gsl 1.12.109 → 1.14.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (511) hide show
  1. data/AUTHORS +6 -0
  2. data/COPYING +339 -0
  3. data/ChangeLog +556 -0
  4. data/{README.rdoc → README} +3 -0
  5. data/Rakefile +54 -10
  6. data/THANKS +17 -0
  7. data/VERSION +1 -2
  8. data/examples/alf/alf.gp +15 -0
  9. data/examples/alf/alf.rb +32 -0
  10. data/examples/blas/blas.rb +13 -0
  11. data/examples/blas/dnrm2.rb +16 -0
  12. data/examples/blas/level1.rb +81 -0
  13. data/examples/blas/level2.rb +11 -0
  14. data/examples/blas/level3.rb +12 -0
  15. data/examples/bspline.rb +57 -0
  16. data/examples/cdf.rb +16 -0
  17. data/examples/cheb.rb +21 -0
  18. data/examples/combination.rb +23 -0
  19. data/examples/complex/RC-lpf.rb +47 -0
  20. data/examples/complex/add.rb +36 -0
  21. data/examples/complex/coerce.rb +14 -0
  22. data/examples/complex/complex.rb +25 -0
  23. data/examples/complex/fpmi.rb +70 -0
  24. data/examples/complex/functions.rb +77 -0
  25. data/examples/complex/michelson.rb +36 -0
  26. data/examples/complex/mul.rb +28 -0
  27. data/examples/complex/oscillator.rb +17 -0
  28. data/examples/complex/set.rb +37 -0
  29. data/examples/const/physconst.rb +151 -0
  30. data/examples/const/travel.rb +45 -0
  31. data/examples/deriv/demo.rb +13 -0
  32. data/examples/deriv/deriv.rb +36 -0
  33. data/examples/deriv/diff.rb +35 -0
  34. data/examples/dht.rb +42 -0
  35. data/examples/dirac.rb +56 -0
  36. data/examples/eigen/eigen.rb +34 -0
  37. data/examples/eigen/herm.rb +22 -0
  38. data/examples/eigen/narray.rb +9 -0
  39. data/examples/eigen/nonsymm.rb +37 -0
  40. data/examples/eigen/nonsymmv.rb +43 -0
  41. data/examples/eigen/qhoscillator.gp +35 -0
  42. data/examples/eigen/qhoscillator.rb +90 -0
  43. data/examples/eigen/vander.rb +41 -0
  44. data/examples/fft/fft.rb +17 -0
  45. data/examples/fft/fft2.rb +17 -0
  46. data/examples/fft/forward.rb +25 -0
  47. data/examples/fft/forward2.rb +26 -0
  48. data/examples/fft/radix2.rb +18 -0
  49. data/examples/fft/real-halfcomplex.rb +33 -0
  50. data/examples/fft/real-halfcomplex2.rb +30 -0
  51. data/examples/fft/realradix2.rb +19 -0
  52. data/examples/fft/sunspot.dat +256 -0
  53. data/examples/fft/sunspot.rb +16 -0
  54. data/examples/fit/expdata.dat +20 -0
  55. data/examples/fit/expfit.rb +31 -0
  56. data/examples/fit/gaussfit.rb +29 -0
  57. data/examples/fit/gaussian_2peaks.rb +34 -0
  58. data/examples/fit/hillfit.rb +40 -0
  59. data/examples/fit/lognormal.rb +26 -0
  60. data/examples/fit/lorentzfit.rb +22 -0
  61. data/examples/fit/multifit.rb +72 -0
  62. data/examples/fit/ndlinear.rb +133 -0
  63. data/examples/fit/nonlinearfit.rb +89 -0
  64. data/examples/fit/plot.gp +36 -0
  65. data/examples/fit/polyfit.rb +9 -0
  66. data/examples/fit/powerfit.rb +21 -0
  67. data/examples/fit/sigmoidfit.rb +40 -0
  68. data/examples/fit/sinfit.rb +22 -0
  69. data/examples/fit/wlinear.rb +46 -0
  70. data/examples/fresnel.rb +11 -0
  71. data/examples/function/function.rb +36 -0
  72. data/examples/function/log.rb +7 -0
  73. data/examples/function/min.rb +33 -0
  74. data/examples/function/sin.rb +10 -0
  75. data/examples/function/synchrotron.rb +18 -0
  76. data/examples/gallery/butterfly.rb +7 -0
  77. data/examples/gallery/cayley.rb +12 -0
  78. data/examples/gallery/cornu.rb +23 -0
  79. data/examples/gallery/eight.rb +11 -0
  80. data/examples/gallery/koch.rb +40 -0
  81. data/examples/gallery/lemniscate.rb +11 -0
  82. data/examples/gallery/polar.rb +11 -0
  83. data/examples/gallery/rgplot/cossin.rb +35 -0
  84. data/examples/gallery/rgplot/rgplot.replaced +0 -0
  85. data/examples/gallery/rgplot/roesller.rb +55 -0
  86. data/examples/gallery/roesller.rb +39 -0
  87. data/examples/gallery/scarabaeus.rb +14 -0
  88. data/examples/histogram/cauchy.rb +27 -0
  89. data/examples/histogram/cauchy.sh +2 -0
  90. data/examples/histogram/exponential.rb +19 -0
  91. data/examples/histogram/gauss.rb +16 -0
  92. data/examples/histogram/gsl-histogram.rb +40 -0
  93. data/examples/histogram/histo2d.rb +31 -0
  94. data/examples/histogram/histo3d.rb +34 -0
  95. data/examples/histogram/histogram-pdf.rb +27 -0
  96. data/examples/histogram/histogram.rb +26 -0
  97. data/examples/histogram/integral.rb +28 -0
  98. data/examples/histogram/poisson.rb +27 -0
  99. data/examples/histogram/power.rb +25 -0
  100. data/examples/histogram/rebin.rb +17 -0
  101. data/examples/histogram/smp.dat +5 -0
  102. data/examples/histogram/xexp.rb +21 -0
  103. data/examples/integration/ahmed.rb +21 -0
  104. data/examples/integration/cosmology.rb +75 -0
  105. data/examples/integration/friedmann.gp +16 -0
  106. data/examples/integration/friedmann.rb +35 -0
  107. data/examples/integration/gamma-zeta.rb +35 -0
  108. data/examples/integration/integration.rb +22 -0
  109. data/examples/integration/qag.rb +8 -0
  110. data/examples/integration/qag2.rb +14 -0
  111. data/examples/integration/qag3.rb +8 -0
  112. data/examples/integration/qagi.rb +28 -0
  113. data/examples/integration/qagi2.rb +49 -0
  114. data/examples/integration/qagiu.rb +29 -0
  115. data/examples/integration/qagp.rb +20 -0
  116. data/examples/integration/qags.rb +14 -0
  117. data/examples/integration/qawc.rb +18 -0
  118. data/examples/integration/qawf.rb +41 -0
  119. data/examples/integration/qawo.rb +29 -0
  120. data/examples/integration/qaws.rb +30 -0
  121. data/examples/integration/qng.rb +17 -0
  122. data/examples/interp/demo.gp +20 -0
  123. data/examples/interp/demo.rb +45 -0
