gsl 1.12.109 → 1.14.5
Sign up to get free protection for your applications and to get access to all the features.
- data/AUTHORS +6 -0
- data/COPYING +339 -0
- data/ChangeLog +556 -0
- data/{README.rdoc → README} +3 -0
- data/Rakefile +54 -10
- data/THANKS +17 -0
- data/VERSION +1 -2
- data/examples/alf/alf.gp +15 -0
- data/examples/alf/alf.rb +32 -0
- data/examples/blas/blas.rb +13 -0
- data/examples/blas/dnrm2.rb +16 -0
- data/examples/blas/level1.rb +81 -0
- data/examples/blas/level2.rb +11 -0
- data/examples/blas/level3.rb +12 -0
- data/examples/bspline.rb +57 -0
- data/examples/cdf.rb +16 -0
- data/examples/cheb.rb +21 -0
- data/examples/combination.rb +23 -0
- data/examples/complex/RC-lpf.rb +47 -0
- data/examples/complex/add.rb +36 -0
- data/examples/complex/coerce.rb +14 -0
- data/examples/complex/complex.rb +25 -0
- data/examples/complex/fpmi.rb +70 -0
- data/examples/complex/functions.rb +77 -0
- data/examples/complex/michelson.rb +36 -0
- data/examples/complex/mul.rb +28 -0
- data/examples/complex/oscillator.rb +17 -0
- data/examples/complex/set.rb +37 -0
- data/examples/const/physconst.rb +151 -0
- data/examples/const/travel.rb +45 -0
- data/examples/deriv/demo.rb +13 -0
- data/examples/deriv/deriv.rb +36 -0
- data/examples/deriv/diff.rb +35 -0
- data/examples/dht.rb +42 -0
- data/examples/dirac.rb +56 -0
- data/examples/eigen/eigen.rb +34 -0
- data/examples/eigen/herm.rb +22 -0
- data/examples/eigen/narray.rb +9 -0
- data/examples/eigen/nonsymm.rb +37 -0
- data/examples/eigen/nonsymmv.rb +43 -0
- data/examples/eigen/qhoscillator.gp +35 -0
- data/examples/eigen/qhoscillator.rb +90 -0
- data/examples/eigen/vander.rb +41 -0
- data/examples/fft/fft.rb +17 -0
- data/examples/fft/fft2.rb +17 -0
- data/examples/fft/forward.rb +25 -0
- data/examples/fft/forward2.rb +26 -0
- data/examples/fft/radix2.rb +18 -0
- data/examples/fft/real-halfcomplex.rb +33 -0
- data/examples/fft/real-halfcomplex2.rb +30 -0
- data/examples/fft/realradix2.rb +19 -0
- data/examples/fft/sunspot.dat +256 -0
- data/examples/fft/sunspot.rb +16 -0
- data/examples/fit/expdata.dat +20 -0
- data/examples/fit/expfit.rb +31 -0
- data/examples/fit/gaussfit.rb +29 -0
- data/examples/fit/gaussian_2peaks.rb +34 -0
- data/examples/fit/hillfit.rb +40 -0
- data/examples/fit/lognormal.rb +26 -0
- data/examples/fit/lorentzfit.rb +22 -0
- data/examples/fit/multifit.rb +72 -0
- data/examples/fit/ndlinear.rb +133 -0
- data/examples/fit/nonlinearfit.rb +89 -0
- data/examples/fit/plot.gp +36 -0
- data/examples/fit/polyfit.rb +9 -0
- data/examples/fit/powerfit.rb +21 -0
- data/examples/fit/sigmoidfit.rb +40 -0
- data/examples/fit/sinfit.rb +22 -0
- data/examples/fit/wlinear.rb +46 -0
- data/examples/fresnel.rb +11 -0
- data/examples/function/function.rb +36 -0
- data/examples/function/log.rb +7 -0
- data/examples/function/min.rb +33 -0
- data/examples/function/sin.rb +10 -0
- data/examples/function/synchrotron.rb +18 -0
- data/examples/gallery/butterfly.rb +7 -0
- data/examples/gallery/cayley.rb +12 -0
- data/examples/gallery/cornu.rb +23 -0
- data/examples/gallery/eight.rb +11 -0
- data/examples/gallery/koch.rb +40 -0
- data/examples/gallery/lemniscate.rb +11 -0
- data/examples/gallery/polar.rb +11 -0
- data/examples/gallery/rgplot/cossin.rb +35 -0
- data/examples/gallery/rgplot/rgplot.replaced +0 -0
- data/examples/gallery/rgplot/roesller.rb +55 -0
- data/examples/gallery/roesller.rb +39 -0
- data/examples/gallery/scarabaeus.rb +14 -0
- data/examples/histogram/cauchy.rb +27 -0
- data/examples/histogram/cauchy.sh +2 -0
- data/examples/histogram/exponential.rb +19 -0
- data/examples/histogram/gauss.rb +16 -0
- data/examples/histogram/gsl-histogram.rb +40 -0
- data/examples/histogram/histo2d.rb +31 -0
- data/examples/histogram/histo3d.rb +34 -0
- data/examples/histogram/histogram-pdf.rb +27 -0
- data/examples/histogram/histogram.rb +26 -0
- data/examples/histogram/integral.rb +28 -0
- data/examples/histogram/poisson.rb +27 -0
- data/examples/histogram/power.rb +25 -0
- data/examples/histogram/rebin.rb +17 -0
- data/examples/histogram/smp.dat +5 -0
- data/examples/histogram/xexp.rb +21 -0
- data/examples/integration/ahmed.rb +21 -0
- data/examples/integration/cosmology.rb +75 -0
- data/examples/integration/friedmann.gp +16 -0
- data/examples/integration/friedmann.rb +35 -0
- data/examples/integration/gamma-zeta.rb +35 -0
- data/examples/integration/integration.rb +22 -0
- data/examples/integration/qag.rb +8 -0
- data/examples/integration/qag2.rb +14 -0
- data/examples/integration/qag3.rb +8 -0
- data/examples/integration/qagi.rb +28 -0
- data/examples/integration/qagi2.rb +49 -0
- data/examples/integration/qagiu.rb +29 -0
- data/examples/integration/qagp.rb +20 -0
- data/examples/integration/qags.rb +14 -0
- data/examples/integration/qawc.rb +18 -0
- data/examples/integration/qawf.rb +41 -0
- data/examples/integration/qawo.rb +29 -0
- data/examples/integration/qaws.rb +30 -0
- data/examples/integration/qng.rb +17 -0
- data/examples/interp/demo.gp +20 -0
- data/examples/interp/demo.rb +45 -0
- data/examples/interp/interp.rb +37 -0
- data/examples/interp/points +10 -0
- data/examples/interp/spline.rb +20 -0
- data/examples/jacobi/deriv.rb +40 -0
- data/examples/jacobi/integrate.rb +34 -0
- data/examples/jacobi/interp.rb +43 -0
- data/examples/jacobi/jacobi.rb +11 -0
- data/examples/linalg/HH.rb +15 -0
- data/examples/linalg/HH_narray.rb +13 -0
- data/examples/linalg/LQ_solve.rb +73 -0
- data/examples/linalg/LU.rb +84 -0
- data/examples/linalg/LU2.rb +31 -0
- data/examples/linalg/LU_narray.rb +24 -0
- data/examples/linalg/PTLQ.rb +47 -0
- data/examples/linalg/QR.rb +18 -0
- data/examples/linalg/QRPT.rb +47 -0
- data/examples/linalg/QR_solve.rb +78 -0
- data/examples/linalg/QR_solve_narray.rb +13 -0
- data/examples/linalg/SV.rb +16 -0
- data/examples/linalg/SV_narray.rb +12 -0
