gsl 1.12.109 → 1.14.5
Sign up to get free protection for your applications and to get access to all the features.
- data/AUTHORS +6 -0
- data/COPYING +339 -0
- data/ChangeLog +556 -0
- data/{README.rdoc → README} +3 -0
- data/Rakefile +54 -10
- data/THANKS +17 -0
- data/VERSION +1 -2
- data/examples/alf/alf.gp +15 -0
- data/examples/alf/alf.rb +32 -0
- data/examples/blas/blas.rb +13 -0
- data/examples/blas/dnrm2.rb +16 -0
- data/examples/blas/level1.rb +81 -0
- data/examples/blas/level2.rb +11 -0
- data/examples/blas/level3.rb +12 -0
- data/examples/bspline.rb +57 -0
- data/examples/cdf.rb +16 -0
- data/examples/cheb.rb +21 -0
- data/examples/combination.rb +23 -0
- data/examples/complex/RC-lpf.rb +47 -0
- data/examples/complex/add.rb +36 -0
- data/examples/complex/coerce.rb +14 -0
- data/examples/complex/complex.rb +25 -0
- data/examples/complex/fpmi.rb +70 -0
- data/examples/complex/functions.rb +77 -0
- data/examples/complex/michelson.rb +36 -0
- data/examples/complex/mul.rb +28 -0
- data/examples/complex/oscillator.rb +17 -0
- data/examples/complex/set.rb +37 -0
- data/examples/const/physconst.rb +151 -0
- data/examples/const/travel.rb +45 -0
- data/examples/deriv/demo.rb +13 -0
- data/examples/deriv/deriv.rb +36 -0
- data/examples/deriv/diff.rb +35 -0
- data/examples/dht.rb +42 -0
- data/examples/dirac.rb +56 -0
- data/examples/eigen/eigen.rb +34 -0
- data/examples/eigen/herm.rb +22 -0
- data/examples/eigen/narray.rb +9 -0
- data/examples/eigen/nonsymm.rb +37 -0
- data/examples/eigen/nonsymmv.rb +43 -0
- data/examples/eigen/qhoscillator.gp +35 -0
- data/examples/eigen/qhoscillator.rb +90 -0
- data/examples/eigen/vander.rb +41 -0
- data/examples/fft/fft.rb +17 -0
- data/examples/fft/fft2.rb +17 -0
- data/examples/fft/forward.rb +25 -0
- data/examples/fft/forward2.rb +26 -0
- data/examples/fft/radix2.rb +18 -0
- data/examples/fft/real-halfcomplex.rb +33 -0
- data/examples/fft/real-halfcomplex2.rb +30 -0
- data/examples/fft/realradix2.rb +19 -0
- data/examples/fft/sunspot.dat +256 -0
- data/examples/fft/sunspot.rb +16 -0
- data/examples/fit/expdata.dat +20 -0
- data/examples/fit/expfit.rb +31 -0
- data/examples/fit/gaussfit.rb +29 -0
- data/examples/fit/gaussian_2peaks.rb +34 -0
- data/examples/fit/hillfit.rb +40 -0
- data/examples/fit/lognormal.rb +26 -0
- data/examples/fit/lorentzfit.rb +22 -0
- data/examples/fit/multifit.rb +72 -0
- data/examples/fit/ndlinear.rb +133 -0
- data/examples/fit/nonlinearfit.rb +89 -0
- data/examples/fit/plot.gp +36 -0
- data/examples/fit/polyfit.rb +9 -0
- data/examples/fit/powerfit.rb +21 -0
- data/examples/fit/sigmoidfit.rb +40 -0
- data/examples/fit/sinfit.rb +22 -0
- data/examples/fit/wlinear.rb +46 -0
- data/examples/fresnel.rb +11 -0
- data/examples/function/function.rb +36 -0
- data/examples/function/log.rb +7 -0
- data/examples/function/min.rb +33 -0
- data/examples/function/sin.rb +10 -0
- data/examples/function/synchrotron.rb +18 -0
- data/examples/gallery/butterfly.rb +7 -0
- data/examples/gallery/cayley.rb +12 -0
- data/examples/gallery/cornu.rb +23 -0
- data/examples/gallery/eight.rb +11 -0
- data/examples/gallery/koch.rb +40 -0
- data/examples/gallery/lemniscate.rb +11 -0
- data/examples/gallery/polar.rb +11 -0
- data/examples/gallery/rgplot/cossin.rb +35 -0
- data/examples/gallery/rgplot/rgplot.replaced +0 -0
- data/examples/gallery/rgplot/roesller.rb +55 -0
- data/examples/gallery/roesller.rb +39 -0
- data/examples/gallery/scarabaeus.rb +14 -0
- data/examples/histogram/cauchy.rb +27 -0
- data/examples/histogram/cauchy.sh +2 -0
- data/examples/histogram/exponential.rb +19 -0
- data/examples/histogram/gauss.rb +16 -0
- data/examples/histogram/gsl-histogram.rb +40 -0
- data/examples/histogram/histo2d.rb +31 -0
- data/examples/histogram/histo3d.rb +34 -0
- data/examples/histogram/histogram-pdf.rb +27 -0
- data/examples/histogram/histogram.rb +26 -0
- data/examples/histogram/integral.rb +28 -0
- data/examples/histogram/poisson.rb +27 -0
- data/examples/histogram/power.rb +25 -0
- data/examples/histogram/rebin.rb +17 -0
- data/examples/histogram/smp.dat +5 -0
- data/examples/histogram/xexp.rb +21 -0
- data/examples/integration/ahmed.rb +21 -0
- data/examples/integration/cosmology.rb +75 -0
- data/examples/integration/friedmann.gp +16 -0
- data/examples/integration/friedmann.rb +35 -0
- data/examples/integration/gamma-zeta.rb +35 -0
- data/examples/integration/integration.rb +22 -0
- data/examples/integration/qag.rb +8 -0
- data/examples/integration/qag2.rb +14 -0
- data/examples/integration/qag3.rb +8 -0
- data/examples/integration/qagi.rb +28 -0
- data/examples/integration/qagi2.rb +49 -0
- data/examples/integration/qagiu.rb +29 -0
- data/examples/integration/qagp.rb +20 -0
- data/examples/integration/qags.rb +14 -0
- data/examples/integration/qawc.rb +18 -0
- data/examples/integration/qawf.rb +41 -0
- data/examples/integration/qawo.rb +29 -0
- data/examples/integration/qaws.rb +30 -0
- data/examples/integration/qng.rb +17 -0
- data/examples/interp/demo.gp +20 -0
- data/examples/interp/demo.rb +45 -0
- data/examples/interp/interp.rb +37 -0
