gsl 1.12.109 → 1.14.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (511) hide show
  1. data/AUTHORS +6 -0
  2. data/COPYING +339 -0
  3. data/ChangeLog +556 -0
  4. data/{README.rdoc → README} +3 -0
  5. data/Rakefile +54 -10
  6. data/THANKS +17 -0
  7. data/VERSION +1 -2
  8. data/examples/alf/alf.gp +15 -0
  9. data/examples/alf/alf.rb +32 -0
  10. data/examples/blas/blas.rb +13 -0
  11. data/examples/blas/dnrm2.rb +16 -0
  12. data/examples/blas/level1.rb +81 -0
  13. data/examples/blas/level2.rb +11 -0
  14. data/examples/blas/level3.rb +12 -0
  15. data/examples/bspline.rb +57 -0
  16. data/examples/cdf.rb +16 -0
  17. data/examples/cheb.rb +21 -0
  18. data/examples/combination.rb +23 -0
  19. data/examples/complex/RC-lpf.rb +47 -0
  20. data/examples/complex/add.rb +36 -0
  21. data/examples/complex/coerce.rb +14 -0
  22. data/examples/complex/complex.rb +25 -0
  23. data/examples/complex/fpmi.rb +70 -0
  24. data/examples/complex/functions.rb +77 -0
  25. data/examples/complex/michelson.rb +36 -0
  26. data/examples/complex/mul.rb +28 -0
  27. data/examples/complex/oscillator.rb +17 -0
  28. data/examples/complex/set.rb +37 -0
  29. data/examples/const/physconst.rb +151 -0
  30. data/examples/const/travel.rb +45 -0
  31. data/examples/deriv/demo.rb +13 -0
  32. data/examples/deriv/deriv.rb +36 -0
  33. data/examples/deriv/diff.rb +35 -0
  34. data/examples/dht.rb +42 -0
  35. data/examples/dirac.rb +56 -0
  36. data/examples/eigen/eigen.rb +34 -0
  37. data/examples/eigen/herm.rb +22 -0
  38. data/examples/eigen/narray.rb +9 -0
  39. data/examples/eigen/nonsymm.rb +37 -0
  40. data/examples/eigen/nonsymmv.rb +43 -0
  41. data/examples/eigen/qhoscillator.gp +35 -0
  42. data/examples/eigen/qhoscillator.rb +90 -0
  43. data/examples/eigen/vander.rb +41 -0
  44. data/examples/fft/fft.rb +17 -0
  45. data/examples/fft/fft2.rb +17 -0
  46. data/examples/fft/forward.rb +25 -0
  47. data/examples/fft/forward2.rb +26 -0
  48. data/examples/fft/radix2.rb +18 -0
  49. data/examples/fft/real-halfcomplex.rb +33 -0
  50. data/examples/fft/real-halfcomplex2.rb +30 -0
  51. data/examples/fft/realradix2.rb +19 -0
  52. data/examples/fft/sunspot.dat +256 -0
  53. data/examples/fft/sunspot.rb +16 -0
  54. data/examples/fit/expdata.dat +20 -0
  55. data/examples/fit/expfit.rb +31 -0
  56. data/examples/fit/gaussfit.rb +29 -0
  57. data/examples/fit/gaussian_2peaks.rb +34 -0
  58. data/examples/fit/hillfit.rb +40 -0
  59. data/examples/fit/lognormal.rb +26 -0
  60. data/examples/fit/lorentzfit.rb +22 -0
  61. data/examples/fit/multifit.rb +72 -0
  62. data/examples/fit/ndlinear.rb +133 -0
  63. data/examples/fit/nonlinearfit.rb +89 -0
  64. data/examples/fit/plot.gp +36 -0
  65. data/examples/fit/polyfit.rb +9 -0
  66. data/examples/fit/powerfit.rb +21 -0
  67. data/examples/fit/sigmoidfit.rb +40 -0
  68. data/examples/fit/sinfit.rb +22 -0
  69. data/examples/fit/wlinear.rb +46 -0
  70. data/examples/fresnel.rb +11 -0
  71. data/examples/function/function.rb +36 -0
  72. data/examples/function/log.rb +7 -0
  73. data/examples/function/min.rb +33 -0
  74. data/examples/function/sin.rb +10 -0
  75. data/examples/function/synchrotron.rb +18 -0
  76. data/examples/gallery/butterfly.rb +7 -0
  77. data/examples/gallery/cayley.rb +12 -0
  78. data/examples/gallery/cornu.rb +23 -0
  79. data/examples/gallery/eight.rb +11 -0
  80. data/examples/gallery/koch.rb +40 -0
  81. data/examples/gallery/lemniscate.rb +11 -0
  82. data/examples/gallery/polar.rb +11 -0
  83. data/examples/gallery/rgplot/cossin.rb +35 -0
  84. data/examples/gallery/rgplot/rgplot.replaced +0 -0
  85. data/examples/gallery/rgplot/roesller.rb +55 -0
  86. data/examples/gallery/roesller.rb +39 -0
  87. data/examples/gallery/scarabaeus.rb +14 -0
  88. data/examples/histogram/cauchy.rb +27 -0
  89. data/examples/histogram/cauchy.sh +2 -0
  90. data/examples/histogram/exponential.rb +19 -0
  91. data/examples/histogram/gauss.rb +16 -0
  92. data/examples/histogram/gsl-histogram.rb +40 -0
  93. data/examples/histogram/histo2d.rb +31 -0
  94. data/examples/histogram/histo3d.rb +34 -0
  95. data/examples/histogram/histogram-pdf.rb +27 -0
  96. data/examples/histogram/histogram.rb +26 -0
  97. data/examples/histogram/integral.rb +28 -0
  98. data/examples/histogram/poisson.rb +27 -0
  99. data/examples/histogram/power.rb +25 -0
  100. data/examples/histogram/rebin.rb +17 -0
  101. data/examples/histogram/smp.dat +5 -0
  102. data/examples/histogram/xexp.rb +21 -0
  103. data/examples/integration/ahmed.rb +21 -0
  104. data/examples/integration/cosmology.rb +75 -0
  105. data/examples/integration/friedmann.gp +16 -0
  106. data/examples/integration/friedmann.rb +35 -0
  107. data/examples/integration/gamma-zeta.rb +35 -0
  108. data/examples/integration/integration.rb +22 -0
  109. data/examples/integration/qag.rb +8 -0
  110. data/examples/integration/qag2.rb +14 -0
  111. data/examples/integration/qag3.rb +8 -0
  112. data/examples/integration/qagi.rb +28 -0
  113. data/examples/integration/qagi2.rb +49 -0
  114. data/examples/integration/qagiu.rb +29 -0
  115. data/examples/integration/qagp.rb +20 -0
  116. data/examples/integration/qags.rb +14 -0
  117. data/examples/integration/qawc.rb +18 -0
  118. data/examples/integration/qawf.rb +41 -0
  119. data/examples/integration/qawo.rb +29 -0
  120. data/examples/integration/qaws.rb +30 -0
  121. data/examples/integration/qng.rb +17 -0
  122. data/examples/interp/demo.gp +20 -0
  123. data/examples/interp/demo.rb +45 -0
  124. data/examples/interp/interp.rb +37 -0