- data/examples/linalg/SV_solve.rb +49 -0
- data/examples/linalg/chol.rb +29 -0
- data/examples/linalg/chol_narray.rb +15 -0
- data/examples/linalg/complex.rb +57 -0
- data/examples/linalg/invert_narray.rb +10 -0
- data/examples/math/const.rb +67 -0
- data/examples/math/elementary.rb +35 -0
- data/examples/math/functions.rb +41 -0
- data/examples/math/inf_nan.rb +34 -0
- data/examples/math/minmax.rb +22 -0
- data/examples/math/power.rb +18 -0
- data/examples/math/test.rb +31 -0
- data/examples/matrix/a.dat +0 -0
- data/examples/matrix/add.rb +45 -0
- data/examples/matrix/b.dat +4 -0
- data/examples/matrix/cat.rb +31 -0
- data/examples/matrix/colvectors.rb +24 -0
- data/examples/matrix/complex.rb +41 -0
- data/examples/matrix/det.rb +29 -0
- data/examples/matrix/diagonal.rb +23 -0
- data/examples/matrix/get_all.rb +159 -0
- data/examples/matrix/hilbert.rb +31 -0
- data/examples/matrix/iterator.rb +19 -0
- data/examples/matrix/matrix.rb +57 -0
- data/examples/matrix/minmax.rb +53 -0
- data/examples/matrix/mul.rb +39 -0
- data/examples/matrix/rand.rb +20 -0
- data/examples/matrix/read.rb +29 -0
- data/examples/matrix/rowcol.rb +47 -0
- data/examples/matrix/set.rb +41 -0
- data/examples/matrix/set_all.rb +100 -0
- data/examples/matrix/view.rb +32 -0
- data/examples/matrix/view_all.rb +148 -0
- data/examples/matrix/write.rb +23 -0
- data/examples/min.rb +29 -0
- data/examples/monte/miser.rb +47 -0
- data/examples/monte/monte.rb +47 -0
- data/examples/monte/plain.rb +47 -0
- data/examples/monte/vegas.rb +46 -0
- data/examples/multimin/bundle.rb +66 -0
- data/examples/multimin/cqp.rb +109 -0
- data/examples/multimin/fdfminimizer.rb +40 -0
- data/examples/multimin/fminimizer.rb +41 -0
- data/examples/multiroot/demo.rb +36 -0
- data/examples/multiroot/fdfsolver.rb +50 -0
- data/examples/multiroot/fsolver.rb +33 -0
- data/examples/multiroot/fsolver2.rb +32 -0
- data/examples/multiroot/fsolver3.rb +26 -0
- data/examples/narray/histogram.rb +14 -0
- data/examples/narray/mandel.rb +27 -0
- data/examples/narray/narray.rb +28 -0
- data/examples/narray/narray2.rb +44 -0
- data/examples/narray/sf.rb +26 -0
- data/examples/ntuple/create.rb +17 -0
- data/examples/ntuple/project.rb +31 -0
- data/examples/odeiv/binarysystem.gp +23 -0
- data/examples/odeiv/binarysystem.rb +104 -0
- data/examples/odeiv/demo.gp +24 -0
- data/examples/odeiv/demo.rb +69 -0
- data/examples/odeiv/demo2.gp +26 -0
- data/examples/odeiv/duffing.rb +45 -0
- data/examples/odeiv/frei1.rb +109 -0
- data/examples/odeiv/frei2.rb +76 -0
- data/examples/odeiv/legendre.rb +52 -0
- data/examples/odeiv/odeiv.rb +32 -0
- data/examples/odeiv/odeiv2.rb +45 -0
- data/examples/odeiv/oscillator.rb +42 -0
- data/examples/odeiv/sedov.rb +97 -0
- data/examples/odeiv/whitedwarf.gp +40 -0
- data/examples/odeiv/whitedwarf.rb +158 -0
- data/examples/ool/conmin.rb +100 -0
- data/examples/ool/gencan.rb +99 -0
- data/examples/ool/pgrad.rb +100 -0
- data/examples/ool/spg.rb +100 -0
- data/examples/pdf/bernoulli.rb +5 -0
- data/examples/pdf/beta.rb +7 -0
- data/examples/pdf/binomiral.rb +10 -0
- data/examples/pdf/cauchy.rb +6 -0
- data/examples/pdf/chisq.rb +8 -0
- data/examples/pdf/exponential.rb +7 -0
- data/examples/pdf/exppow.rb +6 -0
- data/examples/pdf/fdist.rb +7 -0
- data/examples/pdf/flat.rb +7 -0
- data/examples/pdf/gamma.rb +8 -0
- data/examples/pdf/gauss-tail.rb +5 -0
- data/examples/pdf/gauss.rb +6 -0
- data/examples/pdf/geometric.rb +5 -0
- data/examples/pdf/gumbel.rb +6 -0
- data/examples/pdf/hypergeometric.rb +11 -0
- data/examples/pdf/landau.rb +5 -0
- data/examples/pdf/laplace.rb +7 -0
- data/examples/pdf/logarithmic.rb +5 -0
- data/examples/pdf/logistic.rb +6 -0
- data/examples/pdf/lognormal.rb +6 -0
- data/examples/pdf/neg-binomiral.rb +10 -0
- data/examples/pdf/pareto.rb +7 -0
- data/examples/pdf/pascal.rb +10 -0
- data/examples/pdf/poisson.rb +5 -0
- data/examples/pdf/rayleigh-tail.rb +6 -0
- data/examples/pdf/rayleigh.rb +6 -0
- data/examples/pdf/tdist.rb +6 -0
- data/examples/pdf/weibull.rb +8 -0
- data/examples/permutation/ex1.rb +22 -0
- data/examples/permutation/permutation.rb +16 -0
- data/examples/poly/bell.rb +6 -0
- data/examples/poly/bessel.rb +6 -0
- data/examples/poly/cheb.rb +6 -0
- data/examples/poly/cheb_II.rb +6 -0
- data/examples/poly/cubic.rb +9 -0
- data/examples/poly/demo.rb +20 -0
- data/examples/poly/eval.rb +28 -0
- data/examples/poly/eval_derivs.rb +14 -0
- data/examples/poly/fit.rb +21 -0
- data/examples/poly/hermite.rb +6 -0
- data/examples/poly/poly.rb +13 -0
- data/examples/poly/quadratic.rb +25 -0
- data/examples/random/diffusion.rb +34 -0
- data/examples/random/gaussian.rb +9 -0
- data/examples/random/generator.rb +27 -0
- data/examples/random/hdsobol.rb +21 -0
- data/examples/random/poisson.rb +9 -0
- data/examples/random/qrng.rb +19 -0
- data/examples/random/randomwalk.rb +37 -0
- data/examples/random/randomwalk2d.rb +19 -0
- data/examples/random/rayleigh.rb +36 -0
- data/examples/random/rng.rb +33 -0
- data/examples/random/rngextra.rb +14 -0
- data/examples/roots/bisection.rb +25 -0
- data/examples/roots/brent.rb +43 -0
- data/examples/roots/demo.rb +30 -0
- data/examples/roots/newton.rb +46 -0
- data/examples/roots/recombination.gp +12 -0
- data/examples/roots/recombination.rb +61 -0
- data/examples/roots/steffenson.rb +48 -0
- data/examples/sf/ShiChi.rb +6 -0
- data/examples/sf/SiCi.rb +6 -0
- data/examples/sf/airy_Ai.rb +8 -0
- data/examples/sf/airy_Bi.rb +8 -0
- data/examples/sf/bessel_IK.rb +12 -0
- data/examples/sf/bessel_JY.rb +13 -0
- data/examples/sf/beta_inc.rb +9 -0
- data/examples/sf/clausen.rb +6 -0
- data/examples/sf/dawson.rb +5 -0
- data/examples/sf/debye.rb +9 -0
- data/examples/sf/dilog.rb +6 -0
- data/examples/sf/ellint.rb +6 -0
- data/examples/sf/expint.rb +8 -0
- data/examples/sf/fermi.rb +10 -0
