeded a limit on the number of iterations. Situations like this
9
+ # are a normal occurrence when using any mathematical library and
10
+ # you should check the return status of the functions that you call.
11
+ #
12
+ # Whenever a routine reports an error the return value specifies the type of error.
13
+ # The return value is analogous to the value of the variable errno in the C library.
14
+ # The caller can examine the return code and decide what action to take, including
15
+ # ignoring the error if it is not considered serious.
16
+ #
17
+ # The error code numbers in GSL as <tt>GSL_EDOM</tt> are defined in Ruby/GSL
18
+ # as Ruby constants under the <tt>GSL</tt> module. Here are some of them:
19
+ # * <tt>GSL::EDOM</tt> - Domain error; used by mathematical functions when an
20
+ # argument value does not fall into the domain over which the function is
21
+ # defined (like <tt>EDOM</tt> in the C library)
22
+ # * <tt>GSL::ERANGE</tt> - Range error; used by mathematical functions when the
23
+ # result value is not representable because of overflow or underflow
24
+ # (like <tt>ERANGE</tt> in the C library)
25
+ # * <tt>GSL::ENOMEM</tt> - No memory available. The system cannot allocate more
26
+ # virtual memory because its capacity is full (like <tt>ENOMEM</tt> in the
27
+ # C library). This error is reported when a GSL routine encounters problems
28
+ # when trying to allocate memory with malloc.
29
+ # * <tt>GSL::EINVAL</tt> - Invalid argument. This is used to indicate various
30
+ # kinds of problems with passing the wrong argument to a library function
31
+ # (like <tt>EINVAL</tt> in the C library).
32
+ #
33
+ # == {}[link:index.html"name="2] Error handler
34
+ # In Ruby/GSL, the default GSL error handler is replaced by an other one which calls
35
+ # <tt>rb_raise()</tt>. Thus whenever a GSL routine reports a fatal error,
36
+ # a Ruby Exception is generated.
37
+ #
38
+ # ---
39
+ # * GSL::set_error_handler(proc)
40
+ # * GSL::set_error_handler { |reason, file, line, errno| ... }
41
+ #
42
+ # This replaces the Ruby/GSL default error handler by a user-defined handler
43
+ # given by a Proc object <tt>proc</tt> or a block.
44
+ #
45
+ # {prev}[link:files/rdoc/use_rdoc.html]
46
+ # {next}[link:files/rdoc/math_rdoc.html]
47
+ #
48
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
49
+ # {top}[link:files/rdoc/index_rdoc.html]
50
+ #
@@ -0,0 +1,401 @@
1
+ #
2
+ # = Eigensystems
3
+ # === {}[link:index.html"name="0.1] Contentes
4
+ # 1. {Modules and classes}[link:files/rdoc/eigen_rdoc.html#1]
5
+ # 1. {Real Symmetric Matrices}[link:files/rdoc/eigen_rdoc.html#2]
6
+ # 1. {Complex Hermitian Matrices}[link:files/rdoc/eigen_rdoc.html#3]
7
+ # 1. {Real Nonsymmetric Matrices}[link:files/rdoc/eigen_rdoc.html#4] (>= GSL-1.9)
8
+ # 1. {Real Generalized Symmetric-Definite Eigensystems}[link:files/rdoc/eigen_rdoc.html#5] (>= GSL-1.10)
9
+ # 1. {Complex Generalized Hermitian-Definite Eigensystems}[link:files/rdoc/eigen_rdoc.html#6] (>= GSL-1.10)
10
+ # 1. {Real Generalized Nonsymmetric Eigensystems}[link:files/rdoc/eigen_rdoc.html#7] (>= GSL-1.10)
11
+ # 1. {Sorting Eigenvalues and Eigenvectors }[link:files/rdoc/eigen_rdoc.html#8]
12
+ #
13
+ # == {}[link:index.html"name="1] Modules and classes