  125. data/examples/interp/points +10 -0
  126. data/examples/interp/spline.rb +20 -0
  127. data/examples/jacobi/deriv.rb +40 -0
  128. data/examples/jacobi/integrate.rb +34 -0
  129. data/examples/jacobi/interp.rb +43 -0
  130. data/examples/jacobi/jacobi.rb +11 -0
  131. data/examples/linalg/HH.rb +15 -0
  132. data/examples/linalg/HH_narray.rb +13 -0
  133. data/examples/linalg/LQ_solve.rb +73 -0
  134. data/examples/linalg/LU.rb +84 -0
  135. data/examples/linalg/LU2.rb +31 -0
  136. data/examples/linalg/LU_narray.rb +24 -0
  137. data/examples/linalg/PTLQ.rb +47 -0
  138. data/examples/linalg/QR.rb +18 -0
  139. data/examples/linalg/QRPT.rb +47 -0
  140. data/examples/linalg/QR_solve.rb +78 -0
  141. data/examples/linalg/QR_solve_narray.rb +13 -0
  142. data/examples/linalg/SV.rb +16 -0
  143. data/examples/linalg/SV_narray.rb +12 -0
  144. data/examples/linalg/SV_solve.rb +49 -0
  145. data/examples/linalg/chol.rb +29 -0
  146. data/examples/linalg/chol_narray.rb +15 -0
  147. data/examples/linalg/complex.rb +57 -0
  148. data/examples/linalg/invert_narray.rb +10 -0
  149. data/examples/math/const.rb +67 -0
  150. data/examples/math/elementary.rb +35 -0
  151. data/examples/math/functions.rb +41 -0
  152. data/examples/math/inf_nan.rb +34 -0
  153. data/examples/math/minmax.rb +22 -0
  154. data/examples/math/power.rb +18 -0
  155. data/examples/math/test.rb +31 -0
  156. data/examples/matrix/a.dat +0 -0
  157. data/examples/matrix/add.rb +45 -0
  158. data/examples/matrix/b.dat +4 -0
  159. data/examples/matrix/cat.rb +31 -0
  160. data/examples/matrix/colvectors.rb +24 -0
  161. data/examples/matrix/complex.rb +41 -0
  162. data/examples/matrix/det.rb +29 -0
  163. data/examples/matrix/diagonal.rb +23 -0
  164. data/examples/matrix/get_all.rb +159 -0
  165. data/examples/matrix/hilbert.rb +31 -0
  166. data/examples/matrix/iterator.rb +19 -0
  167. data/examples/matrix/matrix.rb +57 -0
  168. data/examples/matrix/minmax.rb +53 -0
  169. data/examples/matrix/mul.rb +39 -0
  170. data/examples/matrix/rand.rb +20 -0
  171. data/examples/matrix/read.rb +29 -0
  172. data/examples/matrix/rowcol.rb +47 -0
  173. data/examples/matrix/set.rb +41 -0
  174. data/examples/matrix/set_all.rb +100 -0
  175. data/examples/matrix/view.rb +32 -0
  176. data/examples/matrix/view_all.rb +148 -0
  177. data/examples/matrix/write.rb +23 -0
  178. data/examples/min.rb +29 -0
  179. data/examples/monte/miser.rb +47 -0
  180. data/examples/monte/monte.rb +47 -0
  181. data/examples/monte/plain.rb +47 -0
  182. data/examples/monte/vegas.rb +46 -0
  183. data/examples/multimin/bundle.rb +66 -0
  184. data/examples/multimin/cqp.rb +109 -0
  185. data/examples/multimin/fdfminimizer.rb +40 -0
  186. data/examples/multimin/fminimizer.rb +41 -0
  187. data/examples/multiroot/demo.rb +36 -0
  188. data/examples/multiroot/fdfsolver.rb +50 -0
  189. data/examples/multiroot/fsolver.rb +33 -0
  190. data/examples/multiroot/fsolver2.rb +32 -0
  191. data/examples/multiroot/fsolver3.rb +26 -0
  192. data/examples/narray/histogram.rb +14 -0
  193. data/examples/narray/mandel.rb +27 -0
  194. data/examples/narray/narray.rb +28 -0
  195. data/examples/narray/narray2.rb +44 -0
  196. data/examples/narray/sf.rb +26 -0
  197. data/examples/ntuple/create.rb +17 -0
  198. data/examples/ntuple/project.rb +31 -0
  199. data/examples/odeiv/binarysystem.gp +23 -0
  200. data/examples/odeiv/binarysystem.rb +104 -0
  201. data/examples/odeiv/demo.gp +24 -0
  202. data/examples/odeiv/demo.rb +69 -0
  203. data/examples/odeiv/demo2.gp +26 -0
  204. data/examples/odeiv/duffing.rb +45 -0
  205. data/examples/odeiv/frei1.rb +109 -0
  206. data/examples/odeiv/frei2.rb +76 -0
  207. data/examples/odeiv/legendre.rb +52 -0
  208. data/examples/odeiv/odeiv.rb +32 -0
  209. data/examples/odeiv/odeiv2.rb +45 -0
  210. data/examples/odeiv/oscillator.rb +42 -0
  211. data/examples/odeiv/sedov.rb +97 -0
  212. data/examples/odeiv/whitedwarf.gp +40 -0
  213. data/examples/odeiv/whitedwarf.rb +158 -0
  214. data/examples/ool/conmin.rb +100 -0
  215. data/examples/ool/gencan.rb +99 -0
  216. data/examples/ool/pgrad.rb +100 -0
  217. data/examples/ool/spg.rb +100 -0
  218. data/examples/pdf/bernoulli.rb +5 -0
  219. data/examples/pdf/beta.rb +7 -0
  220. data/examples/pdf/binomiral.rb +10 -0
  221. data/examples/pdf/cauchy.rb +6 -0
  222. data/examples/pdf/chisq.rb +8 -0
  223. data/examples/pdf/exponential.rb +7 -0
  224. data/examples/pdf/exppow.rb +6 -0
  225. data/examples/pdf/fdist.rb +7 -0
  226. data/examples/pdf/flat.rb +7 -0
  227. data/examples/pdf/gamma.rb +8 -0
  228. data/examples/pdf/gauss-tail.rb +5 -0
  229. data/examples/pdf/gauss.rb +6 -0
  230. data/examples/pdf/geometric.rb +5 -0
  231. data/examples/pdf/gumbel.rb +6 -0
  232. data/examples/pdf/hypergeometric.rb +11 -0
  233. data/examples/pdf/landau.rb +5 -0
  234. data/examples/pdf/laplace.rb +7 -0
  235. data/examples/pdf/logarithmic.rb +5 -0
  236. data/examples/pdf/logistic.rb +6 -0
  237. data/examples/pdf/lognormal.rb +6 -0
  238. data/examples/pdf/neg-binomiral.rb +10 -0
  239. data/examples/pdf/pareto.rb +7 -0
  240. data/examples/pdf/pascal.rb +10 -0
  241. data/examples/pdf/poisson.rb +5 -0
  242. data/examples/pdf/rayleigh-tail.rb +6 -0
  243. data/examples/pdf/rayleigh.rb +6 -0
  244. data/examples/pdf/tdist.rb +6 -0
  245. data/examples/pdf/weibull.rb +8 -0
  246. data/examples/permutation/ex1.rb +22 -0
  247. data/examples/permutation/permutation.rb +16 -0
  248. data/examples/poly/bell.rb +6 -0
  249. data/examples/poly/bessel.rb +6 -0
  250. data/examples/poly/cheb.rb +6 -0