- data/examples/sf/gamma_inc_P.rb +9 -0
- data/examples/sf/gegenbauer.rb +8 -0
- data/examples/sf/hyperg.rb +7 -0
- data/examples/sf/laguerre.rb +19 -0
- data/examples/sf/lambertW.rb +5 -0
- data/examples/sf/legendre_P.rb +10 -0
- data/examples/sf/lngamma.rb +5 -0
- data/examples/sf/psi.rb +54 -0
- data/examples/sf/sphbessel.gp +27 -0
- data/examples/sf/sphbessel.rb +30 -0
- data/examples/sf/synchrotron.rb +5 -0
- data/examples/sf/transport.rb +10 -0
- data/examples/sf/zetam1.rb +5 -0
- data/examples/siman.rb +44 -0
- data/examples/sort/heapsort.rb +23 -0
- data/examples/sort/heapsort_vector_complex.rb +21 -0
- data/examples/sort/sort.rb +23 -0
- data/examples/sort/sort2.rb +16 -0
- data/examples/stats/mean.rb +17 -0
- data/examples/stats/statistics.rb +18 -0
- data/examples/stats/test.rb +9 -0
- data/examples/sum.rb +34 -0
- data/examples/tamu_anova.rb +18 -0
- data/examples/vector/a.dat +0 -0
- data/examples/vector/add.rb +56 -0
- data/examples/vector/b.dat +4 -0
- data/examples/vector/c.dat +3 -0
- data/examples/vector/collect.rb +26 -0
- data/examples/vector/compare.rb +28 -0
- data/examples/vector/complex.rb +51 -0
- data/examples/vector/complex_get_all.rb +85 -0
- data/examples/vector/complex_set_all.rb +131 -0
- data/examples/vector/complex_view_all.rb +77 -0
- data/examples/vector/connect.rb +22 -0
- data/examples/vector/decimate.rb +38 -0
- data/examples/vector/diff.rb +31 -0
- data/examples/vector/filescan.rb +17 -0
- data/examples/vector/floor.rb +23 -0
- data/examples/vector/get_all.rb +82 -0
- data/examples/vector/gnuplot.rb +38 -0
- data/examples/vector/graph.rb +28 -0
- data/examples/vector/histogram.rb +22 -0
- data/examples/vector/linspace.rb +24 -0
- data/examples/vector/log.rb +17 -0
- data/examples/vector/logic.rb +33 -0
- data/examples/vector/logspace.rb +25 -0
- data/examples/vector/minmax.rb +47 -0
- data/examples/vector/mul.rb +49 -0
- data/examples/vector/narray.rb +46 -0
- data/examples/vector/read.rb +29 -0
- data/examples/vector/set.rb +35 -0
- data/examples/vector/set_all.rb +121 -0
- data/examples/vector/smpv.dat +15 -0
- data/examples/vector/test.rb +43 -0
- data/examples/vector/test_gslblock.rb +58 -0
- data/examples/vector/vector.rb +110 -0
- data/examples/vector/view.rb +35 -0
- data/examples/vector/view_all.rb +73 -0
- data/examples/vector/where.rb +29 -0
- data/examples/vector/write.rb +24 -0
- data/examples/vector/zip.rb +34 -0
- data/examples/wavelet/ecg.dat +256 -0
- data/examples/wavelet/wavelet1.rb +50 -0
- data/ext/extconf.rb +9 -0
- data/ext/gsl.c +10 -1
- data/ext/histogram.c +6 -2
- data/ext/integration.c +39 -0
- data/ext/matrix_complex.c +1 -1
- data/ext/multiset.c +214 -0
- data/ext/nmf.c +4 -0
- data/ext/nmf_wrap.c +3 -0
- data/ext/vector_complex.c +1 -1
- data/ext/vector_double.c +3 -3
- data/ext/vector_source.c +6 -6
- data/include/rb_gsl.h +7 -0
- data/include/rb_gsl_common.h +6 -0
- data/rdoc/alf.rdoc +77 -0
- data/rdoc/blas.rdoc +269 -0
- data/rdoc/bspline.rdoc +42 -0
- data/rdoc/changes.rdoc +164 -0
- data/rdoc/cheb.rdoc +99 -0
- data/rdoc/cholesky_complex.rdoc +46 -0
- data/rdoc/combi.rdoc +125 -0
- data/rdoc/complex.rdoc +210 -0
- data/rdoc/const.rdoc +546 -0
- data/rdoc/dht.rdoc +122 -0
- data/rdoc/diff.rdoc +133 -0
- data/rdoc/ehandling.rdoc +50 -0
- data/rdoc/eigen.rdoc +401 -0
- data/rdoc/fft.rdoc +535 -0
- data/rdoc/fit.rdoc +284 -0
- data/rdoc/function.rdoc +94 -0
- data/rdoc/graph.rdoc +137 -0
- data/rdoc/hist.rdoc +409 -0
- data/rdoc/hist2d.rdoc +279 -0
- data/rdoc/hist3d.rdoc +112 -0
- data/rdoc/index.rdoc +62 -0
- data/rdoc/integration.rdoc +398 -0
- data/rdoc/interp.rdoc +231 -0
- data/rdoc/intro.rdoc +27 -0
- data/rdoc/linalg.rdoc +681 -0
- data/rdoc/linalg_complex.rdoc +88 -0
- data/rdoc/math.rdoc +276 -0
- data/rdoc/matrix.rdoc +1093 -0
- data/rdoc/min.rdoc +189 -0
- data/rdoc/monte.rdoc +234 -0
- data/rdoc/multimin.rdoc +312 -0
- data/rdoc/multiroot.rdoc +293 -0
- data/rdoc/narray.rdoc +173 -0
- data/rdoc/ndlinear.rdoc +247 -0
- data/rdoc/nonlinearfit.rdoc +348 -0
- data/rdoc/ntuple.rdoc +88 -0
- data/rdoc/odeiv.rdoc +378 -0
- data/rdoc/perm.rdoc +221 -0
- data/rdoc/poly.rdoc +335 -0
- data/rdoc/qrng.rdoc +90 -0
- data/rdoc/randist.rdoc +233 -0
- data/rdoc/ref.rdoc +93 -0
- data/rdoc/rng.rdoc +203 -0
- data/rdoc/rngextra.rdoc +11 -0
- data/rdoc/roots.rdoc +305 -0
- data/rdoc/screenshot.rdoc +40 -0
- data/rdoc/sf.rdoc +1622 -0
- data/rdoc/siman.rdoc +89 -0
- data/rdoc/sort.rdoc +94 -0
- data/rdoc/start.rdoc +16 -0
- data/rdoc/stats.rdoc +219 -0
- data/rdoc/sum.rdoc +65 -0
- data/rdoc/tensor.rdoc +251 -0
- data/rdoc/tut.rdoc +5 -0
- data/rdoc/use.rdoc +177 -0
- data/rdoc/vector.rdoc +1243 -0
- data/rdoc/vector_complex.rdoc +347 -0
- data/rdoc/wavelet.rdoc +218 -0
- data/setup.rb +1585 -0
- data/tests/blas/amax.rb +14 -0
- data/tests/blas/asum.rb +16 -0
- data/tests/blas/axpy.rb +25 -0
- data/tests/blas/copy.rb +23 -0
- data/tests/blas/dot.rb +23 -0
- data/tests/bspline.rb +53 -0
- data/tests/cdf.rb +1388 -0
- data/tests/cheb.rb +112 -0
- data/tests/combination.rb +123 -0
- data/tests/complex.rb +17 -0
- data/tests/const.rb +24 -0
- data/tests/deriv.rb +85 -0
- data/tests/dht/dht1.rb +17 -0
- data/tests/dht/dht2.rb +23 -0
- data/tests/dht/dht3.rb +23 -0
- data/tests/dht/dht4.rb +23 -0
- data/tests/diff.rb +78 -0
- data/tests/eigen/eigen.rb +220 -0
- data/tests/eigen/gen.rb +105 -0
- data/tests/eigen/genherm.rb +66 -0
- data/tests/eigen/gensymm.rb +68 -0
- data/tests/eigen/nonsymm.rb +53 -0
- data/tests/eigen/nonsymmv.rb +53 -0
- data/tests/eigen/symm-herm.rb +74 -0
- data/tests/err.rb +58 -0
- data/tests/fit.rb +124 -0
- data/tests/gsl_test.rb +118 -0
- data/tests/gsl_test2.rb +107 -0
- data/tests/histo.rb +12 -0
- data/tests/integration/integration1.rb +72 -0
- data/tests/integration/integration2.rb +71 -0
- data/tests/integration/integration3.rb +71 -0
