gsl 1.12.109 → 1.14.5
Sign up to get free protection for your applications and to get access to all the features.
- data/AUTHORS +6 -0
- data/COPYING +339 -0
- data/ChangeLog +556 -0
- data/{README.rdoc → README} +3 -0
- data/Rakefile +54 -10
- data/THANKS +17 -0
- data/VERSION +1 -2
- data/examples/alf/alf.gp +15 -0
- data/examples/alf/alf.rb +32 -0
- data/examples/blas/blas.rb +13 -0
- data/examples/blas/dnrm2.rb +16 -0
- data/examples/blas/level1.rb +81 -0
- data/examples/blas/level2.rb +11 -0
- data/examples/blas/level3.rb +12 -0
- data/examples/bspline.rb +57 -0
- data/examples/cdf.rb +16 -0
- data/examples/cheb.rb +21 -0
- data/examples/combination.rb +23 -0
- data/examples/complex/RC-lpf.rb +47 -0
- data/examples/complex/add.rb +36 -0
- data/examples/complex/coerce.rb +14 -0
- data/examples/complex/complex.rb +25 -0
- data/examples/complex/fpmi.rb +70 -0
- data/examples/complex/functions.rb +77 -0
- data/examples/complex/michelson.rb +36 -0
- data/examples/complex/mul.rb +28 -0
- data/examples/complex/oscillator.rb +17 -0
- data/examples/complex/set.rb +37 -0
- data/examples/const/physconst.rb +151 -0
- data/examples/const/travel.rb +45 -0
- data/examples/deriv/demo.rb +13 -0
- data/examples/deriv/deriv.rb +36 -0
- data/examples/deriv/diff.rb +35 -0
- data/examples/dht.rb +42 -0
- data/examples/dirac.rb +56 -0
- data/examples/eigen/eigen.rb +34 -0
- data/examples/eigen/herm.rb +22 -0
- data/examples/eigen/narray.rb +9 -0
- data/examples/eigen/nonsymm.rb +37 -0
- data/examples/eigen/nonsymmv.rb +43 -0
- data/examples/eigen/qhoscillator.gp +35 -0
- data/examples/eigen/qhoscillator.rb +90 -0
- data/examples/eigen/vander.rb +41 -0
- data/examples/fft/fft.rb +17 -0
- data/examples/fft/fft2.rb +17 -0
- data/examples/fft/forward.rb +25 -0
- data/examples/fft/forward2.rb +26 -0
- data/examples/fft/radix2.rb +18 -0
- data/examples/fft/real-halfcomplex.rb +33 -0
- data/examples/fft/real-halfcomplex2.rb +30 -0
- data/examples/fft/realradix2.rb +19 -0
- data/examples/fft/sunspot.dat +256 -0
- data/examples/fft/sunspot.rb +16 -0
- data/examples/fit/expdata.dat +20 -0
- data/examples/fit/expfit.rb +31 -0
- data/examples/fit/gaussfit.rb +29 -0
- data/examples/fit/gaussian_2peaks.rb +34 -0
- data/examples/fit/hillfit.rb +40 -0
- data/examples/fit/lognormal.rb +26 -0
- data/examples/fit/lorentzfit.rb +22 -0
- data/examples/fit/multifit.rb +72 -0
- data/examples/fit/ndlinear.rb +133 -0
- data/examples/fit/nonlinearfit.rb +89 -0
- data/examples/fit/plot.gp +36 -0
- data/examples/fit/polyfit.rb +9 -0
- data/examples/fit/powerfit.rb +21 -0
- data/examples/fit/sigmoidfit.rb +40 -0
- data/examples/fit/sinfit.rb +22 -0
- data/examples/fit/wlinear.rb +46 -0
- data/examples/fresnel.rb +11 -0
- data/examples/function/function.rb +36 -0
- data/examples/function/log.rb +7 -0
- data/examples/function/min.rb +33 -0
- data/examples/function/sin.rb +10 -0
- data/examples/function/synchrotron.rb +18 -0
- data/examples/gallery/butterfly.rb +7 -0
- data/examples/gallery/cayley.rb +12 -0
- data/examples/gallery/cornu.rb +23 -0
- data/examples/gallery/eight.rb +11 -0
- data/examples/gallery/koch.rb +40 -0
- data/examples/gallery/lemniscate.rb +11 -0
- data/examples/gallery/polar.rb +11 -0
- data/examples/gallery/rgplot/cossin.rb +35 -0
- data/examples/gallery/rgplot/rgplot.replaced +0 -0
- data/examples/gallery/rgplot/roesller.rb +55 -0
- data/examples/gallery/roesller.rb +39 -0
- data/examples/gallery/scarabaeus.rb +14 -0
- data/examples/histogram/cauchy.rb +27 -0
- data/examples/histogram/cauchy.sh +2 -0
- data/examples/histogram/exponential.rb +19 -0
- data/examples/histogram/gauss.rb +16 -0
- data/examples/histogram/gsl-histogram.rb +40 -0
- data/examples/histogram/histo2d.rb +31 -0
- data/examples/histogram/histo3d.rb +34 -0
- data/examples/histogram/histogram-pdf.rb +27 -0
- data/examples/histogram/histogram.rb +26 -0
- data/examples/histogram/integral.rb +28 -0
- data/examples/histogram/poisson.rb +27 -0
- data/examples/histogram/power.rb +25 -0
- data/examples/histogram/rebin.rb +17 -0
- data/examples/histogram/smp.dat +5 -0
- data/examples/histogram/xexp.rb +21 -0
- data/examples/integration/ahmed.rb +21 -0
- data/examples/integration/cosmology.rb +75 -0
- data/examples/integration/friedmann.gp +16 -0
- data/examples/integration/friedmann.rb +35 -0
- data/examples/integration/gamma-zeta.rb +35 -0
- data/examples/integration/integration.rb +22 -0
- data/examples/integration/qag.rb +8 -0
- data/examples/integration/qag2.rb +14 -0
- data/examples/integration/qag3.rb +8 -0
- data/examples/integration/qagi.rb +28 -0
- data/examples/integration/qagi2.rb +49 -0
- data/examples/integration/qagiu.rb +29 -0
- data/examples/integration/qagp.rb +20 -0
- data/examples/integration/qags.rb +14 -0
- data/examples/integration/qawc.rb +18 -0
- data/examples/integration/qawf.rb +41 -0
- data/examples/integration/qawo.rb +29 -0
- data/examples/integration/qaws.rb +30 -0
- data/examples/integration/qng.rb +17 -0
- data/examples/interp/demo.gp +20 -0
- data/examples/interp/demo.rb +45 -0
- data/examples/interp/interp.rb +37 -0
- data/examples/interp/points +10 -0
- data/examples/interp/spline.rb +20 -0
- data/examples/jacobi/deriv.rb +40 -0
- data/examples/jacobi/integrate.rb +34 -0
- data/examples/jacobi/interp.rb +43 -0
- data/examples/jacobi/jacobi.rb +11 -0
- data/examples/linalg/HH.rb +15 -0
- data/examples/linalg/HH_narray.rb +13 -0
- data/examples/linalg/LQ_solve.rb +73 -0
- data/examples/linalg/LU.rb +84 -0
- data/examples/linalg/LU2.rb +31 -0
- data/examples/linalg/LU_narray.rb +24 -0
- data/examples/linalg/PTLQ.rb +47 -0
- data/examples/linalg/QR.rb +18 -0
- data/examples/linalg/QRPT.rb +47 -0
- data/examples/linalg/QR_solve.rb +78 -0
- data/examples/linalg/QR_solve_narray.rb +13 -0
- data/examples/linalg/SV.rb +16 -0
- data/examples/linalg/SV_narray.rb +12 -0
- data/examples/linalg/SV_solve.rb +49 -0
- data/examples/linalg/chol.rb +29 -0
- data/examples/linalg/chol_narray.rb +15 -0
- data/examples/linalg/complex.rb +57 -0
- data/examples/linalg/invert_narray.rb +10 -0
- data/examples/math/const.rb +67 -0
- data/examples/math/elementary.rb +35 -0
- data/examples/math/functions.rb +41 -0
- data/examples/math/inf_nan.rb +34 -0
- data/examples/math/minmax.rb +22 -0
- data/examples/math/power.rb +18 -0
- data/examples/math/test.rb +31 -0
- data/examples/matrix/a.dat +0 -0
- data/examples/matrix/add.rb +45 -0
- data/examples/matrix/b.dat +4 -0
- data/examples/matrix/cat.rb +31 -0
- data/examples/matrix/colvectors.rb +24 -0
- data/examples/matrix/complex.rb +41 -0
- data/examples/matrix/det.rb +29 -0
- data/examples/matrix/diagonal.rb +23 -0
- data/examples/matrix/get_all.rb +159 -0
- data/examples/matrix/hilbert.rb +31 -0
- data/examples/matrix/iterator.rb +19 -0
- data/examples/matrix/matrix.rb +57 -0
- data/examples/matrix/minmax.rb +53 -0
- data/examples/matrix/mul.rb +39 -0
- data/examples/matrix/rand.rb +20 -0
- data/examples/matrix/read.rb +29 -0
- data/examples/matrix/rowcol.rb +47 -0
- data/examples/matrix/set.rb +41 -0
- data/examples/matrix/set_all.rb +100 -0
- data/examples/matrix/view.rb +32 -0
- data/examples/matrix/view_all.rb +148 -0
- data/examples/matrix/write.rb +23 -0
- data/examples/min.rb +29 -0
- data/examples/monte/miser.rb +47 -0
- data/examples/monte/monte.rb +47 -0
- data/examples/monte/plain.rb +47 -0
- data/examples/monte/vegas.rb +46 -0
- data/examples/multimin/bundle.rb +66 -0
- data/examples/multimin/cqp.rb +109 -0
- data/examples/multimin/fdfminimizer.rb +40 -0
- data/examples/multimin/fminimizer.rb +41 -0
- data/examples/multiroot/demo.rb +36 -0
- data/examples/multiroot/fdfsolver.rb +50 -0
- data/examples/multiroot/fsolver.rb +33 -0
- data/examples/multiroot/fsolver2.rb +32 -0
- data/examples/multiroot/fsolver3.rb +26 -0
- data/examples/narray/histogram.rb +14 -0
- data/examples/narray/mandel.rb +27 -0
- data/examples/narray/narray.rb +28 -0
- data/examples/narray/narray2.rb +44 -0
- data/examples/narray/sf.rb +26 -0
- data/examples/ntuple/create.rb +17 -0
- data/examples/ntuple/project.rb +31 -0
- data/examples/odeiv/binarysystem.gp +23 -0
- data/examples/odeiv/binarysystem.rb +104 -0
- data/examples/odeiv/demo.gp +24 -0
- data/examples/odeiv/demo.rb +69 -0
- data/examples/odeiv/demo2.gp +26 -0
- data/examples/odeiv/duffing.rb +45 -0
- data/examples/odeiv/frei1.rb +109 -0
- data/examples/odeiv/frei2.rb +76 -0
- data/examples/odeiv/legendre.rb +52 -0
- data/examples/odeiv/odeiv.rb +32 -0
- data/examples/odeiv/odeiv2.rb +45 -0
- data/examples/odeiv/oscillator.rb +42 -0
- data/examples/odeiv/sedov.rb +97 -0
- data/examples/odeiv/whitedwarf.gp +40 -0
- data/examples/odeiv/whitedwarf.rb +158 -0
- data/examples/ool/conmin.rb +100 -0
- data/examples/ool/gencan.rb +99 -0
- data/examples/ool/pgrad.rb +100 -0