  251. data/examples/poly/cheb_II.rb +6 -0
  252. data/examples/poly/cubic.rb +9 -0
  253. data/examples/poly/demo.rb +20 -0
  254. data/examples/poly/eval.rb +28 -0
  255. data/examples/poly/eval_derivs.rb +14 -0
  256. data/examples/poly/fit.rb +21 -0
  257. data/examples/poly/hermite.rb +6 -0
  258. data/examples/poly/poly.rb +13 -0
  259. data/examples/poly/quadratic.rb +25 -0
  260. data/examples/random/diffusion.rb +34 -0
  261. data/examples/random/gaussian.rb +9 -0
  262. data/examples/random/generator.rb +27 -0
  263. data/examples/random/hdsobol.rb +21 -0
  264. data/examples/random/poisson.rb +9 -0
  265. data/examples/random/qrng.rb +19 -0
  266. data/examples/random/randomwalk.rb +37 -0
  267. data/examples/random/randomwalk2d.rb +19 -0
  268. data/examples/random/rayleigh.rb +36 -0
  269. data/examples/random/rng.rb +33 -0
  270. data/examples/random/rngextra.rb +14 -0
  271. data/examples/roots/bisection.rb +25 -0
  272. data/examples/roots/brent.rb +43 -0
  273. data/examples/roots/demo.rb +30 -0
  274. data/examples/roots/newton.rb +46 -0
  275. data/examples/roots/recombination.gp +12 -0
  276. data/examples/roots/recombination.rb +61 -0
  277. data/examples/roots/steffenson.rb +48 -0
  278. data/examples/sf/ShiChi.rb +6 -0
  279. data/examples/sf/SiCi.rb +6 -0
  280. data/examples/sf/airy_Ai.rb +8 -0
  281. data/examples/sf/airy_Bi.rb +8 -0
  282. data/examples/sf/bessel_IK.rb +12 -0
  283. data/examples/sf/bessel_JY.rb +13 -0
  284. data/examples/sf/beta_inc.rb +9 -0
  285. data/examples/sf/clausen.rb +6 -0
  286. data/examples/sf/dawson.rb +5 -0
  287. data/examples/sf/debye.rb +9 -0
  288. data/examples/sf/dilog.rb +6 -0
  289. data/examples/sf/ellint.rb +6 -0
  290. data/examples/sf/expint.rb +8 -0
  291. data/examples/sf/fermi.rb +10 -0
  292. data/examples/sf/gamma_inc_P.rb +9 -0
  293. data/examples/sf/gegenbauer.rb +8 -0
  294. data/examples/sf/hyperg.rb +7 -0
  295. data/examples/sf/laguerre.rb +19 -0
  296. data/examples/sf/lambertW.rb +5 -0
  297. data/examples/sf/legendre_P.rb +10 -0
  298. data/examples/sf/lngamma.rb +5 -0
  299. data/examples/sf/psi.rb +54 -0
  300. data/examples/sf/sphbessel.gp +27 -0
  301. data/examples/sf/sphbessel.rb +30 -0
  302. data/examples/sf/synchrotron.rb +5 -0
  303. data/examples/sf/transport.rb +10 -0
  304. data/examples/sf/zetam1.rb +5 -0
  305. data/examples/siman.rb +44 -0
  306. data/examples/sort/heapsort.rb +23 -0
  307. data/examples/sort/heapsort_vector_complex.rb +21 -0
  308. data/examples/sort/sort.rb +23 -0
  309. data/examples/sort/sort2.rb +16 -0
  310. data/examples/stats/mean.rb +17 -0
  311. data/examples/stats/statistics.rb +18 -0
  312. data/examples/stats/test.rb +9 -0
  313. data/examples/sum.rb +34 -0
  314. data/examples/tamu_anova.rb +18 -0
  315. data/examples/vector/a.dat +0 -0
  316. data/examples/vector/add.rb +56 -0
  317. data/examples/vector/b.dat +4 -0
  318. data/examples/vector/c.dat +3 -0
  319. data/examples/vector/collect.rb +26 -0
  320. data/examples/vector/compare.rb +28 -0
  321. data/examples/vector/complex.rb +51 -0
  322. data/examples/vector/complex_get_all.rb +85 -0
  323. data/examples/vector/complex_set_all.rb +131 -0
  324. data/examples/vector/complex_view_all.rb +77 -0
  325. data/examples/vector/connect.rb +22 -0
  326. data/examples/vector/decimate.rb +38 -0
  327. data/examples/vector/diff.rb +31 -0
  328. data/examples/vector/filescan.rb +17 -0
  329. data/examples/vector/floor.rb +23 -0
  330. data/examples/vector/get_all.rb +82 -0
  331. data/examples/vector/gnuplot.rb +38 -0
  332. data/examples/vector/graph.rb +28 -0
  333. data/examples/vector/histogram.rb +22 -0
  334. data/examples/vector/linspace.rb +24 -0
  335. data/examples/vector/log.rb +17 -0
  336. data/examples/vector/logic.rb +33 -0
  337. data/examples/vector/logspace.rb +25 -0
  338. data/examples/vector/minmax.rb +47 -0
  339. data/examples/vector/mul.rb +49 -0
  340. data/examples/vector/narray.rb +46 -0
  341. data/examples/vector/read.rb +29 -0
  342. data/examples/vector/set.rb +35 -0
  343. data/examples/vector/set_all.rb +121 -0
  344. data/examples/vector/smpv.dat +15 -0
  345. data/examples/vector/test.rb +43 -0
  346. data/examples/vector/test_gslblock.rb +58 -0
  347. data/examples/vector/vector.rb +110 -0
  348. data/examples/vector/view.rb +35 -0
  349. data/examples/vector/view_all.rb +73 -0
  350. data/examples/vector/where.rb +29 -0
  351. data/examples/vector/write.rb +24 -0
  352. data/examples/vector/zip.rb +34 -0
  353. data/examples/wavelet/ecg.dat +256 -0
  354. data/examples/wavelet/wavelet1.rb +50 -0
  355. data/ext/extconf.rb +9 -0
  356. data/ext/gsl.c +10 -1
  357. data/ext/histogram.c +6 -2
  358. data/ext/integration.c +39 -0
  359. data/ext/matrix_complex.c +1 -1
  360. data/ext/multiset.c +214 -0
  361. data/ext/nmf.c +4 -0
  362. data/ext/nmf_wrap.c +3 -0
  363. data/ext/vector_complex.c +1 -1
  364. data/ext/vector_double.c +3 -3
  365. data/ext/vector_source.c +6 -6
  366. data/include/rb_gsl.h +7 -0
  367. data/include/rb_gsl_common.h +6 -0
  368. data/rdoc/alf.rdoc +77 -0
  369. data/rdoc/blas.rdoc +269 -0
  370. data/rdoc/bspline.rdoc +42 -0
  371. data/rdoc/changes.rdoc +164 -0
  372. data/rdoc/cheb.rdoc +99 -0
  373. data/rdoc/cholesky_complex.rdoc +46 -0
  374. data/rdoc/combi.rdoc +125 -0
  375. data/rdoc/complex.rdoc +210 -0
  376. data/rdoc/const.rdoc +546 -0
  377. data/rdoc/dht.rdoc +122 -0
  378. data/rdoc/diff.rdoc +133 -0
  379. data/rdoc/ehandling.rdoc +50 -0
  380. data/rdoc/eigen.rdoc +401 -0
  381. data/rdoc/fft.rdoc +535 -0