- data/tests/integration/integration4.rb +71 -0
- data/tests/interp.rb +45 -0
- data/tests/linalg/HH.rb +64 -0
- data/tests/linalg/LU.rb +47 -0
- data/tests/linalg/QR.rb +77 -0
- data/tests/linalg/SV.rb +24 -0
- data/tests/linalg/TDN.rb +116 -0
- data/tests/linalg/TDS.rb +122 -0
- data/tests/linalg/bidiag.rb +73 -0
- data/tests/linalg/cholesky.rb +20 -0
- data/tests/linalg/linalg.rb +158 -0
- data/tests/matrix/matrix_nmf_test.rb +39 -0
- data/tests/matrix/matrix_test.rb +48 -0
- data/tests/min.rb +99 -0
- data/tests/monte/miser.rb +31 -0
- data/tests/monte/vegas.rb +45 -0
- data/tests/multifit/test_2dgauss.rb +112 -0
- data/tests/multifit/test_brown.rb +90 -0
- data/tests/multifit/test_enso.rb +246 -0
- data/tests/multifit/test_filip.rb +155 -0
- data/tests/multifit/test_gauss.rb +97 -0
- data/tests/multifit/test_longley.rb +110 -0
- data/tests/multifit/test_multifit.rb +52 -0
- data/tests/multimin.rb +139 -0
- data/tests/multiroot.rb +131 -0
- data/tests/multiset.rb +52 -0
- data/tests/odeiv.rb +353 -0
- data/tests/poly/poly.rb +242 -0
- data/tests/poly/special.rb +65 -0
- data/tests/qrng.rb +131 -0
- data/tests/quartic.rb +29 -0
- data/tests/randist.rb +134 -0
- data/tests/rng.rb +305 -0
- data/tests/roots.rb +76 -0
- data/tests/run-test.sh +17 -0
- data/tests/sf/gsl_test_sf.rb +249 -0
- data/tests/sf/test_airy.rb +83 -0
- data/tests/sf/test_bessel.rb +306 -0
- data/tests/sf/test_coulomb.rb +17 -0
- data/tests/sf/test_dilog.rb +25 -0
- data/tests/sf/test_gamma.rb +209 -0
- data/tests/sf/test_hyperg.rb +356 -0
- data/tests/sf/test_legendre.rb +227 -0
- data/tests/sf/test_mathieu.rb +59 -0
- data/tests/sf/test_sf.rb +839 -0
- data/tests/stats.rb +174 -0
- data/tests/sum.rb +98 -0
- data/tests/sys.rb +323 -0
- data/tests/tensor.rb +419 -0
- data/tests/vector/vector_complex_test.rb +101 -0
- data/tests/vector/vector_test.rb +141 -0
- data/tests/wavelet.rb +142 -0
- metadata +596 -15
data/rdoc/fft.rdoc
ADDED
@@ -0,0 +1,535 @@
|
|
1
|
+
#
|
2
|
+
# = Fast Fourier Transforms
|
3
|
+
# Contents:
|
4
|
+
# 1. {Mathematical Definitions}[link:files/rdoc/fft_rdoc.html#1]
|
5
|
+
# 1. {Complex data FFTs}[link:files/rdoc/fft_rdoc.html#2]
|
6
|
+
# 1. {Overview of complex data FFTs}[link:files/rdoc/fft_rdoc.html#2.1]
|
7
|
+
# 1. {Radix-2 FFT routines for complex data}[link:files/rdoc/fft_rdoc.html#2.2]
|
8
|
+
# 1. {Example of the complex Radix-2 FFT}[link:files/rdoc/fft_rdoc.html#2.2.1]
|
9
|
+
# 1. {Mixed-radix FFT routines for complex data}[link:files/rdoc/fft_rdoc.html#2.3]
|
10
|
+
# 1. {GSL::FFT::ComplexWavetable class}[link:files/rdoc/fft_rdoc.html#2.3.1]
|
11
|
+
# 1. {GSL::FFT::ComplexWorkspace class}[link:files/rdoc/fft_rdoc.html#2.3.2]
|
12
|
+
# 1. {Methods to compute the transform}[link:files/rdoc/fft_rdoc.html#2.3.3]
|
13
|
+
# 1. {Example of the mixed-radix FFT}[link:files/rdoc/fft_rdoc.html#2.3.4]
|
14
|
+
# 1. {Real data FFTs}[link:files/rdoc/fft_rdoc.html#3]
|
15
|
+
# 1. {Overview of real data FFTs}[link:files/rdoc/fft_rdoc.html#3.1]
|
16
|
+
# 1. {Radix-2 FFT routines for real data}[link:files/rdoc/fft_rdoc.html#3.2]
|
17
|
+
# 1. {Mixed-radix FFT routines for real data}[link:files/rdoc/fft_rdoc.html#3.3]
|
18
|
+
# 1. {Data storage scheme}[link:files/rdoc/fft_rdoc.html#3.3.1]
|
19
|
+
# 1. {Wavetable and Workspace classes}[link:files/rdoc/fft_rdoc.html#3.3.2]
|
20
|
+
# 1. {Methods for real FFTs}[link:files/rdoc/fft_rdoc.html#3.3.3]
|
21
|
+
# 1. {Examples}[link:files/rdoc/fft_rdoc.html#3.3.4]
|
22
|
+
#
|
23
|
+
# == {}[link:index.html"name="1] Mathematical Definitions
|
24
|
+
# Fast Fourier Transforms are efficient algorithms for calculating the discrete
|
25
|
+
# fourier transform (DFT),
|
26
|
+
#
|
27
|
+
# The DFT usually arises as an approximation to the continuous fourier transform
|
28
|
+
# when functions are sampled at discrete intervals in space or time.
|
29
|
+
# The naive evaluation of the discrete fourier transform is a matrix-vector
|
30
|
+
# multiplication W\vec{z}. A general matrix-vector multiplication takes O(N^2)
|
31
|
+
# operations for N data-points. Fast fourier transform algorithms use a
|
32
|
+
# divide-and-conquer strategy to factorize the matrix W into smaller
|
33
|
+
# sub-matrices, corresponding to the integer factors of the length N.
|
34
|
+
# If N can be factorized into a product of integers f_1 f_2 ... f_n then the
|
35
|
+
# DFT can be computed in O(N \sum f_i) operations. For a radix-2 FFT this
|
36
|
+
# gives an operation count of O(N \log_2 N).
|
37
|
+
#
|
38
|
+
# All the FFT functions offer three types of transform: forwards, inverse and
|
39
|
+
# backwards, based on the same mathematical definitions. The definition of the
|
40
|
+
# forward fourier transform, x = FFT(z), is, and the definition of the inverse
|
41
|
+
# fourier transform, x = IFFT(z), is, The factor of 1/N makes this a true
|
42
|
+
# inverse. For example, a call to gsl_fft_complex_forward followed by a call
|
43
|
+
# to gsl_fft_complex_inverse should return the original data (within numerical
|
44
|
+
# errors).
|
45
|
+
#
|
46
|
+
# In general there are two possible choices for the sign of the exponential
|
47
|
+
# in the transform/ inverse-transform pair. GSL follows the same convention as
|
48
|
+
# FFTPACK, using a negative exponential for the forward transform.
|
49
|
+
# The advantage of this convention is that the inverse transform recreates
|
50
|
+
# the original function with simple fourier synthesis. Numerical Recipes uses
|
51
|
+
# the opposite convention, a positive exponential in the forward transform.
|
52
|
+
#
|
53
|
+
# The backwards FFT is simply our terminology for an unscaled version of the
|
54
|
+
# inverse FFT, When the overall scale of the result is unimportant it is often
|
55
|
+
# convenient to use the backwards FFT instead of the inverse to save unnecessary
|
56
|
+