- data/examples/interp/points +10 -0
- data/examples/interp/spline.rb +20 -0
- data/examples/jacobi/deriv.rb +40 -0
- data/examples/jacobi/integrate.rb +34 -0
- data/examples/jacobi/interp.rb +43 -0
- data/examples/jacobi/jacobi.rb +11 -0
- data/examples/linalg/HH.rb +15 -0
- data/examples/linalg/HH_narray.rb +13 -0
- data/examples/linalg/LQ_solve.rb +73 -0
- data/examples/linalg/LU.rb +84 -0
- data/examples/linalg/LU2.rb +31 -0
- data/examples/linalg/LU_narray.rb +24 -0
- data/examples/linalg/PTLQ.rb +47 -0
- data/examples/linalg/QR.rb +18 -0
- data/examples/linalg/QRPT.rb +47 -0
- data/examples/linalg/QR_solve.rb +78 -0
- data/examples/linalg/QR_solve_narray.rb +13 -0
- data/examples/linalg/SV.rb +16 -0
- data/examples/linalg/SV_narray.rb +12 -0
- data/examples/linalg/SV_solve.rb +49 -0
- data/examples/linalg/chol.rb +29 -0
- data/examples/linalg/chol_narray.rb +15 -0
- data/examples/linalg/complex.rb +57 -0
- data/examples/linalg/invert_narray.rb +10 -0
- data/examples/math/const.rb +67 -0
- data/examples/math/elementary.rb +35 -0
- data/examples/math/functions.rb +41 -0
- data/examples/math/inf_nan.rb +34 -0
- data/examples/math/minmax.rb +22 -0
- data/examples/math/power.rb +18 -0
- data/examples/math/test.rb +31 -0
- data/examples/matrix/a.dat +0 -0
- data/examples/matrix/add.rb +45 -0
- data/examples/matrix/b.dat +4 -0
- data/examples/matrix/cat.rb +31 -0
- data/examples/matrix/colvectors.rb +24 -0
- data/examples/matrix/complex.rb +41 -0
- data/examples/matrix/det.rb +29 -0
- data/examples/matrix/diagonal.rb +23 -0
- data/examples/matrix/get_all.rb +159 -0
- data/examples/matrix/hilbert.rb +31 -0
- data/examples/matrix/iterator.rb +19 -0
- data/examples/matrix/matrix.rb +57 -0
- data/examples/matrix/minmax.rb +53 -0
- data/examples/matrix/mul.rb +39 -0
- data/examples/matrix/rand.rb +20 -0
- data/examples/matrix/read.rb +29 -0
- data/examples/matrix/rowcol.rb +47 -0
- data/examples/matrix/set.rb +41 -0
- data/examples/matrix/set_all.rb +100 -0
- data/examples/matrix/view.rb +32 -0
- data/examples/matrix/view_all.rb +148 -0
- data/examples/matrix/write.rb +23 -0
- data/examples/min.rb +29 -0
- data/examples/monte/miser.rb +47 -0
- data/examples/monte/monte.rb +47 -0
- data/examples/monte/plain.rb +47 -0
- data/examples/monte/vegas.rb +46 -0
- data/examples/multimin/bundle.rb +66 -0
- data/examples/multimin/cqp.rb +109 -0
- data/examples/multimin/fdfminimizer.rb +40 -0
- data/examples/multimin/fminimizer.rb +41 -0
- data/examples/multiroot/demo.rb +36 -0
- data/examples/multiroot/fdfsolver.rb +50 -0
- data/examples/multiroot/fsolver.rb +33 -0
- data/examples/multiroot/fsolver2.rb +32 -0
- data/examples/multiroot/fsolver3.rb +26 -0
- data/examples/narray/histogram.rb +14 -0
- data/examples/narray/mandel.rb +27 -0
- data/examples/narray/narray.rb +28 -0
- data/examples/narray/narray2.rb +44 -0
- data/examples/narray/sf.rb +26 -0
- data/examples/ntuple/create.rb +17 -0
- data/examples/ntuple/project.rb +31 -0
- data/examples/odeiv/binarysystem.gp +23 -0
- data/examples/odeiv/binarysystem.rb +104 -0
- data/examples/odeiv/demo.gp +24 -0
- data/examples/odeiv/demo.rb +69 -0
- data/examples/odeiv/demo2.gp +26 -0
- data/examples/odeiv/duffing.rb +45 -0
- data/examples/odeiv/frei1.rb +109 -0
- data/examples/odeiv/frei2.rb +76 -0
- data/examples/odeiv/legendre.rb +52 -0
- data/examples/odeiv/odeiv.rb +32 -0
- data/examples/odeiv/odeiv2.rb +45 -0
- data/examples/odeiv/oscillator.rb +42 -0
- data/examples/odeiv/sedov.rb +97 -0
- data/examples/odeiv/whitedwarf.gp +40 -0
- data/examples/odeiv/whitedwarf.rb +158 -0
- data/examples/ool/conmin.rb +100 -0
- data/examples/ool/gencan.rb +99 -0
- data/examples/ool/pgrad.rb +100 -0
- data/examples/ool/spg.rb +100 -0
- data/examples/pdf/bernoulli.rb +5 -0
- data/examples/pdf/beta.rb +7 -0
- data/examples/pdf/binomiral.rb +10 -0
- data/examples/pdf/cauchy.rb +6 -0
- data/examples/pdf/chisq.rb +8 -0
- data/examples/pdf/exponential.rb +7 -0
- data/examples/pdf/exppow.rb +6 -0
- data/examples/pdf/fdist.rb +7 -0
- data/examples/pdf/flat.rb +7 -0
- data/examples/pdf/gamma.rb +8 -0
- data/examples/pdf/gauss-tail.rb +5 -0
- data/examples/pdf/gauss.rb +6 -0
- data/examples/pdf/geometric.rb +5 -0
- data/examples/pdf/gumbel.rb +6 -0
- data/examples/pdf/hypergeometric.rb +11 -0
- data/examples/pdf/landau.rb +5 -0
- data/examples/pdf/laplace.rb +7 -0
- data/examples/pdf/logarithmic.rb +5 -0
- data/examples/pdf/logistic.rb +6 -0
- data/examples/pdf/lognormal.rb +6 -0
- data/examples/pdf/neg-binomiral.rb +10 -0
- data/examples/pdf/pareto.rb +7 -0
- data/examples/pdf/pascal.rb +10 -0
- data/examples/pdf/poisson.rb +5 -0
- data/examples/pdf/rayleigh-tail.rb +6 -0
- data/examples/pdf/rayleigh.rb +6 -0
- data/examples/pdf/tdist.rb +6 -0
- data/examples/pdf/weibull.rb +8 -0
- data/examples/permutation/ex1.rb +22 -0
- data/examples/permutation/permutation.rb +16 -0
- data/examples/poly/bell.rb +6 -0
- data/examples/poly/bessel.rb +6 -0
- data/examples/poly/cheb.rb +6 -0
- data/examples/poly/cheb_II.rb +6 -0
- data/examples/poly/cubic.rb +9 -0
- data/examples/poly/demo.rb +20 -0