  382. data/rdoc/fit.rdoc +284 -0
  383. data/rdoc/function.rdoc +94 -0
  384. data/rdoc/graph.rdoc +137 -0
  385. data/rdoc/hist.rdoc +409 -0
  386. data/rdoc/hist2d.rdoc +279 -0
  387. data/rdoc/hist3d.rdoc +112 -0
  388. data/rdoc/index.rdoc +62 -0
  389. data/rdoc/integration.rdoc +398 -0
  390. data/rdoc/interp.rdoc +231 -0
  391. data/rdoc/intro.rdoc +27 -0
  392. data/rdoc/linalg.rdoc +681 -0
  393. data/rdoc/linalg_complex.rdoc +88 -0
  394. data/rdoc/math.rdoc +276 -0
  395. data/rdoc/matrix.rdoc +1093 -0
  396. data/rdoc/min.rdoc +189 -0
  397. data/rdoc/monte.rdoc +234 -0
  398. data/rdoc/multimin.rdoc +312 -0
  399. data/rdoc/multiroot.rdoc +293 -0
  400. data/rdoc/narray.rdoc +173 -0
  401. data/rdoc/ndlinear.rdoc +247 -0
  402. data/rdoc/nonlinearfit.rdoc +348 -0
  403. data/rdoc/ntuple.rdoc +88 -0
  404. data/rdoc/odeiv.rdoc +378 -0
  405. data/rdoc/perm.rdoc +221 -0
  406. data/rdoc/poly.rdoc +335 -0
  407. data/rdoc/qrng.rdoc +90 -0
  408. data/rdoc/randist.rdoc +233 -0
  409. data/rdoc/ref.rdoc +93 -0
  410. data/rdoc/rng.rdoc +203 -0
  411. data/rdoc/rngextra.rdoc +11 -0
  412. data/rdoc/roots.rdoc +305 -0
  413. data/rdoc/screenshot.rdoc +40 -0
  414. data/rdoc/sf.rdoc +1622 -0
  415. data/rdoc/siman.rdoc +89 -0
  416. data/rdoc/sort.rdoc +94 -0
  417. data/rdoc/start.rdoc +16 -0
  418. data/rdoc/stats.rdoc +219 -0
  419. data/rdoc/sum.rdoc +65 -0
  420. data/rdoc/tensor.rdoc +251 -0
  421. data/rdoc/tut.rdoc +5 -0
  422. data/rdoc/use.rdoc +177 -0
  423. data/rdoc/vector.rdoc +1243 -0
  424. data/rdoc/vector_complex.rdoc +347 -0
  425. data/rdoc/wavelet.rdoc +218 -0
  426. data/setup.rb +1585 -0
  427. data/tests/blas/amax.rb +14 -0
  428. data/tests/blas/asum.rb +16 -0
  429. data/tests/blas/axpy.rb +25 -0
  430. data/tests/blas/copy.rb +23 -0
  431. data/tests/blas/dot.rb +23 -0
  432. data/tests/bspline.rb +53 -0
  433. data/tests/cdf.rb +1388 -0
  434. data/tests/cheb.rb +112 -0
  435. data/tests/combination.rb +123 -0
  436. data/tests/complex.rb +17 -0
  437. data/tests/const.rb +24 -0
  438. data/tests/deriv.rb +85 -0
  439. data/tests/dht/dht1.rb +17 -0
  440. data/tests/dht/dht2.rb +23 -0
  441. data/tests/dht/dht3.rb +23 -0
  442. data/tests/dht/dht4.rb +23 -0
  443. data/tests/diff.rb +78 -0
  444. data/tests/eigen/eigen.rb +220 -0
  445. data/tests/eigen/gen.rb +105 -0
  446. data/tests/eigen/genherm.rb +66 -0
  447. data/tests/eigen/gensymm.rb +68 -0
  448. data/tests/eigen/nonsymm.rb +53 -0
  449. data/tests/eigen/nonsymmv.rb +53 -0
  450. data/tests/eigen/symm-herm.rb +74 -0
  451. data/tests/err.rb +58 -0
  452. data/tests/fit.rb +124 -0
  453. data/tests/gsl_test.rb +118 -0
  454. data/tests/gsl_test2.rb +107 -0
  455. data/tests/histo.rb +12 -0
  456. data/tests/integration/integration1.rb +72 -0
  457. data/tests/integration/integration2.rb +71 -0
  458. data/tests/integration/integration3.rb +71 -0
  459. data/tests/integration/integration4.rb +71 -0
  460. data/tests/interp.rb +45 -0
  461. data/tests/linalg/HH.rb +64 -0
  462. data/tests/linalg/LU.rb +47 -0
  463. data/tests/linalg/QR.rb +77 -0
  464. data/tests/linalg/SV.rb +24 -0
  465. data/tests/linalg/TDN.rb +116 -0
  466. data/tests/linalg/TDS.rb +122 -0
  467. data/tests/linalg/bidiag.rb +73 -0
  468. data/tests/linalg/cholesky.rb +20 -0
  469. data/tests/linalg/linalg.rb +158 -0
  470. data/tests/matrix/matrix_nmf_test.rb +39 -0
  471. data/tests/matrix/matrix_test.rb +48 -0
  472. data/tests/min.rb +99 -0
  473. data/tests/monte/miser.rb +31 -0
  474. data/tests/monte/vegas.rb +45 -0
  475. data/tests/multifit/test_2dgauss.rb +112 -0
  476. data/tests/multifit/test_brown.rb +90 -0
  477. data/tests/multifit/test_enso.rb +246 -0
  478. data/tests/multifit/test_filip.rb +155 -0
  479. data/tests/multifit/test_gauss.rb +97 -0
  480. data/tests/multifit/test_longley.rb +110 -0
  481. data/tests/multifit/test_multifit.rb +52 -0
  482. data/tests/multimin.rb +139 -0
  483. data/tests/multiroot.rb +131 -0
  484. data/tests/multiset.rb +52 -0
  485. data/tests/odeiv.rb +353 -0
  486. data/tests/poly/poly.rb +242 -0
  487. data/tests/poly/special.rb +65 -0
  488. data/tests/qrng.rb +131 -0
  489. data/tests/quartic.rb +29 -0
  490. data/tests/randist.rb +134 -0
  491. data/tests/rng.rb +305 -0
  492. data/tests/roots.rb +76 -0
  493. data/tests/run-test.sh +17 -0
  494. data/tests/sf/gsl_test_sf.rb +249 -0
  495. data/tests/sf/test_airy.rb +83 -0
  496. data/tests/sf/test_bessel.rb +306 -0
  497. data/tests/sf/test_coulomb.rb +17 -0
  498. data/tests/sf/test_dilog.rb +25 -0
  499. data/tests/sf/test_gamma.rb +209 -0
  500. data/tests/sf/test_hyperg.rb +356 -0
  501. data/tests/sf/test_legendre.rb +227 -0
  502. data/tests/sf/test_mathieu.rb +59 -0
  503. data/tests/sf/test_sf.rb +839 -0
  504. data/tests/stats.rb +174 -0
  505. data/tests/sum.rb +98 -0
  506. data/tests/sys.rb +323 -0
  507. data/tests/tensor.rb +419 -0
  508. data/tests/vector/vector_complex_test.rb +101 -0
  509. data/tests/vector/vector_test.rb +141 -0
  510. data/tests/wavelet.rb +142 -0
  511. metadata +596 -15
@@ -0,0 +1,284 @@
1
+ #
2
+ # = Least-Squares Fitting
3
+ # This chapter describes routines for performing least squares fits to
4
+ # experimental data using linear combinations of functions. The data may be
5
+ # weighted or unweighted, i.e. with known or unknown errors. For weighted data
6
+ # the functions compute the best fit parameters and their associated covariance
7
+ # matrix. For unweighted data the covariance matrix is estimated from the
8
+ # scatter of the points, giving a variance-covariance matrix.