14
+ #
15
+ # * GSL
16
+ # * Eigen
17
+ # * EigenValues < Vector
18
+ # * EigenVectors < Matrix
19
+ # * Symm (Module)
20
+ # * Workspace (Class)
21
+ # * Symmv (Module)
22
+ # * Workspace (Class)
23
+ # * Nonsymm (Module, >= GSL-1.9)
24
+ # * Workspace (Class)
25
+ # * Nonsymmv (Module, >= GSL-1.9)
26
+ # * Workspace (Class)
27
+ # * Gensymm (Module, >= GSL-1.10)
28
+ # * Workspace (Class)
29
+ # * Gensymmv (Module, >= GSL-1.10)
30
+ # * Workspace (Class)
31
+ # * Herm (Module)
32
+ # * Workspace (Class)
33
+ # * Hermv (Module)
34
+ # * Workspace (Class)
35
+ # * Vectors < Matrix::Complex
36
+ # * Genherm (Module, >= GSL-1.10)
37
+ # * Workspace (Class)
38
+ # * Genhermv (Module, >= GSL-1.10)
39
+ # * Workspace (Class)
40
+ # * Gen (Module, >= GSL-1.10)
41
+ # * Workspace (Class)
42
+ # * Genv (Module, >= GSL-1.10)
43
+ # * Workspace (Class)
44
+ #
45
+ # == {}[link:index.html"name="2] Real Symmetric Matrices, GSL::Eigen::Symm module
46
+ # === {}[link:index.html"name="2.1] Workspace classes
47
+ # ---
48
+ # * GSL::Eigen::Symm::Workspace.alloc(n)
49
+ # * GSL::Eigen::Symmv::Workspace.alloc(n)
50
+ # * GSL::Eigen::Herm::Workspace.alloc(n)
51
+ # * GSL::Eigen::Hermv::Workspace.alloc(n)
52
+ #
53
+ #
54
+ # === {}[link:index.html"name="2.2] Methods to solve eigensystems
55
+ # ---
56
+ # * GSL::Eigen::symm(A)
57
+ # * GSL::Eigen::symm(A, workspace)
58
+ # * GSL::Matrix#eigen_symm
59
+ # * GSL::Matrix#eigen_symm(workspace)
60
+ #
61
+ # These methods compute the eigenvalues of the real symmetric matrix.
62
+ # The workspace object <tt>workspace</tt> can be omitted.
63
+ #
64
+ # ---
65
+ # * GSL::Eigen::symmv(A)
66
+ # * GSL::Matrix#eigen_symmv
67
+ #
68
+ # These methods compute the eigenvalues and eigenvectors of the real symmetric
69
+ # matrix, and return an array of two elements:
70
+ # The first is a <tt>GSL::Vector</tt> object which stores all the eigenvalues.
71
+ # The second is a <tt>GSL::Matrix object</tt>, whose columns contain
72
+ # eigenvectors.
73
+ #
74
+ # 1. Singleton method of the <tt>GSL::Eigen</tt> module, <tt>GSL::Eigen::symm</tt>
75
+ #
76
+ # m = GSL::Matrix.alloc([1.0, 1/2.0, 1/3.0, 1/4.0], [1/2.0, 1/3.0, 1/4.0, 1/5.0],
77
+ # [1/3.0, 1/4.0, 1/5.0, 1/6.0], [1/4.0, 1/5.0, 1/6.0, 1/7.0])
78
+ # eigval, eigvec = Eigen::symmv(m)
79
+ #
80
+ # 1. Instance method of <tt>GSL::Matrix</tt> class
81
+ #
82
+ # eigval, eigvec = m.eigen_symmv
83
+ #
84
+ # == {}[link:index.html"name="3] Complex Hermitian Matrices
85
+ # ---
86
+ # * GSL::Eigen::herm(A)
87
+ # * GSL::Eigen::herm(A, workspace)
88
+ # * GSL::Matrix::Complex#eigen_herm
89
+ # * GSL::Matrix::Complex#eigen_herm(workspace)
90
+ #
91
+ # These methods compute the eigenvalues of the complex hermitian matrix.
92
+ #
93
+ # ---
94
+ # * GSL::Eigen::hermv(A)
95
+ # * GSL::Eigen::hermv(A, workspace)
96
+ # * GSL::Matrix::Complex#eigen_hermv
97
+ # * GSL::Matrix::Complex#eigen_hermv(workspace
98
+ #
99
+ #
100
+ # == {}[link:index.html"name="4] Real Nonsymmetric Matrices (>= GSL-1.9)
101
+ #
102
+ # ---
103
+ # * GSL::Eigen::Nonsymm.alloc(n)
104
+ #
105
+ # This allocates a workspace for computing eigenvalues of n-by-n real
106
+ # nonsymmetric matrices. The size of the workspace is O(2n).