- data/examples/poly/eval.rb +28 -0
- data/examples/poly/eval_derivs.rb +14 -0
- data/examples/poly/fit.rb +21 -0
- data/examples/poly/hermite.rb +6 -0
- data/examples/poly/poly.rb +13 -0
- data/examples/poly/quadratic.rb +25 -0
- data/examples/random/diffusion.rb +34 -0
- data/examples/random/gaussian.rb +9 -0
- data/examples/random/generator.rb +27 -0
- data/examples/random/hdsobol.rb +21 -0
- data/examples/random/poisson.rb +9 -0
- data/examples/random/qrng.rb +19 -0
- data/examples/random/randomwalk.rb +37 -0
- data/examples/random/randomwalk2d.rb +19 -0
- data/examples/random/rayleigh.rb +36 -0
- data/examples/random/rng.rb +33 -0
- data/examples/random/rngextra.rb +14 -0
- data/examples/roots/bisection.rb +25 -0
- data/examples/roots/brent.rb +43 -0
- data/examples/roots/demo.rb +30 -0
- data/examples/roots/newton.rb +46 -0
- data/examples/roots/recombination.gp +12 -0
- data/examples/roots/recombination.rb +61 -0
- data/examples/roots/steffenson.rb +48 -0
- data/examples/sf/ShiChi.rb +6 -0
- data/examples/sf/SiCi.rb +6 -0
- data/examples/sf/airy_Ai.rb +8 -0
- data/examples/sf/airy_Bi.rb +8 -0
- data/examples/sf/bessel_IK.rb +12 -0
- data/examples/sf/bessel_JY.rb +13 -0
- data/examples/sf/beta_inc.rb +9 -0
- data/examples/sf/clausen.rb +6 -0
- data/examples/sf/dawson.rb +5 -0
- data/examples/sf/debye.rb +9 -0
- data/examples/sf/dilog.rb +6 -0
- data/examples/sf/ellint.rb +6 -0
- data/examples/sf/expint.rb +8 -0
- data/examples/sf/fermi.rb +10 -0
- data/examples/sf/gamma_inc_P.rb +9 -0
- data/examples/sf/gegenbauer.rb +8 -0
- data/examples/sf/hyperg.rb +7 -0
- data/examples/sf/laguerre.rb +19 -0
- data/examples/sf/lambertW.rb +5 -0
- data/examples/sf/legendre_P.rb +10 -0
- data/examples/sf/lngamma.rb +5 -0
- data/examples/sf/psi.rb +54 -0
- data/examples/sf/sphbessel.gp +27 -0
- data/examples/sf/sphbessel.rb +30 -0
- data/examples/sf/synchrotron.rb +5 -0
- data/examples/sf/transport.rb +10 -0
- data/examples/sf/zetam1.rb +5 -0
- data/examples/siman.rb +44 -0
- data/examples/sort/heapsort.rb +23 -0
- data/examples/sort/heapsort_vector_complex.rb +21 -0
- data/examples/sort/sort.rb +23 -0
- data/examples/sort/sort2.rb +16 -0
- data/examples/stats/mean.rb +17 -0
- data/examples/stats/statistics.rb +18 -0
- data/examples/stats/test.rb +9 -0
- data/examples/sum.rb +34 -0
- data/examples/tamu_anova.rb +18 -0
- data/examples/vector/a.dat +0 -0
- data/examples/vector/add.rb +56 -0
- data/examples/vector/b.dat +4 -0
- data/examples/vector/c.dat +3 -0
- data/examples/vector/collect.rb +26 -0
- data/examples/vector/compare.rb +28 -0
- data/examples/vector/complex.rb +51 -0
- data/examples/vector/complex_get_all.rb +85 -0
- data/examples/vector/complex_set_all.rb +131 -0
- data/examples/vector/complex_view_all.rb +77 -0
- data/examples/vector/connect.rb +22 -0
- data/examples/vector/decimate.rb +38 -0
- data/examples/vector/diff.rb +31 -0
- data/examples/vector/filescan.rb +17 -0
- data/examples/vector/floor.rb +23 -0
- data/examples/vector/get_all.rb +82 -0
- data/examples/vector/gnuplot.rb +38 -0
- data/examples/vector/graph.rb +28 -0
- data/examples/vector/histogram.rb +22 -0
- data/examples/vector/linspace.rb +24 -0
- data/examples/vector/log.rb +17 -0
- data/examples/vector/logic.rb +33 -0
- data/examples/vector/logspace.rb +25 -0
- data/examples/vector/minmax.rb +47 -0
- data/examples/vector/mul.rb +49 -0
- data/examples/vector/narray.rb +46 -0
- data/examples/vector/read.rb +29 -0
- data/examples/vector/set.rb +35 -0
- data/examples/vector/set_all.rb +121 -0
- data/examples/vector/smpv.dat +15 -0
- data/examples/vector/test.rb +43 -0
- data/examples/vector/test_gslblock.rb +58 -0
- data/examples/vector/vector.rb +110 -0
- data/examples/vector/view.rb +35 -0
- data/examples/vector/view_all.rb +73 -0
- data/examples/vector/where.rb +29 -0
- data/examples/vector/write.rb +24 -0
- data/examples/vector/zip.rb +34 -0
- data/examples/wavelet/ecg.dat +256 -0
- data/examples/wavelet/wavelet1.rb +50 -0
- data/ext/extconf.rb +9 -0
- data/ext/gsl.c +10 -1
- data/ext/histogram.c +6 -2
- data/ext/integration.c +39 -0
- data/ext/matrix_complex.c +1 -1
- data/ext/multiset.c +214 -0
- data/ext/nmf.c +4 -0
- data/ext/nmf_wrap.c +3 -0
- data/ext/vector_complex.c +1 -1
- data/ext/vector_double.c +3 -3
- data/ext/vector_source.c +6 -6
- data/include/rb_gsl.h +7 -0
- data/include/rb_gsl_common.h +6 -0
- data/rdoc/alf.rdoc +77 -0
- data/rdoc/blas.rdoc +269 -0
- data/rdoc/bspline.rdoc +42 -0
- data/rdoc/changes.rdoc +164 -0
- data/rdoc/cheb.rdoc +99 -0
- data/rdoc/cholesky_complex.rdoc +46 -0
- data/rdoc/combi.rdoc +125 -0
- data/rdoc/complex.rdoc +210 -0
- data/rdoc/const.rdoc +546 -0
- data/rdoc/dht.rdoc +122 -0
- data/rdoc/diff.rdoc +133 -0
- data/rdoc/ehandling.rdoc +50 -0
- data/rdoc/eigen.rdoc +401 -0
- data/rdoc/fft.rdoc +535 -0
- data/rdoc/fit.rdoc +284 -0
- data/rdoc/function.rdoc +94 -0
- data/rdoc/graph.rdoc +137 -0
- data/rdoc/hist.rdoc +409 -0
- data/rdoc/hist2d.rdoc +279 -0
- data/rdoc/hist3d.rdoc +112 -0
- data/rdoc/index.rdoc +62 -0
- data/rdoc/integration.rdoc +398 -0
- data/rdoc/interp.rdoc +231 -0
- data/rdoc/intro.rdoc +27 -0