# divisions.
|
57
|
+
#
|
58
|
+
#
|
59
|
+
# == {}[link:index.html"name="2] Complex data FFTs
|
60
|
+
# === {}[link:index.html"name="2.1] Overview of complex data FFTs
|
61
|
+
# The complex data FFT routines are provided as instance methods of
|
62
|
+
# {GSL::Vector::Complex}[link:files/rdoc/vector_complex_rdoc.html].
|
63
|
+
#
|
64
|
+
# Here is a table which shows the layout of the array data, and the correspondence
|
65
|
+
# between the time-domain complex data z, and the frequency-domain complex data x.
|
66
|
+
#
|
67
|
+
# index z x = FFT(z)
|
68
|
+
#
|
69
|
+
# 0 z(t = 0) x(f = 0)
|
70
|
+
# 1 z(t = 1) x(f = 1/(N Delta))
|
71
|
+
# 2 z(t = 2) x(f = 2/(N Delta))
|
72
|
+
# . ........ ..................
|
73
|
+
# N/2 z(t = N/2) x(f = +1/(2 Delta),
|
74
|
+
# -1/(2 Delta))
|
75
|
+
# . ........ ..................
|
76
|
+
# N-3 z(t = N-3) x(f = -3/(N Delta))
|
77
|
+
# N-2 z(t = N-2) x(f = -2/(N Delta))
|
78
|
+
# N-1 z(t = N-1) x(f = -1/(N Delta))
|
79
|
+
#
|
80
|
+
#
|
81
|
+
# When N is even the location N/2 contains the most positive and negative
|
82
|
+
# frequencies +1/(2 Delta), -1/(2 Delta) which are equivalent. If N is odd then
|
83
|
+
# general structure of the table above still applies, but N/2 does not appear.
|
84
|
+
#
|
85
|
+
# {GSL::Vector::Complex}[link:files/rdoc/vector_complex_rdoc.html] provides four methods for
|
86
|
+
# shifting the frequency domain data between <b>FFT order</b>, shown in the table
|
87
|
+
# above, and <b>natural order</b>, which has the most negative freqeuncy component
|
88
|
+
# first, the zero frequency component in the middle, and the most positive
|
89
|
+
# frequency component last.
|
90
|
+
#
|
91
|
+
# ---
|
92
|
+
# * GSL::Vector::Complex#fftshift
|
93
|
+
# * GSL::Vector::Complex#fftshift!
|
94
|
+
#
|
95
|
+
# Shifts the data of <tt>self</tt> from FFT order to natural order. The
|
96
|
+
# <tt>#fftshift</tt> method leaves <tt>self</tt> unmodified and returns a new
|
97
|
+
# <tt>GSL::Vector::Complex</tt> object containing the shifted data. The
|
98
|
+
# <tt>#fftshift!</tt> method modifies <tt>self</tt> in-place and returns
|
99
|
+
# <tt>self</tt>. Note that <tt>#fftshift</tt> and <tt>#ifftshift</tt> are equivalent
|
100
|
+
# for even lengths, but not for odd lengths.
|
101
|
+
#
|
102
|
+
# ---
|
103
|
+
# * GSL::Vector::Complex#ifftshift
|
104
|
+
# * GSL::Vector::Complex#ifftshift!
|
105
|
+
#
|
106
|
+
# Shifts the data of <tt>self</tt> from natural order to FFT order. The
|
107
|
+
# <tt>#ifftshift</tt> method leaves <tt>self</tt> unmodified and returns a new
|
108
|
+
# <tt>GSL::Vector::Complex</tt> object containing the shifted data. The
|
109
|
+
# <tt>#ifftshift!</tt> method modifies <tt>self</tt> in-place and returns
|
110
|
+
# <tt>self</tt>. Note that <tt>#fftshift</tt> and <tt>#ifftshift</tt> are equivalent
|
111
|
+
# for even lengths, but not for odd lengths.
|
112
|
+
#
|
113
|
+
# === {}[link:index.html"name="2.2] Radix-2 FFT routines for complex data
|
114
|
+
# The radix-2 algorithms are simple and compact, although not necessarily the
|
115
|
+
# most efficient. They use the Cooley-Tukey algorithm to compute complex
|
116
|
+
# FFTs for lengths which are a power of 2 -- no additional storage is required.
|
117
|
+
# The corresponding self-sorting mixed-radix routines offer better performance
|
118
|
+
# at the expense of requiring additional working space.
|
119
|
+
#
|
120
|
+
# <b>The FFT methods described below return FFTed data, and the input vector is
|
121
|
+
# not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
|
122
|
+
#
|
123
|
+
# ---
|
124
|
+
# * GSL::Vector::Complex#radix2_forward
|
125
|
+
# * GSL::Vector::Complex#radix2_backward
|
126
|
+
# * GSL::Vector::Complex#radix2_inverse
|
127
|
+
#
|
128
|
+
#
|
129
|
+
# These functions compute forward, backward and inverse FFTs of the complex
|
130
|
+
# vector using a radix-2 decimation-in-time algorithm. The length of the
|
131
|
+
# transform is restricted to powers of two. These methods return the FFTed
|
132
|
+
# data, and the input data is not changed.
|
133
|
+
#
|
134
|
+
# ---
|
135
|
+
# * GSL::Vector::Complex#radix2_transform(sign)
|
136
|
+
#
|
137
|
+
#
|
138
|
+
# The sign argument can be either <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
|
139
|
+
#
|
140
|
+
# ---
|
141
|
+
# * GSL::Vector::Complex#radix2_dif_forward
|
142
|
+
# * GSL::Vector::Complex#radix2_dif_backward
|
143
|
+
# * GSL::Vector::Complex#radix2_dif_inverse
|
144
|
+
# * GSL::Vector::Complex#radix2_dif_transform
|
145
|
+
#
|
146
|
+
#
|
147
|
+
# These are decimation-in-frequency versions of the radix-2 FFT functions.
|
148
|
+
#
|
149
|
+
# ==== {}[link:index.html"name="2.2.1] Example of complex Radix-2 FFT
|
150
|
+
# Here is an example program which computes the FFT of a short pulse in a
|
151
|
+
# sample of length 128. To make the resulting Fourier transform real the pulse
|
152
|
+
# is defined for equal positive and negative times (-10 ... 10), where the
|
153
|
+
# negative times wrap around the end of the array.
|
154
|
+
#
|
155
|
+
# require("gsl")
|
156
|
+
# include GSL
|
157
|
+
#
|
158
|
+
# n = 128
|
159
|
+
# data = Vector::Complex[n]
|
160
|
+
#
|
161
|
+
# data[0] = 1.0
|
162
|
+
# for i in 1..10 do
|
163
|
+
# data[i] = 1.0
|
164
|
+
# data[n-i] = 1.0
|
165
|
+
# end
|
166
|
+
#
|
167
|
+
# #for i in 0...n do
|
168
|
+
# # printf("%d %e %e\n", i, data[i].re, data[i].im)
|
169
|
+
# #end
|
170
|
+
#
|
171
|
+
# # You can choose whichever you like
|
172
|
+
# #ffted = data.radix2_forward()
|
173
|
+
# ffted = data.radix2_transform(FFT::FORWARD)
|
174
|
+
# ffted /= Math::sqrt(n)
|
175
|
+
# for i in 0...n do
|
176
|
+
# printf("%d %e %e\n", i, ffted[i].re, ffted[i].im)
|
177
|
+
# end
|
178
|
+
#
|
179
|
+
# === {}[link:index.html"name="2.3] Mixed-radix FFT routines for complex data
|