9
+ #
10
+ # The functions are divided into separate versions for simple one- or
11
+ # two-parameter regression and multiple-parameter fits.
12
+ #
13
+ # Contents:
14
+ # 1. {Overview}[link:files/rdoc/fit_rdoc.html#1]
15
+ # 1. {Linear regression}[link:files/rdoc/fit_rdoc.html#2]
16
+ # 1. {Module functions for linear regression}[link:files/rdoc/fit_rdoc.html#2.1]
17
+ # 1. {Linear fitting without a constant term}[link:files/rdoc/fit_rdoc.html#3]
18
+ # 1. {Multi-parameter fitting}[link:files/rdoc/fit_rdoc.html#4]
19
+ # 1. {GSL::MultiFit::Workspace class}[link:files/rdoc/fit_rdoc.html#4.1]
20
+ # 1. {Module functions}[link:files/rdoc/fit_rdoc.html#4.2]
21
+ # 1. {Higer level interface}[link:files/rdoc/fit_rdoc.html#4.3]
22
+ # 1. {NDLINEAR: multi-linear, multi-parameter least squares fitting}[link:files/rdoc/ndlinear_rdoc.html] (GSL extension)
23
+ # 1. {Examples}[link:files/rdoc/fit_rdoc.html#5]
24
+ # 1. {Linear regression}[link:files/rdoc/fit_rdoc.html#5.1]
25
+ # 1. {Exponential fitting}[link:files/rdoc/fit_rdoc.html#5.2]
26
+ # 1. {Multi-parameter fitting}[link:files/rdoc/fit_rdoc.html#5.3]
27
+ #
28
+ # == {}[link:index.html"name="1] Overview
29
+ # Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted
30
+ # sum of squared residuals over n experimental datapoints (x_i, y_i) for the
31
+ # model Y(c,x), The p parameters of the model are c = {c_0, c_1, �c}. The weight
32
+ # factors w_i are given by w_i = 1/\sigma_i^2, where \sigma_i is the
33
+ # experimental error on the data-point y_i. The errors are assumed to be
34
+ # gaussian and uncorrelated. For unweighted data the chi-squared sum is computed
35
+ # without any weight factors.
36
+ #
37
+ # The fitting routines return the best-fit parameters c and their p \times p
38
+ # covariance matrix. The covariance matrix measures the statistical errors on
39
+ # the best-fit parameters resulting from the errors on the data, \sigma_i, and
40
+ # is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average
41
+ # over the gaussian error distributions of the underlying datapoints.
42
+ #
43
+ # The covariance matrix is calculated by error propagation from the data errors
44
+ # \sigma_i. The change in a fitted parameter \delta c_a caused by a small change
45
+ # in the data \delta y_i is given by allowing the covariance matrix to be written
46
+ # in terms of the errors on the data, For uncorrelated data the fluctuations of
47
+ # the underlying datapoints satisfy
48
+ # <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding
49
+ # parameter covariance matrix of When computing the covariance matrix for
50
+ # unweighted data, i.e. data with unknown errors, the weight factors w_i in this
51
+ # sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the
52
+ # computed variance of the residuals about the
53
+ # best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p).
54
+ # This is referred to as the variance-covariance matrix.
55
+ #
56
+ # The standard deviations of the best-fit parameters are given by the square
57
+ # root of the corresponding diagonal elements of the covariance matrix,
58
+ # \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit
59
+ # parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.
60
+ #
61
+ #
62
+ # == {}[link:index.html"name="2] Linear regression
63
+ # The functions described in this section can be used to perform least-squares
64
+ # fits to a straight line model, Y = c_0 + c_1 X. For weighted data the best-fit
65
+ # is found by minimizing the weighted sum of squared residuals, chi^2,
66
+ #
67
+ # chi^2 = sum_i w_i (y_i - (c0 + c1 x_i))^2
68
+ #
69
+ # for the parameters <tt>c0, c1</tt>. For unweighted data the sum is computed with
70
+ # <tt>w_i = 1</tt>.
71
+ #
72
+ # === {}[link:index.html"name="2.1] Module functions for linear regression
73
+ # ---
74
+ # * GSL::Fit::linear(x, y)
75
+ #
76
+ # This function computes the best-fit linear regression coefficients (c0,c1)
77
+ # of the model Y = c0 + c1 X for the datasets <tt>(x, y)</tt>, two vectors of
78
+ # equal length with stride 1. This returns an array of 7 elements,
79
+ # <tt>[c0, c1, cov00, cov01, cov11, chisq, status]</tt>, where <tt>c0, c1</tt> are the
80
+ # estimated parameters, <tt>cov00, cov01, cov11</tt> are the variance-covariance
81
+ # matrix elements, <tt>chisq</tt> is the sum of squares of the residuals, and
82
+ # <tt>status</tt> is the return code from the GSL function <tt>gsl_fit_linear()</tt>.
83
+ #
84
+ # ---
85
+ # * GSL::Fit::wlinear(x, w, y)
86
+ #
87
+ # This function computes the best-fit linear regression coefficients (c0,c1)
88
+ # of the model Y = c_0 + c_1 X for the weighted datasets <tt>(x, y)</tt>.