- data/examples/ool/spg.rb +100 -0
- data/examples/pdf/bernoulli.rb +5 -0
- data/examples/pdf/beta.rb +7 -0
- data/examples/pdf/binomiral.rb +10 -0
- data/examples/pdf/cauchy.rb +6 -0
- data/examples/pdf/chisq.rb +8 -0
- data/examples/pdf/exponential.rb +7 -0
- data/examples/pdf/exppow.rb +6 -0
- data/examples/pdf/fdist.rb +7 -0
- data/examples/pdf/flat.rb +7 -0
- data/examples/pdf/gamma.rb +8 -0
- data/examples/pdf/gauss-tail.rb +5 -0
- data/examples/pdf/gauss.rb +6 -0
- data/examples/pdf/geometric.rb +5 -0
- data/examples/pdf/gumbel.rb +6 -0
- data/examples/pdf/hypergeometric.rb +11 -0
- data/examples/pdf/landau.rb +5 -0
- data/examples/pdf/laplace.rb +7 -0
- data/examples/pdf/logarithmic.rb +5 -0
- data/examples/pdf/logistic.rb +6 -0
- data/examples/pdf/lognormal.rb +6 -0
- data/examples/pdf/neg-binomiral.rb +10 -0
- data/examples/pdf/pareto.rb +7 -0
- data/examples/pdf/pascal.rb +10 -0
- data/examples/pdf/poisson.rb +5 -0
- data/examples/pdf/rayleigh-tail.rb +6 -0
- data/examples/pdf/rayleigh.rb +6 -0
- data/examples/pdf/tdist.rb +6 -0
- data/examples/pdf/weibull.rb +8 -0
- data/examples/permutation/ex1.rb +22 -0
- data/examples/permutation/permutation.rb +16 -0
- data/examples/poly/bell.rb +6 -0
- data/examples/poly/bessel.rb +6 -0
- data/examples/poly/cheb.rb +6 -0
- data/examples/poly/cheb_II.rb +6 -0
- data/examples/poly/cubic.rb +9 -0
- data/examples/poly/demo.rb +20 -0
- data/examples/poly/eval.rb +28 -0
- data/examples/poly/eval_derivs.rb +14 -0
- data/examples/poly/fit.rb +21 -0
- data/examples/poly/hermite.rb +6 -0
- data/examples/poly/poly.rb +13 -0
- data/examples/poly/quadratic.rb +25 -0
- data/examples/random/diffusion.rb +34 -0
- data/examples/random/gaussian.rb +9 -0
- data/examples/random/generator.rb +27 -0
- data/examples/random/hdsobol.rb +21 -0
- data/examples/random/poisson.rb +9 -0
- data/examples/random/qrng.rb +19 -0
- data/examples/random/randomwalk.rb +37 -0
- data/examples/random/randomwalk2d.rb +19 -0
- data/examples/random/rayleigh.rb +36 -0
- data/examples/random/rng.rb +33 -0
- data/examples/random/rngextra.rb +14 -0
- data/examples/roots/bisection.rb +25 -0
- data/examples/roots/brent.rb +43 -0
- data/examples/roots/demo.rb +30 -0
- data/examples/roots/newton.rb +46 -0
- data/examples/roots/recombination.gp +12 -0
- data/examples/roots/recombination.rb +61 -0
- data/examples/roots/steffenson.rb +48 -0
- data/examples/sf/ShiChi.rb +6 -0
- data/examples/sf/SiCi.rb +6 -0
- data/examples/sf/airy_Ai.rb +8 -0
- data/examples/sf/airy_Bi.rb +8 -0
- data/examples/sf/bessel_IK.rb +12 -0
- data/examples/sf/bessel_JY.rb +13 -0
- data/examples/sf/beta_inc.rb +9 -0
- data/examples/sf/clausen.rb +6 -0
- data/examples/sf/dawson.rb +5 -0
- data/examples/sf/debye.rb +9 -0
- data/examples/sf/dilog.rb +6 -0
- data/examples/sf/ellint.rb +6 -0
- data/examples/sf/expint.rb +8 -0
- data/examples/sf/fermi.rb +10 -0
- data/examples/sf/gamma_inc_P.rb +9 -0
- data/examples/sf/gegenbauer.rb +8 -0
- data/examples/sf/hyperg.rb +7 -0
- data/examples/sf/laguerre.rb +19 -0
- data/examples/sf/lambertW.rb +5 -0
- data/examples/sf/legendre_P.rb +10 -0
- data/examples/sf/lngamma.rb +5 -0
- data/examples/sf/psi.rb +54 -0
- data/examples/sf/sphbessel.gp +27 -0
- data/examples/sf/sphbessel.rb +30 -0
- data/examples/sf/synchrotron.rb +5 -0
- data/examples/sf/transport.rb +10 -0
- data/examples/sf/zetam1.rb +5 -0
- data/examples/siman.rb +44 -0
- data/examples/sort/heapsort.rb +23 -0
- data/examples/sort/heapsort_vector_complex.rb +21 -0
- data/examples/sort/sort.rb +23 -0
- data/examples/sort/sort2.rb +16 -0
- data/examples/stats/mean.rb +17 -0
- data/examples/stats/statistics.rb +18 -0
- data/examples/stats/test.rb +9 -0
- data/examples/sum.rb +34 -0
- data/examples/tamu_anova.rb +18 -0
- data/examples/vector/a.dat +0 -0
- data/examples/vector/add.rb +56 -0
- data/examples/vector/b.dat +4 -0
- data/examples/vector/c.dat +3 -0
- data/examples/vector/collect.rb +26 -0
- data/examples/vector/compare.rb +28 -0
- data/examples/vector/complex.rb +51 -0
- data/examples/vector/complex_get_all.rb +85 -0
- data/examples/vector/complex_set_all.rb +131 -0
- data/examples/vector/complex_view_all.rb +77 -0
- data/examples/vector/connect.rb +22 -0
- data/examples/vector/decimate.rb +38 -0
- data/examples/vector/diff.rb +31 -0
- data/examples/vector/filescan.rb +17 -0
- data/examples/vector/floor.rb +23 -0
- data/examples/vector/get_all.rb +82 -0
- data/examples/vector/gnuplot.rb +38 -0
- data/examples/vector/graph.rb +28 -0
- data/examples/vector/histogram.rb +22 -0
- data/examples/vector/linspace.rb +24 -0
- data/examples/vector/log.rb +17 -0
- data/examples/vector/logic.rb +33 -0
- data/examples/vector/logspace.rb +25 -0
- data/examples/vector/minmax.rb +47 -0
- data/examples/vector/mul.rb +49 -0
- data/examples/vector/narray.rb +46 -0
- data/examples/vector/read.rb +29 -0
- data/examples/vector/set.rb +35 -0
- data/examples/vector/set_all.rb +121 -0
- data/examples/vector/smpv.dat +15 -0
- data/examples/vector/test.rb +43 -0
- data/examples/vector/test_gslblock.rb +58 -0
- data/examples/vector/vector.rb +110 -0
- data/examples/vector/view.rb +35 -0
- data/examples/vector/view_all.rb +73 -0
- data/examples/vector/where.rb +29 -0
- data/examples/vector/write.rb +24 -0
- data/examples/vector/zip.rb +34 -0
- data/examples/wavelet/ecg.dat +256 -0
- data/examples/wavelet/wavelet1.rb +50 -0
- data/ext/extconf.rb +9 -0
- data/ext/gsl.c +10 -1
- data/ext/histogram.c +6 -2
- data/ext/integration.c +39 -0
- data/ext/matrix_complex.c +1 -1
- data/ext/multiset.c +214 -0
- data/ext/nmf.c +4 -0
- data/ext/nmf_wrap.c +3 -0
- data/ext/vector_complex.c +1 -1
- data/ext/vector_double.c +3 -3
- data/ext/vector_source.c +6 -6
- data/include/rb_gsl.h +7 -0
- data/include/rb_gsl_common.h +6 -0
- data/rdoc/alf.rdoc +77 -0
- data/rdoc/blas.rdoc +269 -0
- data/rdoc/bspline.rdoc +42 -0
- data/rdoc/changes.rdoc +164 -0
- data/rdoc/cheb.rdoc +99 -0
- data/rdoc/cholesky_complex.rdoc +46 -0
- data/rdoc/combi.rdoc +125 -0
- data/rdoc/complex.rdoc +210 -0
- data/rdoc/const.rdoc +546 -0
- data/rdoc/dht.rdoc +122 -0
- data/rdoc/diff.rdoc +133 -0
- data/rdoc/ehandling.rdoc +50 -0
- data/rdoc/eigen.rdoc +401 -0
- data/rdoc/fft.rdoc +535 -0
- data/rdoc/fit.rdoc +284 -0
- data/rdoc/function.rdoc +94 -0
- data/rdoc/graph.rdoc +137 -0
- data/rdoc/hist.rdoc +409 -0
- data/rdoc/hist2d.rdoc +279 -0
- data/rdoc/hist3d.rdoc +112 -0
- data/rdoc/index.rdoc +62 -0
- data/rdoc/integration.rdoc +398 -0
- data/rdoc/interp.rdoc +231 -0
- data/rdoc/intro.rdoc +27 -0
- data/rdoc/linalg.rdoc +681 -0
- data/rdoc/linalg_complex.rdoc +88 -0
- data/rdoc/math.rdoc +276 -0
- data/rdoc/matrix.rdoc +1093 -0
- data/rdoc/min.rdoc +189 -0
- data/rdoc/monte.rdoc +234 -0
- data/rdoc/multimin.rdoc +312 -0
- data/rdoc/multiroot.rdoc +293 -0
- data/rdoc/narray.rdoc +173 -0
- data/rdoc/ndlinear.rdoc +247 -0
- data/rdoc/nonlinearfit.rdoc +348 -0
- data/rdoc/ntuple.rdoc +88 -0
- data/rdoc/odeiv.rdoc +378 -0
- data/rdoc/perm.rdoc +221 -0
- data/rdoc/poly.rdoc +335 -0
- data/rdoc/qrng.rdoc +90 -0
- data/rdoc/randist.rdoc +233 -0
- data/rdoc/ref.rdoc +93 -0
- data/rdoc/rng.rdoc +203 -0
- data/rdoc/rngextra.rdoc +11 -0
- data/rdoc/roots.rdoc +305 -0
- data/rdoc/screenshot.rdoc +40 -0
- data/rdoc/sf.rdoc +1622 -0
- data/rdoc/siman.rdoc +89 -0
- data/rdoc/sort.rdoc +94 -0
- data/rdoc/start.rdoc +16 -0
- data/rdoc/stats.rdoc +219 -0
- data/rdoc/sum.rdoc +65 -0
- data/rdoc/tensor.rdoc +251 -0
- data/rdoc/tut.rdoc +5 -0
- data/rdoc/use.rdoc +177 -0
- data/rdoc/vector.rdoc +1243 -0
- data/rdoc/vector_complex.rdoc +347 -0
- data/rdoc/wavelet.rdoc +218 -0
- data/setup.rb +1585 -0
- data/tests/blas/amax.rb +14 -0
- data/tests/blas/asum.rb +16 -0
- data/tests/blas/axpy.rb +25 -0
- data/tests/blas/copy.rb +23 -0
- data/tests/blas/dot.rb +23 -0
- data/tests/bspline.rb +53 -0
- data/tests/cdf.rb +1388 -0
- data/tests/cheb.rb +112 -0
- data/tests/combination.rb +123 -0
- data/tests/complex.rb +17 -0
- data/tests/const.rb +24 -0
- data/tests/deriv.rb +85 -0
- data/tests/dht/dht1.rb +17 -0
- data/tests/dht/dht2.rb +23 -0
- data/tests/dht/dht3.rb +23 -0
- data/tests/dht/dht4.rb +23 -0
- data/tests/diff.rb +78 -0
- data/tests/eigen/eigen.rb +220 -0
- data/tests/eigen/gen.rb +105 -0
- data/tests/eigen/genherm.rb +66 -0
- data/tests/eigen/gensymm.rb +68 -0
- data/tests/eigen/nonsymm.rb +53 -0
- data/tests/eigen/nonsymmv.rb +53 -0
- data/tests/eigen/symm-herm.rb +74 -0
- data/tests/err.rb +58 -0
- data/tests/fit.rb +124 -0
- data/tests/gsl_test.rb +118 -0
- data/tests/gsl_test2.rb +107 -0
- data/tests/histo.rb +12 -0
- data/tests/integration/integration1.rb +72 -0
- data/tests/integration/integration2.rb +71 -0
- data/tests/integration/integration3.rb +71 -0
- data/tests/integration/integration4.rb +71 -0
- data/tests/interp.rb +45 -0