180
|
+
#
|
181
|
+
# ==== {}[link:index.html"name="2.3.1] GSL::FFT::ComplexWavetable class
|
182
|
+
# ---
|
183
|
+
# * GSL::FFT::ComplexWavetable.alloc(n)
|
184
|
+
#
|
185
|
+
#
|
186
|
+
# This method prepares a trigonometric lookup table for a complex FFT of length <tt>n</tt>.
|
187
|
+
# The length <tt>n</tt> is factorized into a product of subtransforms, and the factors and their
|
188
|
+
# trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are
|
189
|
+
# computed using direct calls to sin and cos, for accuracy. Recursion relations could be used
|
190
|
+
# to compute the lookup table faster, but if an application performs many FFTs of the same
|
191
|
+
# length then this computation is a one-off overhead which does not affect the final
|
192
|
+
# throughput.
|
193
|
+
#
|
194
|
+
# The <tt>Wavetable</tt> object can be used repeatedly for any transform of the same length.
|
195
|
+
# The table is not modified by calls to any of the other FFT functions. The same wavetable
|
196
|
+
# can be used for both forward and backward (or inverse) transforms of a given length.
|
197
|
+
#
|
198
|
+
# ---
|
199
|
+
# * GSL::FFT::ComplexWavetable#n
|
200
|
+
# * GSL::FFT::ComplexWavetable#nf
|
201
|
+
# * GSL::FFT::ComplexWavetable#factor
|
202
|
+
#
|
203
|
+
#
|
204
|
+
# ==== {}[link:index.html"name="2.3.2] GSL::FFT::ComplexWorkspace class
|
205
|
+
# ---
|
206
|
+
# * GSL::FFT::ComplexWorkspace.alloc(n)
|
207
|
+
#
|
208
|
+
#
|
209
|
+
# Creates a workspace for a complex transform of length <tt>n</tt>.
|
210
|
+
#
|
211
|
+
# ==== {}[link:index.html"name="2.3.3] Methods to compute transform
|
212
|
+
# <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
|
213
|
+
#
|
214
|
+
# ---
|
215
|
+
# * GSL::Vector::Complex#forward(table, work)
|
216
|
+
# * GSL::Vector::Complex#forward(table)
|
217
|
+
# * GSL::Vector::Complex#forward(work)
|
218
|
+
# * GSL::Vector::Complex#forward()
|
219
|
+
# * GSL::Vector::Complex#backward(arguments same as forward)
|
220
|
+
# * GSL::Vector::Complex#inverse(arguments same as forward)
|
221
|
+
# * GSL::Vector::Complex#transform(arguments same as forward, sign)
|
222
|
+
#
|
223
|
+
#
|
224
|
+
# These methods compute forward, backward and inverse FFTs of the complex
|
225
|
+
# vector <tt>self</tt>, using a mixed radix decimation-in-frequency algorithm.
|
226
|
+
# There is no restriction on the length. Efficient modules are provided for
|
227
|
+
# subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are
|
228
|
+
# computed with a slow, O(n^2), general-n module.
|
229
|
+
#
|
230
|
+
# The caller can supply a <tt>table</tt> containing the trigonometric lookup
|
231
|
+
# tables and a workspace <tt>work</tt> (they are optional).
|
232
|
+
#
|
233
|
+
# The sign argument for the method <tt>transform</tt> can be either
|
234
|
+
# <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
|
235
|
+
#
|
236
|
+
# These methods return the FFTed data, and the input data is not changed.
|
237
|
+
#
|
238
|
+
# ==== {}[link:index.html"name="2.3.4] Example to use the mixed-radix FFT algorithm
|
239
|
+
# require 'gsl'
|
240
|
+
# include GSL
|
241
|
+
#
|
242
|
+
# n = 630
|
243
|
+
# data = FFT::Vector::Complex[n]
|
244
|
+
#
|
245
|
+
# table = FFT::ComplexWavetable.alloc(n)
|
246
|
+
# space = FFT::ComplexWorkspace.alloc(n)
|
247
|
+
#
|
248
|
+
# data[0] = 1.0
|
249
|
+
# for i in 1..10 do
|
250
|
+
# data[i] = 1.0
|
251
|
+
# end
|
252
|
+
#
|
253
|
+
# ffted = data.forward(table, space)
|
254
|
+
# #ffted = data.forward()
|
255
|
+
# #ffted = data.transform(FFT:Forward)
|
256
|
+
#
|
257
|
+
# ffted /= Math::sqrt(n)
|
258
|
+
# for i in 0...n do
|
259
|
+
# printf("%d %e %e\n", i, data[i].re, data[i].im)
|
260
|
+
# end
|
261
|
+
#
|
262
|
+
# == {}[link:index.html"name="3] Real data FFTs
|
263
|
+
# === {}[link:index.html"name="3.1] Overview of real data FFTs
|
264
|
+
#
|
265
|
+
# The functions for real data FFTs are provided as instance methods of
|
266
|
+
# {GSL::Vector}[link:files/rdoc/vector.class]. While they are similar to those for
|
267
|
+
# complex data, there is an important difference in the data storage layout
|
268
|
+
# between forward and inverse transforms. The Fourier transform of a real
|
269
|
+
# sequence is not real. It is a complex sequence with a special symmetry. A
|
270
|
+
# sequence with this symmetry is called <tt>conjugate-complex</tt> or
|
271
|
+
# <tt>half-complex</tt> and requires only as much storage as the original real
|
272
|
+
# sequence instead of twice as much.
|
273
|
+
#
|
274
|
+
# Forward transforms of real sequences produce half complex sequences of the same
|
275
|
+
# length. Backward and inverse transforms of half complex sequences produce real
|
276
|
+
# sequences of the same length. In both cases, the input and output sequences
|
277
|
+
# are instances of {GSL::Vector}[link:files/rdoc/vector_rdoc.html].
|
278
|
+
#
|
279
|
+
# The precise storage arrangements of half complex seqeunces depend on the
|
280
|
+
# algorithm, and are different for radix-2 and mixed-radix routines. The radix-2
|
281
|
+
# functions operate in-place, which constrains the locations where each element
|
282
|
+
# can be stored. The restriction forces real and imaginary parts to be stored far
|
283
|
+
# apart. The mixed-radix algorithm does not have this restriction, and it stores
|
284
|
+
# the real and imaginary parts of a given term in neighboring locations (which is
|
285
|
+
# desirable for better locality of memory accesses). This means that a half
|
286
|
+
# complex sequence produces by a radix-2 forward transform <b>cannot</b> be
|
287
|
+
# recovered by a mixed-radix inverse transform (and vice versa).
|
288
|
+
#
|
289
|
+
# === {}[link:index.html"name="3.2] Radix-2 FFT routines for real data
|
290
|
+