107
+ #
108
+ # ---
109
+ # * GSL::Eigen::Nonsymm::params(compute_t, balance, wspace)
110
+ # * GSL::Eigen::Nonsymm::Workspace#params(compute_t, balance)
111
+ #
112
+ # This method sets some parameters which determine how the eigenvalue
113
+ # problem is solved in subsequent calls to <tt>GSL::Eigen::nonsymm</tt>.
114
+ # If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will be
115
+ # computed by gsl_eigen_nonsymm. If it is set to 0, <tt>T</tt> will not be
116
+ # computed (this is the default setting).
117
+ # Computing the full Schur form <tt>T</tt> requires approximately 1.5-2 times
118
+ # the number of flops.
119
+ #
120
+ # If <tt>balance</tt> is set to 1, a balancing transformation is applied to
121
+ # the matrix prior to computing eigenvalues. This transformation is designed
122
+ # to make the rows and columns of the matrix have comparable norms, and can
123
+ # result in more accurate eigenvalues for matrices whose entries vary widely
124
+ # in magnitude. See section Balancing for more information. Note that the
125
+ # balancing transformation does not preserve the orthogonality of the Schur
126
+ # vectors, so if you wish to compute the Schur vectors with
127
+ # <tt>GSL::Eigen::nonsymm_Z</tt> you will obtain the Schur vectors of the
128
+ # balanced matrix instead of the original matrix. The relationship will be
129
+ # where Q is the matrix of Schur vectors for the balanced matrix, and <tt>D</tt>
130
+ # is the balancing transformation. Then <tt>GSL::Eigen::nonsymm_Z</tt> will
131
+ # compute a matrix <tt>Z</tt> which satisfies with <tt>Z = D Q</tt>.
132
+ # Note that <tt>Z</tt> will not be orthogonal. For this reason, balancing is
133
+ # not performed by default.
134
+ #
135
+ # ---
136
+ # * GSL::Eigen::nonsymm(m, eval, wspace)
137
+ # * GSL::Eigen::nonsymm(m)
138
+ # * GSL::Matrix#eigen_nonsymm()
139
+ # * GSL::Matrix#eigen_nonsymm(wspace)
140
+ # * GSL::Matrix#eigen_nonsymm(eval, wspace)
141
+ #
142
+ # These methods compute the eigenvalues of the real nonsymmetric matrix <tt>m</tt>
143
+ # and return them, or store in the vector <tt>eval</tt> if it given.
144
+ # If <tt>T</tt> is desired, it is stored in <tt>m</tt> on output, however the lower
145
+ # triangular portion will not be zeroed out. Otherwise, on output, the diagonal
146
+ # of <tt>m</tt> will contain the 1-by-1 real eigenvalues and 2-by-2 complex
147
+ # conjugate eigenvalue systems, and the rest of <tt>m</tt> is destroyed.
148
+ #
149
+ # ---
150
+ # * GSL::Eigen::nonsymm_Z(m, eval, Z, wspace)
151
+ # * GSL::Eigen::nonsymm_Z(m)
152
+ # * GSL::Matrix#eigen_nonsymm_Z()
153
+ # * GSL::Matrix#eigen_nonsymm(eval, Z, wspace)
154
+ #
155
+ # These methods are identical to <tt>GSL::Eigen::nonsymm</tt> except they also
156
+ # compute the Schur vectors and return them (or store into <tt>Z</tt>).
157
+ #
158
+ # ---
159
+ # * GSL::Eigen::Nonsymmv.alloc(n)
160
+ #
161
+ # Allocates a workspace for computing eigenvalues and eigenvectors
162
+ # of n-by-n real nonsymmetric matrices. The size of the workspace is O(5n).
163
+ # ---
164
+ # * GSL::Eigen::nonsymm(m)
165
+ # * GSL::Eigen::nonsymm(m, wspace)
166
+ # * GSL::Eigen::nonsymm(m, eval, evec)
167
+ # * GSL::Eigen::nonsymm(m, eval, evec, wspace)
168
+ # * GSL::Matrix#eigen_nonsymmv()
169
+ # * GSL::Matrix#eigen_nonsymmv(wspace)
170
+ # * GSL::Matrix#eigen_nonsymmv(eval, evec)
171
+ # * GSL::Matrix#eigen_nonsymmv(eval, evec, wspace)
172
+ #
173
+ # Compute eigenvalues and right eigenvectors of the n-by-n real nonsymmetric
174
+ # matrix. The computed eigenvectors are normalized to have Euclidean norm 1.