89
+ # The vector <tt>w</tt>, specifies the weight of each datapoint, which is the
90
+ # reciprocal of the variance for each datapoint in <tt>y</tt>. This returns an
91
+ # array of 7 elements, same as the method <tt>linear</tt>.
92
+ #
93
+ # ---
94
+ # * GSL::Fit::linear_est(x, c0, c1, c00, c01, c11)
95
+ # * GSL::Fit::linear_est(x, [c0, c1, c00, c01, c11])
96
+ #
97
+ # This function uses the best-fit linear regression coefficients <tt>c0,c1</tt> and
98
+ # their estimated covariance <tt>cov00,cov01,cov11</tt> to compute the fitted function
99
+ # and its standard deviation for the model Y = c_0 + c_1 X at the point <tt>x</tt>.
100
+ # The returned value is an array of <tt>[y, yerr]</tt>.
101
+ #
102
+ # == {}[link:index.html"name="3] Linear fitting without a constant term
103
+ # ---
104
+ # * GSL::Fit::mul(x, y)
105
+ #
106
+ # This function computes the best-fit linear regression coefficient <tt>c1</tt>
107
+ # of the model Y = c1 X for the datasets <tt>(x, y)</tt>, two vectors of
108
+ # equal length with stride 1. This returns an array of 4 elements,
109
+ # <tt>[c1, cov11, chisq, status]</tt>.
110
+ #
111
+ # ---
112
+ # * GSL::Fit::wmul(x, w, y)
113
+ #
114
+ # This function computes the best-fit linear regression coefficient <tt>c1</tt>
115
+ # of the model Y = c_1 X for the weighted datasets <tt>(x, y)</tt>. The vector
116
+ # <tt>w</tt> specifies the weight of each datapoint. The weight is the reciprocal
117
+ # of the variance for each datapoint in <tt>y</tt>.
118
+ #
119
+ # ---
120
+ # * GSL::Fit::mul_est(x, c1, c11)
121
+ # * GSL::Fit::mul_est(x, [c1, c11])
122
+ #
123
+ # This function uses the best-fit linear regression coefficient <tt>c1</tt>
124
+ # and its estimated covariance <tt>cov11</tt> to compute the fitted function
125
+ # <tt>y</tt> and its standard deviation <tt>y_err</tt>
126
+ # for the model Y = c_1 X at the point <tt>x</tt>.
127
+ # The returned value is an array of <tt>[y, yerr]</tt>.
128
+ #
129
+ # == {}[link:index.html"name="4] Multi-parameter fitting
130
+ # === {}[link:index.html"name="4.1] GSL::MultiFit::Workspace class
131
+ # ---
132
+ # * GSL::MultiFit::Workspace.alloc(n, p)
133
+ #
134
+ # This creates a workspace for fitting a model to <tt>n</tt>
135
+ # observations using <tt>p</tt> parameters.
136
+ #
137
+ # === {}[link:index.html"name="4.2] Module functions
138
+ # ---
139
+ # * GSL::MultiFit::linear(X, y, work)
140
+ # * GSL::MultiFit::linear(X, y)
141
+ #
142
+ # This function computes the best-fit parameters <tt>c</tt> of the model <tt>y = X c</tt>
143
+ # for the observations <tt>y</tt> and the matrix of predictor variables <tt>X</tt>.
144
+ # The variance-covariance matrix of the model parameters <tt>cov</tt> is estimated
145
+ # from the scatter of the observations about the best-fit. The sum of squares
146
+ # of the residuals from the best-fit is also calculated. The returned value is
147
+ # an array of 4 elements, <tt>[c, cov, chisq, status]</tt>, where <tt>c</tt> is a
148
+ # {GSL::Vector}[link:files/rdoc/vector_rdoc.html] object which contains the best-fit parameters,
149
+ # and <tt>cov</tt> is the variance-covariance matrix as a
150
+ # {GSL::Matrix}[link:files/rdoc/matrix_rdoc.html] object.
151
+ #
152
+ # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
153
+ # using the workspace provided in <tt>work</tt> (optional, if not given, it is allocated
154
+ # internally).
155
+ # The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve
156
+ # the accuracy of the singular values. Any components which have zero singular
157
+ # value (to machine precision) are discarded from the fit.
158
+ #
159
+ # ---
160
+ # * GSL::MultiFit::wlinear(X, w, y, work)
161
+ # * GSL::MultiFit::wlinear(X, w, y)
162
+ #
163
+ # This function computes the best-fit parameters <tt>c</tt> of the model
164
+ # <tt>y = X c</tt> for the observations <tt>y</tt> and the matrix of predictor
165
+ # variables <tt>X</tt>. The covariance matrix of the model parameters
166
+ # <tt>cov</tt> is estimated from the weighted data. The weighted sum of
167
+ # squares of the residuals from the best-fit is also calculated.
168
+ # The returned value is an array of 4 elements,
169
+ # <tt>[c: Vector, cov: Matrix, chisq: Float, status: Fixnum]</tt>.
170
+ # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
171
+ # using the workspace provided in <tt>work</tt> (optional). Any components
172
+ # which have
173
+ # zero singular value (to machine precision) are discarded from the fit.
174
+ #
175
+ # ---
176
+ # * GSL::MultiFit::linear_est(x, c, cov)
177
+ #
178
+ # (GSL-1.8 or later) This method uses the best-fit multilinear regression coefficients <tt>c</tt> and their covariance matrix <tt>cov</tt> to compute the fitted function value <tt>y</tt> and its standard deviation <tt>y_err</tt> for the model <tt>y = x.c</tt> at the point <tt>x</tt>. This returns an array [<tt>y, y_err</tt>].
179
+ # ---
180
+ # * GSL::MultiFit::linear_residuals(X, y, c[, r])
181
+ #
182
+ # (GSL-1.11 or later) This method computes the vector of residuals <tt>r = y - X c</tt> for the observations <tt>y</tt>, coefficients <tt>c</tt> and matrix of predictor variables <tt>X</tt>, and returns <tt>r</tt>.
183
+ #
184
+ # === {}[link:index.html"name="4.3] Higer level interface
185
+ #
186
+ # ---
187
+ # * GSL::MultiFit::polyfit(x, y, order)
188
+ #
189
+ # Finds the coefficient of a polynomial of order <tt>order</tt>
190
+ # that fits the vector data (<tt>x, y</tt>) in a least-square sense.