  124. data/examples/interp/interp.rb +37 -0
  125. data/examples/interp/points +10 -0
  126. data/examples/interp/spline.rb +20 -0
  127. data/examples/jacobi/deriv.rb +40 -0
  128. data/examples/jacobi/integrate.rb +34 -0
  129. data/examples/jacobi/interp.rb +43 -0
  130. data/examples/jacobi/jacobi.rb +11 -0
  131. data/examples/linalg/HH.rb +15 -0
  132. data/examples/linalg/HH_narray.rb +13 -0
  133. data/examples/linalg/LQ_solve.rb +73 -0
  134. data/examples/linalg/LU.rb +84 -0
  135. data/examples/linalg/LU2.rb +31 -0
  136. data/examples/linalg/LU_narray.rb +24 -0
  137. data/examples/linalg/PTLQ.rb +47 -0
  138. data/examples/linalg/QR.rb +18 -0
  139. data/examples/linalg/QRPT.rb +47 -0
  140. data/examples/linalg/QR_solve.rb +78 -0
  141. data/examples/linalg/QR_solve_narray.rb +13 -0
  142. data/examples/linalg/SV.rb +16 -0
  143. data/examples/linalg/SV_narray.rb +12 -0
  144. data/examples/linalg/SV_solve.rb +49 -0
  145. data/examples/linalg/chol.rb +29 -0
  146. data/examples/linalg/chol_narray.rb +15 -0
  147. data/examples/linalg/complex.rb +57 -0
  148. data/examples/linalg/invert_narray.rb +10 -0
  149. data/examples/math/const.rb +67 -0
  150. data/examples/math/elementary.rb +35 -0
  151. data/examples/math/functions.rb +41 -0
  152. data/examples/math/inf_nan.rb +34 -0
  153. data/examples/math/minmax.rb +22 -0
  154. data/examples/math/power.rb +18 -0
  155. data/examples/math/test.rb +31 -0
  156. data/examples/matrix/a.dat +0 -0
  157. data/examples/matrix/add.rb +45 -0
  158. data/examples/matrix/b.dat +4 -0
  159. data/examples/matrix/cat.rb +31 -0
  160. data/examples/matrix/colvectors.rb +24 -0
  161. data/examples/matrix/complex.rb +41 -0
  162. data/examples/matrix/det.rb +29 -0
  163. data/examples/matrix/diagonal.rb +23 -0
  164. data/examples/matrix/get_all.rb +159 -0
  165. data/examples/matrix/hilbert.rb +31 -0
  166. data/examples/matrix/iterator.rb +19 -0
  167. data/examples/matrix/matrix.rb +57 -0
  168. data/examples/matrix/minmax.rb +53 -0
  169. data/examples/matrix/mul.rb +39 -0
  170. data/examples/matrix/rand.rb +20 -0
  171. data/examples/matrix/read.rb +29 -0
  172. data/examples/matrix/rowcol.rb +47 -0
  173. data/examples/matrix/set.rb +41 -0
  174. data/examples/matrix/set_all.rb +100 -0
  175. data/examples/matrix/view.rb +32 -0
  176. data/examples/matrix/view_all.rb +148 -0
  177. data/examples/matrix/write.rb +23 -0
  178. data/examples/min.rb +29 -0
  179. data/examples/monte/miser.rb +47 -0
  180. data/examples/monte/monte.rb +47 -0
  181. data/examples/monte/plain.rb +47 -0
  182. data/examples/monte/vegas.rb +46 -0
  183. data/examples/multimin/bundle.rb +66 -0
  184. data/examples/multimin/cqp.rb +109 -0
  185. data/examples/multimin/fdfminimizer.rb +40 -0
  186. data/examples/multimin/fminimizer.rb +41 -0
  187. data/examples/multiroot/demo.rb +36 -0
  188. data/examples/multiroot/fdfsolver.rb +50 -0
  189. data/examples/multiroot/fsolver.rb +33 -0
  190. data/examples/multiroot/fsolver2.rb +32 -0
  191. data/examples/multiroot/fsolver3.rb +26 -0
  192. data/examples/narray/histogram.rb +14 -0
  193. data/examples/narray/mandel.rb +27 -0
  194. data/examples/narray/narray.rb +28 -0
  195. data/examples/narray/narray2.rb +44 -0
  196. data/examples/narray/sf.rb +26 -0
  197. data/examples/ntuple/create.rb +17 -0
  198. data/examples/ntuple/project.rb +31 -0
  199. data/examples/odeiv/binarysystem.gp +23 -0
  200. data/examples/odeiv/binarysystem.rb +104 -0
  201. data/examples/odeiv/demo.gp +24 -0
  202. data/examples/odeiv/demo.rb +69 -0
  203. data/examples/odeiv/demo2.gp +26 -0
  204. data/examples/odeiv/duffing.rb +45 -0
  205. data/examples/odeiv/frei1.rb +109 -0
  206. data/examples/odeiv/frei2.rb +76 -0
  207. data/examples/odeiv/legendre.rb +52 -0
  208. data/examples/odeiv/odeiv.rb +32 -0
  209. data/examples/odeiv/odeiv2.rb +45 -0
  210. data/examples/odeiv/oscillator.rb +42 -0
  211. data/examples/odeiv/sedov.rb +97 -0
  212. data/examples/odeiv/whitedwarf.gp +40 -0
  213. data/examples/odeiv/whitedwarf.rb +158 -0
  214. data/examples/ool/conmin.rb +100 -0
  215. data/examples/ool/gencan.rb +99 -0
  216. data/examples/ool/pgrad.rb +100 -0
  217. data/examples/ool/spg.rb +100 -0
  218. data/examples/pdf/bernoulli.rb +5 -0
  219. data/examples/pdf/beta.rb +7 -0
  220. data/examples/pdf/binomiral.rb +10 -0
  221. data/examples/pdf/cauchy.rb +6 -0
  222. data/examples/pdf/chisq.rb +8 -0
  223. data/examples/pdf/exponential.rb +7 -0
  224. data/examples/pdf/exppow.rb +6 -0
  225. data/examples/pdf/fdist.rb +7 -0
  226. data/examples/pdf/flat.rb +7 -0
  227. data/examples/pdf/gamma.rb +8 -0
  228. data/examples/pdf/gauss-tail.rb +5 -0
  229. data/examples/pdf/gauss.rb +6 -0
  230. data/examples/pdf/geometric.rb +5 -0
  231. data/examples/pdf/gumbel.rb +6 -0
  232. data/examples/pdf/hypergeometric.rb +11 -0
  233. data/examples/pdf/landau.rb +5 -0
  234. data/examples/pdf/laplace.rb +7 -0
  235. data/examples/pdf/logarithmic.rb +5 -0
  236. data/examples/pdf/logistic.rb +6 -0
  237. data/examples/pdf/lognormal.rb +6 -0
  238. data/examples/pdf/neg-binomiral.rb +10 -0
  239. data/examples/pdf/pareto.rb +7 -0
  240. data/examples/pdf/pascal.rb +10 -0
  241. data/examples/pdf/poisson.rb +5 -0
  242. data/examples/pdf/rayleigh-tail.rb +6 -0
  243. data/examples/pdf/rayleigh.rb +6 -0
  244. data/examples/pdf/tdist.rb +6 -0
  245. data/examples/pdf/weibull.rb +8 -0
  246. data/examples/permutation/ex1.rb +22 -0
  247. data/examples/permutation/permutation.rb +16 -0