- data/tests/linalg/HH.rb +64 -0
- data/tests/linalg/LU.rb +47 -0
- data/tests/linalg/QR.rb +77 -0
- data/tests/linalg/SV.rb +24 -0
- data/tests/linalg/TDN.rb +116 -0
- data/tests/linalg/TDS.rb +122 -0
- data/tests/linalg/bidiag.rb +73 -0
- data/tests/linalg/cholesky.rb +20 -0
- data/tests/linalg/linalg.rb +158 -0
- data/tests/matrix/matrix_nmf_test.rb +39 -0
- data/tests/matrix/matrix_test.rb +48 -0
- data/tests/min.rb +99 -0
- data/tests/monte/miser.rb +31 -0
- data/tests/monte/vegas.rb +45 -0
- data/tests/multifit/test_2dgauss.rb +112 -0
- data/tests/multifit/test_brown.rb +90 -0
- data/tests/multifit/test_enso.rb +246 -0
- data/tests/multifit/test_filip.rb +155 -0
- data/tests/multifit/test_gauss.rb +97 -0
- data/tests/multifit/test_longley.rb +110 -0
- data/tests/multifit/test_multifit.rb +52 -0
- data/tests/multimin.rb +139 -0
- data/tests/multiroot.rb +131 -0
- data/tests/multiset.rb +52 -0
- data/tests/odeiv.rb +353 -0
- data/tests/poly/poly.rb +242 -0
- data/tests/poly/special.rb +65 -0
- data/tests/qrng.rb +131 -0
- data/tests/quartic.rb +29 -0
- data/tests/randist.rb +134 -0
- data/tests/rng.rb +305 -0
- data/tests/roots.rb +76 -0
- data/tests/run-test.sh +17 -0
- data/tests/sf/gsl_test_sf.rb +249 -0
- data/tests/sf/test_airy.rb +83 -0
- data/tests/sf/test_bessel.rb +306 -0
- data/tests/sf/test_coulomb.rb +17 -0
- data/tests/sf/test_dilog.rb +25 -0
- data/tests/sf/test_gamma.rb +209 -0
- data/tests/sf/test_hyperg.rb +356 -0
- data/tests/sf/test_legendre.rb +227 -0
- data/tests/sf/test_mathieu.rb +59 -0
- data/tests/sf/test_sf.rb +839 -0
- data/tests/stats.rb +174 -0
- data/tests/sum.rb +98 -0
- data/tests/sys.rb +323 -0
- data/tests/tensor.rb +419 -0
- data/tests/vector/vector_complex_test.rb +101 -0
- data/tests/vector/vector_test.rb +141 -0
- data/tests/wavelet.rb +142 -0
- metadata +596 -15
@@ -0,0 +1,88 @@
|
|
1
|
+
#
|
2
|
+
# === Complex LU decomposition
|
3
|
+
#
|
4
|
+
# ---
|
5
|
+
# * GSL::Linalg::Complex::LU_decomp!(A)
|
6
|
+
# * GSL::Linalg::Complex::LU::decomp!(A)
|
7
|
+
# * GSL::Matrix::Complex#LU_decomp!
|
8
|
+
# * GSL::Matrix::Complex#LU_decomp!
|
9
|
+
#
|
10
|
+
# Factorizes the square matrix <tt>A</tt> into the LU decomposition PA = LU,
|
11
|
+
# and returns an array, <tt>[perm, signum]</tt>. <tt>A</tt> is changed.
|
12
|
+
#
|
13
|
+
# ---
|
14
|
+
# * GSL::Linalg::Complex::LU_decomp(A)
|
15
|
+
# * GSL::Linalg::Complex::LU::decomp(A)
|
16
|
+
# * GSL::Matrix::Complex#LU_decomp
|
17
|
+
#
|
18
|
+
# Factorizes the square matrix <tt>A</tt> into the LU decomposition PA = LU,
|
19
|
+
# and returns an array, <tt>[LU, perm, signum]</tt>. <tt>A</tt> is not changed.
|
20
|
+
#
|
21
|
+
# ---
|
22
|
+
# * GSL::Linalg::Complex::LU_solve(A, b)
|
23
|
+
# * GSL::Linalg::Complex::LU::solve(A, b)
|
24
|
+
# * GSL::Linalg::Complex::LU_solve(A, b)
|
25
|
+
# * GSL::Matrix::Complex#LU_solve(b)
|
26
|
+
# * GSL::Linalg::Complex::solve(LU, perm, b)
|
27
|
+
# * GSL::Linalg::Complex::LU::solve(LU, perm, b)
|
28
|
+
# * GSL::Linalg::Complex::LU::LUMatirx#solve(perm, b)
|
29
|
+
#
|
30
|
+
#
|
31
|
+
# ---
|
32
|
+
# * GSL::Linalg::Complex::LU_svx(A, x)
|
33
|
+
# * GSL::Linalg::Complex::LU::svx(A, x)
|
34
|
+
# * GSL::Linalg::Complex::LU_svx(A, x)
|
35
|
+
# * GSL::Matrix::Complex#LU_svx(x)
|
36
|
+
# * GSL::Linalg::Complex::svx(LU, perm, x)
|
37
|
+
# * GSL::Linalg::Complex::LU::svx(LU, perm, x)
|
38
|
+
# * GSL::Linalg::Complex::LU::LUMatirx#svx(perm, x)
|
39
|
+
#
|
40
|
+
#
|
41
|
+
# ---
|
42
|
+
# * GSL::Linalg::Complex::LU_refine(A, LU, perm, b, x)
|
43
|
+
# * GSL::Linalg::Complex::LU_::refine(A, LU, perm, b, x)
|
44
|
+
#
|
45
|
+
#
|
46
|
+
# ---
|
47
|
+
# * GSL::Linalg::Complex::LU_invert(A)
|
48
|
+
# * GSL::Linalg::Complex::LU::invert(A)
|
49
|
+
# * GSL::Linalg::Complex::LU_invert(LU, perm)
|
50
|
+
# * GSL::Linalg::Complex::LU::invert(LU, perm)
|
51
|
+
# * GSL::Matrix::Complex#LU_invert
|
52
|
+
# * GSL::Matrix::Complex#invert
|
53
|
+
# * GSL::Linalg::Complex::LU::LUMatrix#invert(perm)
|
54
|
+
#
|
55
|
+
#
|
56
|
+
# ---
|
57
|
+
# * GSL::Linalg::Complex::LU_det(A)
|
58
|
+
# * GSL::Linalg::Complex::LU::det(A)
|
59
|
+
# * GSL::Linalg::Complex::LU_det(LU, signum)
|
60
|
+
# * GSL::Linalg::Complex::LU::det(LU, signum)
|
61
|
+
# * GSL::Matrix::Complex#LU_det
|
62
|
+
# * GSL::Matrix::Complex#det
|
63
|
+
# * GSL::Linalg::Complex::LU::LUMatrix#det(signum)
|
64
|
+
#
|
65
|
+
#
|
66
|
+
# ---
|
67
|
+
# * GSL::Linalg::Complex::LU_lndet(A)
|
68
|
+
# * GSL::Linalg::Complex::LU::lndet(A)
|
69
|
+
# * GSL::Linalg::Complex::LU_lndet(LU)
|
70
|
+
# * GSL::Linalg::Complex::LU::lndet(LU)
|
71
|
+
# * GSL::Matrix::Complex#LU_lndet
|
72
|
+
# * GSL::Matrix::Complex#lndet
|
73
|
+
# * GSL::Linalg::Complex::LU::LUMatrix#lndet
|
74
|
+
#
|
75
|
+
#
|
76
|
+
# ---
|
77
|
+
# * GSL::Linalg::Complex::LU_sgndet(A)
|
78
|
+
# * GSL::Linalg::Complex::LU::sgndet(A)
|
79
|
+
# * GSL::Linalg::Complex::LU_sgndet(LU, signum)
|
80
|
+
# * GSL::Linalg::Complex::LU::sgndet(LU, signum)
|
81
|
+
# * GSL::Matrix::Complex#LU_sgndet
|
82
|
+
# * GSL::Matrix::Complex#sgndet
|
83
|
+
# * GSL::Linalg::Complex::LU::LUMatrix#sgndet(signum)
|
84
|
+
#
|
85
|
+
#
|
86
|
+
# {back}[link:files/rdoc/linalg_rdoc.html]
|
87
|
+
#
|
88
|
+
#
|
data/rdoc/math.rdoc
ADDED
@@ -0,0 +1,276 @@
|
|
1
|
+
#
|
2
|
+
# = Mathematical Functions
|
3
|
+
# Contents:
|
4
|
+
# 1. {Mathematical Constants}[link:files/rdoc/math_rdoc.html#1]
|
5
|
+
# 1. {Infinities and Not-a-number}[link:files/rdoc/math_rdoc.html#2]
|
6
|
+
# 1. {Constants}[link:files/rdoc/math_rdoc.html#2.1]
|
7
|
+
# 1. {Module functions}[link:files/rdoc/math_rdoc.html#2.2]
|
8
|
+
# 1. {Elementary Functions}[link:files/rdoc/math_rdoc.html#3]
|
9
|
+
# 1. {Small Integer Powers}[link:files/rdoc/math_rdoc.html#4]
|
10
|
+
# 1. {Testing the Sign of Numbers}[link:files/rdoc/math_rdoc.html#5]
|
11
|
+
# 1. {Testing for Odd and Even Numbers}[link:files/rdoc/math_rdoc.html#6]
|
12
|
+
# 1. {Maximum and Minimum functions}[link:files/rdoc/math_rdoc.html#7]
|
13
|
+
# 1. {Approximate Comparison of Floating Point Numbers}[link:files/rdoc/math_rdoc.html#8]
|
14
|
+
#
|
15
|
+
# == {}[link:index.html"name="1] Mathematical Constants
|
16
|
+
# ---
|
17
|
+
# * GSL::M_E
|
18
|
+
#
|
19
|
+
# The base of exponentials, e
|
20
|
+
# ---
|
21
|
+
# * GSL::M_LOG2E
|
22
|
+
#
|
23
|
+
# The base-2 logarithm of e, log_2(e)
|
24
|
+
# ---
|
25
|
+
# * GSL::M_LOG10E
|
26
|
+
#
|
27
|
+
# The base-10 logarithm of e, log_10(e)
|
28
|
+
# ---
|
29
|
+
# * GSL::M_SQRT2
|
30
|
+
#
|
31
|
+
# The square root of two, sqrt(2)
|
32
|
+
# ---
|
33
|
+
# * GSL::M_SQRT1_2
|
34
|
+
#
|
35
|
+
# The square root of one-half, sqrt(1/2)
|
36
|
+
# ---
|
37
|
+
# * GSL::M_SQRT3
|
38
|
+
#
|
39
|
+
# The square root of three, sqrt(3)
|
40
|
+
# ---
|
41
|
+
# * GSL::M_PI
|
42
|
+
#
|
43
|
+
# The constant pi
|
44
|
+
# ---
|
45
|
+
# * GSL::M_PI_2
|
46
|
+
#
|
47
|
+
# Pi divided by two
|
48
|
+
# ---
|
49
|
+
# * GSL::M_PI_4
|
50
|
+
#
|
51
|
+
# Pi divided by four
|
52
|
+
# ---
|
53
|
+
# * GSL::M_SQRTPI
|
54
|
+
#
|
55
|
+
# The square root of pi
|
56
|
+
# ---
|
57
|
+
# * GSL::M_2_SQRTPI
|
58
|
+
#
|
59
|
+
# Two divided by the square root of pi
|
60
|
+
# ---
|
61
|
+
# * GSL::M_1_PI
|
62
|
+
#
|
63
|
+
# The reciprocal of pi, 1/pi
|
64
|
+
# ---
|
65
|
+
# * GSL::M_2_PI
|
66
|
+
#
|
67
|
+
# Twice the reciprocal of pi, 2/pi
|
68
|
+
# ---
|
69
|
+
# * GSL::M_LN10
|
70
|
+
#
|
71
|
+
# The natural logarithm of ten, ln(10)
|
72
|
+
# ---
|
73
|
+
# * GSL::M_LN2
|
74
|
+
#
|
75
|
+
# The natural logarithm of ten, ln(2)
|
76
|
+
# ---
|
77
|
+
# * GSL::M_LNPI
|
78
|
+
#
|
79
|
+
# The natural logarithm of ten, ln(pi)
|
80
|
+
# ---
|
81
|
+
# * GSL::M_EULER
|
82
|
+
#
|
83
|
+
# Euler's constant
|
84
|
+
#
|
85
|
+
# == {}[link:index.html"name="2] Infinities and Not-a-number
|
86
|
+
#
|
87
|
+
# === {}[link:index.html"name="2.1] Constants
|
88
|
+
# ---
|
89
|
+
# * GSL::POSINF
|
90
|
+
#
|
91
|
+
# The IEEE representation of positive infinity,
|
92
|
+
# computed from the expression +1.0/0.0.
|
93
|
+
# ---
|
94
|
+
# * GSL::NEGINF
|
95
|
+
#
|
96
|
+
# The IEEE representation of negative infinity,
|
97
|
+
# computed from the expression -1.0/0.0.
|
98
|
+
# ---
|
99
|
+
# * GSL::NAN
|
100
|
+
#
|
101
|
+
# The IEEE representation of the Not-a-Number symbol,
|
102
|
+
# computed from the ratio 0.0/0.0.
|
103
|
+
#
|
104
|
+
# === {}[link:index.html"name="2.2] Module functions
|
105
|
+
# ---
|
106
|
+
# * GSL::isnan(x)
|
107
|
+
#
|
108
|
+
# This returns 1 if <tt>x</tt> is not-a-number.
|
109
|
+
# ---
|
110
|
+
# * GSL::isnan?(x)
|
111
|
+
#
|
112
|
+
# This returns <tt>true</tt> if <tt>x</tt> is not-a-number, and <tt>false</tt> otherwise.
|
113
|
+
# ---
|
114
|
+
# * GSL::isinf(x)
|
115
|
+
#
|
116
|
+