- data/rdoc/linalg.rdoc +681 -0
- data/rdoc/linalg_complex.rdoc +88 -0
- data/rdoc/math.rdoc +276 -0
- data/rdoc/matrix.rdoc +1093 -0
- data/rdoc/min.rdoc +189 -0
- data/rdoc/monte.rdoc +234 -0
- data/rdoc/multimin.rdoc +312 -0
- data/rdoc/multiroot.rdoc +293 -0
- data/rdoc/narray.rdoc +173 -0
- data/rdoc/ndlinear.rdoc +247 -0
- data/rdoc/nonlinearfit.rdoc +348 -0
- data/rdoc/ntuple.rdoc +88 -0
- data/rdoc/odeiv.rdoc +378 -0
- data/rdoc/perm.rdoc +221 -0
- data/rdoc/poly.rdoc +335 -0
- data/rdoc/qrng.rdoc +90 -0
- data/rdoc/randist.rdoc +233 -0
- data/rdoc/ref.rdoc +93 -0
- data/rdoc/rng.rdoc +203 -0
- data/rdoc/rngextra.rdoc +11 -0
- data/rdoc/roots.rdoc +305 -0
- data/rdoc/screenshot.rdoc +40 -0
- data/rdoc/sf.rdoc +1622 -0
- data/rdoc/siman.rdoc +89 -0
- data/rdoc/sort.rdoc +94 -0
- data/rdoc/start.rdoc +16 -0
- data/rdoc/stats.rdoc +219 -0
- data/rdoc/sum.rdoc +65 -0
- data/rdoc/tensor.rdoc +251 -0
- data/rdoc/tut.rdoc +5 -0
- data/rdoc/use.rdoc +177 -0
- data/rdoc/vector.rdoc +1243 -0
- data/rdoc/vector_complex.rdoc +347 -0
- data/rdoc/wavelet.rdoc +218 -0
- data/setup.rb +1585 -0
- data/tests/blas/amax.rb +14 -0
- data/tests/blas/asum.rb +16 -0
- data/tests/blas/axpy.rb +25 -0
- data/tests/blas/copy.rb +23 -0
- data/tests/blas/dot.rb +23 -0
- data/tests/bspline.rb +53 -0
- data/tests/cdf.rb +1388 -0
- data/tests/cheb.rb +112 -0
- data/tests/combination.rb +123 -0
- data/tests/complex.rb +17 -0
- data/tests/const.rb +24 -0
- data/tests/deriv.rb +85 -0
- data/tests/dht/dht1.rb +17 -0
- data/tests/dht/dht2.rb +23 -0
- data/tests/dht/dht3.rb +23 -0
- data/tests/dht/dht4.rb +23 -0
- data/tests/diff.rb +78 -0
- data/tests/eigen/eigen.rb +220 -0
- data/tests/eigen/gen.rb +105 -0
- data/tests/eigen/genherm.rb +66 -0
- data/tests/eigen/gensymm.rb +68 -0
- data/tests/eigen/nonsymm.rb +53 -0
- data/tests/eigen/nonsymmv.rb +53 -0
- data/tests/eigen/symm-herm.rb +74 -0
- data/tests/err.rb +58 -0
- data/tests/fit.rb +124 -0
- data/tests/gsl_test.rb +118 -0
- data/tests/gsl_test2.rb +107 -0
- data/tests/histo.rb +12 -0
- data/tests/integration/integration1.rb +72 -0
- data/tests/integration/integration2.rb +71 -0
- data/tests/integration/integration3.rb +71 -0
- data/tests/integration/integration4.rb +71 -0
- data/tests/interp.rb +45 -0
- data/tests/linalg/HH.rb +64 -0
- data/tests/linalg/LU.rb +47 -0
- data/tests/linalg/QR.rb +77 -0
- data/tests/linalg/SV.rb +24 -0
- data/tests/linalg/TDN.rb +116 -0
- data/tests/linalg/TDS.rb +122 -0
- data/tests/linalg/bidiag.rb +73 -0
- data/tests/linalg/cholesky.rb +20 -0
- data/tests/linalg/linalg.rb +158 -0
- data/tests/matrix/matrix_nmf_test.rb +39 -0
- data/tests/matrix/matrix_test.rb +48 -0
- data/tests/min.rb +99 -0
- data/tests/monte/miser.rb +31 -0
- data/tests/monte/vegas.rb +45 -0
- data/tests/multifit/test_2dgauss.rb +112 -0
- data/tests/multifit/test_brown.rb +90 -0
- data/tests/multifit/test_enso.rb +246 -0
- data/tests/multifit/test_filip.rb +155 -0
- data/tests/multifit/test_gauss.rb +97 -0
- data/tests/multifit/test_longley.rb +110 -0
- data/tests/multifit/test_multifit.rb +52 -0
- data/tests/multimin.rb +139 -0
- data/tests/multiroot.rb +131 -0
- data/tests/multiset.rb +52 -0
- data/tests/odeiv.rb +353 -0
- data/tests/poly/poly.rb +242 -0
- data/tests/poly/special.rb +65 -0
- data/tests/qrng.rb +131 -0
- data/tests/quartic.rb +29 -0
- data/tests/randist.rb +134 -0
- data/tests/rng.rb +305 -0
- data/tests/roots.rb +76 -0
- data/tests/run-test.sh +17 -0
- data/tests/sf/gsl_test_sf.rb +249 -0
- data/tests/sf/test_airy.rb +83 -0
- data/tests/sf/test_bessel.rb +306 -0
- data/tests/sf/test_coulomb.rb +17 -0
- data/tests/sf/test_dilog.rb +25 -0
- data/tests/sf/test_gamma.rb +209 -0
- data/tests/sf/test_hyperg.rb +356 -0
- data/tests/sf/test_legendre.rb +227 -0
- data/tests/sf/test_mathieu.rb +59 -0
- data/tests/sf/test_sf.rb +839 -0
- data/tests/stats.rb +174 -0
- data/tests/sum.rb +98 -0
- data/tests/sys.rb +323 -0
- data/tests/tensor.rb +419 -0
- data/tests/vector/vector_complex_test.rb +101 -0
- data/tests/vector/vector_test.rb +141 -0
- data/tests/wavelet.rb +142 -0
- metadata +596 -15
data/rdoc/fit.rdoc
ADDED
@@ -0,0 +1,284 @@
|
|
1
|
+
#
|
2
|
+
# = Least-Squares Fitting
|
3
|
+
# This chapter describes routines for performing least squares fits to
|
4
|
+
# experimental data using linear combinations of functions. The data may be
|
5
|
+
# weighted or unweighted, i.e. with known or unknown errors. For weighted data
|
6
|
+
# the functions compute the best fit parameters and their associated covariance
|
7
|
+
# matrix. For unweighted data the covariance matrix is estimated from the
|
8
|
+
# scatter of the points, giving a variance-covariance matrix.
|
9
|
+
#
|
10
|
+
# The functions are divided into separate versions for simple one- or
|
11
|
+
# two-parameter regression and multiple-parameter fits.
|
12
|
+
#
|
13
|
+
# Contents:
|
14
|
+
# 1. {Overview}[link:files/rdoc/fit_rdoc.html#1]
|
15
|
+
# 1. {Linear regression}[link:files/rdoc/fit_rdoc.html#2]
|
16
|
+
# 1. {Module functions for linear regression}[link:files/rdoc/fit_rdoc.html#2.1]
|