  248. data/examples/poly/bell.rb +6 -0
  249. data/examples/poly/bessel.rb +6 -0
  250. data/examples/poly/cheb.rb +6 -0
  251. data/examples/poly/cheb_II.rb +6 -0
  252. data/examples/poly/cubic.rb +9 -0
  253. data/examples/poly/demo.rb +20 -0
  254. data/examples/poly/eval.rb +28 -0
  255. data/examples/poly/eval_derivs.rb +14 -0
  256. data/examples/poly/fit.rb +21 -0
  257. data/examples/poly/hermite.rb +6 -0
  258. data/examples/poly/poly.rb +13 -0
  259. data/examples/poly/quadratic.rb +25 -0
  260. data/examples/random/diffusion.rb +34 -0
  261. data/examples/random/gaussian.rb +9 -0
  262. data/examples/random/generator.rb +27 -0
  263. data/examples/random/hdsobol.rb +21 -0
  264. data/examples/random/poisson.rb +9 -0
  265. data/examples/random/qrng.rb +19 -0
  266. data/examples/random/randomwalk.rb +37 -0
  267. data/examples/random/randomwalk2d.rb +19 -0
  268. data/examples/random/rayleigh.rb +36 -0
  269. data/examples/random/rng.rb +33 -0
  270. data/examples/random/rngextra.rb +14 -0
  271. data/examples/roots/bisection.rb +25 -0
  272. data/examples/roots/brent.rb +43 -0
  273. data/examples/roots/demo.rb +30 -0
  274. data/examples/roots/newton.rb +46 -0
  275. data/examples/roots/recombination.gp +12 -0
  276. data/examples/roots/recombination.rb +61 -0
  277. data/examples/roots/steffenson.rb +48 -0
  278. data/examples/sf/ShiChi.rb +6 -0
  279. data/examples/sf/SiCi.rb +6 -0
  280. data/examples/sf/airy_Ai.rb +8 -0
  281. data/examples/sf/airy_Bi.rb +8 -0
  282. data/examples/sf/bessel_IK.rb +12 -0
  283. data/examples/sf/bessel_JY.rb +13 -0
  284. data/examples/sf/beta_inc.rb +9 -0
  285. data/examples/sf/clausen.rb +6 -0
  286. data/examples/sf/dawson.rb +5 -0
  287. data/examples/sf/debye.rb +9 -0
  288. data/examples/sf/dilog.rb +6 -0
  289. data/examples/sf/ellint.rb +6 -0
  290. data/examples/sf/expint.rb +8 -0
  291. data/examples/sf/fermi.rb +10 -0
  292. data/examples/sf/gamma_inc_P.rb +9 -0
  293. data/examples/sf/gegenbauer.rb +8 -0
  294. data/examples/sf/hyperg.rb +7 -0
  295. data/examples/sf/laguerre.rb +19 -0
  296. data/examples/sf/lambertW.rb +5 -0
  297. data/examples/sf/legendre_P.rb +10 -0
  298. data/examples/sf/lngamma.rb +5 -0
  299. data/examples/sf/psi.rb +54 -0
  300. data/examples/sf/sphbessel.gp +27 -0
  301. data/examples/sf/sphbessel.rb +30 -0
  302. data/examples/sf/synchrotron.rb +5 -0
  303. data/examples/sf/transport.rb +10 -0
  304. data/examples/sf/zetam1.rb +5 -0
  305. data/examples/siman.rb +44 -0
  306. data/examples/sort/heapsort.rb +23 -0
  307. data/examples/sort/heapsort_vector_complex.rb +21 -0
  308. data/examples/sort/sort.rb +23 -0
  309. data/examples/sort/sort2.rb +16 -0
  310. data/examples/stats/mean.rb +17 -0
  311. data/examples/stats/statistics.rb +18 -0
  312. data/examples/stats/test.rb +9 -0
  313. data/examples/sum.rb +34 -0
  314. data/examples/tamu_anova.rb +18 -0
  315. data/examples/vector/a.dat +0 -0
  316. data/examples/vector/add.rb +56 -0
  317. data/examples/vector/b.dat +4 -0
  318. data/examples/vector/c.dat +3 -0
  319. data/examples/vector/collect.rb +26 -0
  320. data/examples/vector/compare.rb +28 -0
  321. data/examples/vector/complex.rb +51 -0
  322. data/examples/vector/complex_get_all.rb +85 -0
  323. data/examples/vector/complex_set_all.rb +131 -0
  324. data/examples/vector/complex_view_all.rb +77 -0
  325. data/examples/vector/connect.rb +22 -0
  326. data/examples/vector/decimate.rb +38 -0
  327. data/examples/vector/diff.rb +31 -0
  328. data/examples/vector/filescan.rb +17 -0
  329. data/examples/vector/floor.rb +23 -0
  330. data/examples/vector/get_all.rb +82 -0
  331. data/examples/vector/gnuplot.rb +38 -0
  332. data/examples/vector/graph.rb +28 -0
  333. data/examples/vector/histogram.rb +22 -0
  334. data/examples/vector/linspace.rb +24 -0
  335. data/examples/vector/log.rb +17 -0
  336. data/examples/vector/logic.rb +33 -0
  337. data/examples/vector/logspace.rb +25 -0
  338. data/examples/vector/minmax.rb +47 -0
  339. data/examples/vector/mul.rb +49 -0
  340. data/examples/vector/narray.rb +46 -0
  341. data/examples/vector/read.rb +29 -0
  342. data/examples/vector/set.rb +35 -0
  343. data/examples/vector/set_all.rb +121 -0
  344. data/examples/vector/smpv.dat +15 -0
  345. data/examples/vector/test.rb +43 -0
  346. data/examples/vector/test_gslblock.rb +58 -0
  347. data/examples/vector/vector.rb +110 -0
  348. data/examples/vector/view.rb +35 -0
  349. data/examples/vector/view_all.rb +73 -0
  350. data/examples/vector/where.rb +29 -0
  351. data/examples/vector/write.rb +24 -0
  352. data/examples/vector/zip.rb +34 -0
  353. data/examples/wavelet/ecg.dat +256 -0
  354. data/examples/wavelet/wavelet1.rb +50 -0
  355. data/ext/extconf.rb +9 -0
  356. data/ext/gsl.c +10 -1
  357. data/ext/histogram.c +6 -2
  358. data/ext/integration.c +39 -0
  359. data/ext/matrix_complex.c +1 -1
  360. data/ext/multiset.c +214 -0
  361. data/ext/nmf.c +4 -0
  362. data/ext/nmf_wrap.c +3 -0
  363. data/ext/vector_complex.c +1 -1
  364. data/ext/vector_double.c +3 -3
  365. data/ext/vector_source.c +6 -6
  366. data/include/rb_gsl.h +7 -0
  367. data/include/rb_gsl_common.h +6 -0
  368. data/rdoc/alf.rdoc +77 -0
  369. data/rdoc/blas.rdoc +269 -0
  370. data/rdoc/bspline.rdoc +42 -0
  371. data/rdoc/changes.rdoc +164 -0
  372. data/rdoc/cheb.rdoc +99 -0
  373. data/rdoc/cholesky_complex.rdoc +46 -0
  374. data/rdoc/combi.rdoc +125 -0
  375. data/rdoc/complex.rdoc +210 -0
  376. data/rdoc/const.rdoc +546 -0