# This returns +1 if <tt>x</tt> is positive infinity,
|
117
|
+
# -1 if <tt>x</tt> is negative infinity and 0 otherwise.
|
118
|
+
# NOTE: In Darwin9.5.0-gcc4.0.1, this method returns 1 for -inf.
|
119
|
+
# ---
|
120
|
+
# * GSL::isinf?(x)
|
121
|
+
#
|
122
|
+
# This returns <tt>true</tt> if <tt>x</tt> is positive or negative infinity,
|
123
|
+
# and <tt>false</tt> otherwise.
|
124
|
+
# ---
|
125
|
+
# * GSL::finite(x)
|
126
|
+
#
|
127
|
+
# This returns 1 if <tt>x</tt> is a real number,
|
128
|
+
# and 0 if it is infinite or not-a-number.
|
129
|
+
# ---
|
130
|
+
# * GSL::finite?(x)
|
131
|
+
#
|
132
|
+
# This returns <tt>true</tt> if <tt>x</tt> is a real number,
|
133
|
+
# and <tt>false</tt> if it is infinite or not-a-number.
|
134
|
+
#
|
135
|
+
# == {}[link:index.html"name="3] Elementary Functions
|
136
|
+
# ---
|
137
|
+
# * GSL::log1p(x)
|
138
|
+
#
|
139
|
+
# This method computes the value of log(1+x)
|
140
|
+
# in a way that is accurate for small <tt>x</tt>. It provides an alternative
|
141
|
+
# to the BSD math function log1p(x).
|
142
|
+
# ---
|
143
|
+
# * GSL::expm1(x)
|
144
|
+
#
|
145
|
+
# This method computes the value of exp(x)-1
|
146
|
+
# in a way that is accurate for small <tt>x</tt>. It provides an alternative
|
147
|
+
# to the BSD math function expm1(x).
|
148
|
+
# ---
|
149
|
+
# * GSL::hypot(x, y)
|
150
|
+
#
|
151
|
+
# This method computes the value of sqrt{x^2 + y^2} in a way that
|
152
|
+
# avoids overflow.
|
153
|
+
# ---
|
154
|
+
# * GSL::hypot3(x, y, z)
|
155
|
+
#
|
156
|
+
# Computes the value of sqrt{x^2 + y^2 + z^2} in a way that avoids overflow.
|
157
|
+
# ---
|
158
|
+
# * GSL::acosh(x)
|
159
|
+
#
|
160
|
+
# This method computes the value of arccosh(x).
|
161
|
+
# ---
|
162
|
+
# * GSL::asinh(x)
|
163
|
+
#
|
164
|
+
# This method computes the value of arcsinh(x).
|
165
|
+
# ---
|
166
|
+
# * GSL::atanh(x)
|
167
|
+
#
|
168
|
+
# This method computes the value of arctanh(x).
|
169
|
+
#
|
170
|
+
# These methods above can take argument <tt>x</tt> of
|
171
|
+
# Integer, Float, Array, Vector or Matrix.
|
172
|
+
#
|
173
|
+
# ---
|
174
|
+
# * GSL::ldexp(x)
|
175
|
+
#
|
176
|
+
# This method computes the value of x * 2^e.
|
177
|
+
# ---
|
178
|
+
# * GSL::frexp(x)
|
179
|
+
#
|
180
|
+
# This method splits the number <tt>x</tt> into its normalized fraction
|
181
|
+
# f and exponent e, such that x = f * 2^e and 0.5 <= f < 1.
|
182
|
+
# The method returns f and the exponent e as an array, [f, e].
|
183
|
+
# If <tt>x</tt> is zero, both f and e are set to zero.
|
184
|
+
#
|
185
|
+
# == {}[link:index.html"name="4] Small Integer Powers
|
186
|
+
# ---
|
187
|
+
# * GSL::pow_int(x, n)
|
188
|
+
#
|
189
|
+
# This routine computes the power <tt>x^n</tt> for integer <tt>n</tt>.
|
190
|
+
# The power is computed efficiently -- for example, x^8 is computed as
|
191
|
+
# ((x^2)^2)^2, requiring only 3 multiplications.
|
192
|
+
#
|
193
|
+
# ---
|
194
|
+
# * GSL::pow_2(x)
|
195
|
+
# * GSL::pow_3(x)
|
196
|
+
# * GSL::pow_4(x)
|
197
|
+
# * GSL::pow_5(x)
|
198
|
+
# * GSL::pow_6(x)
|
199
|
+
# * GSL::pow_7(x)
|
200
|
+
# * GSL::pow_8(x)
|
201
|
+
# * GSL::pow_9(x)
|
202
|
+
#
|
203
|
+
# These methods can be used to compute small integer powers x^2, x^3, etc.
|
204
|
+
# efficiently.
|
205
|
+
#
|
206
|
+
# == {}[link:index.html"name="5] Testing the Sign of Numbers
|
207
|
+
# ---
|
208
|
+
# * GSL::SIGN(x)
|
209
|
+
# * GSL::sign(x)
|
210
|
+
#
|
211
|
+
# Return the sign of <tt>x</tt>.
|
212
|
+
# It is defined as ((x) >= 0 ? 1 : -1).
|
213
|
+
# Note that with this definition the sign of zero is positive
|
214
|
+
# (regardless of its IEEE sign bit).
|
215
|
+
#
|
216
|
+
# == {}[link:index.html"name="6] Testing for Odd and Even Numbers
|
217
|
+
# ---
|
218
|
+
# * GSL::is_odd(n)
|
219
|
+
# * GSL::IS_ODD(n)
|
220
|
+
#
|
221
|
+
# Evaluate to 1 if <tt>n</tt> is odd and 0 if <tt>n</tt> is even.
|
222
|
+
# The argument <tt>n</tt> must be of Fixnum type.
|
223
|
+
# ---
|
224
|
+
# * GSL::is_odd?(n)
|
225
|
+
# * GSL::IS_ODD?(n)
|
226
|
+
#
|
227
|
+
# Return <tt>true</tt> if <tt>n</tt> is odd and <tt>false</tt> if even.
|
228
|
+
# ---
|
229
|
+
# * GSL::is_even(n)
|
230
|
+
# * GSL::IS_EVEN(n)
|
231
|
+
#
|
232
|
+
# Evaluate to 1 if <tt>n</tt> is even and 0 if <tt>n</tt> is odd.
|
233
|
+
# The argument <tt>n</tt> must be of Fixnum type.
|
234
|
+
# ---
|
235
|
+
# * GSL::is_even?(n)
|
236
|
+
# * GSL::IS_even?(n)
|
237
|
+
#
|
238
|
+
# Return <tt>true</tt> if <tt>n</tt> is even and <tt>false</tt> if odd.
|
239
|
+
#
|
240
|
+
# == {}[link:index.html"name="7] Maximum and Minimum functions
|
241
|
+
# ---
|
242
|
+
# * GSL::max(a, b)
|
243
|
+
# * GSL::MAX(a, b)
|
244
|
+
# * GSL::min(a, b)
|
245
|
+
# * GSL::MIN(a, b)
|
246
|
+
#
|
247
|
+
#
|
248
|
+
# == {}[link:index.html"name="8] Approximate Comparison of Floating Point Numbers
|
249
|
+
# ---
|
250
|
+
# * GSL::fcmp(a, b, epsilon = 1e-10)
|
251
|
+
#
|
252
|
+
# This method determines whether <tt>x</tt> and <tt>y</tt> are approximately equal to a
|
253
|
+
# relative accuracy <tt>epsilon</tt>.
|
254
|
+
# ---
|
255
|
+
# * GSL::equal?(a, b, epsilon = 1e-10)
|
256
|
+
#
|
257
|
+
#
|
258
|
+
# == {}[link:index.html"name="9] Module Constants
|
259
|
+
# ---
|
260
|
+
# * GSL::VERSION
|
261
|
+
#
|
262
|
+
# GSL version
|
263
|
+
#
|
264
|
+
# ---
|
265
|
+
# * GSL::RB_GSL_VERSION
|
266
|
+
# * GSL::RUBY_GSL_VERSION
|
267
|
+
#
|
268
|
+
# Ruby/GSL version
|
269
|
+
#
|
270
|
+
# {prev}[link:files/rdoc/ehandling_rdoc.html]
|
271
|
+
# {next}[link:files/rdoc/complex_rdoc.html]
|
272
|
+
#
|
273
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
274
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
275
|
+
#
|
276
|
+
#
|
data/rdoc/matrix.rdoc
ADDED
@@ -0,0 +1,1093 @@
|
|
1
|
+
#
|
2
|
+
# = Matrices
|
3
|
+
# Contents:
|
4
|
+
# 1. {Class methods}[link:files/rdoc/matrix_rdoc.html#1]
|
5
|
+
# 1. {Instance methods}[link:files/rdoc/matrix_rdoc.html#2]
|
6
|
+
# 1. {Accessing matrix elements}[link:files/rdoc/matrix_rdoc.html#2.1]
|
7
|
+
# 1. {Initializing matrix elements}[link:files/rdoc/matrix_rdoc.html#2.2]
|
8
|
+
# 1. {IO}[link:files/rdoc/matrix_rdoc.html#2.3]
|
9
|
+
# 1. {Matrix views}[link:files/rdoc/matrix_rdoc.html#2.4]
|
10
|
+
# 1. {Creating row and column views}[link:files/rdoc/matrix_rdoc.html#2.5]
|
11
|
+
# 1. {Iterators}[link:files/rdoc/matrix_rdoc.html#2.6]
|
12
|
+
# 1. {Copying matrices}[link:files/rdoc/matrix_rdoc.html#2.7]
|
13
|
+
# 1. {Copying rows and columns}[link:files/rdoc/matrix_rdoc.html#2.8]
|
14
|
+
# 1. {Exchanging rows and columns}[link:files/rdoc/matrix_rdoc.html#2.9]
|
15
|
+
# 1. {Matrix operations}[link:files/rdoc/matrix_rdoc.html#2.10]
|
16
|
+
# 1. {Finding maximum and minimum elements of matrices}[link:files/rdoc/matrix_rdoc.html#2.11]
|
17
|
+
# 1. {Matrix properties}[link:files/rdoc/matrix_rdoc.html#2.12]
|
18
|
+
# 1. {NArray}[link:files/rdoc/matrix_rdoc.html#3]
|
19
|
+
# 1. {Special matrices}[link:files/rdoc/matrix_rdoc.html#4]
|
20
|
+
#
|
21
|
+
# == {}[link:index.html"name="1] Class methods
|
22
|
+
#
|
23
|
+
# ---
|
24
|
+
# * GSL::Matrix.alloc(n)
|
25
|
+
# * GSL::Matrix.alloc(size1, size2)
|
26
|
+
# * GSL::Matrix.alloc(array)
|
27
|
+
# * GSL::Matrix.alloc(arrays)
|
28
|
+
# * GSL::Matrix.alloc( ... )
|
29
|
+
# * GSL::Matrix[ ... ]
|
30
|
+
#
|
31
|
+
# These methods create a <tt>GSL::Matrix</tt> object.
|
32
|
+
#
|
33
|
+
# 1. From arrays
|
34
|
+
# >> m = GSL::Matrix[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
35
|
+
# => GSL::Matrix
|
36
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
37
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
38
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
39
|
+
#
|
40
|
+
# 1. With an array and rows&cols,
|
41
|
+
# m = GSL::Matrix.alloc([1, 2, 3, 4, 5, 6, 7, 8, 9], 3, 3)
|
42
|
+
#
|
43
|
+
# 1. With Range objects,
|
44
|
+
# >> m = GSL::Matrix.alloc(1..3, 4..6, 7..9)
|
45
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
46
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
47
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
48
|
+
# >> m2 = GSL::Matrix[1..6, 2, 3]
|
49
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
50
|
+
# 4.000e+00 5.000e+00 6.000e+00 ]
|
51
|
+
#
|
52
|
+
# ---
|
53
|
+
# * GSL::Matrix.eye(n)
|
54
|
+
# * GSL::Matrix.eye(n1, n2)
|
55
|
+
#
|
56
|
+
# Examples:
|
57
|
+
# >> m = GSL::Matrix::Int.eye(3)
|
58
|
+
# => GSL::Matrix::Int
|
59
|
+
# [ 1 0 0
|
60
|
+
# 0 1 0
|
61
|
+
# 0 0 1 ]
|
62
|
+
# >> m = GSL::Matrix::Int.eye(2, 4)
|
63
|
+
# => GSL::Matrix::Int
|
64
|
+
# [ 1 0 0 0
|
65
|
+
# 0 1 0 0 ]
|
66
|
+
#
|
67
|
+
# ---
|
68
|
+
# * GSL::Matrix.identity(n)
|
69
|
+
# * GSL::Matrix.scalar(n)
|
70
|
+
# * GSL::Matrix.unit(n)
|
71
|