191
+ #
192
+ # Example:
193
+ # #!/usr/bin/env ruby
194
+ # require("gsl")
195
+ #
196
+ # x = Vector[1, 2, 3, 4, 5]
197
+ # y = Vector[5.5, 43.1, 128, 290.7, 498.4]
198
+ # # The results are stored in a polynomial "coef"
199
+ # coef, err, chisq, status = MultiFit.polyfit(x, y, 3)
200
+ #
201
+ # x2 = Vector.linspace(1, 5, 20)
202
+ # graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
203
+ #
204
+ # == {}[link:index.html"name="5] Examples
205
+ # === {}[link:index.html"name="5.1] Linear regression
206
+ # #!/usr/bin/env ruby
207
+ # require("gsl")
208
+ # include GSL::Fit
209
+ #
210
+ # n = 4
211
+ # x = Vector.alloc(1970, 1980, 1990, 2000)
212
+ # y = Vector.alloc(12, 11, 14, 13)
213
+ # w = Vector.alloc(0.1, 0.2, 0.3, 0.4)
214
+ #
215
+ # #for i in 0...n do
216
+ # # printf("%e %e %e\n", x[i], y[i], 1.0/Math::sqrt(w[i]))
217
+ # #end
218
+ #
219
+ # c0, c1, cov00, cov01, cov11, chisq = wlinear(x, w, y)
220
+ #
221
+ # printf("# best fit: Y = %g + %g X\n", c0, c1);
222
+ # printf("# covariance matrix:\n");
223
+ # printf("# [ %g, %g\n# %g, %g]\n",
224
+ # cov00, cov01, cov01, cov11);
225
+ # printf("# chisq = %g\n", chisq);
226
+ #
227
+ # === {}[link:index.html"name="5.2] Exponential fitting
228
+ # #!/usr/bin/env ruby
229
+ # require("gsl")
230
+ #
231
+ # # Create data
232
+ # r = Rng.alloc("knuthran")
233
+ # a = 2.0
234
+ # b = -1.0
235
+ # sigma = 0.01
236
+ # N = 10
237
+ # x = Vector.linspace(0, 5, N)
238
+ # y = a*Sf::exp(b*x) + sigma*r.gaussian
239
+ #
240
+ # # Fitting
241
+ # a2, b2, = Fit.linear(x, Sf::log(y))
242
+ # x2 = Vector.linspace(0, 5, 20)
243
+ # A = Sf::exp(a2)
244
+ # printf("Expect: a = %f, b = %f\n", a, b)
245
+ # printf("Result: a = %f, b = %f\n", A, b2)
246
+ # graph([x, y], [x2, A*Sf::exp(b2*x2)], "-C -g 3 -S 4")
247
+ #
248
+ # === {}[link:index.html"name="5.3] Multi-parameter fitting
249
+ # #!/usr/bin/env ruby
250
+ # require("gsl")
251
+ # include GSL::MultiFit
252
+ #
253
+ # Rng.env_setup()
254
+ #
255
+ # r = GSL::Rng.alloc(Rng::DEFAULT)
256
+ # n = 19
257
+ # dim = 3
258
+ # X = Matrix.alloc(n, dim)
259
+ # y = Vector.alloc(n)
260
+ # w = Vector.alloc(n)
261
+ #
262
+ # a = 0.1
263
+ # for i in 0...n
264
+ # y0 = Math::exp(a)
265
+ # sigma = 0.1*y0
266
+ # val = r.gaussian(sigma)
267
+ # X.set(i, 0, 1.0)
268
+ # X.set(i, 1, a)
269
+ # X.set(i, 2, a*a)
270
+ # y[i] = y0 + val
271
+ # w[i] = 1.0/(sigma*sigma)
272
+ # #printf("%g %g %g\n", a, y[i], sigma)
273
+ # a += 0.1
274
+ # end
275
+ #
276
+ # c, cov, chisq, status = MultiFit.wlinear(X, w, y)
277
+ #
278
+ # {prev}[link:files/rdoc/multimin_rdoc.html]
279
+ # {next}[link:files/rdoc/nonlinearfit_rdoc.html]
280
+ #
281
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
282
+ # {top}[link:files/rdoc/index_rdoc.html]
283
+ #
284
+ #
@@ -0,0 +1,94 @@
1
+ #
2
+ # = GSL::Function class
3
+ #
4
+ # == {}[link:index.html"name="1] Class Methods
5
+ #
6
+ # ---
7
+ # * GSL::Function.alloc
8
+ #
9
+ # Constructor.
10
+ #
11
+ # * ex:
12
+ # require("gsl")
13
+ # f = GSL::Function.alloc { |x| sin(x) }
14
+ #
15
+ # The value of the function is calculated by the method <tt>Function#eval</tt>, as
16
+ #
17
+ # p f.eval(x)
18
+ #
19
+ # The function can have parameters of arbitrary numbers. Here is an
20
+ # example in case of exponential function <tt>f(x; a, b) = a*exp(-b*x)</tt>.
21
+ #
22
+ # f = GSL::Function.alloc { |x, params| # x: a scalar, params: an array
23
+ # a = params[0]; b = params[1]
24
+ # a*exp(-b*x)
25
+ # }
26
+ # To evaluate the function <tt>f(x) = 2*exp(-3*x)</tt>,
27
+ # f.set_params([2, 3])
28
+ # f.eval(x)
29
+ #
30
+ # == {}[link:index.html"name="2] Methods
31
+ #
32
+ # ---
33
+ # * GSL::Function#eval(x)
34
+ # * GSL::Function#call(x)
35
+ # * GSL::Function#at(x)
36
+ # * GSL::Function#[x]
37
+ #
38
+ # These methods return a value of the function at <tt>x</tt>.
39
+ # p f.eval(2.5)
40
+ # p f.call(2.5)
41
+ # p f[2.5]
42
+ # The argument <tt>x</tt> can be a scalar, a Vector, Matrix, Array or Range.
43
+ #
44
+ # ---
45
+ # * GSL::Function#set { |x| ... }
46
+ # * GSL::Function#set(proc, params)
47
+ #
48
+ # This method sets or resets the procedure of <tt>self</tt>, as
49
+ #
50
+ # f = GSL::Function.alloc { |x| sin(x) }
51
+ # p f.eval(1.0) <- sin(1.0)
52
+ # f.set { |x| cos(x) }
53
+ # p f.eval(1.0) <- cos(1.0)
54
+ #
55
+ # ---
56
+ # * GSL::Function#set_params(params)
57
+ #
58
+ # This set the constant parameters of the function.
59
+ #
60
+ # == {}[link:index.html"name="3] Graph
61
+ # ---
62
+ # * GSL::Function#graph(x[, options])
63
+ #
64
+ # This method uses <tt>GNU graph</tt> to plot the function <tt>self</tt>.
65
+ # The argument <tt>x</tt> is given by a <tt>GSL::Vector</tt> or an <tt>Array</tt>.
66
+ #
67
+ # Ex: Plot sin(x)
68
+ # f = Function.alloc { |x| Math::sin(x) }
69
+ # x = Vector.linspace(0, 2*M_PI, 50)
70
+ # f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
71
+ #
72
+ #
73
+ # == {}[link:index.html"name="4] Example
74
+ # A quadratic function, f(x) = x^2 + 2x + 3.