17
|
+
# 1. {Linear fitting without a constant term}[link:files/rdoc/fit_rdoc.html#3]
|
18
|
+
# 1. {Multi-parameter fitting}[link:files/rdoc/fit_rdoc.html#4]
|
19
|
+
# 1. {GSL::MultiFit::Workspace class}[link:files/rdoc/fit_rdoc.html#4.1]
|
20
|
+
# 1. {Module functions}[link:files/rdoc/fit_rdoc.html#4.2]
|
21
|
+
# 1. {Higer level interface}[link:files/rdoc/fit_rdoc.html#4.3]
|
22
|
+
# 1. {NDLINEAR: multi-linear, multi-parameter least squares fitting}[link:files/rdoc/ndlinear_rdoc.html] (GSL extension)
|
23
|
+
# 1. {Examples}[link:files/rdoc/fit_rdoc.html#5]
|
24
|
+
# 1. {Linear regression}[link:files/rdoc/fit_rdoc.html#5.1]
|
25
|
+
# 1. {Exponential fitting}[link:files/rdoc/fit_rdoc.html#5.2]
|
26
|
+
# 1. {Multi-parameter fitting}[link:files/rdoc/fit_rdoc.html#5.3]
|
27
|
+
#
|
28
|
+
# == {}[link:index.html"name="1] Overview
|
29
|
+
# Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted
|
30
|
+
# sum of squared residuals over n experimental datapoints (x_i, y_i) for the
|
31
|
+
# model Y(c,x), The p parameters of the model are c = {c_0, c_1, �c}. The weight
|
32
|
+
# factors w_i are given by w_i = 1/\sigma_i^2, where \sigma_i is the
|
33
|
+
# experimental error on the data-point y_i. The errors are assumed to be
|
34
|
+
# gaussian and uncorrelated. For unweighted data the chi-squared sum is computed
|
35
|
+
# without any weight factors.
|
36
|
+
#
|
37
|
+
# The fitting routines return the best-fit parameters c and their p \times p
|
38
|
+
# covariance matrix. The covariance matrix measures the statistical errors on
|
39
|
+
# the best-fit parameters resulting from the errors on the data, \sigma_i, and
|
40
|
+
# is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average
|
41
|
+
# over the gaussian error distributions of the underlying datapoints.
|
42
|
+
#
|
43
|
+
# The covariance matrix is calculated by error propagation from the data errors
|
44
|
+
# \sigma_i. The change in a fitted parameter \delta c_a caused by a small change
|
45
|
+
# in the data \delta y_i is given by allowing the covariance matrix to be written
|
46
|
+
# in terms of the errors on the data, For uncorrelated data the fluctuations of
|
47
|
+
# the underlying datapoints satisfy
|
48
|
+
# <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding
|
49
|
+
# parameter covariance matrix of When computing the covariance matrix for
|
50
|
+
# unweighted data, i.e. data with unknown errors, the weight factors w_i in this
|
51
|
+
# sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the
|
52
|
+
# computed variance of the residuals about the
|
53
|
+
# best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p).
|
54
|
+
# This is referred to as the variance-covariance matrix.
|
55
|
+
#
|
56
|
+
# The standard deviations of the best-fit parameters are given by the square
|
57
|
+
# root of the corresponding diagonal elements of the covariance matrix,
|
58
|
+
# \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit
|
59
|
+
# parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.
|
60
|
+
#
|
61
|
+
#
|
62
|
+
# == {}[link:index.html"name="2] Linear regression
|
63
|
+
# The functions described in this section can be used to perform least-squares
|
64
|
+
# fits to a straight line model, Y = c_0 + c_1 X. For weighted data the best-fit
|
65
|
+
# is found by minimizing the weighted sum of squared residuals, chi^2,
|
66
|
+
#
|
67
|
+
# chi^2 = sum_i w_i (y_i - (c0 + c1 x_i))^2
|
68
|
+
#
|
69
|
+
# for the parameters <tt>c0, c1</tt>. For unweighted data the sum is computed with
|
70
|
+
# <tt>w_i = 1</tt>.
|
71
|
+
#
|
72
|
+
# === {}[link:index.html"name="2.1] Module functions for linear regression
|
73
|
+
# ---
|
74
|
+
# * GSL::Fit::linear(x, y)
|
75
|
+
#
|
76
|
+
# This function computes the best-fit linear regression coefficients (c0,c1)
|
77
|
+
# of the model Y = c0 + c1 X for the datasets <tt>(x, y)</tt>, two vectors of
|
78
|
+
# equal length with stride 1. This returns an array of 7 elements,
|
79
|
+
# <tt>[c0, c1, cov00, cov01, cov11, chisq, status]</tt>, where <tt>c0, c1</tt> are the
|
80
|
+
# estimated parameters, <tt>cov00, cov01, cov11</tt> are the variance-covariance
|
81
|
+
# matrix elements, <tt>chisq</tt> is the sum of squares of the residuals, and
|
82
|
+
# <tt>status</tt> is the return code from the GSL function <tt>gsl_fit_linear()</tt>.
|
83
|
+
#
|
84
|
+
# ---
|
85
|
+
# * GSL::Fit::wlinear(x, w, y)
|
86
|
+
#
|
87
|
+
# This function computes the best-fit linear regression coefficients (c0,c1)
|
88
|
+
# of the model Y = c_0 + c_1 X for the weighted datasets <tt>(x, y)</tt>.
|
89
|
+
# The vector <tt>w</tt>, specifies the weight of each datapoint, which is the
|
90
|
+
# reciprocal of the variance for each datapoint in <tt>y</tt>. This returns an
|
91
|
+
# array of 7 elements, same as the method <tt>linear</tt>.
|
92
|
+
#
|
93
|
+
# ---
|
94
|
+
# * GSL::Fit::linear_est(x, c0, c1, c00, c01, c11)
|
95
|
+
# * GSL::Fit::linear_est(x, [c0, c1, c00, c01, c11])
|
96
|
+
#
|
97
|
+
# This function uses the best-fit linear regression coefficients <tt>c0,c1</tt> and
|