+
# * GSL::Matrix.I(n)
|
72
|
+
#
|
73
|
+
# Create diagonal matrices of dimensions n*n, of values 1.0.
|
74
|
+
#
|
75
|
+
# ---
|
76
|
+
# * GSL::Matrix.diagonal(a, b, c, ...)
|
77
|
+
# * GSL::Matrix.diagonal(Ary)
|
78
|
+
# * GSL::Matrix.diagonal(Range)
|
79
|
+
# * GSL::Matrix.diagonal(Vector)
|
80
|
+
#
|
81
|
+
# Creates a diagonal matrix of given elements.
|
82
|
+
#
|
83
|
+
# Example:
|
84
|
+
# >> GSL::Matrix::Int.diagonal(1..4)
|
85
|
+
# => GSL::Matrix::Int
|
86
|
+
# [ 1 0 0 0
|
87
|
+
# 0 2 0 0
|
88
|
+
# 0 0 3 0
|
89
|
+
# 0 0 0 4 ]
|
90
|
+
# >> GSL::Matrix::Int.diagonal(2, 5, 3)
|
91
|
+
# => GSL::Matrix::Int
|
92
|
+
# [ 2 0 0
|
93
|
+
# 0 5 0
|
94
|
+
# 0 0 3 ]
|
95
|
+
#
|
96
|
+
# ---
|
97
|
+
# * GSL::Matrix.ones(n)
|
98
|
+
# * GSL::Matrix.ones(n1, n2)
|
99
|
+
#
|
100
|
+
# Create a matrix of all the elements 1.
|
101
|
+
#
|
102
|
+
# ---
|
103
|
+
# * GSL::Matrix.zeros(n)
|
104
|
+
# * GSL::Matrix.zeros(n1, n2)
|
105
|
+
#
|
106
|
+
# Create a matrix of all the elements 1.
|
107
|
+
#
|
108
|
+
# ---
|
109
|
+
# * GSL::Matrix.indgen(n1, n2, start=0, step=1)
|
110
|
+
#
|
111
|
+
# Example:
|
112
|
+
#
|
113
|
+
# >> m = GSL::Matrix::Int.indgen(3, 5)
|
114
|
+
# => GSL::Matrix::Int
|
115
|
+
# [ 0 1 2 3 4
|
116
|
+
# 5 6 7 8 9
|
117
|
+
# 10 11 12 13 14 ]
|
118
|
+
# >> m = GSL::Matrix::Int.indgen(3, 5, 2)
|
119
|
+
# => GSL::Matrix::Int
|
120
|
+
# [ 2 3 4 5 6
|
121
|
+
# 7 8 9 10 11
|
122
|
+
# 12 13 14 15 16 ]
|
123
|
+
# >> m = GSL::Matrix.indgen(2, 3, 4.5, 6.7)
|
124
|
+
# => GSL::Matrix
|
125
|
+
# [ 4.500e+00 1.120e+01 1.790e+01
|
126
|
+
# 2.460e+01 3.130e+01 3.800e+01 ]
|
127
|
+
#
|
128
|
+
# === {}[link:index.html"name="1.1] NOTE:
|
129
|
+
# Matrix dimensions are limited within the range of Fixnum.
|
130
|
+
# For 32-bit CPU, the maximum of matrix dimension is 2^30 ~ 1e9.
|
131
|
+
#
|
132
|
+
# == {}[link:index.html"name="2] Instance Methods
|
133
|
+
# === {}[link:index.html"name="2.1] Accessing matrix elements
|
134
|
+
#
|
135
|
+
# ---
|
136
|
+
# * GSL::Matrix#size1
|
137
|
+
#
|
138
|
+
# Returns the number of rows of matrix <tt>self</tt>.
|
139
|
+
# ---
|
140
|
+
# * GSL::Matrix#size2
|
141
|
+
#
|
142
|
+
# Returns the number of columns of matrix <tt>self</tt>.
|
143
|
+
# ---
|
144
|
+
# * GSL::Matrix#shape
|
145
|
+
#
|
146
|
+
# Returns the number of rows and columns as an array.
|
147
|
+
#
|
148
|
+
# Ex:
|
149
|
+
#
|
150
|
+
# >> m.size1
|
151
|
+
# => 3
|
152
|
+
# >> m.size2
|
153
|
+
# => 5
|
154
|
+
# >> m.shape
|
155
|
+
# => [3, 5]
|
156
|
+
#
|
157
|
+
# ---
|
158
|
+
# * GSL::Matrix#set(args, val)
|
159
|
+
# * GSL::Matrix#[args]=val
|
160
|
+
#
|
161
|
+
# If <tt>args</tt> is empty and <tt>val</tt> is an Array (i.e. called with just a
|
162
|
+
# single Array argument), the Array's elements are taken as row contents.
|
163
|
+
# Each given row must have exactly the same number of elements as the Matrix
|
164
|
+
# has columns, but the number of rows given need not match the Matrix's row
|
165
|
+
# count. Extra given rows are ignored, while Matrix rows beyond those given
|
166
|
+
# are not affected. Otherwise, if <tt>args</tt> is empty, behaves as
|
167
|
+
# <tt>#set_all(<tt>val</tt>)</tt>.
|
168
|
+
#
|
169
|
+
# If <tt>args</tt> is an Array and val is not, the first two elements of
|
170
|
+
# <tt>args</tt> must be Fixnums which specify the row and column of the element
|
171
|
+
# that will be set to the value of <tt>val</tt>. This special case exists to
|
172
|
+
# allow values returned by Matrix#max_index and Matrix#min_index to be used
|
173
|
+
# as indexes.
|
174
|
+
#
|
175
|
+
# If <tt>args</tt> are two <tt>Fixnums</tt>, <tt>i</tt> and <tt>j</tt>, this method
|
176
|
+
# sets the <tt>(i,j)</tt>-th element of the matrix <tt>self</tt> to <tt>val</tt>.
|
177
|
+
#
|
178
|
+
# If <tt>args</tt> is a single <tt>Fixnum</tt>, <tt>i</tt>, this method sets the
|
179
|
+
# element at row <tt>i</tt>/<tt>size2</tt>, column <tt>i</tt>%<tt>size2</tt> to
|
180
|
+
# <tt>val</tt>.
|
181
|
+
#
|
182
|
+
# For <tt>#set</tt>, if <tt>args</tt> is empty and <tt>val</tt> is an <tt>Array</tt> of
|
183
|
+
# <tt>Arrays</tt>, the contents of <tt>self</tt> are set row by row from the
|
184
|
+
# elements (i.e. <tt>Arrays</tt>) of <tt>val</tt>.
|
185
|
+
#
|
186
|
+
# All other <tt>args</tt> specify a submatrix (as with <tt>#submatrix</tt>) whose
|
187
|
+
# elements are assigned from <tt>val</tt>. In this case, <tt>val</tt> can be an
|
188
|
+
# <tt>Array</tt> whose elements will be assigned to the rows of the submatrix,
|
189
|
+
# <tt>Range</tt> whose elements will be assigned to the elements of the
|
190
|
+
# submatrix, <tt>GSL::Matrix</tt> whose elements will be assigned to the
|
191
|
+
# elements of the submatrix, or <tt>Numeric</tt> that will be assigned to all
|
192
|
+
# elements of the submatrix.
|
193
|
+
#
|
194
|
+
# NOTE: GSL does not provide a matrix copy function that properly copies data
|
195
|
+
# across overlapping memory regions, so watch out if assigning to part of a
|
196
|
+
# Matrix from another part of itself (see <tt>#set</tt> example of
|
197
|
+
# {GSL::Vector}[link:files/rdoc/vector_rdoc.html]).
|
198
|
+
#
|
199
|
+
# ---
|
200
|
+
# * GSL::Matrix#get(args)
|
201
|
+
# * GSL::Matrix#[args]
|
202
|
+
#
|
203
|
+
# If <tt>args</tt> are two <tt>Fixnums</tt>, <tt>i</tt> and <tt>j</tt>, this method
|
204
|
+
# returns the <tt>(i,j)</tt>-th element of the matrix <tt>self</tt>.
|
205
|
+
#
|
206
|
+
# If <tt>args</tt> is a single <tt>Fixnum</tt>, <tt>i</tt>, this method returns the
|
207
|
+
# element at row <tt>i</tt>/<tt>size2</tt>, column <tt>i</tt>%<tt>size2</tt>.
|
208
|
+
#
|
209
|
+
# All other forms of <tt>args</tt> are treated as with <tt>Matrix#submatrix</tt>
|
210
|
+
# and a View object is returned.
|
211
|
+
#
|
212
|
+
# NOTE: The behavior of the single <tt>Fixnum</tt> argument case is different
|
213
|
+
# from earlier versions (< 1.11.2) of Ruby/GSL. These earlier versions
|
214
|
+
# returned a <tt>Vector::View</tt> in this case, thereby allowing element
|
215
|
+
# (<tt>i</tt>,<tt>j</tt>) to be accessed as <tt>m[<tt>i</tt>][<tt>j</tt>]</tt>. THIS FORM
|
216
|
+
# IS NO LONGER SUPPORTED as of Ruby/GSL 1.11.2. Existing occurences of this
|
217
|
+
# construct will need to be replaced with the backwards compatible and more
|
218
|
+
# efficient <tt>m[<tt>i</tt>,<tt>j</tt>]</tt> or, equivalent to the old and less
|
219
|
+
# efficient form, <tt>m[<tt>i</tt>,nil][<tt>j</tt>]</tt>. For GSL::Matrix, the old
|
220
|
+
# form will now raise a <tt>NoMethodError</tt> because <tt>Float</tt> has no
|
221
|
+
# <tt>#[]</tt> method. For GSL::Matrix::Int, however, the old form will return
|
222
|
+
# a single bit from an element of the matrix because <tt>Fixnum</tt> and
|
223
|
+
# <tt>Bignum</tt> have a <tt>#[]</tt> method that allows access to the number's
|
224
|
+
# individual bits.
|
225
|
+
#
|
226
|
+
# Examples:
|
227
|
+
# >> m = GSL::Matrix[1..9, 3, 3]
|
228
|
+
# => GSL::Matrix
|
229
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
230
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
231
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
232
|
+
# >> m[1, 2]
|
233
|
+
# => 6.0
|
234
|
+
# >> m[1, 2] = 123 # m.set(1, 2, 123)
|
235
|
+
# => 123
|
236
|
+
# >> m
|
237
|
+
# => GSL::Matrix
|
238
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
239
|
+
# 4.000e+00 5.000e+00 1.230e+02
|
240
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
241
|
+
# >> m[1]
|
242
|
+
# => 2.0
|
243
|
+
# >> m.set([3, 5, 2], [4, 5, 3], [7, 1, 5])
|
244
|
+
# => GSL::Matrix
|
245
|
+
# [ 3.000e+00 5.000e+00 2.000e+00
|
246
|
+
# 4.000e+00 5.000e+00 3.000e+00
|
247
|
+
# 7.000e+00 1.000e+00 5.000e+00 ]
|
248
|
+
# >> m[1][1] # old/unsupported form
|
249
|
+
# NoMethodError: undefined method `[]' for 2.0:Float
|
250
|
+
# from (irb):8
|
251
|
+
# >> m = GSL::Matrix::Int[1..9, 3, 3]
|
252
|
+
# => GSL::Matrix::Int
|
253
|
+
# [ 1 2 3
|
254
|
+
# 4 5 6
|
255
|
+
# 7 8 9 ]
|
256
|
+
# >> m[1] # m[0,1]
|
257
|
+
# => 2
|
258
|
+
# >> m[1][0] # Bit 0 of m[0,1]
|
259
|
+
# => 0
|
260
|
+
# >> m[1][1] # Bit 1 of m[0,1]
|
261
|
+
# => 1
|
262
|
+
# >> m[1][2] # Bit 2 of m[0,1]
|
263
|
+
# => 0
|
264
|
+
# >> m[1][3] # Bit 3 of m[0,1]
|
265
|
+
# => 0
|
266
|
+
#
|
267
|
+
#
|
268
|
+
# ---
|
269
|
+
# * GSL::Matrix#to_a
|
270
|
+
#
|
271
|
+
# Converts the <tt>Matrix</tt> <tt>self</tt> to a Ruby <tt>Array</tt> of <tt>Arrays</tt>.
|
272
|
+
#
|
273
|
+
# Example:
|
274
|
+
# >> GSL::Matrix.eye(3).to_a
|
275
|
+
# => [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
|
276
|
+
#
|
277
|
+
# === {}[link:index.html"name="2.2] Initializing matrix elements
|
278
|
+
# ---
|
279
|
+
# * GSL::Matrix#set_all(x)
|
280
|
+
#
|
281
|
+