75
+ #
76
+ # >> require("gsl")
77
+ # => true
78
+ # >> f = Function.alloc { |x, param| x*x + param[0]*x + param[1] }
79
+ # => #<GSL::Function:0x6e8eb0>
80
+ # >> f.set_params(2, 3)
81
+ # => #<GSL::Function:0x6e8eb0>
82
+ # >> f.eval(2) <--- Scalar
83
+ # => 11
84
+ # >> f.eval(1..4) <--- Range
85
+ # => [6.0, 11.0, 18.0, 27.0]
86
+ # >> f.eval([1, 2, 3]) <--- Array
87
+ # => [6.0, 11.0, 18.0]
88
+ # >> f.eval(Matrix.alloc([1, 2], [3, 4])) <--- GSL::Matrix
89
+ # [ 6.000e+00 1.100e+01
90
+ # 1.800e+01 2.700e+01 ]
91
+ # => #<GSL::Matrix:0x6dd1b4>
92
+ #
93
+ # {back}[link:files/rdoc/index_rdoc.html]
94
+ #
@@ -0,0 +1,137 @@
1
+ #
2
+ # = Graphics
3
+ #
4
+ # The GSL library itself does not include any utilities to visualize computation results.
5
+ # Some examples found in the GSL manual use
6
+ # {GNU graph}[http://www.gnu.org/software/plotutils/plotutils.html"target="_top]
7
+ # to show the results: the data are stored in data files, and then
8
+ # displayed by using <tt>GNU graph</tt>.
9
+ # Ruby/GSL provides simple interfaces to <tt>GNU graph</tt>
10
+ # to plot vectors or histograms directly without storing them in data files.
11
+ # Although the methods described below do not cover all the functionalities
12
+ # of <tt>GNU graph</tt>, these are useful to check calculations and get some
13
+ # speculations on the data.
14
+ #
15
+ #
16
+ # == {}[link:index.html"name="1] Plotting vectors
17
+ # ---
18
+ # * Vector.graph(y[, options])
19
+ # * Vector.graph(nil, y[, y2, y3, ..., options])
20
+ # * Vector.graph(x, y1, y2, ...., options)
21
+ # * Vector.graph([x1, y1], [x2, y2], ...., options)
22
+ # * GSL::graph(y[, options])
23
+ # * GSL::graph(nil, y[, y2, y3, ..., options])
24
+ # * GSL::graph(x, y1, y2, ...., options)
25
+ # * GSL::graph([x1, y1], [x2, y2], ...., options)
26
+ #
27
+ # These methods use the <tt>GNU graph</tt> utility to plot vectors.
28
+ # The options <tt>options</tt> given by a <tt>String</tt>. If <tt>nil</tt> is
29
+ # given for <tt>ARGV[0]</tt>, auto-generated abscissa are used.
30
+ #
31
+ # Ex:
32
+ # >> require("gsl")
33
+ # >> x = Vector.linspace(0, 2.0*M_PI, 20)
34
+ # >> c = Sf::cos(x)
35
+ # >> s = Sf::sin(x)
36
+ # >> Vector.graph(x, c, s, "-T X -C -L 'cos(x), sin(x)'")
37
+ #
38
+ # This is equivalent to <tt>Vector.graph([x, c], [x, s], "-T X -C -L 'cos(x), sin(x)'")</tt>.
39
+ #
40
+ # To create a PNG file,
41
+ # >> Vector.graph(x, c, s, "-T png -C -L 'cos(x), sin(x)' > fig.png")
42
+ #
43
+ # ---
44
+ # * GSL::Vector#graph(options)
45
+ # * GSL::Vector#graph(x[, options])
46
+ #
47
+ # These methods plot the vector using the GNU <tt>graph</tt>
48
+ # command. The options for the <tt>graph</tt> command are given by a <tt>String</tt>.
49
+ #
50
+ # Ex1:
51
+ # >> x = Vector[1..5]
52
+ # [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ]
53
+ # >> x.graph("-m 2") # dotted line
54
+ # >> x.graph("-C -l x") # color, x log scale
55
+ # >> x.graph("-X \"X axis\"") # with an axis label
56
+ #
57
+ # Ex2: x-y plot
58
+ # >> require("gsl")
59
+ # >> x = Vector.linspace(0, 2.0*M_PI, 20)
60
+ # >> c = Sf::cos(x)
61
+ # >> c.graph(x, "-T X -C -g 3 -L 'cos(x)'")
62
+ #
63
+ # == {}[link:index.html"name="2] Drawing histogram
64
+ # ---
65
+ # * GSL::Histogram#graph(options)
66
+ #
67
+ # This method uses the GNU plotutils <tt>graph</tt> to draw a histogram.
68
+ #
69
+ # == {}[link:index.html"name="3] Plotting Functions
70
+ # ---
71
+ # * GSL::Function#graph(x[, options])
72
+ #
73
+ # This method uses <tt>GNU graph</tt> to plot the function <tt>self</tt>.
74
+ # The argument <tt>x</tt> is given by a <tt>GSL::Vector</tt> or an <tt>Array</tt>.
75
+ #
76
+ # Ex: Plot sin(x)
77
+ # f = Function.alloc { |x| Math::sin(x) }
78
+ # x = Vector.linspace(0, 2*M_PI, 50)
79
+ # f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
80
+ #
81
+ # == {}[link:index.html"name="4] Other way
82
+ # The code below uses <tt>GNUPLOT</tt> directly to plot vectors.
83
+ #
84
+ # #!/usr/bin/env ruby
85
+ # require("gsl")
86
+ # x = Vector.linspace(0, 2*M_PI, 50)
87
+ # y = Sf::sin(x)
88
+ # IO.popen("gnuplot -persist", "w") do |io|
89
+ # io.print("plot '-'\n")
90
+ # x.each_index do |i|
91
+ # io.printf("%e %e\n", x[i], y[i])
92
+ # end
93
+ # io.print("e\n")
94
+ # io.flush
95
+ # end
96
+ #
97
+ # It is also possible to use the Ruby Gnuplot library.
98
+ # require("gnuplot")
99
+ # require("gsl")
100
+ # require("gsl/gnuplot");
101
+ #
102
+ # Gnuplot.open do |gp|
103
+ # Gnuplot::Plot.new( gp ) do |plot|
104
+ #
105
+ # plot.xrange "[0:10]"
106
+ # plot.yrange "[-1.5:1.5]"
107
+ # plot.title "Sin Wave Example"
108
+ # plot.xlabel "x"
109
+ # plot.ylabel "sin(x)"
110
+ # plot.pointsize 3
111
+ # plot.grid
112
+ #
113
+ # x = GSL::Vector[0..10]
114
+ # y = GSL::Sf::sin(x)
115
+ #
116
+ # plot.data = [
117
+ # Gnuplot::DataSet.new( "sin(x)" ) { |ds|
118
+ # ds.with = "lines"
119
+ # ds.title = "String function"
120
+ # ds.linewidth = 4
121
+ # },
122
+ #
123
+ # Gnuplot::DataSet.new( [x, y] ) { |ds|
124
+ # ds.with = "linespoints"
125
+ # ds.title = "Array data"
126
+ # }
127
+ # ]
128
+ #
129
+ # end
130
+ # end
131
+ #
132
+ # {prev}[link:files/rdoc/const_rdoc.html]
133
+ #
134
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
135
+ # {top}[link:files/rdoc/index_rdoc.html]
136
+ #
137
+ #