175
+ # On output, the upper portion of <tt>m</tt> contains the Schur form <tt>T</tt>.
176
+ #
177
+ # == {}[link:index.html"name="5] Real Generalized Symmetric-Definite Eigensystems (GSL-1.10)
178
+ # The real generalized symmetric-definite eigenvalue problem is to
179
+ # find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
180
+ # where <tt>A</tt> and <tt>B</tt> are symmetric matrices, and <tt>B</tt>
181
+ # is positive-definite. This problem reduces to the standard symmetric eigenvalue
182
+ # problem by applying the Cholesky decomposition to <tt>B</tt>:
183
+ # Therefore, the problem becomes <tt>C y = lambda y</tt>
184
+ # where <tt>C = L^{-1} A L^{-t}</tt> is symmetric, and <tt>y = L^t x</tt>.
185
+ # The standard symmetric eigensolver can be applied to the matrix <tt>C</tt>.
186
+ # The resulting eigenvectors are backtransformed to find the vectors of the
187
+ # original problem. The eigenvalues and eigenvectors of the generalized
188
+ # symmetric-definite eigenproblem are always real.
189
+ #
190
+ # ---
191
+ # * GSL::Eigen::Gensymm.alloc(n)
192
+ # * GSL::Eigen::Gensymm::Workspace.alloc(n)
193
+ #
194
+ # Allocates a workspace for computing eigenvalues of n-by-n real
195
+ # generalized symmetric-definite eigensystems.
196
+ # The size of the workspace is O(2n).
197
+ # ---
198
+ # * GSL::Eigen::gensymm(A, B, w)
199
+ #
200
+ # Computes the eigenvalues of the real generalized symmetric-definite matrix
201
+ # pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
202
+ # using the method outlined above. On output, B contains its Cholesky
203
+ # decomposition.
204
+ # ---
205
+ # * GSL::Eigen::gensymmv(A, B, w)
206
+ #
207
+ # Computes the eigenvalues and eigenvectors of the real generalized
208
+ # symmetric-definite matrix pair <tt>A, B</tt>, and returns
209
+ # them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix</tt>.
210
+ # The computed eigenvectors are normalized to have unit magnitude.
211
+ # On output, <tt>B</tt> contains its Cholesky decomposition.
212
+ #
213
+ # == {}[link:index.html"name="6] Complex Generalized Hermitian-Definite Eigensystems (>= GSL-1.10)
214
+ # The complex generalized hermitian-definite eigenvalue problem is to
215
+ # find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
216
+ # where <tt>A</tt> and <tt>B</tt> are hermitian matrices, and <tt>B</tt>
217
+ # is positive-definite. Similarly to the real case, this can be reduced to
218
+ # <tt>C y = lambda y</tt> where <tt>C = L^{-1} A L^{-H}</tt> is hermitian,
219
+ # and <tt>y = L^H x</tt>. The standard hermitian eigensolver can be applied to
220
+ # the matrix <tt>C</tt>. The resulting eigenvectors are backtransformed
221
+ # to find the vectors of the original problem.
222
+ # The eigenvalues of the generalized hermitian-definite eigenproblem are always
223
+ # real.
224
+ #
225
+ # ---
226
+ # * GSL::Eigen::Genherm.alloc(n)
227
+ #
228
+ # Allocates a workspace for computing eigenvalues of n-by-n complex
229
+ # generalized hermitian-definite eigensystems.
230
+ # The size of the workspace is O(3n).
231
+ # ---
232
+ # * GSL::Eigen::genherm(A, B, w)
233
+ #
234
+ # Computes the eigenvalues of the complex generalized hermitian-definite
235
+ # matrix pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
236
+ # using the method outlined above.
237
+ # On output, <tt>B</tt> contains its Cholesky decomposition.
238
+ # ---
239
+ # * GSL::Eigen::genherm(A, B, w)
240
+ #
241
+ # Computes the eigenvalues and eigenvectors of the complex generalized
242
+ # hermitian-definite matrix pair <tt>A, B</tt>,
243
+ # and returns them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix::Complex</tt>.