  377. data/rdoc/dht.rdoc +122 -0
  378. data/rdoc/diff.rdoc +133 -0
  379. data/rdoc/ehandling.rdoc +50 -0
  380. data/rdoc/eigen.rdoc +401 -0
  381. data/rdoc/fft.rdoc +535 -0
  382. data/rdoc/fit.rdoc +284 -0
  383. data/rdoc/function.rdoc +94 -0
  384. data/rdoc/graph.rdoc +137 -0
  385. data/rdoc/hist.rdoc +409 -0
  386. data/rdoc/hist2d.rdoc +279 -0
  387. data/rdoc/hist3d.rdoc +112 -0
  388. data/rdoc/index.rdoc +62 -0
  389. data/rdoc/integration.rdoc +398 -0
  390. data/rdoc/interp.rdoc +231 -0
  391. data/rdoc/intro.rdoc +27 -0
  392. data/rdoc/linalg.rdoc +681 -0
  393. data/rdoc/linalg_complex.rdoc +88 -0
  394. data/rdoc/math.rdoc +276 -0
  395. data/rdoc/matrix.rdoc +1093 -0
  396. data/rdoc/min.rdoc +189 -0
  397. data/rdoc/monte.rdoc +234 -0
  398. data/rdoc/multimin.rdoc +312 -0
  399. data/rdoc/multiroot.rdoc +293 -0
  400. data/rdoc/narray.rdoc +173 -0
  401. data/rdoc/ndlinear.rdoc +247 -0
  402. data/rdoc/nonlinearfit.rdoc +348 -0
  403. data/rdoc/ntuple.rdoc +88 -0
  404. data/rdoc/odeiv.rdoc +378 -0
  405. data/rdoc/perm.rdoc +221 -0
  406. data/rdoc/poly.rdoc +335 -0
  407. data/rdoc/qrng.rdoc +90 -0
  408. data/rdoc/randist.rdoc +233 -0
  409. data/rdoc/ref.rdoc +93 -0
  410. data/rdoc/rng.rdoc +203 -0
  411. data/rdoc/rngextra.rdoc +11 -0
  412. data/rdoc/roots.rdoc +305 -0
  413. data/rdoc/screenshot.rdoc +40 -0
  414. data/rdoc/sf.rdoc +1622 -0
  415. data/rdoc/siman.rdoc +89 -0
  416. data/rdoc/sort.rdoc +94 -0
  417. data/rdoc/start.rdoc +16 -0
  418. data/rdoc/stats.rdoc +219 -0
  419. data/rdoc/sum.rdoc +65 -0
  420. data/rdoc/tensor.rdoc +251 -0
  421. data/rdoc/tut.rdoc +5 -0
  422. data/rdoc/use.rdoc +177 -0
  423. data/rdoc/vector.rdoc +1243 -0
  424. data/rdoc/vector_complex.rdoc +347 -0
  425. data/rdoc/wavelet.rdoc +218 -0
  426. data/setup.rb +1585 -0
  427. data/tests/blas/amax.rb +14 -0
  428. data/tests/blas/asum.rb +16 -0
  429. data/tests/blas/axpy.rb +25 -0
  430. data/tests/blas/copy.rb +23 -0
  431. data/tests/blas/dot.rb +23 -0
  432. data/tests/bspline.rb +53 -0
  433. data/tests/cdf.rb +1388 -0
  434. data/tests/cheb.rb +112 -0
  435. data/tests/combination.rb +123 -0
  436. data/tests/complex.rb +17 -0
  437. data/tests/const.rb +24 -0
  438. data/tests/deriv.rb +85 -0
  439. data/tests/dht/dht1.rb +17 -0
  440. data/tests/dht/dht2.rb +23 -0
  441. data/tests/dht/dht3.rb +23 -0
  442. data/tests/dht/dht4.rb +23 -0
  443. data/tests/diff.rb +78 -0
  444. data/tests/eigen/eigen.rb +220 -0
  445. data/tests/eigen/gen.rb +105 -0
  446. data/tests/eigen/genherm.rb +66 -0
  447. data/tests/eigen/gensymm.rb +68 -0
  448. data/tests/eigen/nonsymm.rb +53 -0
  449. data/tests/eigen/nonsymmv.rb +53 -0
  450. data/tests/eigen/symm-herm.rb +74 -0
  451. data/tests/err.rb +58 -0
  452. data/tests/fit.rb +124 -0
  453. data/tests/gsl_test.rb +118 -0
  454. data/tests/gsl_test2.rb +107 -0
  455. data/tests/histo.rb +12 -0
  456. data/tests/integration/integration1.rb +72 -0
  457. data/tests/integration/integration2.rb +71 -0
  458. data/tests/integration/integration3.rb +71 -0
  459. data/tests/integration/integration4.rb +71 -0
  460. data/tests/interp.rb +45 -0
  461. data/tests/linalg/HH.rb +64 -0
  462. data/tests/linalg/LU.rb +47 -0
  463. data/tests/linalg/QR.rb +77 -0
  464. data/tests/linalg/SV.rb +24 -0
  465. data/tests/linalg/TDN.rb +116 -0
  466. data/tests/linalg/TDS.rb +122 -0
  467. data/tests/linalg/bidiag.rb +73 -0
  468. data/tests/linalg/cholesky.rb +20 -0
  469. data/tests/linalg/linalg.rb +158 -0
  470. data/tests/matrix/matrix_nmf_test.rb +39 -0
  471. data/tests/matrix/matrix_test.rb +48 -0
  472. data/tests/min.rb +99 -0
  473. data/tests/monte/miser.rb +31 -0
  474. data/tests/monte/vegas.rb +45 -0
  475. data/tests/multifit/test_2dgauss.rb +112 -0
  476. data/tests/multifit/test_brown.rb +90 -0
  477. data/tests/multifit/test_enso.rb +246 -0
  478. data/tests/multifit/test_filip.rb +155 -0
  479. data/tests/multifit/test_gauss.rb +97 -0
  480. data/tests/multifit/test_longley.rb +110 -0
  481. data/tests/multifit/test_multifit.rb +52 -0
  482. data/tests/multimin.rb +139 -0
  483. data/tests/multiroot.rb +131 -0
  484. data/tests/multiset.rb +52 -0
  485. data/tests/odeiv.rb +353 -0
  486. data/tests/poly/poly.rb +242 -0
  487. data/tests/poly/special.rb +65 -0
  488. data/tests/qrng.rb +131 -0
  489. data/tests/quartic.rb +29 -0
  490. data/tests/randist.rb +134 -0
  491. data/tests/rng.rb +305 -0
  492. data/tests/roots.rb +76 -0
  493. data/tests/run-test.sh +17 -0
  494. data/tests/sf/gsl_test_sf.rb +249 -0
  495. data/tests/sf/test_airy.rb +83 -0
  496. data/tests/sf/test_bessel.rb +306 -0
  497. data/tests/sf/test_coulomb.rb +17 -0
  498. data/tests/sf/test_dilog.rb +25 -0
  499. data/tests/sf/test_gamma.rb +209 -0
  500. data/tests/sf/test_hyperg.rb +356 -0
  501. data/tests/sf/test_legendre.rb +227 -0
  502. data/tests/sf/test_mathieu.rb +59 -0
  503. data/tests/sf/test_sf.rb +839 -0
  504. data/tests/stats.rb +174 -0
  505. data/tests/sum.rb +98 -0
  506. data/tests/sys.rb +323 -0
  507. data/tests/tensor.rb +419 -0
  508. data/tests/vector/vector_complex_test.rb +101 -0
  509. data/tests/vector/vector_test.rb +141 -0
  510. data/tests/wavelet.rb +142 -0
  511. metadata +596 -15
@@ -0,0 +1,535 @@
1
+ #
2
+ # = Fast Fourier Transforms
3
+ # Contents:
4
+ # 1. {Mathematical Definitions}[link:files/rdoc/fft_rdoc.html#1]
5
+ # 1. {Complex data FFTs}[link:files/rdoc/fft_rdoc.html#2]
6
+ # 1. {Overview of complex data FFTs}[link:files/rdoc/fft_rdoc.html#2.1]