# This method sets all the elements of the matrix <tt>self</tt> to the value x.
|
282
|
+
#
|
283
|
+
# ---
|
284
|
+
# * GSL::Matrix#set_zero
|
285
|
+
#
|
286
|
+
# This method sets all the elements of the matrix to zero.
|
287
|
+
#
|
288
|
+
# ---
|
289
|
+
# * GSL::Matrix#set_identity
|
290
|
+
#
|
291
|
+
# This method sets the elements of the matrix to the corresponding
|
292
|
+
# elements of the identity matrix, i.e. a unit diagonal with all off-diagonal
|
293
|
+
# elements zero. This applies to both square and rectangular matrices.
|
294
|
+
#
|
295
|
+
# === {}[link:index.html"name="2.3] IO
|
296
|
+
# ---
|
297
|
+
# * GSL::Matrix#fwrite(io)
|
298
|
+
# * GSL::Matrix#fwrite(filename)
|
299
|
+
# * GSL::Matrix#fread(io)
|
300
|
+
# * GSL::Matrix#fread(filename)
|
301
|
+
# * GSL::Matrix#fprintf(io, format = "%e")
|
302
|
+
# * GSL::Matrix#fprintf(filename, format = "%e")
|
303
|
+
# * GSL::Matrix#fscanf(io)
|
304
|
+
# * GSL::Matrix#fscanf(filename)
|
305
|
+
#
|
306
|
+
#
|
307
|
+
# === {}[link:index.html"name="2.4] Matrix views
|
308
|
+
# The <tt>GSL::Matrix::View</tt> class is defined to be used as "references" to
|
309
|
+
# matrices. The <tt>Matrix::View</tt> class is a subclass of <tt>Matrix</tt>, and an
|
310
|
+
# instance of the <tt>View</tt> class created by slicing a <tt>Matrix</tt> object can
|
311
|
+
# be used same as the original matrix. The <tt>View</tt> object shares the data with
|
312
|
+
# the original matrix, i.e. any changes in the elements of the <tt>View</tt> object
|
313
|
+
# affect to the original.
|
314
|
+
#
|
315
|
+
# The primary means of generating <tt>Matrix::View</tt> objects is with
|
316
|
+
# <tt>GSL::Matrix#submatrix</tt> (or its alias <tt>GSL::Matrix#view</tt>). Many forms
|
317
|
+
# are supported and they are documented here individually. All forms return a
|
318
|
+
# <tt>Matrix::View</tt> unless otherwise documented. In the list below, the
|
319
|
+
# parameter name indicates the type of the parameter: <tt>i</tt>, <tt>row</tt>,
|
320
|
+
# <tt>col</tt>, <tt>len</tt>, <tt>len1</tt>, and <tt>len2</tt> are <tt>Fixnums</tt>; <tt>rows</tt> and
|
321
|
+
# <tt>cols</tt> are <tt>Ranges</tt>.
|
322
|
+
#
|
323
|
+
# ---
|
324
|
+
# * GSL::Matrix#submatrix()
|
325
|
+
#
|
326
|
+
# View covers all rows and all columns.
|
327
|
+
# ---
|
328
|
+
# * GSL::Matrix#submatrix(i)
|
329
|
+
#
|
330
|
+
# View covers single element at row <tt>i</tt>/<tt>size2</tt>, column
|
331
|
+
# <tt>i</tt>%<tt>size2</tt>.
|
332
|
+
# ---
|
333
|
+
# * GSL::Matrix#submatrix(nil,nil)
|
334
|
+
#
|
335
|
+
# View covers all rows and all columns.
|
336
|
+
# ---
|
337
|
+
# * GSL::Matrix#submatrix(nil,cols)
|
338
|
+
#
|
339
|
+
# View covers all rows with columns specified by <tt>cols</tt>.
|
340
|
+
# ---
|
341
|
+
# * GSL::Matrix#submatrix(nil,col)
|
342
|
+
#
|
343
|
+
# Returns a <tt>Vector::Col::View</tt> for the column <tt>col</tt>.
|
344
|
+
# ---
|
345
|
+
# * GSL::Matrix#submatrix(rows, nil)
|
346
|
+
#
|
347
|
+
# View covers rows specified by <tt>rows</tt> and all columns.
|
348
|
+
# ---
|
349
|
+
# * GSL::Matrix#submatrix(rows, cols)
|
350
|
+
#
|
351
|
+
# View covers rows specified by <tt>rows</tt>, columns specified by <tt>cols</tt>.
|
352
|
+
# ---
|
353
|
+
# * GSL::Matrix#submatrix(rows, col)
|
354
|
+
#
|
355
|
+
# Returns a <tt>Vector::Col::View</tt> for column <tt>col</tt>, rows <tt>rows</tt>.
|
356
|
+
# ---
|
357
|
+
# * GSL::Matrix#submatrix(row, nil)
|
358
|
+
#
|
359
|
+
# Returns a <tt>Vector::View</tt> for row <tt>row</tt>.
|
360
|
+
# ---
|
361
|
+
# * GSL::Matrix#submatrix(row, cols)
|
362
|
+
#
|
363
|
+
# Returns a <tt>Vector::View</tt> for row <tt>row</tt>, columns <tt>cols</tt>.
|
364
|
+
# ---
|
365
|
+
# * GSL::Matrix#submatrix(row, col)
|
366
|
+
#
|
367
|
+
# View covers a single element at row <tt>row</tt>, column <tt>col</tt>.
|
368
|
+
# ---
|
369
|
+
# * GSL::Matrix#submatrix(nil, col, len)
|
370
|
+
#
|
371
|
+
# View covers all rows and <tt>len</tt> columns starting at column <tt>col</tt>.
|
372
|
+
# ---
|
373
|
+
# * GSL::Matrix#submatrix(rows, col, len)
|
374
|
+
#
|
375
|
+
# View covers <tt>rows</tt> rows and <tt>len</tt> columns starting at column <tt>col</tt>.
|
376
|
+
# ---
|
377
|
+
# * GSL::Matrix#submatrix(row, len, nil)
|
378
|
+
#
|
379
|
+
# View covers <tt>len</tt> rows starting at row <tt>row</tt> and all columns.
|
380
|
+
# ---
|
381
|
+
# * GSL::Matrix#submatrix(row, len, cols)
|
382
|
+
#
|
383
|
+
# View covers <tt>len</tt> rows starting at row <tt>row</tt> and <tt>cols</tt> columns.
|
384
|
+
# ---
|
385
|
+
# * GSL::Matrix#submatrix(row, col, len1, len2)
|
386
|
+
#
|
387
|
+
# View covers <tt>len1</tt> rows starting at row <tt>row</tt> and <tt>len2</tt>
|
388
|
+
# columns starting at column <tt>col</tt>.
|
389
|
+
#
|
390
|
+
# ---
|
391
|
+
# * GSL::Vector#matrix_view(n1, n2)
|
392
|
+
#
|
393
|
+
# This creates a <tt>Matrix::View</tt> object from the vector <tt>self</tt>.
|
394
|
+
#
|
395
|
+
# Ex:
|
396
|
+
# >> v = Vector[1..9]
|
397
|
+
# => GSL::Vector
|
398
|
+
# [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 8.000e+00 9.000e+00 ]
|
399
|
+
# >> m = v.matrix_view(3, 3)
|
400
|
+
# => GSL::Matrix::View
|
401
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
402
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
403
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
404
|
+
# >> m[1][1] = 99.99
|
405
|
+
# => 99.99
|
406
|
+
# >> v
|
407
|
+
# => GSL::Vector
|
408
|
+
# [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 9.999e+01 6.000e+00 7.000e+00 8.000e+00 9.000e+00 ]
|
409
|
+
# >>
|
410
|
+
#
|
411
|
+
#
|
412
|
+
# === {}[link:index.html"name="2.5] Creating row and column views
|
413
|
+
#
|
414
|
+
# ---
|
415
|
+
# * GSL::Matrix#row(i)
|
416
|
+
#
|
417
|
+
# These methods return <tt>i</tt>-th row of the matrix as a <tt>Vector::View</tt>
|
418
|
+
# object. Any modifications to the <tt>Vectror::View</tt> object returned by this method
|
419
|
+
# propagate to the original matrix.
|
420
|
+
#
|
421
|
+
# ---
|
422
|
+
# * GSL::Matrix#column(i)
|
423
|
+
# * GSL::Matrix#col(i)
|
424
|
+
#
|
425
|
+
# These methods return a vector view of the <tt>j</tt>-th column of the matrix.
|
426
|
+
#
|
427
|
+
# ---
|
428
|
+
# * GSL::Matrix#subrow(i, offset, n)
|
429
|
+
#
|
430
|
+
# Returns a vector view of the <tt>i</tt>-th row of the matrix <tt>self</tt>
|
431
|
+
# beginning at <tt>offset</tt> elements past the first column
|
432
|
+
# and containing <tt>n</tt> elements. (>= GSL-1.10)
|
433
|
+
#
|
434
|
+
# ---
|
435
|
+
# * GSL::Matrix#subcolumn(j, offset, n)
|
436
|
+
#
|
437
|
+
# Returns a vector view of the <tt>j</tt>-th column of the matrix <tt>self</tt>
|
438
|
+
# beginning at <tt>offset</tt> elements past the first row
|
439
|
+
# and containing <tt>n</tt> elements. (>= GSL-1.10)
|
440
|
+
#
|
441
|
+
# ---
|
442
|
+
# * GSL::Matrix#diag
|
443
|
+
# * GSL::Matrix#diagonal
|
444
|
+
#
|
445
|
+
# This method returns a <tt>Vector::View</tt> of the diagonal of the matrix.
|
446
|
+
# The matrix is not required to be square. For a rectangular matrix the
|
447
|
+
# length of the diagonal is the same as the smaller dimension of the matrix.
|
448
|
+
#
|
449
|
+
#
|
450
|
+
# Ex:
|
451
|
+
# >> m = GSL::Matrix[1..9, 3, 3]
|
452
|
+
# => GSL::Matrix
|
453
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
454
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
455
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
456
|
+
# >> m.row(1)
|
457
|
+
# => GSL::Vector::View
|
458
|
+
# [ 4.000e+00 5.000e+00 6.000e+00 ]
|
459
|
+
# >> m.col(2)
|
460
|
+
# => GSL::Vector::Col::View
|
461
|
+
# [ 3.000e+00
|
462
|
+
# 6.000e+00
|
463
|
+
# 9.000e+00 ]
|
464
|
+
# >> m.col(2)[2] = 123
|
465
|
+
# => 123
|
466
|
+
# >> m
|
467
|
+
# => GSL::Matrix
|
468
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
469
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
470
|
+
# 7.000e+00 8.000e+00 1.230e+02 ]
|
471
|
+
# >> m.diagonal
|
472
|
+
# => GSL::Vector::View:
|
473
|
+
# [ 1.000e+00 5.000e+00 1.230e+02 ]
|
474
|
+
#
|
475
|
+
# ---
|
476
|
+
# * GSL::Matrix#subdiagonal(k)
|
477
|
+
#
|
478
|
+
# Returns a vector view view of the <tt>k</tt>-th subdiagonal
|
479
|
+
# of the matrix <tt>self</tt>.
|
480
|
+
# The matrix is not required to be square. The diagonal of the matrix
|
481
|
+
# corresponds to k = 0.
|
482
|
+
#
|
483
|
+
# ---
|
484
|
+
# * GSL::Matrix#superdiagonal(k)
|
485
|
+
#
|
486
|
+
# Returns a vector view of the <tt>k</tt>-th superdiagonal of the matrix <tt>self</tt>.
|
487
|
+
# The matrix is not required to be square. The diagonal of the matrix
|
488
|
+
# corresponds to k = 0.
|
489
|
+
#
|
490
|
+
# ---
|
491
|
+
# * GSL::Matrix#to_v
|
492
|
+
#
|
493
|
+