244
+ # The computed eigenvectors are normalized to have unit magnitude.
245
+ # On output, <tt>B</tt> contains its Cholesky decomposition.
246
+ #
247
+ # == {}[link:index.html"name="7] Real Generalized Nonsymmetric Eigensystems (>= GSL-1.10)
248
+ #
249
+ # ---
250
+ # * GSL::Eigen::Gen.alloc(n)
251
+ # * GSL::Eigen::Gen::Workspace.alloc(n)
252
+ #
253
+ # Allocates a workspace for computing eigenvalues of n-by-n real generalized
254
+ # nonsymmetric eigensystems. The size of the workspace is O(n).
255
+ #
256
+ # ---
257
+ # * GSL::Eigen::Gen::params(compute_s, compute_t, balance, w)
258
+ # * GSL::Eigen::gen_params(compute_s, compute_t, balance, w)
259
+ #
260
+ # Set some parameters which determine how the eigenvalue problem is solved
261
+ # in subsequent calls to <tt>GSL::Eigen::gen</tt>.
262
+ #
263
+ # If <tt>compute_s</tt> is set to 1, the full Schur form <tt>S</tt> will be
264
+ # computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>S</tt> will
265
+ # not be computed (this is the default setting). <tt>S</tt> is a quasi upper
266
+ # triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal.
267
+ # 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks
268
+ # correspond to complex eigenvalues.
269
+ #
270
+ # If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will
271
+ # be computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>T</tt>
272
+ # will not be computed (this is the default setting). <tt>T</tt>
273
+ # is an upper triangular matrix with non-negative elements on its diagonal.
274
+ # Any 2-by-2 blocks in <tt>S</tt> will correspond to a 2-by-2 diagonal block
275
+ # in <tt>T</tt>.
276
+ #
277
+ # The <tt>balance</tt> parameter is currently ignored, since generalized
278
+ # balancing is not yet implemented.
279
+ #
280
+ # ---
281
+ # * GSL::Eigen::gen(A, B, w)
282
+ #
283
+ # Computes the eigenvalues of the real generalized nonsymmetric matrix pair
284
+ # <tt>A, B</tt>, and returns them as pairs in (alpha, beta),
285
+ # where alpha is <tt>GSL::Vector::Complex</tt> and beta is <tt>GSL::Vector</tt>.
286
+ # If beta_i is non-zero, then lambda = alpha_i / beta_i is an eigenvalue.
287
+ # Likewise, if alpha_i is non-zero, then mu = beta_i / alpha_i is an
288
+ # eigenvalue of the alternate problem mu A y = B y.
289
+ # The elements of <tt>beta</tt> are normalized to be non-negative.
290
+ #
291
+ # If <tt>S</tt> is desired, it is stored in <tt>A</tt> on output.
292
+ # If <tt>T</tt> is desired, it is stored in <tt>B</tt> on output.
293
+ # The ordering of eigenvalues in <tt>alpha, beta</tt>
294
+ # follows the ordering of the diagonal blocks in the Schur forms <tt>S</tt>
295
+ # and <tt>T</tt>.
296
+ #
297
+ # ---
298
+ # * GSL::Eigen::gen_QZ(A, B, w)
299
+ #
300
+ # This method is identical to <tt>GSL::Eigen::gen</tt> except it also computes
301
+ # the left and right Schur vectors and returns them.
302
+ #
303
+ # ---
304
+ # * GSL::Eigen::Genv.alloc(n)
305
+ # * GSL::Eigen::Genv::Workspace.alloc(n)
306
+ #
307
+ # Allocatesa workspace for computing eigenvalues and eigenvectors of
308
+ # n-by-n real generalized nonsymmetric eigensystems.
309
+ # The size of the workspace is O(7n).
310
+ #
311
+ # ---
312
+ # * GSL::Eigen::genv(A, B, w)
313
+ #
314
+ # Computes eigenvalues and right eigenvectors of the n-by-n real generalized
315
+ # nonsymmetric matrix pair <tt>A, B</tt>. The eigenvalues and eigenvectors
316
+ # are returned in <tt>alpha, beta, evec</tt>.
317
+ # On output, <tt>A, B</tt> contains the generalized Schur form <tt>S, T</tt>.