# The routines for readix-2 real FFTs are provided as instance methods of
|
291
|
+
# {GSL::Vector}[link:files/rdoc/vector_rdoc.html].
|
292
|
+
#
|
293
|
+
# <b>The FFT methods described below return FFTed data, and the input vector is
|
294
|
+
# not changed. Use methods with '!' as <tt>radix2_tranform!</tt> for in-place
|
295
|
+
# transform.</b>
|
296
|
+
#
|
297
|
+
# ---
|
298
|
+
# * GSL::Vector#real_radix2_transform
|
299
|
+
# * GSL::Vector#radix2_transform
|
300
|
+
# * GSL::Vector#real_radix2_forward
|
301
|
+
# * GSL::Vector#radix2_forward
|
302
|
+
#
|
303
|
+
#
|
304
|
+
# These methods compute a radix-2 FFT of the real vector <tt>self</tt>. The
|
305
|
+
# output is a half-complex sequence. The arrangement of the half-complex
|
306
|
+
# terms uses the following scheme: for k < N/2 the real part of the k-th term
|
307
|
+
# is stored in location k, and the corresponding imaginary part is stored in
|
308
|
+
# location N-k. Terms with k > N/2 can be reconstructed using the symmetry
|
309
|
+
# z_k = z^*_{N-k}. The terms for k=0 and k=N/2 are both purely real, and
|
310
|
+
# count as a special case. Their real parts are stored in locations 0 and N/2
|
311
|
+
# respectively, while their imaginary parts which are zero are not stored.
|
312
|
+
#
|
313
|
+
# These methods return the FFTed data, and the input data is not changed.
|
314
|
+
#
|
315
|
+
# The following table shows the correspondence between the output <tt>self</tt>
|
316
|
+
# and the equivalent results obtained by considering the input data as a
|
317
|
+
# complex sequence with zero imaginary part,
|
318
|
+
#
|
319
|
+
# complex[0].real = self[0]
|
320
|
+
# complex[0].imag = 0
|
321
|
+
# complex[1].real = self[1]
|
322
|
+
# complex[1].imag = self[N-1]
|
323
|
+
# ............... ................
|
324
|
+
# complex[k].real = self[k]
|
325
|
+
# complex[k].imag = self[N-k]
|
326
|
+
# ............... ................
|
327
|
+
# complex[N/2].real = self[N/2]
|
328
|
+
# complex[N/2].real = 0
|
329
|
+
# ............... ................
|
330
|
+
# complex[k'].real = self[k] k' = N - k
|
331
|
+
# complex[k'].imag = -self[N-k]
|
332
|
+
# ............... ................
|
333
|
+
# complex[N-1].real = self[1]
|
334
|
+
# complex[N-1].imag = -self[N-1]
|
335
|
+
#
|
336
|
+
# ---
|
337
|
+
# * GSL::Vector#halfcomplex_radix2_inverse
|
338
|
+
# * GSL::Vector#radix2_inverse
|
339
|
+
# * GSL::Vector#halfcomplex_radix2_backward
|
340
|
+
# * GSL::Vector#radix2_backward
|
341
|
+
#
|
342
|
+
#
|
343
|
+
# These methods compute the inverse or backwards radix-2 FFT of the
|
344
|
+
# half-complex sequence data stored according the output scheme used by
|
345
|
+
# gsl_fft_real_radix2. The result is a real array stored in natural order.
|
346
|
+
#
|
347
|
+
# == {}[link:index.html"name="4] Mixed-radix FFT routines for real data
|
348
|
+
#
|
349
|
+
# This section describes mixed-radix FFT algorithms for real data.
|
350
|
+
# The mixed-radix functions work for FFTs of any length. They are a
|
351
|
+
# reimplementation of the real-FFT routines in the Fortran FFTPACK library
|
352
|
+
# by Paul Swarztrauber.
|
353
|
+
# The theory behind the algorithm is explained in the article
|
354
|
+
# <tt>Fast Mixed-Radix Real Fourier Transforms</tt> by Clive Temperton.
|
355
|
+
# The routines here use the same indexing scheme and basic algorithms as
|
356
|
+
# FFTPACK.
|
357
|
+
#
|
358
|
+
# The functions use the FFTPACK storage convention for half-complex sequences.
|
359
|
+
# In this convention the half-complex transform of a real sequence is stored with
|
360
|
+
# frequencies in increasing order, starting at zero, with the real and imaginary
|
361
|
+
# parts of each frequency in neighboring locations. When a value is known to be
|
362
|
+
# real the imaginary part is not stored. The imaginary part of the zero-frequency
|
363
|
+
# component is never stored. It is known to be zero since the zero frequency
|
364
|
+
# component is simply the sum of the input data (all real). For a sequence of
|
365
|
+
# even length the imaginary part of the frequency n/2 is not stored either, since
|
366
|
+
# the symmetry z_k = z_{N-k}^* implies that this is purely real too.
|
367
|
+
#
|
368
|
+
#
|
369
|
+
# === {}[link:index.html"name="4.1] Data storage scheme
|
370
|
+
#
|
371
|
+
# The storage scheme is best shown by some examples.
|
372
|
+
# The table below shows the output for an odd-length sequence, n=5.
|
373
|
+
# The two columns give the correspondence between the 5 values in the
|
374
|
+
# half-complex sequence computed <tt>real_transform</tt>, <tt>halfcomplex[]</tt>
|
375
|
+
# and the values <tt>complex[]</tt> that would be returned if the same real input
|
376
|
+
# sequence were passed to <tt>complex_backward</tt> as a complex sequence
|
377
|
+
# (with imaginary parts set to 0),
|
378
|
+
#
|
379
|
+
# complex[0].real = halfcomplex[0]
|
380
|
+
# complex[0].imag = 0
|
381
|
+
# complex[1].real = halfcomplex[1]
|
382
|
+
# complex[1].imag = halfcomplex[2]
|
383
|
+
# complex[2].real = halfcomplex[3]
|
384
|
+
# complex[2].imag = halfcomplex[4]
|
385
|
+
# complex[3].real = halfcomplex[3]
|
386
|
+
# complex[3].imag = -halfcomplex[4]
|
387
|
+
# complex[4].real = halfcomplex[1]
|
388
|
+
# complex[4].imag = -halfcomplex[2]
|
389
|
+
#
|
390
|
+
# The upper elements of the <tt>complex</tt> array, <tt>complex[3]</tt> and <tt>complex[4]</tt>
|
391
|
+
# are filled in using the symmetry condition. The imaginary part of
|
392
|
+
# the zero-frequency term <tt>complex[0].imag</tt> is known to be zero by the symmetry.
|
393
|
+
#
|
394
|
+
# The next table shows the output for an even-length sequence,
|
395
|
+
# n=5 In the even case there are two values which are purely real,
|
396
|
+
#
|
397
|
+
# complex[0].real = halfcomplex[0]
|
398
|
+