7
+ # 1. {Radix-2 FFT routines for complex data}[link:files/rdoc/fft_rdoc.html#2.2]
8
+ # 1. {Example of the complex Radix-2 FFT}[link:files/rdoc/fft_rdoc.html#2.2.1]
9
+ # 1. {Mixed-radix FFT routines for complex data}[link:files/rdoc/fft_rdoc.html#2.3]
10
+ # 1. {GSL::FFT::ComplexWavetable class}[link:files/rdoc/fft_rdoc.html#2.3.1]
11
+ # 1. {GSL::FFT::ComplexWorkspace class}[link:files/rdoc/fft_rdoc.html#2.3.2]
12
+ # 1. {Methods to compute the transform}[link:files/rdoc/fft_rdoc.html#2.3.3]
13
+ # 1. {Example of the mixed-radix FFT}[link:files/rdoc/fft_rdoc.html#2.3.4]
14
+ # 1. {Real data FFTs}[link:files/rdoc/fft_rdoc.html#3]
15
+ # 1. {Overview of real data FFTs}[link:files/rdoc/fft_rdoc.html#3.1]
16
+ # 1. {Radix-2 FFT routines for real data}[link:files/rdoc/fft_rdoc.html#3.2]
17
+ # 1. {Mixed-radix FFT routines for real data}[link:files/rdoc/fft_rdoc.html#3.3]
18
+ # 1. {Data storage scheme}[link:files/rdoc/fft_rdoc.html#3.3.1]
19
+ # 1. {Wavetable and Workspace classes}[link:files/rdoc/fft_rdoc.html#3.3.2]
20
+ # 1. {Methods for real FFTs}[link:files/rdoc/fft_rdoc.html#3.3.3]
21
+ # 1. {Examples}[link:files/rdoc/fft_rdoc.html#3.3.4]
22
+ #
23
+ # == {}[link:index.html"name="1] Mathematical Definitions
24
+ # Fast Fourier Transforms are efficient algorithms for calculating the discrete
25
+ # fourier transform (DFT),
26
+ #
27
+ # The DFT usually arises as an approximation to the continuous fourier transform
28
+ # when functions are sampled at discrete intervals in space or time.
29
+ # The naive evaluation of the discrete fourier transform is a matrix-vector
30
+ # multiplication W\vec{z}. A general matrix-vector multiplication takes O(N^2)
31
+ # operations for N data-points. Fast fourier transform algorithms use a
32
+ # divide-and-conquer strategy to factorize the matrix W into smaller
33
+ # sub-matrices, corresponding to the integer factors of the length N.
34
+ # If N can be factorized into a product of integers f_1 f_2 ... f_n then the
35
+ # DFT can be computed in O(N \sum f_i) operations. For a radix-2 FFT this
36
+ # gives an operation count of O(N \log_2 N).
37
+ #
38
+ # All the FFT functions offer three types of transform: forwards, inverse and
39
+ # backwards, based on the same mathematical definitions. The definition of the
40
+ # forward fourier transform, x = FFT(z), is, and the definition of the inverse
41
+ # fourier transform, x = IFFT(z), is, The factor of 1/N makes this a true
42
+ # inverse. For example, a call to gsl_fft_complex_forward followed by a call
43
+ # to gsl_fft_complex_inverse should return the original data (within numerical
44
+ # errors).
45
+ #
46
+ # In general there are two possible choices for the sign of the exponential
47
+ # in the transform/ inverse-transform pair. GSL follows the same convention as
48
+ # FFTPACK, using a negative exponential for the forward transform.
49
+ # The advantage of this convention is that the inverse transform recreates
50
+ # the original function with simple fourier synthesis. Numerical Recipes uses
51
+ # the opposite convention, a positive exponential in the forward transform.
52
+ #
53
+ # The backwards FFT is simply our terminology for an unscaled version of the
54
+ # inverse FFT, When the overall scale of the result is unimportant it is often
55
+ # convenient to use the backwards FFT instead of the inverse to save unnecessary
56
+ # divisions.
57
+ #
58
+ #
59
+ # == {}[link:index.html"name="2] Complex data FFTs
60
+ # === {}[link:index.html"name="2.1] Overview of complex data FFTs
61
+ # The complex data FFT routines are provided as instance methods of
62
+ # {GSL::Vector::Complex}[link:files/rdoc/vector_complex_rdoc.html].
63
+ #
64
+ # Here is a table which shows the layout of the array data, and the correspondence
65
+ # between the time-domain complex data z, and the frequency-domain complex data x.
66
+ #
67
+ # index z x = FFT(z)
68
+ #
69
+ # 0 z(t = 0) x(f = 0)
70
+ # 1 z(t = 1) x(f = 1/(N Delta))
71
+ # 2 z(t = 2) x(f = 2/(N Delta))
72
+ # . ........ ..................
73
+ # N/2 z(t = N/2) x(f = +1/(2 Delta),
74
+ # -1/(2 Delta))
75
+ # . ........ ..................
76
+ # N-3 z(t = N-3) x(f = -3/(N Delta))
77
+ # N-2 z(t = N-2) x(f = -2/(N Delta))
78
+ # N-1 z(t = N-1) x(f = -1/(N Delta))
79
+ #
80
+ #
81
+ # When N is even the location N/2 contains the most positive and negative
82
+ # frequencies +1/(2 Delta), -1/(2 Delta) which are equivalent. If N is odd then
83
+ # general structure of the table above still applies, but N/2 does not appear.
84
+ #
85
+ # {GSL::Vector::Complex}[link:files/rdoc/vector_complex_rdoc.html] provides four methods for
86
+ # shifting the frequency domain data between <b>FFT order</b>, shown in the table
87
+ # above, and <b>natural order</b>, which has the most negative freqeuncy component
88
+ # first, the zero frequency component in the middle, and the most positive
89
+ # frequency component last.
90
+ #
91
+ # ---
92
+ # * GSL::Vector::Complex#fftshift
93
+ # * GSL::Vector::Complex#fftshift!
94
+ #
95
+ # Shifts the data of <tt>self</tt> from FFT order to natural order. The
96
+ # <tt>#fftshift</tt> method leaves <tt>self</tt> unmodified and returns a new
97
+ # <tt>GSL::Vector::Complex</tt> object containing the shifted data. The
98
+ # <tt>#fftshift!</tt> method modifies <tt>self</tt> in-place and returns
99
+ # <tt>self</tt>. Note that <tt>#fftshift</tt> and <tt>#ifftshift</tt> are equivalent
100
+ # for even lengths, but not for odd lengths.