# Creates a <tt>GSL::Vector</tt> object "flattening" the rows of the matrix <tt>self</tt>.
|
494
|
+
#
|
495
|
+
# >> m = GSL::Matrix[1..6, 2, 3]
|
496
|
+
# => GSL::Matrix
|
497
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
498
|
+
# 4.000e+00 5.000e+00 6.000e+00 ]
|
499
|
+
# >> m.to_v
|
500
|
+
# => GSL::Vector
|
501
|
+
# [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 ]
|
502
|
+
#
|
503
|
+
# === {}[link:index.html"name="2.6] Iterators
|
504
|
+
# ---
|
505
|
+
# * GSL::Matrix#each_row
|
506
|
+
#
|
507
|
+
# Iterator for each of rows in the matrix <tt>self</tt>.
|
508
|
+
# ---
|
509
|
+
# * GSL::Matrix#each_col
|
510
|
+
#
|
511
|
+
# Iterator for each of columns in the matrix <tt>self</tt>.
|
512
|
+
#
|
513
|
+
# ---
|
514
|
+
# * GSL::Matrix#collect { |item| .. }
|
515
|
+
# * GSL::Matrix#map { |item| .. }
|
516
|
+
# * GSL::Matrix#collect! { |item| .. }
|
517
|
+
# * GSL::Matrix#map! { |item| .. }
|
518
|
+
#
|
519
|
+
#
|
520
|
+
# === {}[link:index.html"name="2.7] Copying matrices
|
521
|
+
# ---
|
522
|
+
# * GSL::Matrix#clone
|
523
|
+
# * GSL::Matrix#duplicate
|
524
|
+
#
|
525
|
+
# Create a new matrix of the same elements.
|
526
|
+
#
|
527
|
+
# ---
|
528
|
+
# * GSL::Matrix.memcpy(dest, src)
|
529
|
+
# * GSL::Matrix.swap(dest, src)
|
530
|
+
#
|
531
|
+
#
|
532
|
+
# === {}[link:index.html"name="2.8] Copying rows and columns
|
533
|
+
#
|
534
|
+
# ---
|
535
|
+
# * GSL::Matrix#get_row(i)
|
536
|
+
#
|
537
|
+
# This method returns a new vector (not a view) which contains the elements
|
538
|
+
# of the <tt>i</tt>-th row of the matrix <tt>self</tt>.
|
539
|
+
#
|
540
|
+
# ---
|
541
|
+
# * GSL::Matrix#get_col(j)
|
542
|
+
#
|
543
|
+
# This method returns a new vector (not a view) which contains the elements of the <tt>j</tt>-th
|
544
|
+
# column of the matrix <tt>self</tt>.
|
545
|
+
#
|
546
|
+
# ---
|
547
|
+
# * GSL::Matrix#set_row(i, v)
|
548
|
+
#
|
549
|
+
# This method copies the elements of the vector <tt>v</tt> into the <tt>i</tt>-th
|
550
|
+
# row of the matrix.
|
551
|
+
# The length of the vector must be the same as the length of the row.
|
552
|
+
#
|
553
|
+
# ---
|
554
|
+
# * GSL::Matrix#set_col(j, v)
|
555
|
+
#
|
556
|
+
# This method copies the elements of the vector <tt>v</tt> into the <tt>j</tt>-th
|
557
|
+
# column of the matrix. The length of the vector must be the same as the length
|
558
|
+
# of the column.
|
559
|
+
#
|
560
|
+
# === {}[link:index.html"name="2.9] Exchanging rows and columns
|
561
|
+
# ---
|
562
|
+
# * GSL::Matrix#swap_rows!(i, j)
|
563
|
+
#
|
564
|
+
# This method exchanges the <tt>i</tt>-th and <tt>j</tt>-th rows of the matrix <tt>in-place</tt>.
|
565
|
+
# ---
|
566
|
+
# * GSL::Matrix#swap_rows(i, j)
|
567
|
+
#
|
568
|
+
# This method creates a new matrix exchanging the <tt>i</tt>-th and <tt>j</tt>-th rows of the matrix <tt>self</tt>.
|
569
|
+
#
|
570
|
+
# ---
|
571
|
+
# * GSL::Matrix#swap_columns!(i, j)
|
572
|
+
#
|
573
|
+
# This method exchanges the <tt>i</tt>-th and <tt>j</tt>-th columns of the matrix <tt>in-place</tt>.
|
574
|
+
# ---
|
575
|
+
# * GSL::Matrix#swap_columns(i, j)
|
576
|
+
#
|
577
|
+
# This method creates a new matrix exchanging the <tt>i</tt>-th and <tt>j</tt>-th columns of the matrix <tt>self</tt>.
|
578
|
+
#
|
579
|
+
# ---
|
580
|
+
# * GSL::Matrix#swap_rowcol(i, j)
|
581
|
+
#
|
582
|
+
# This method exchanges the <tt>i</tt>-th row and <tt>j</tt>-th column of the matrix.
|
583
|
+
# The matrix must be square for this operation to be possible.
|
584
|
+
#
|
585
|
+
# ---
|
586
|
+
# * GSL::Matrix#transpose_memcpy
|
587
|
+
# * GSL::Matrix#transpose
|
588
|
+
#
|
589
|
+
# This method returns a matrix of a transpose of the matrix. The matrix
|
590
|
+
# <tt>self</tt> is not modified.
|
591
|
+
#
|
592
|
+
# ---
|
593
|
+
# * GSL::Matrix#transpose!
|
594
|
+
#
|
595
|
+
# This method replaces the matrix by its transpose by copying the
|
596
|
+
# elements of the matrix <tt>in-place</tt>. The matrix must be square for this
|
597
|
+
# operation to be possible.
|
598
|
+
#
|
599
|
+
# ---
|
600
|
+
# * GSL::Matrix#reverse_rows
|
601
|
+
# * GSL::Matrix#flipud
|
602
|
+
#
|
603
|
+
# Example:
|
604
|
+
# >> m = GSL::Matrix::Int[1..9, 3, 3]
|
605
|
+
# => GSL::Matrix::Int
|
606
|
+
# [ 1 2 3
|
607
|
+
# 4 5 6
|
608
|
+
# 7 8 9 ]
|
609
|
+
# >> m.reverse_rows
|
610
|
+
# => GSL::Matrix::Int
|
611
|
+
# [ 7 8 9
|
612
|
+
# 4 5 6
|
613
|
+
# 1 2 3 ]
|
614
|
+
#
|
615
|
+
# ---
|
616
|
+
# * GSL::Matrix#reverse_columns
|
617
|
+
# * GSL::Matrix#fliplr
|
618
|
+
#
|
619
|
+
# Example:
|
620
|
+
# >> m = GSL::Matrix::Int[1..9, 3, 3]
|
621
|
+
# => GSL::Matrix::Int
|
622
|
+
# [ 1 2 3
|
623
|
+
# 4 5 6
|
624
|
+
# 7 8 9 ]
|
625
|
+
# >> m.reverse_rows.reverse_columns
|
626
|
+
# => GSL::Matrix::Int
|
627
|
+
# [ 9 8 7
|
628
|
+
# 6 5 4
|
629
|
+
# 3 2 1 ]
|
630
|
+
#
|
631
|
+
# ---
|
632
|
+
# * GSL::Matrix#rot90(n = 1)
|
633
|
+
#
|
634
|
+
# Return a copy of <tt>self</tt> with the elements rotated
|
635
|
+
# counterclockwise in 90-degree increments. The argument <tt>n</tt> is
|
636
|
+
# optional, and specifies how many 90-degree rotations are to be applied
|
637
|
+
# (the default value is 1).
|
638
|
+
# Negative values of <tt>n</tt> rotate the matrix in a clockwise direction.
|
639
|
+
#
|
640
|
+
# Examples:
|
641
|
+
# >> m = GSL::Matrix::Int[1..6, 2, 3]
|
642
|
+
# => GSL::Matrix::Int
|
643
|
+
# [ 1 2 3
|
644
|
+
# 4 5 6 ]
|
645
|
+
# >> m.rot90
|
646
|
+
# => GSL::Matrix::Int
|
647
|
+
# [ 3 6
|
648
|
+
# 2 5
|
649
|
+
# 1 4 ]
|
650
|
+
# >> m.rot90(2)
|
651
|
+
# => GSL::Matrix::Int
|
652
|
+
# [ 6 5 4
|
653
|
+
# 3 2 1 ]
|
654
|
+
# >> m.rot90(3)
|
655
|
+
# => GSL::Matrix::Int
|
656
|
+
# [ 4 1
|
657
|
+
# 5 2
|
658
|
+
# 6 3 ]
|
659
|
+
# >> m.rot90(-1)
|
660
|
+
# => GSL::Matrix::Int
|
661
|
+
# [ 4 1
|
662
|
+
# 5 2
|
663
|
+
# 6 3 ]
|
664
|
+
#
|
665
|
+
# ---
|
666
|
+
# * GSL::Matrix#upper
|
667
|
+
#
|
668
|
+
# This creates a matrix copying the upper half part of the matrix
|
669
|
+
# <tt>self</tt>, including the diagonal elements.
|
670
|
+
# ---
|
671
|
+
# * GSL::Matrix#lower
|
672
|
+
#
|
673
|
+
# This creates a matrix copying the lower half part of the matrix
|
674
|
+
# <tt>self</tt>, including the diagonal elements.
|
675
|
+
#
|
676
|
+
# >> m = GSL::Matrix[1..9, 3, 3]
|
677
|
+
# => GSL::Matrix
|
678
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
679
|
+
# 4.000e+00 5.000e+00 6.000e+00
|
680
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
681
|
+
# >> m.upper
|
682
|
+
# => GSL::Matrix
|
683
|
+
# [ 1.000e+00 2.000e+00 3.000e+00
|
684
|
+
# 0.000e+00 5.000e+00 6.000e+00
|
685
|
+
# 0.000e+00 0.000e+00 9.000e+00 ]
|
686
|
+
# >> m.lower
|
687
|
+
# => GSL::Matrix
|
688
|
+
# [ 1.000e+00 0.000e+00 0.000e+00
|
689
|
+
# 4.000e+00 5.000e+00 0.000e+00
|
690
|
+
# 7.000e+00 8.000e+00 9.000e+00 ]
|
691
|
+
#
|
692
|
+
# ---
|
693
|
+
# * GSL::Matrix#horzcat(other)
|
694
|
+
#
|
695
|
+
# Returns the horizontal concatenation of <tt>self</tt> and <tt>other</tt>.
|
696
|
+
#
|
697
|
+
# Ex:
|
698
|
+
# >> require("gsl")
|
699
|
+
# => true
|
700
|
+
# >> a = GSL::Matrix::Int[1..4, 2, 2]
|
701
|
+
# => GSL::Matrix::Int
|
702
|
+
# [ 1 2
|
703
|
+
# 3 4 ]
|
704
|
+
# >> b = GSL::Matrix::Int[5..10, 2, 3]
|
705
|
+
# => GSL::Matrix::Int
|
706
|
+
# [ 5 6 7
|
707
|
+
# 8 9 10 ]
|
708
|
+
# >> a.horzcat(b)
|
709
|
+
# => GSL::Matrix::Int
|
710
|
+
# [ 1 2 5 6 7
|
711
|
+
# 3 4 8 9 10 ]
|
712
|
+
#
|
713
|
+
# ---
|
714
|
+
# * GSL::Matrix#vertcat(other)
|
715
|
+
#
|
716
|
+
# Returns the vertical concatenation of <tt>self</tt> and <tt>other</tt>.
|
717
|
+
#
|
718
|
+
# Ex:
|
719
|
+
# >> a = GSL::Matrix::Int[1..4, 2, 2]
|
720
|
+
# => GSL::Matrix::Int
|
721
|
+
# [ 1 2
|
722
|
+
# 3 4 ]
|
723
|
+
# >> b = GSL::Matrix::Int[5..10, 3, 2]
|
724
|
+
# => GSL::Matrix::Int
|
725
|
+
# [ 5 6
|
726
|
+
# 7 8
|
727
|
+
# 9 10 ]
|
728
|
+
# >> a.vertcat(b)
|
729
|
+
# => GSL::Matrix::Int
|
730
|
+
# [ 1 2
|
731
|
+
# 3 4
|
732
|
+
# 5 6
|
733
|
+
# 7 8
|
734
|
+
# 9 10 ]
|
735
|
+
#
|
736
|
+
# === {}[link:index.html"name="2.10] Matrix operations
|
737
|
+
#
|
738
|
+
# ---
|
739
|
+
# * GSL::Matrix#add(b)
|
740
|
+
# * GSL::Matrix#+(b)
|
741
|
+
#
|
742
|
+
# This method adds the elements of matrix <tt>b</tt>
|
743
|
+
# to the elements of the matrix.
|
744
|
+
# The two matrices must have the same dimensions.
|
745
|
+
#
|
746
|
+
# If <tt>b</tt> is a scalar, these methods add it to all the elements
|
747
|
+
# of the matrix <tt>self</tt> (equivalent to the method <tt>add_constant</tt>).
|
748
|
+
#
|
749
|
+
# ---
|
750
|
+
# * GSL::Matrix#sub(b)
|
751
|
+
# * GSL::Matrix#-(b)
|
752
|
+
#
|
753
|
+
# This method subtracts the elements of matrix <tt>b</tt>
|
754
|
+
# from the elements of the
|