# complex[0].imag = 0
|
399
|
+
# complex[1].real = halfcomplex[1]
|
400
|
+
# complex[1].imag = halfcomplex[2]
|
401
|
+
# complex[2].real = halfcomplex[3]
|
402
|
+
# complex[2].imag = halfcomplex[4]
|
403
|
+
# complex[3].real = halfcomplex[5]
|
404
|
+
# complex[3].imag = 0
|
405
|
+
# complex[4].real = halfcomplex[3]
|
406
|
+
# complex[4].imag = -halfcomplex[4]
|
407
|
+
# complex[5].real = halfcomplex[1]
|
408
|
+
# complex[5].imag = -halfcomplex[2]
|
409
|
+
#
|
410
|
+
# The upper elements of the <tt>complex</tt> array, <tt>complex[4]</tt>
|
411
|
+
# and <tt>complex[5]</tt> are filled in using the symmetry condition.
|
412
|
+
# Both <tt>complex[0].imag</tt> and <tt>complex[3].imag</tt> are known to be zero.
|
413
|
+
#
|
414
|
+
# ==== {}[link:index.html"name="4.1.1] Wavetable and Workspace classes
|
415
|
+
# ---
|
416
|
+
# * GSL::FFT::RealWavetable.alloc(n)
|
417
|
+
# * GSL::FFT::HalfComplexWavetable.alloc(n)
|
418
|
+
#
|
419
|
+
#
|
420
|
+
# These methods create trigonometric lookup tables for an FFT of size <tt>n</tt>
|
421
|
+
# real elements. The length <tt>n</tt> is factorized into a product of subtransforms,
|
422
|
+
# and the factors and their trigonometric coefficients are stored in the wavetable.
|
423
|
+
# The trigonometric coefficients are computed using direct calls to sin and cos,
|
424
|
+
# for accuracy. Recursion relations could be used to compute the lookup table
|
425
|
+
# faster, but if an application performs many FFTs of the same length then
|
426
|
+
# computing the wavetable is a one-off overhead which does not affect the final
|
427
|
+
# throughput.
|
428
|
+
#
|
429
|
+
# The wavetable structure can be used repeatedly for any transform of the same
|
430
|
+
# length. The table is not modified by calls to any of the other FFT functions.
|
431
|
+
# The appropriate type of wavetable must be used for forward real or inverse
|
432
|
+
# half-complex transforms.
|
433
|
+
#
|
434
|
+
# ---
|
435
|
+
# * GSL::FFT::RealWorkspace.alloc(n)
|
436
|
+
#
|
437
|
+
#
|
438
|
+
# This method creates a workspace object for a real transform of length
|
439
|
+
# <tt>n</tt>. The same workspace can be used for both forward real and inverse
|
440
|
+
# halfcomplex transforms.
|
441
|
+
#
|
442
|
+
# ==== {}[link:index.html"name="4.1.2] Methods for mixed-radix real FFTs
|
443
|
+
#
|
444
|
+
# <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>real_tranform!</tt> for in-place transform.</b>
|
445
|
+
#
|
446
|
+
# ---
|
447
|
+
# * GSL::Vector#real_transform(table, work)
|
448
|
+
# * GSL::Vector#halfcomplex_transform(table, work)
|
449
|
+
# * GSL::Vector#fft
|
450
|
+
#
|
451
|
+
#
|
452
|
+
# These methods compute the FFT of <tt>self</tt>, a real or half-complex array,
|
453
|
+
# using a mixed radix decimation-in-frequency algorithm. For
|
454
|
+
# <tt>real_transform</tt> <tt>self</tt> is an array of time-ordered real data. For
|
455
|
+
# <tt>halfcomplex_transform</tt> <tt>self</tt> contains Fourier coefficients in the
|
456
|
+
# half-complex ordering described above. There is no restriction on the
|
457
|
+
# length <tt>n</tt>.
|
458
|
+
#
|
459
|
+
# Efficient modules are provided for subtransforms of length 2, 3, 4 and 5.
|
460
|
+
# Any remaining factors are computed with a slow, O(n^2), general-n module.
|
461
|
+
#
|
462
|
+
# The caller can supply a <tt>table</tt> containing trigonometric lookup tables
|
463
|
+
# and a workspace <tt>work</tt> (optional).
|
464
|
+
#
|
465
|
+
# These methods return the FFTed data, and the input data is not changed.
|
466
|
+
#
|
467
|
+
# ---
|
468
|
+
# * GSL::Vector#halfcomplex_inverse(table, work)
|
469
|
+
# * GSL::Vector#halfcomplex_backward(table, work)
|
470
|
+
# * GSL::Vector#ifft
|
471
|
+
#
|
472
|
+
#
|
473
|
+
# == {}[link:index.html"name="5] Examples
|
474
|
+
#
|
475
|
+
# === {}[link:index.html"name="5.1] Example 1
|
476
|
+
#
|
477
|
+
# #!/usr/bin/env ruby
|
478
|
+
# require("gsl")
|
479
|
+
# include GSL
|
480
|
+
#
|
481
|
+
# N = 2048
|
482
|
+
# SAMPLING = 1000 # 1 kHz
|
483
|
+
# TMAX = 1.0/SAMPLING*N
|
484
|
+
# FREQ1 = 50
|
485
|
+
# FREQ2 = 120
|
486
|
+
# t = Vector.linspace(0, TMAX, N)
|
487
|
+
# x = Sf::sin(2*M_PI*FREQ1*t) + Sf::sin(2*M_PI*FREQ2*t)
|
488
|
+
# y = x.fft
|
489
|
+
#
|
490
|
+
# y2 = y.subvector(1, N-2).to_complex2
|
491
|
+
# mag = y2.abs
|
492
|
+
# phase = y2.arg
|
493
|
+
# f = Vector.linspace(0, SAMPLING/2, mag.size)
|
494
|
+
# graph(f, mag, "-C -g 3 -x 0 200 -X 'Frequency [Hz]'")
|
495
|
+
#
|
496
|
+
# === {}[link:index.html"name="5.2] Example 2
|
497
|
+
# #!/usr/bin/env ruby
|
498
|
+
# require("gsl")
|
499
|
+
# include GSL
|
500
|
+
#
|
501
|
+
# n = 100
|
502
|
+
# data = Vector.alloc(n)
|
503
|
+
#
|
504
|
+
# for i in (n/3)...(2*n/3) do
|
505
|
+
# data[i] = 1.0
|
506
|
+
# end
|
507
|
+
#
|
508
|
+
# rtable = FFT::RealWavetable.alloc(n)
|
509
|
+
# rwork = FFT::RealWorkspace.alloc(n)
|
510
|
+
#
|
511
|
+
# #ffted = data.real_transform(rtable, rwork)
|
512
|
+
# #ffted = data.real_transform(rtable)
|
513
|
+
# #ffted = data.real_transform(rwork)
|
514
|
+
# #ffted = data.real_transform()
|
515
|
+
# ffted = data.fft
|
516
|
+
#
|
517
|
+
# for i in 11...n do
|
518
|
+
# ffted[i] = 0.0
|
519
|
+
# end
|
520
|
+
#
|
521
|
+
# hctable = FFT::HalfComplexWavetable.alloc(n)
|
522
|
+
#
|
523
|
+
# #data2 = ffted.halfcomplex_inverse(hctable, rwork)
|
524
|
+
# #data2 = ffted.halfcomplex_inverse()
|
525
|
+
# data2 = ffted.ifft
|
526
|
+
#
|
527
|
+
# graph(nil, data, data2, "-T X -C -g 3 -L 'Real-halfcomplex' -x 0 #{data.size}")
|
528
|
+
#
|
529
|
+
# {prev}[link:files/rdoc/eigen_rdoc.html]
|
530
|
+
# {next}[link:files/rdoc/wavelet_rdoc.html]
|
531
|
+
#
|
532
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
533
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
534
|
+
#
|
535
|
+
#
|