101
+ #
102
+ # ---
103
+ # * GSL::Vector::Complex#ifftshift
104
+ # * GSL::Vector::Complex#ifftshift!
105
+ #
106
+ # Shifts the data of <tt>self</tt> from natural order to FFT order. The
107
+ # <tt>#ifftshift</tt> method leaves <tt>self</tt> unmodified and returns a new
108
+ # <tt>GSL::Vector::Complex</tt> object containing the shifted data. The
109
+ # <tt>#ifftshift!</tt> method modifies <tt>self</tt> in-place and returns
110
+ # <tt>self</tt>. Note that <tt>#fftshift</tt> and <tt>#ifftshift</tt> are equivalent
111
+ # for even lengths, but not for odd lengths.
112
+ #
113
+ # === {}[link:index.html"name="2.2] Radix-2 FFT routines for complex data
114
+ # The radix-2 algorithms are simple and compact, although not necessarily the
115
+ # most efficient. They use the Cooley-Tukey algorithm to compute complex
116
+ # FFTs for lengths which are a power of 2 -- no additional storage is required.
117
+ # The corresponding self-sorting mixed-radix routines offer better performance
118
+ # at the expense of requiring additional working space.
119
+ #
120
+ # <b>The FFT methods described below return FFTed data, and the input vector is
121
+ # not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
122
+ #
123
+ # ---
124
+ # * GSL::Vector::Complex#radix2_forward
125
+ # * GSL::Vector::Complex#radix2_backward
126
+ # * GSL::Vector::Complex#radix2_inverse
127
+ #
128
+ #
129
+ # These functions compute forward, backward and inverse FFTs of the complex
130
+ # vector using a radix-2 decimation-in-time algorithm. The length of the
131
+ # transform is restricted to powers of two. These methods return the FFTed
132
+ # data, and the input data is not changed.
133
+ #
134
+ # ---
135
+ # * GSL::Vector::Complex#radix2_transform(sign)
136
+ #
137
+ #
138
+ # The sign argument can be either <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
139
+ #
140
+ # ---
141
+ # * GSL::Vector::Complex#radix2_dif_forward
142
+ # * GSL::Vector::Complex#radix2_dif_backward
143
+ # * GSL::Vector::Complex#radix2_dif_inverse
144
+ # * GSL::Vector::Complex#radix2_dif_transform
145
+ #
146
+ #
147
+ # These are decimation-in-frequency versions of the radix-2 FFT functions.
148
+ #
149
+ # ==== {}[link:index.html"name="2.2.1] Example of complex Radix-2 FFT
150
+ # Here is an example program which computes the FFT of a short pulse in a
151
+ # sample of length 128. To make the resulting Fourier transform real the pulse
152
+ # is defined for equal positive and negative times (-10 ... 10), where the
153
+ # negative times wrap around the end of the array.
154
+ #
155
+ # require("gsl")
156
+ # include GSL
157
+ #
158
+ # n = 128
159
+ # data = Vector::Complex[n]
160
+ #
161
+ # data[0] = 1.0
162
+ # for i in 1..10 do
163
+ # data[i] = 1.0
164
+ # data[n-i] = 1.0
165
+ # end
166
+ #
167
+ # #for i in 0...n do
168
+ # # printf("%d %e %e\n", i, data[i].re, data[i].im)
169
+ # #end
170
+ #
171
+ # # You can choose whichever you like
172
+ # #ffted = data.radix2_forward()
173
+ # ffted = data.radix2_transform(FFT::FORWARD)
174
+ # ffted /= Math::sqrt(n)
175
+ # for i in 0...n do
176
+ # printf("%d %e %e\n", i, ffted[i].re, ffted[i].im)
177
+ # end
178
+ #
179
+ # === {}[link:index.html"name="2.3] Mixed-radix FFT routines for complex data
180
+ #
181
+ # ==== {}[link:index.html"name="2.3.1] GSL::FFT::ComplexWavetable class
182
+ # ---
183
+ # * GSL::FFT::ComplexWavetable.alloc(n)
184
+ #
185
+ #
186
+ # This method prepares a trigonometric lookup table for a complex FFT of length <tt>n</tt>.
187
+ # The length <tt>n</tt> is factorized into a product of subtransforms, and the factors and their
188
+ # trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are
189
+ # computed using direct calls to sin and cos, for accuracy. Recursion relations could be used
190
+ # to compute the lookup table faster, but if an application performs many FFTs of the same
191
+ # length then this computation is a one-off overhead which does not affect the final
192
+ # throughput.
193
+ #
194
+ # The <tt>Wavetable</tt> object can be used repeatedly for any transform of the same length.
195
+ # The table is not modified by calls to any of the other FFT functions. The same wavetable
196
+ # can be used for both forward and backward (or inverse) transforms of a given length.
197
+ #
198
+ # ---
199
+ # * GSL::FFT::ComplexWavetable#n
200
+ # * GSL::FFT::ComplexWavetable#nf
201
+ # * GSL::FFT::ComplexWavetable#factor
202
+ #
203
+ #
204
+ # ==== {}[link:index.html"name="2.3.2] GSL::FFT::ComplexWorkspace class
205
+ # ---
206
+ # * GSL::FFT::ComplexWorkspace.alloc(n)
207
+ #
208
+ #
209
+ # Creates a workspace for a complex transform of length <tt>n</tt>.
210
+ #
211
+ # ==== {}[link:index.html"name="2.3.3] Methods to compute transform
212
+ # <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
213
+ #
214
+ # ---
215
+ # * GSL::Vector::Complex#forward(table, work)
216
+ # * GSL::Vector::Complex#forward(table)
217
+ # * GSL::Vector::Complex#forward(work)
218
+ # * GSL::Vector::Complex#forward()
219
+ # * GSL::Vector::Complex#backward(arguments same as forward)
220
+ # * GSL::Vector::Complex#inverse(arguments same as forward)
221
+ # * GSL::Vector::Complex#transform(arguments same as forward, sign)
222
+ #
223
+ #
224
+ # These methods compute forward, backward and inverse FFTs of the complex
225
+ # vector <tt>self</tt>, using a mixed radix decimation-in-frequency algorithm.
226
+ # There is no restriction on the length. Efficient modules are provided for
227
+ # subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are
228
+ # computed with a slow, O(n^2), general-n module.
229
+ #
230
+ # The caller can supply a <tt>table</tt> containing the trigonometric lookup
231
+ # tables and a workspace <tt>work</tt> (they are optional).
232
+ #
233
+ # The sign argument for the method <tt>transform</tt> can be either
234
+ # <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
235
+ #
236
+ # These methods return the FFTed data, and the input data is not changed.