98
|
+
# their estimated covariance <tt>cov00,cov01,cov11</tt> to compute the fitted function
|
99
|
+
# and its standard deviation for the model Y = c_0 + c_1 X at the point <tt>x</tt>.
|
100
|
+
# The returned value is an array of <tt>[y, yerr]</tt>.
|
101
|
+
#
|
102
|
+
# == {}[link:index.html"name="3] Linear fitting without a constant term
|
103
|
+
# ---
|
104
|
+
# * GSL::Fit::mul(x, y)
|
105
|
+
#
|
106
|
+
# This function computes the best-fit linear regression coefficient <tt>c1</tt>
|
107
|
+
# of the model Y = c1 X for the datasets <tt>(x, y)</tt>, two vectors of
|
108
|
+
# equal length with stride 1. This returns an array of 4 elements,
|
109
|
+
# <tt>[c1, cov11, chisq, status]</tt>.
|
110
|
+
#
|
111
|
+
# ---
|
112
|
+
# * GSL::Fit::wmul(x, w, y)
|
113
|
+
#
|
114
|
+
# This function computes the best-fit linear regression coefficient <tt>c1</tt>
|
115
|
+
# of the model Y = c_1 X for the weighted datasets <tt>(x, y)</tt>. The vector
|
116
|
+
# <tt>w</tt> specifies the weight of each datapoint. The weight is the reciprocal
|
117
|
+
# of the variance for each datapoint in <tt>y</tt>.
|
118
|
+
#
|
119
|
+
# ---
|
120
|
+
# * GSL::Fit::mul_est(x, c1, c11)
|
121
|
+
# * GSL::Fit::mul_est(x, [c1, c11])
|
122
|
+
#
|
123
|
+
# This function uses the best-fit linear regression coefficient <tt>c1</tt>
|
124
|
+
# and its estimated covariance <tt>cov11</tt> to compute the fitted function
|
125
|
+
# <tt>y</tt> and its standard deviation <tt>y_err</tt>
|
126
|
+
# for the model Y = c_1 X at the point <tt>x</tt>.
|
127
|
+
# The returned value is an array of <tt>[y, yerr]</tt>.
|
128
|
+
#
|
129
|
+
# == {}[link:index.html"name="4] Multi-parameter fitting
|
130
|
+
# === {}[link:index.html"name="4.1] GSL::MultiFit::Workspace class
|
131
|
+
# ---
|
132
|
+
# * GSL::MultiFit::Workspace.alloc(n, p)
|
133
|
+
#
|
134
|
+
# This creates a workspace for fitting a model to <tt>n</tt>
|
135
|
+
# observations using <tt>p</tt> parameters.
|
136
|
+
#
|
137
|
+
# === {}[link:index.html"name="4.2] Module functions
|
138
|
+
# ---
|
139
|
+
# * GSL::MultiFit::linear(X, y, work)
|
140
|
+
# * GSL::MultiFit::linear(X, y)
|
141
|
+
#
|
142
|
+
# This function computes the best-fit parameters <tt>c</tt> of the model <tt>y = X c</tt>
|
143
|
+
# for the observations <tt>y</tt> and the matrix of predictor variables <tt>X</tt>.
|
144
|
+
# The variance-covariance matrix of the model parameters <tt>cov</tt> is estimated
|
145
|
+
# from the scatter of the observations about the best-fit. The sum of squares
|
146
|
+
# of the residuals from the best-fit is also calculated. The returned value is
|
147
|
+
# an array of 4 elements, <tt>[c, cov, chisq, status]</tt>, where <tt>c</tt> is a
|
148
|
+
# {GSL::Vector}[link:files/rdoc/vector_rdoc.html] object which contains the best-fit parameters,
|
149
|
+
# and <tt>cov</tt> is the variance-covariance matrix as a
|
150
|
+
# {GSL::Matrix}[link:files/rdoc/matrix_rdoc.html] object.
|
151
|
+
#
|
152
|
+
# The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
|
153
|
+
# using the workspace provided in <tt>work</tt> (optional, if not given, it is allocated
|
154
|
+
# internally).
|
155
|
+
# The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve
|
156
|
+
# the accuracy of the singular values. Any components which have zero singular
|
157
|
+
# value (to machine precision) are discarded from the fit.
|
158
|
+
#
|
159
|
+
# ---
|
160
|
+
# * GSL::MultiFit::wlinear(X, w, y, work)
|
161
|
+
# * GSL::MultiFit::wlinear(X, w, y)
|
162
|
+
#
|
163
|
+
# This function computes the best-fit parameters <tt>c</tt> of the model
|
164
|
+
# <tt>y = X c</tt> for the observations <tt>y</tt> and the matrix of predictor
|
165
|
+
# variables <tt>X</tt>. The covariance matrix of the model parameters
|
166
|
+
# <tt>cov</tt> is estimated from the weighted data. The weighted sum of
|
167
|
+
# squares of the residuals from the best-fit is also calculated.
|
168
|
+
# The returned value is an array of 4 elements,
|
169
|
+
# <tt>[c: Vector, cov: Matrix, chisq: Float, status: Fixnum]</tt>.
|
170
|
+
# The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
|
171
|
+
# using the workspace provided in <tt>work</tt> (optional). Any components
|
172
|
+
# which have
|
173
|
+
# zero singular value (to machine precision) are discarded from the fit.
|
174
|
+
#
|
175
|
+
# ---
|
176
|
+
# * GSL::MultiFit::linear_est(x, c, cov)
|
177
|
+
#
|
178
|
+
# (GSL-1.8 or later) This method uses the best-fit multilinear regression coefficients <tt>c</tt> and their covariance matrix <tt>cov</tt> to compute the fitted function value <tt>y</tt> and its standard deviation <tt>y_err</tt> for the model <tt>y = x.c</tt> at the point <tt>x</tt>. This returns an array [<tt>y, y_err</tt>].
|
179
|
+
# ---
|
180
|
+
# * GSL::MultiFit::linear_residuals(X, y, c[, r])
|
181
|
+
#
|
182
|
+
# (GSL-1.11 or later) This method computes the vector of residuals <tt>r = y - X c</tt> for the observations <tt>y</tt>, coefficients <tt>c</tt> and matrix of predictor variables <tt>X</tt>, and returns <tt>r</tt>.