318
+ #
319
+ # ---
320
+ # * GSL::Eigen::genv_QZ(A, B, w)
321
+ #
322
+ # This method is identical to <tt>GSL::Eigen::genv</tt> except it also computes
323
+ # the left and right Schur vectors and returns them.
324
+ #
325
+ # == {}[link:index.html"name="8] Sorting Eigenvalues and Eigenvectors
326
+ # ---
327
+ # * GSL::Eigen::symmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
328
+ # * GSL::Eigen::Symmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
329
+ #
330
+ # These methods simultaneously sort the eigenvalues stored in the vector
331
+ # <tt>eval</tt> and the corresponding real eigenvectors stored in the
332
+ # columns of the matrix <tt>evec</tt> into ascending or descending order
333
+ # according to the value of the parameter <tt>type</tt>,
334
+ #
335
+ # * <tt>GSL::Eigen::SORT_VAL_ASC</tt>
336
+ # ascending order in numerical value
337
+ # * <tt>GSL::Eigen::SORT_VAL_DESC</tt>
338
+ # escending order in numerical value
339
+ # * <tt>GSL::Eigen::SORT_ABS_ASC</tt>
340
+ # scending order in magnitude
341
+ # * <tt>GSL::Eigen::SORT_ABS_DESC</tt>
342
+ # descending order in magnitude
343
+ #
344
+ # The sorting is carried out in-place!
345
+ #
346
+ # ---
347
+ # * GSL::Eigen::hermv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
348
+ # * GSL::Eigen::Hermv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
349
+ #
350
+ # These methods simultaneously sort the eigenvalues stored in the vector
351
+ # <tt>eval</tt> and the corresponding complex eigenvectors stored in the columns
352
+ # of the matrix <tt>evec</tt> into ascending or descending order according
353
+ # to the value of the parameter <tt>type</tt> as shown above.
354
+ #
355
+ # ---
356
+ # * GSL::Eigen::nonsymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
357
+ # * GSL::Eigen::Nonsymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
358
+ #
359
+ # Sorts the eigenvalues stored in the vector <tt>eval</tt> and the corresponding
360
+ # complex eigenvectors stored in the columns of the matrix <tt>evec</tt>
361
+ # into ascending or descending order according to the value of the
362
+ # parameter <tt>type</tt> as shown above.
363
+ # Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt> and <tt>GSL::EIGEN_SORT_ABS_DESC</tt>
364
+ # are supported due to the eigenvalues being complex.
365
+ #
366
+ # ---
367
+ # * GSL::Eigen::gensymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
368
+ # * GSL::Eigen::Gensymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
369
+ #
370
+ # Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
371
+ # corresponding real eigenvectors stored in the columns of the matrix
372
+ # <tt>evec</tt> into ascending or descending order according to the value of
373
+ # the parameter <tt>type</tt> as shown above.
374
+ #
375
+ # ---
376
+ # * GSL::Eigen::gensymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
377
+ # * GSL::Eigen::Gensymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
378
+ #
379
+ # Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
380
+ # corresponding complex eigenvectors stored in the columns of the matrix
381
+ # <tt>evec</tt> into ascending or descending order according to the value of
382
+ # the parameter <tt>type</tt> as shown above.
383
+ #
384
+ # ---
385
+ # * GSL::Eigen::genv_sort(alpha, beta, evec, type = GSL::Eigen::SORT_VAL_ASC)
386
+ # * GSL::Eigen::Genv::sort(alpha, beta, evec, type = GSL::Eigen::SORT_VAL_ASC)
387
+ #
388
+ # Sorts the eigenvalues stored in the vectors <tt>alpha, beta</tt> and the
389
+ # corresponding complex eigenvectors stored in the columns of the matrix
390
+ # <tt>evec</tt> into ascending or descending order according to the value of
391
+ # the parameter <tt>type</tt> as shown above. Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt>
392
+ # and <tt>GSL::EIGEN_SORT_ABS_DESC</tt> are supported due to the eigenvalues
393
+ # being complex.
394
+ #
395
+ # {prev}[link:files/rdoc/linalg_rdoc.html]
396
+ # {next}[link:files/rdoc/fft_rdoc.html]
397
+ #
398
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
399
+ # {top}[link:files/rdoc/index_rdoc.html]
400
+ #
401
+ #