237
+ #
238
+ # ==== {}[link:index.html"name="2.3.4] Example to use the mixed-radix FFT algorithm
239
+ # require 'gsl'
240
+ # include GSL
241
+ #
242
+ # n = 630
243
+ # data = FFT::Vector::Complex[n]
244
+ #
245
+ # table = FFT::ComplexWavetable.alloc(n)
246
+ # space = FFT::ComplexWorkspace.alloc(n)
247
+ #
248
+ # data[0] = 1.0
249
+ # for i in 1..10 do
250
+ # data[i] = 1.0
251
+ # end
252
+ #
253
+ # ffted = data.forward(table, space)
254
+ # #ffted = data.forward()
255
+ # #ffted = data.transform(FFT:Forward)
256
+ #
257
+ # ffted /= Math::sqrt(n)
258
+ # for i in 0...n do
259
+ # printf("%d %e %e\n", i, data[i].re, data[i].im)
260
+ # end
261
+ #
262
+ # == {}[link:index.html"name="3] Real data FFTs
263
+ # === {}[link:index.html"name="3.1] Overview of real data FFTs
264
+ #
265
+ # The functions for real data FFTs are provided as instance methods of
266
+ # {GSL::Vector}[link:files/rdoc/vector.class]. While they are similar to those for
267
+ # complex data, there is an important difference in the data storage layout
268
+ # between forward and inverse transforms. The Fourier transform of a real
269
+ # sequence is not real. It is a complex sequence with a special symmetry. A
270
+ # sequence with this symmetry is called <tt>conjugate-complex</tt> or
271
+ # <tt>half-complex</tt> and requires only as much storage as the original real
272
+ # sequence instead of twice as much.
273
+ #
274
+ # Forward transforms of real sequences produce half complex sequences of the same
275
+ # length. Backward and inverse transforms of half complex sequences produce real
276
+ # sequences of the same length. In both cases, the input and output sequences
277
+ # are instances of {GSL::Vector}[link:files/rdoc/vector_rdoc.html].
278
+ #
279
+ # The precise storage arrangements of half complex seqeunces depend on the
280
+ # algorithm, and are different for radix-2 and mixed-radix routines. The radix-2
281
+ # functions operate in-place, which constrains the locations where each element
282
+ # can be stored. The restriction forces real and imaginary parts to be stored far
283
+ # apart. The mixed-radix algorithm does not have this restriction, and it stores
284
+ # the real and imaginary parts of a given term in neighboring locations (which is
285
+ # desirable for better locality of memory accesses). This means that a half
286
+ # complex sequence produces by a radix-2 forward transform <b>cannot</b> be
287
+ # recovered by a mixed-radix inverse transform (and vice versa).
288
+ #
289
+ # === {}[link:index.html"name="3.2] Radix-2 FFT routines for real data
290
+ # The routines for readix-2 real FFTs are provided as instance methods of
291
+ # {GSL::Vector}[link:files/rdoc/vector_rdoc.html].
292
+ #
293
+ # <b>The FFT methods described below return FFTed data, and the input vector is
294
+ # not changed. Use methods with '!' as <tt>radix2_tranform!</tt> for in-place
295
+ # transform.</b>
296
+ #
297
+ # ---
298
+ # * GSL::Vector#real_radix2_transform
299
+ # * GSL::Vector#radix2_transform
300
+ # * GSL::Vector#real_radix2_forward
301
+ # * GSL::Vector#radix2_forward
302
+ #
303
+ #
304
+ # These methods compute a radix-2 FFT of the real vector <tt>self</tt>. The
305
+ # output is a half-complex sequence. The arrangement of the half-complex
306
+ # terms uses the following scheme: for k < N/2 the real part of the k-th term
307
+ # is stored in location k, and the corresponding imaginary part is stored in
308
+ # location N-k. Terms with k > N/2 can be reconstructed using the symmetry
309
+ # z_k = z^*_{N-k}. The terms for k=0 and k=N/2 are both purely real, and
310
+ # count as a special case. Their real parts are stored in locations 0 and N/2
311
+ # respectively, while their imaginary parts which are zero are not stored.
312
+ #
313
+ # These methods return the FFTed data, and the input data is not changed.
314
+ #
315
+ # The following table shows the correspondence between the output <tt>self</tt>
316
+ # and the equivalent results obtained by considering the input data as a
317
+ # complex sequence with zero imaginary part,
318
+ #
319
+ # complex[0].real = self[0]
320
+ # complex[0].imag = 0
321
+ # complex[1].real = self[1]
322
+ # complex[1].imag = self[N-1]
323
+ # ............... ................
324
+ # complex[k].real = self[k]
325
+ # complex[k].imag = self[N-k]
326
+ # ............... ................
327
+ # complex[N/2].real = self[N/2]
328
+ # complex[N/2].real = 0
329
+ # ............... ................
330
+ # complex[k'].real = self[k] k' = N - k
331
+ # complex[k'].imag = -self[N-k]
332
+ # ............... ................
333
+ # complex[N-1].real = self[1]
334
+ # complex[N-1].imag = -self[N-1]
335
+ #
336
+ # ---
337
+ # * GSL::Vector#halfcomplex_radix2_inverse
338
+ # * GSL::Vector#radix2_inverse
339
+ # * GSL::Vector#halfcomplex_radix2_backward
340
+ # * GSL::Vector#radix2_backward
341
+ #
342
+ #
343
+ # These methods compute the inverse or backwards radix-2 FFT of the
344
+ # half-complex sequence data stored according the output scheme used by
345
+ # gsl_fft_real_radix2. The result is a real array stored in natural order.
346
+ #
347
+ # == {}[link:index.html"name="4] Mixed-radix FFT routines for real data
348
+ #
349
+ # This section describes mixed-radix FFT algorithms for real data.
350
+ # The mixed-radix functions work for FFTs of any length. They are a
351
+ # reimplementation of the real-FFT routines in the Fortran FFTPACK library
352
+ # by Paul Swarztrauber.
353
+ # The theory behind the algorithm is explained in the article
354
+ # <tt>Fast Mixed-Radix Real Fourier Transforms</tt> by Clive Temperton.
355
+ # The routines here use the same indexing scheme and basic algorithms as
356
+ # FFTPACK.
357
+ #
358
+ # The functions use the FFTPACK storage convention for half-complex sequences.
359
+ # In this convention the half-complex transform of a real sequence is stored with
360
+ # frequencies in increasing order, starting at zero, with the real and imaginary
361
+ # parts of each frequency in neighboring locations. When a value is known to be
362
+ # real the imaginary part is not stored. The imaginary part of the zero-frequency
363
+ # component is never stored. It is known to be zero since the zero frequency
364
+ # component is simply the sum of the input data (all real). For a sequence of
365
+ # even length the imaginary part of the frequency n/2 is not stored either, since
366
+ # the symmetry z_k = z_{N-k}^* implies that this is purely real too.
367
+ #
368
+ #
369
+ # === {}[link:index.html"name="4.1] Data storage scheme
370
+ #
371
+ # The storage scheme is best shown by some examples.
372
+ # The table below shows the output for an odd-length sequence, n=5.
373
+ # The two columns give the correspondence between the 5 values in the
374
+ # half-complex sequence computed <tt>real_transform</tt>, <tt>halfcomplex[]</tt>
375
+ # and the values <tt>complex[]</tt> that would be returned if the same real input
376
+ # sequence were passed to <tt>complex_backward</tt> as a complex sequence
377
+ # (with imaginary parts set to 0),
378
+ #
379
+ # complex[0].real = halfcomplex[0]
380
+ # complex[0].imag = 0
381
+ # complex[1].real = halfcomplex[1]
382
+ # complex[1].imag = halfcomplex[2]
383
+ # complex[2].real = halfcomplex[3]
384
+ # complex[2].imag = halfcomplex[4]
385
+ # complex[3].real = halfcomplex[3]
386
+ # complex[3].imag = -halfcomplex[4]
387
+ # complex[4].real = halfcomplex[1]
388
+ # complex[4].imag = -halfcomplex[2]
389
+ #
390
+ # The upper elements of the <tt>complex</tt> array, <tt>complex[3]</tt> and <tt>complex[4]</tt>
391
+ # are filled in using the symmetry condition. The imaginary part of
392
+ # the zero-frequency term <tt>complex[0].imag</tt> is known to be zero by the symmetry.