|
183
|
+
#
|
184
|
+
# === {}[link:index.html"name="4.3] Higer level interface
|
185
|
+
#
|
186
|
+
# ---
|
187
|
+
# * GSL::MultiFit::polyfit(x, y, order)
|
188
|
+
#
|
189
|
+
# Finds the coefficient of a polynomial of order <tt>order</tt>
|
190
|
+
# that fits the vector data (<tt>x, y</tt>) in a least-square sense.
|
191
|
+
#
|
192
|
+
# Example:
|
193
|
+
# #!/usr/bin/env ruby
|
194
|
+
# require("gsl")
|
195
|
+
#
|
196
|
+
# x = Vector[1, 2, 3, 4, 5]
|
197
|
+
# y = Vector[5.5, 43.1, 128, 290.7, 498.4]
|
198
|
+
# # The results are stored in a polynomial "coef"
|
199
|
+
# coef, err, chisq, status = MultiFit.polyfit(x, y, 3)
|
200
|
+
#
|
201
|
+
# x2 = Vector.linspace(1, 5, 20)
|
202
|
+
# graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
|
203
|
+
#
|
204
|
+
# == {}[link:index.html"name="5] Examples
|
205
|
+
# === {}[link:index.html"name="5.1] Linear regression
|
206
|
+
# #!/usr/bin/env ruby
|
207
|
+
# require("gsl")
|
208
|
+
# include GSL::Fit
|
209
|
+
#
|
210
|
+
# n = 4
|
211
|
+
# x = Vector.alloc(1970, 1980, 1990, 2000)
|
212
|
+
# y = Vector.alloc(12, 11, 14, 13)
|
213
|
+
# w = Vector.alloc(0.1, 0.2, 0.3, 0.4)
|
214
|
+
#
|
215
|
+
# #for i in 0...n do
|
216
|
+
# # printf("%e %e %e\n", x[i], y[i], 1.0/Math::sqrt(w[i]))
|
217
|
+
# #end
|
218
|
+
#
|
219
|
+
# c0, c1, cov00, cov01, cov11, chisq = wlinear(x, w, y)
|
220
|
+
#
|
221
|
+
# printf("# best fit: Y = %g + %g X\n", c0, c1);
|
222
|
+
# printf("# covariance matrix:\n");
|
223
|
+
# printf("# [ %g, %g\n# %g, %g]\n",
|
224
|
+
# cov00, cov01, cov01, cov11);
|
225
|
+
# printf("# chisq = %g\n", chisq);
|
226
|
+
#
|
227
|
+
# === {}[link:index.html"name="5.2] Exponential fitting
|
228
|
+
# #!/usr/bin/env ruby
|
229
|
+
# require("gsl")
|
230
|
+
#
|
231
|
+
# # Create data
|
232
|
+
# r = Rng.alloc("knuthran")
|
233
|
+
# a = 2.0
|
234
|
+
# b = -1.0
|
235
|
+
# sigma = 0.01
|
236
|
+
# N = 10
|
237
|
+
# x = Vector.linspace(0, 5, N)
|
238
|
+
# y = a*Sf::exp(b*x) + sigma*r.gaussian
|
239
|
+
#
|
240
|
+
# # Fitting
|
241
|
+
# a2, b2, = Fit.linear(x, Sf::log(y))
|
242
|
+
# x2 = Vector.linspace(0, 5, 20)
|
243
|
+
# A = Sf::exp(a2)
|
244
|
+
# printf("Expect: a = %f, b = %f\n", a, b)
|
245
|
+
# printf("Result: a = %f, b = %f\n", A, b2)
|
246
|
+
# graph([x, y], [x2, A*Sf::exp(b2*x2)], "-C -g 3 -S 4")
|
247
|
+
#
|
248
|
+
# === {}[link:index.html"name="5.3] Multi-parameter fitting
|
249
|
+
# #!/usr/bin/env ruby
|
250
|
+
# require("gsl")
|
251
|
+
# include GSL::MultiFit
|
252
|
+
#
|
253
|
+
# Rng.env_setup()
|
254
|
+
#
|
255
|
+
# r = GSL::Rng.alloc(Rng::DEFAULT)
|
256
|
+
# n = 19
|
257
|
+
# dim = 3
|
258
|
+
# X = Matrix.alloc(n, dim)
|
259
|
+
# y = Vector.alloc(n)
|
260
|
+
# w = Vector.alloc(n)
|
261
|
+
#
|
262
|
+
# a = 0.1
|
263
|
+
# for i in 0...n
|
264
|
+
# y0 = Math::exp(a)
|
265
|
+
# sigma = 0.1*y0
|
266
|
+
# val = r.gaussian(sigma)
|
267
|
+
# X.set(i, 0, 1.0)
|
268
|
+
# X.set(i, 1, a)
|
269
|
+
# X.set(i, 2, a*a)
|
270
|
+
# y[i] = y0 + val
|
271
|
+
# w[i] = 1.0/(sigma*sigma)
|
272
|
+
# #printf("%g %g %g\n", a, y[i], sigma)
|
273
|
+
# a += 0.1
|
274
|
+
# end
|
275
|
+
#
|
276
|
+
# c, cov, chisq, status = MultiFit.wlinear(X, w, y)
|
277
|
+
#
|
278
|
+
# {prev}[link:files/rdoc/multimin_rdoc.html]
|
279
|
+
# {next}[link:files/rdoc/nonlinearfit_rdoc.html]
|
280
|
+
#
|
281
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
282
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
283
|
+
#
|
284
|
+
#
|
data/rdoc/function.rdoc
ADDED
@@ -0,0 +1,94 @@
|
|
1
|
+
#
|
2
|
+
# = GSL::Function class
|
3
|
+
#
|
4
|
+
# == {}[link:index.html"name="1] Class Methods
|
5
|
+
#
|
6
|
+
# ---
|
7
|
+
# * GSL::Function.alloc
|
8
|
+
#
|
9
|
+
# Constructor.
|
10
|
+
#
|
11
|
+
# * ex:
|
12
|
+
# require("gsl")
|
13
|
+
# f = GSL::Function.alloc { |x| sin(x) }
|
14
|
+
#
|
15
|
+
# The value of the function is calculated by the method <tt>Function#eval</tt>, as
|
16
|
+
#
|
17
|
+
# p f.eval(x)
|
18
|
+
#
|
19
|
+
# The function can have parameters of arbitrary numbers. Here is an
|
20
|
+
# example in case of exponential function <tt>f(x; a, b) = a*exp(-b*x)</tt>.
|
21
|
+
#
|
22
|
+
# f = GSL::Function.alloc { |x, params| # x: a scalar, params: an array
|
23
|
+
# a = params[0]; b = params[1]
|
24
|
+
# a*exp(-b*x)
|
25
|
+
# }
|
26
|
+
# To evaluate the function <tt>f(x) = 2*exp(-3*x)</tt>,
|
27
|
+
# f.set_params([2, 3])
|
28
|
+
# f.eval(x)
|
29
|
+
#
|
30
|
+
# == {}[link:index.html"name="2] Methods
|
31
|
+
#
|
32
|
+
# ---
|
33
|
+
# * GSL::Function#eval(x)
|
34
|
+
# * GSL::Function#call(x)
|
35
|
+
# * GSL::Function#at(x)
|
36
|
+
# * GSL::Function#[x]
|
37
|
+
#
|
38
|
+
# These methods return a value of the function at <tt>x</tt>.
|
39
|
+
# p f.eval(2.5)
|
40
|
+
# p f.call(2.5)
|
41
|
+
# p f[2.5]
|
42
|
+
# The argument <tt>x</tt> can be a scalar, a Vector, Matrix, Array or Range.
|
43
|
+
#
|
44
|
+
# ---
|
45
|
+
# * GSL::Function#set { |x| ... }
|
46
|
+
# * GSL::Function#set(proc, params)
|
47
|
+
#
|
48
|
+
# This method sets or resets the procedure of <tt>self</tt>, as
|
49
|
+
#
|
50
|
+
# f = GSL::Function.alloc { |x| sin(x) }
|
51
|
+
# p f.eval(1.0) <- sin(1.0)
|
52
|
+
# f.set { |x| cos(x) }
|
53
|
+
# p f.eval(1.0) <- cos(1.0)
|
54
|
+
#
|
55
|
+
# ---
|
56
|
+
# * GSL::Function#set_params(params)
|
57
|
+
#
|
58
|
+
# This set the constant parameters of the function.
|
59
|
+
#
|
60
|
+
# == {}[link:index.html"name="3] Graph
|
61
|
+
# ---
|
62
|
+
# * GSL::Function#graph(x[, options])
|
63
|
+
#
|
64
|
+
# This method uses <tt>GNU graph</tt> to plot the function <tt>self</tt>.
|
65
|
+
# The argument <tt>x</tt> is given by a <tt>GSL::Vector</tt> or an <tt>Array</tt>.
|
66
|
+
#
|
67
|
+
# Ex: Plot sin(x)
|
68
|
+
# f = Function.alloc { |x| Math::sin(x) }
|
69
|
+
# x = Vector.linspace(0, 2*M_PI, 50)
|
70
|
+
# f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
|
71
|
+
#
|
72
|
+
#
|
73
|
+
# == {}[link:index.html"name="4] Example
|
74
|
+
# A quadratic function, f(x) = x^2 + 2x + 3.
|
75
|
+
#
|
76
|
+
# >> require("gsl")
|
77
|
+
# => true
|
78
|
+
# >> f = Function.alloc { |x, param| x*x + param[0]*x + param[1] }
|
79
|
+
# => #<GSL::Function:0x6e8eb0>
|
80
|
+
# >> f.set_params(2, 3)
|
81
|
+
# => #<GSL::Function:0x6e8eb0>
|
82
|
+
# >> f.eval(2) <--- Scalar
|
83
|
+
# => 11
|
84
|
+
# >> f.eval(1..4) <--- Range
|
85
|
+
# => [6.0, 11.0, 18.0, 27.0]
|
86
|
+
# >> f.eval([1, 2, 3]) <--- Array
|
87
|
+
# => [6.0, 11.0, 18.0]
|
88
|
+
# >> f.eval(Matrix.alloc([1, 2], [3, 4])) <--- GSL::Matrix
|
89
|
+
# [ 6.000e+00 1.100e+01
|
90
|
+
# 1.800e+01 2.700e+01 ]
|
91
|
+
# => #<GSL::Matrix:0x6dd1b4>
|
92
|
+
#
|
93
|
+
# {back}[link:files/rdoc/index_rdoc.html]
|
94
|
+
#
|
data/rdoc/graph.rdoc
ADDED
@@ -0,0 +1,137 @@
|
|
1
|
+
#
|
2
|
+
# = Graphics
|
3
|
+
#
|
4
|
+
# The GSL library itself does not include any utilities to visualize computation results.
|
5
|
+
# Some examples found in the GSL manual use
|
6
|
+
# {GNU graph}[http://www.gnu.org/software/plotutils/plotutils.html"target="_top]
|
7
|
+
# to show the results: the data are stored in data files, and then
|
8
|
+
# displayed by using <tt>GNU graph</tt>.
|
9
|
+
# Ruby/GSL provides simple interfaces to <tt>GNU graph</tt>
|
10
|
+
# to plot vectors or histograms directly without storing them in data files.
|
11
|
+
# Although the methods described below do not cover all the functionalities
|
12
|
+
# of <tt>GNU graph</tt>, these are useful to check calculations and get some
|
13
|
+
# speculations on the data.
|
14
|
+
#
|
15
|
+
#
|
16
|
+
# == {}[link:index.html"name="1] Plotting vectors
|
17
|
+
# ---
|
18
|
+
# * Vector.graph(y[, options])
|
19
|
+
# * Vector.graph(nil, y[, y2, y3, ..., options])
|
20
|
+
# * Vector.graph(x, y1, y2, ...., options)
|
21
|
+
# * Vector.graph([x1, y1], [x2, y2], ...., options)
|
22
|
+
# * GSL::graph(y[, options])
|
23
|
+
# * GSL::graph(nil, y[, y2, y3, ..., options])
|
24
|
+
# * GSL::graph(x, y1, y2, ...., options)
|
25
|
+
# * GSL::graph([x1, y1], [x2, y2], ...., options)
|
26
|
+
#
|
27
|
+
# These methods use the <tt>GNU graph</tt> utility to plot vectors.
|
28
|
+
# The options <tt>options</tt> given by a <tt>String</tt>. If <tt>nil</tt> is
|
29
|
+
# given for <tt>ARGV[0]</tt>, auto-generated abscissa are used.
|
30
|
+
#
|
31
|
+
# Ex:
|
32
|
+
# >> require("gsl")
|
33
|
+
# >> x = Vector.linspace(0, 2.0*M_PI, 20)
|
34
|
+
# >> c = Sf::cos(x)
|
35
|
+
# >> s = Sf::sin(x)
|
36
|
+
# >> Vector.graph(x, c, s, "-T X -C -L 'cos(x), sin(x)'")
|
37
|
+
#
|
38
|
+
# This is equivalent to <tt>Vector.graph([x, c], [x, s], "-T X -C -L 'cos(x), sin(x)'")</tt>.
|
39
|
+
#
|
40
|
+
# To create a PNG file,
|
41
|
+
# >> Vector.graph(x, c, s, "-T png -C -L 'cos(x), sin(x)' > fig.png")
|
42
|
+
#
|
43
|
+
# ---
|
44
|
+
# * GSL::Vector#graph(options)
|
45
|
+
# * GSL::Vector#graph(x[, options])
|
46
|
+
#
|
47
|
+
# These methods plot the vector using the GNU <tt>graph</tt>
|
48
|
+
# command. The options for the <tt>graph</tt> command are given by a <tt>String</tt>.
|
49
|
+
#
|
50
|
+
# Ex1:
|
51
|
+
# >> x = Vector[1..5]
|
52
|
+
# [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ]
|
53
|
+
# >> x.graph("-m 2") # dotted line
|
54
|
+
# >> x.graph("-C -l x") # color, x log scale
|
55
|
+
# >> x.graph("-X \"X axis\"") # with an axis label
|
56
|
+
#
|
57
|
+
# Ex2: x-y plot
|
58
|
+
# >> require("gsl")
|
59
|
+
# >> x = Vector.linspace(0, 2.0*M_PI, 20)
|
60
|
+
# >> c = Sf::cos(x)
|
61
|
+
# >> c.graph(x, "-T X -C -g 3 -L 'cos(x)'")
|
62
|
+
#
|
63
|
+
# == {}[link:index.html"name="2] Drawing histogram
|
64
|
+
# ---
|
65
|
+
# * GSL::Histogram#graph(options)
|
66
|
+
#
|
67
|
+
# This method uses the GNU plotutils <tt>graph</tt> to draw a histogram.
|
68
|
+
#
|
69
|
+
# == {}[link:index.html"name="3] Plotting Functions
|
70
|
+
# ---
|
71
|
+
# * GSL::Function#graph(x[, options])
|
72
|
+
#
|
73
|
+
# This method uses <tt>GNU graph</tt> to plot the function <tt>self</tt>.
|
74
|
+
# The argument <tt>x</tt> is given by a <tt>GSL::Vector</tt> or an <tt>Array</tt>.
|
75
|
+
#
|
76
|
+
# Ex: Plot sin(x)
|
77
|
+
# f = Function.alloc { |x| Math::sin(x) }
|
78
|
+
# x = Vector.linspace(0, 2*M_PI, 50)
|
79
|
+
# f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
|
80
|
+
#
|
81
|
+
# == {}[link:index.html"name="4] Other way
|
82
|
+
# The code below uses <tt>GNUPLOT</tt> directly to plot vectors.
|
83
|
+
#
|
84
|
+
# #!/usr/bin/env ruby
|
85
|
+
# require("gsl")
|
86
|
+
# x = Vector.linspace(0, 2*M_PI, 50)
|
87
|
+
# y = Sf::sin(x)
|
88
|
+
# IO.popen("gnuplot -persist", "w") do |io|
|
89
|
+
# io.print("plot '-'\n")
|
90
|
+
# x.each_index do |i|
|
91
|
+
# io.printf("%e %e\n", x[i], y[i])
|
92
|
+
# end
|
93
|
+
# io.print("e\n")
|
94
|
+
# io.flush
|
95
|
+
# end
|
96
|
+
#
|
97
|
+
# It is also possible to use the Ruby Gnuplot library.
|
98
|
+
# require("gnuplot")
|
99
|
+
# require("gsl")
|
100
|
+
# require("gsl/gnuplot");
|
101
|
+
#
|
102
|
+
# Gnuplot.open do |gp|
|
103
|
+
# Gnuplot::Plot.new( gp ) do |plot|
|
104
|
+
#
|
105
|
+
# plot.xrange "[0:10]"
|
106
|
+
# plot.yrange "[-1.5:1.5]"
|
107
|
+
# plot.title "Sin Wave Example"
|
108
|
+
# plot.xlabel "x"
|
109
|
+
# plot.ylabel "sin(x)"
|
110
|
+
# plot.pointsize 3
|
111
|
+
# plot.grid
|
112
|
+
#
|
113
|
+
# x = GSL::Vector[0..10]
|
114
|
+
# y = GSL::Sf::sin(x)
|
115
|
+
#
|
116
|
+
# plot.data = [
|
117
|
+
# Gnuplot::DataSet.new( "sin(x)" ) { |ds|
|
118
|
+
# ds.with = "lines"
|
119
|
+
# ds.title = "String function"
|
120
|
+
# ds.linewidth = 4
|
121
|
+
# },
|
122
|
+
#
|
123
|
+
# Gnuplot::DataSet.new( [x, y] ) { |ds|
|
124
|
+
# ds.with = "linespoints"
|
125
|
+
# ds.title = "Array data"
|
126
|
+
# }
|
127
|
+
# ]
|
128
|
+
#
|
129
|
+
# end
|
130
|
+
# end
|
131
|
+
#
|
132
|
+
# {prev}[link:files/rdoc/const_rdoc.html]
|
133
|
+
#
|
134
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
135
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
136
|
+
#
|
137
|
+
#
|