393
+ #
394
+ # The next table shows the output for an even-length sequence,
395
+ # n=5 In the even case there are two values which are purely real,
396
+ #
397
+ # complex[0].real = halfcomplex[0]
398
+ # complex[0].imag = 0
399
+ # complex[1].real = halfcomplex[1]
400
+ # complex[1].imag = halfcomplex[2]
401
+ # complex[2].real = halfcomplex[3]
402
+ # complex[2].imag = halfcomplex[4]
403
+ # complex[3].real = halfcomplex[5]
404
+ # complex[3].imag = 0
405
+ # complex[4].real = halfcomplex[3]
406
+ # complex[4].imag = -halfcomplex[4]
407
+ # complex[5].real = halfcomplex[1]
408
+ # complex[5].imag = -halfcomplex[2]
409
+ #
410
+ # The upper elements of the <tt>complex</tt> array, <tt>complex[4]</tt>
411
+ # and <tt>complex[5]</tt> are filled in using the symmetry condition.
412
+ # Both <tt>complex[0].imag</tt> and <tt>complex[3].imag</tt> are known to be zero.
413
+ #
414
+ # ==== {}[link:index.html"name="4.1.1] Wavetable and Workspace classes
415
+ # ---
416
+ # * GSL::FFT::RealWavetable.alloc(n)
417
+ # * GSL::FFT::HalfComplexWavetable.alloc(n)
418
+ #
419
+ #
420
+ # These methods create trigonometric lookup tables for an FFT of size <tt>n</tt>
421
+ # real elements. The length <tt>n</tt> is factorized into a product of subtransforms,
422
+ # and the factors and their trigonometric coefficients are stored in the wavetable.
423
+ # The trigonometric coefficients are computed using direct calls to sin and cos,
424
+ # for accuracy. Recursion relations could be used to compute the lookup table
425
+ # faster, but if an application performs many FFTs of the same length then
426
+ # computing the wavetable is a one-off overhead which does not affect the final
427
+ # throughput.
428
+ #
429
+ # The wavetable structure can be used repeatedly for any transform of the same
430
+ # length. The table is not modified by calls to any of the other FFT functions.
431
+ # The appropriate type of wavetable must be used for forward real or inverse
432
+ # half-complex transforms.
433
+ #
434
+ # ---
435
+ # * GSL::FFT::RealWorkspace.alloc(n)
436
+ #
437
+ #
438
+ # This method creates a workspace object for a real transform of length
439
+ # <tt>n</tt>. The same workspace can be used for both forward real and inverse
440
+ # halfcomplex transforms.
441
+ #
442
+ # ==== {}[link:index.html"name="4.1.2] Methods for mixed-radix real FFTs
443
+ #
444
+ # <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>real_tranform!</tt> for in-place transform.</b>
445
+ #
446
+ # ---
447
+ # * GSL::Vector#real_transform(table, work)
448
+ # * GSL::Vector#halfcomplex_transform(table, work)
449
+ # * GSL::Vector#fft
450
+ #
451
+ #
452
+ # These methods compute the FFT of <tt>self</tt>, a real or half-complex array,
453
+ # using a mixed radix decimation-in-frequency algorithm. For
454
+ # <tt>real_transform</tt> <tt>self</tt> is an array of time-ordered real data. For
455
+ # <tt>halfcomplex_transform</tt> <tt>self</tt> contains Fourier coefficients in the
456
+ # half-complex ordering described above. There is no restriction on the
457
+ # length <tt>n</tt>.
458
+ #
459
+ # Efficient modules are provided for subtransforms of length 2, 3, 4 and 5.
460
+ # Any remaining factors are computed with a slow, O(n^2), general-n module.
461
+ #
462
+ # The caller can supply a <tt>table</tt> containing trigonometric lookup tables
463
+ # and a workspace <tt>work</tt> (optional).
464
+ #
465
+ # These methods return the FFTed data, and the input data is not changed.
466
+ #
467
+ # ---
468
+ # * GSL::Vector#halfcomplex_inverse(table, work)
469
+ # * GSL::Vector#halfcomplex_backward(table, work)
470
+ # * GSL::Vector#ifft
471
+ #
472
+ #
473
+ # == {}[link:index.html"name="5] Examples
474
+ #
475
+ # === {}[link:index.html"name="5.1] Example 1
476
+ #
477
+ # #!/usr/bin/env ruby
478
+ # require("gsl")
479
+ # include GSL
480
+ #
481
+ # N = 2048
482
+ # SAMPLING = 1000 # 1 kHz
483
+ # TMAX = 1.0/SAMPLING*N
484
+ # FREQ1 = 50
485
+ # FREQ2 = 120
486
+ # t = Vector.linspace(0, TMAX, N)
487
+ # x = Sf::sin(2*M_PI*FREQ1*t) + Sf::sin(2*M_PI*FREQ2*t)
488
+ # y = x.fft
489
+ #
490
+ # y2 = y.subvector(1, N-2).to_complex2
491
+ # mag = y2.abs
492
+ # phase = y2.arg
493
+ # f = Vector.linspace(0, SAMPLING/2, mag.size)
494
+ # graph(f, mag, "-C -g 3 -x 0 200 -X 'Frequency [Hz]'")
495
+ #
496
+ # === {}[link:index.html"name="5.2] Example 2
497
+ # #!/usr/bin/env ruby
498
+ # require("gsl")
499
+ # include GSL
500
+ #
501
+ # n = 100
502
+ # data = Vector.alloc(n)
503
+ #
504
+ # for i in (n/3)...(2*n/3) do
505
+ # data[i] = 1.0
506
+ # end
507
+ #
508
+ # rtable = FFT::RealWavetable.alloc(n)
509
+ # rwork = FFT::RealWorkspace.alloc(n)
510
+ #
511
+ # #ffted = data.real_transform(rtable, rwork)
512
+ # #ffted = data.real_transform(rtable)
513
+ # #ffted = data.real_transform(rwork)
514
+ # #ffted = data.real_transform()
515
+ # ffted = data.fft
516
+ #
517
+ # for i in 11...n do
518
+ # ffted[i] = 0.0
519
+ # end
520
+ #
521
+ # hctable = FFT::HalfComplexWavetable.alloc(n)
522
+ #
523
+ # #data2 = ffted.halfcomplex_inverse(hctable, rwork)
524
+ # #data2 = ffted.halfcomplex_inverse()
525
+ # data2 = ffted.ifft
526
+ #
527
+ # graph(nil, data, data2, "-T X -C -g 3 -L 'Real-halfcomplex' -x 0 #{data.size}")
528
+ #
529
+ # {prev}[link:files/rdoc/eigen_rdoc.html]
530
+ # {next}[link:files/rdoc/wavelet_rdoc.html]
531
+ #
532
+ # {Reference index}[link:files/rdoc/ref_rdoc.html]
533
+ # {top}[link:files/rdoc/index_rdoc.html]
534
+ #
535
+ #