755
|
+
# matrix. The two matrices must have the same dimensions.
|
756
|
+
#
|
757
|
+
# ---
|
758
|
+
# * GSL::Matrix#mul_elements(b)
|
759
|
+
#
|
760
|
+
# This method multiplies the elements of the matrix by the elements of
|
761
|
+
# matrix <tt>b</tt>. The two matrices must have the same dimensions.
|
762
|
+
# If <tt>b</tt> is a scalar, the method <tt>scale</tt> (see below)
|
763
|
+
# is called.
|
764
|
+
#
|
765
|
+
# ---
|
766
|
+
# * GSL::Matrix#div_elements(b)
|
767
|
+
#
|
768
|
+
#
|
769
|
+
# This method divides the elements of the matrix by the elements of
|
770
|
+
# matrix <tt>b</tt>. The two matrices must have the same dimensions.
|
771
|
+
#
|
772
|
+
# ---
|
773
|
+
# * GSL::Matrix#scale(x)
|
774
|
+
#
|
775
|
+
# This method multiplies the elements of the matrix by the constant
|
776
|
+
# factor <tt>x</tt>.
|
777
|
+
#
|
778
|
+
# ---
|
779
|
+
# * GSL::Matrix#add_constant(x)
|
780
|
+
#
|
781
|
+
# This method adds the constant value <tt>x</tt> to the elements of the matrix.
|
782
|
+
#
|
783
|
+
# ---
|
784
|
+
# * GSL::Matrix#*(b)
|
785
|
+
#
|
786
|
+
# Matrix multiplication.
|
787
|
+
#
|
788
|
+
# Ex:
|
789
|
+
#
|
790
|
+
# >> a = GSL::Matrix[1..4, 2, 2]
|
791
|
+
# => GSL::Matrix
|
792
|
+
# [ 1.000e+00 2.000e+00
|
793
|
+
# 3.000e+00 4.000e+00 ]
|
794
|
+
# >> b = GSL::Matrix[5..8, 2, 2]
|
795
|
+
# => GSL::Matrix
|
796
|
+
# [ 5.000e+00 6.000e+00
|
797
|
+
# 7.000e+00 8.000e+00 ]
|
798
|
+
# >> a*b
|
799
|
+
# => GSL::Matrix
|
800
|
+
# [ 1.900e+01 2.200e+01
|
801
|
+
# 4.300e+01 5.000e+01 ]
|
802
|
+
# >> a*2
|
803
|
+
# => GSL::Matrix
|
804
|
+
# [ 2.000e+00 4.000e+00
|
805
|
+
# 6.000e+00 8.000e+00 ]
|
806
|
+
# >> c = Vector[1, 2]
|
807
|
+
# => GSL::Vector
|
808
|
+
# [ 1.000e+00 2.000e+00 ]
|
809
|
+
# >> a*c.col
|
810
|
+
# => GSL::Vector::Col
|
811
|
+
# [ 5.000e+00
|
812
|
+
# 1.100e+01 ]
|
813
|
+
#
|
814
|
+
# ---
|
815
|
+
# * GSL::Matrix#/(b)
|
816
|
+
#
|
817
|
+
# If <tt>b</tt> is a scalar or a <tt>Matrix</tt>, this method calculates the
|
818
|
+
# element-by-element divisions.
|
819
|
+
# If a <tt>Vector::Col</tt> is given, this method solves the linear system
|
820
|
+
# by using LU decomposition.
|
821
|
+
#
|
822
|
+
# Ex:
|
823
|
+
# >> m = GSL::Matrix[1..4, 2, 2]
|
824
|
+
# => GSL::Matrix
|
825
|
+
# [ 1.000e+00 2.000e+00
|
826
|
+
# 3.000e+00 4.000e+00 ]
|
827
|
+
# >> m/3
|
828
|
+
# => GSL::Matrix
|
829
|
+
# [ 3.333e-01 6.667e-01 <--- 1/3, 2/3
|
830
|
+
# 1.000e+00 1.333e+00 ] <--- 3/3, 4/3
|
831
|
+
# >> b = Vector[5, 6].col
|
832
|
+
# => GSL::Vector::Col
|
833
|
+
# [ 5.000e+00
|
834
|
+
# 6.000e+00 ]
|
835
|
+
# >> x = m/b <--- Solve m (x,y) = b
|
836
|
+
# => GSL::Vector::Col
|
837
|
+
# [ -4.000e+00 <--- x = -4
|
838
|
+
# 4.500e+00 ] <--- y = 4.5
|
839
|
+
# >> m*x
|
840
|
+
# => GSL::Vector::Col
|
841
|
+
# [ 5.000e+00
|
842
|
+
# 6.000e+00 ]
|
843
|
+
#
|
844
|
+
# ---
|
845
|
+
# * GSL::Matrix#^(b)
|
846
|
+
#
|
847
|
+
# Computes matrix power of <tt>b</tt>.
|
848
|
+
#
|
849
|
+
# === {}[link:index.html"name="2.11] Finding maximum and minimum elements of matrices
|
850
|
+
#
|
851
|
+
# ---
|
852
|
+
# * GSL::Matrix#max
|
853
|
+
# * GSL::Matrix#min
|
854
|
+
#
|
855
|
+
# These methods return the max/min value in the matrix.
|
856
|
+
#
|
857
|
+
# ---
|
858
|
+
# * GSL::Matrix#minmax
|
859
|
+
#
|
860
|
+
# This method returns a two elements array [min, max],
|
861
|
+
# which contains the minimum
|
862
|
+
# and the maximum values in the matrix.
|
863
|
+
#
|
864
|
+
# ---
|
865
|
+
# * GSL::Matrix#max_index
|
866
|
+
# * GSL::Matrix#min_index
|
867
|
+
#
|
868
|
+
# These methods return the index of the max/min value in the matrix.
|
869
|
+
#
|
870
|
+
# ---
|
871
|
+
# * GSL::Matrix#minmax_index
|
872
|
+
#
|
873
|
+
# This method returns a two elements array [imin, imax],
|
874
|
+
# which contains the indices
|
875
|
+
# of the minimum and the maximum value in the matrix.
|
876
|
+
#
|
877
|
+
# === {}[link:index.html"name="2.12] Matrix properties
|
878
|
+
# ---
|
879
|
+
# * GSL::Matrix#isnull
|
880
|
+
#
|
881
|
+
# This returns 1 if all the elements of the matrix <tt>self</tt> are zero,
|
882
|
+
# and 0 otherwise.
|
883
|
+
#
|
884
|
+
# ---
|
885
|
+
# * GSL::Matrix#isnull?
|
886
|
+
#
|
887
|
+
# This returns <tt>true</tt> if all the elements of the matrix <tt>self</tt>
|
888
|
+
# are zero, and <tt>false</tt> otherwise.
|
889
|
+
#
|
890
|
+
# ---
|
891
|
+
# * GSL::Matrix#ispos
|
892
|
+
# * GSL::Matrix#ispos?
|
893
|
+
#
|
894
|
+
# (GSL-1.9 or later) Return 1 (true) if all the elements of the matrix <tt>self</tt> are strictly positive, and 0 (false) otherwise.
|
895
|
+
#
|
896
|
+
# ---
|
897
|
+
# * GSL::Matrix#isneg
|
898
|
+
# * GSL::Matrix#isneg?
|
899
|
+
#
|
900
|
+
# (GSL-1.9 or later) Return 1 (true) if all the elements of the matrix <tt>self</tt> are strictly negative, and 0 (false) otherwise.
|
901
|
+
#
|
902
|
+
# ---
|
903
|
+
# * GSL::Matrix#isnonneg
|
904
|
+
# * GSL::Matrix#isnonneg?
|
905
|
+
#
|
906
|
+
# (GSL-1.10 or later) Return 1 (true) if all the elements of the matrix <tt>self</tt> are non-negative , and 0 (false) otherwise.
|
907
|
+
#
|
908
|
+
# ---
|
909
|
+
# * GSL::Matrix#any
|
910
|
+
#
|
911
|
+
# Returns a Vector of ones and zeros with each element indicating
|
912
|
+
# whether any of the elements of the corresponding column of the
|
913
|
+
# matrix are nonzero.
|
914
|
+
#
|
915
|
+
# ---
|
916
|
+
# * GSL::Matrix#all
|
917
|
+
#
|
918
|
+
# Behaves like the method <tt>any</tt>, except that it returns 1 only if
|
919
|
+
# all the elements of the matrix.
|
920
|
+
#
|
921
|
+
# ---
|
922
|
+
# * GSL:Matrix#trace
|
923
|
+
#
|
924
|
+
# This returns trace of the matrix <tt>self</tt>, the sum of the diagonal
|
925
|
+
# elements.
|
926
|
+
#
|
927
|
+
# ---
|
928
|
+
# * GSL:Matrix#norm
|
929
|
+
#
|
930
|
+
# Returns matrix norm, sqrt(sum_{ij} m_{ij}^2).
|
931
|
+
#
|
932
|
+
# ---
|
933
|
+
# * GSL::Matrix#sgn
|
934
|
+
# * GSL::Matrix#signum
|
935
|
+
#
|
936
|
+
# Creates a new matrix, with elements +1 if <tt>x_i,j</tt> > 0, -1 if
|
937
|
+
# <tt>x_i,j</tt> < 0, otherwise 0. Note that this definition gives the signum
|
938
|
+
# of NaN as 0 rather than NaN.
|
939
|
+
#
|
940
|
+
# ---
|
941
|
+
# * GSL:Matrix#abs
|
942
|
+
# * GSL:Matrix#fabs
|
943
|
+
#
|
944
|
+
# Example:
|
945
|
+
# >> m = GSL::Matrix::Int[-5..4, 3, 3]
|
946
|
+
# => GSL::Matrix::Int
|
947
|
+
# [ -5 -4 -3
|
948
|
+
# -2 -1 0
|
949
|
+
# 1 2 3 ]
|
950
|
+
# >> m.abs
|
951
|
+
# => GSL::Matrix::Int
|
952
|
+
# [ 5 4 3
|
953
|
+
# 2 1 0
|
954
|
+
# 1 2 3 ]
|
955
|
+
#
|
956
|
+
# ---
|
957
|
+
# * GSL::Matrix#equal?(other, eps = 1e-10)
|
958
|
+
# * GSL::Matrix#==(other, eps = 1e-10)
|
959
|
+
#
|
960
|
+
# Returns <tt>true</tt> if the matrices have same size and elements
|
961
|
+
# equal to absolute accurary <tt>eps</tt> for all the indices,
|
962
|
+
# and <tt>false</tt> otherwise.
|
963
|
+
#
|
964
|
+
# == {}[link:index.html"name="3] NArray
|
965
|
+
#
|
966
|
+
# ---
|
967
|
+
# * GSL::Matrix#to_na
|
968
|
+
#
|
969
|
+
# The Matrix object <tt>self</tt> is converted into an <tt>NMatrix</tt> object.
|
970
|
+
# The matrix data are copied to newly allocated memory.
|
971
|
+
#
|
972
|
+
# ---
|
973
|
+
# * NArray#to_gm
|
974
|
+
# * NArray#to_gslm
|
975
|
+
#
|
976
|
+
# Convert <tt>NArray</tt> object into <tt>GSL::Matrix</tt>.
|
977
|
+
#
|
978
|
+
# ---
|
979
|
+
# * NArray#to_gm_view
|
980
|
+
# * NArray#to_gslm_view
|
981
|
+
#
|
982
|
+
# A <tt>GSL::Matrix::View</tt> object is created from the NArray object <tt>na</tt>.
|
983
|
+
# The data of <tt>na</tt> are
|
984
|
+
# not copied, thus any modifications to the View object affect on the original
|
985
|
+
# NArray object <tt>na</tt>.
|
986
|
+
# The View object can be used as a reference to the NMatrix object.
|
987
|
+
#
|
988
|
+
# == {}[link:index.html"name="4] Special matrices
|
989
|
+
# ---
|
990
|
+
# * GSL::Matrix.hirbert(n)
|
991
|
+
#
|
992
|
+
# Returns the Hilbert matrix of order <tt>n</tt>. The <tt>ij</tt> element is
|
993
|
+
# defined as 1/(i+j+1).
|
994
|
+
#
|
995
|
+
# ---
|
996
|
+
# * GSL::Matrix.invhirbert(n)
|
997
|
+
#
|
998
|
+
# Returns the inverse of a Hilbert matrix of order <tt>n</tt>.
|
999
|
+
#
|
1000
|
+
# Ex:
|
1001
|
+
# >> m = GSL::Matrix.hilbert(4)
|
1002
|
+
# => GSL::Matrix
|
1003
|
+
# [ 1.000e+00 5.000e-01 3.333e-01 2.500e-01
|
1004
|
+
# 5.000e-01 3.333e-01 2.500e-01 2.000e-01
|
1005
|
+
# 3.333e-01 2.500e-01 2.000e-01 1.667e-01
|
1006
|
+
# 2.500e-01 2.000e-01 1.667e-01 1.429e-01 ]
|
1007
|
+
# >> invm = GSL::Matrix.invhilbert(4)
|
1008
|
+
# => GSL::Matrix
|
1009
|
+
# [ 1.600e+01 -1.200e+02 2.400e+02 -1.400e+02
|
1010
|
+
# -1.200e+02 1.200e+03 -2.700e+03 1.680e+03
|
1011
|
+
# 2.400e+02 -2.700e+03 6.480e+03 -4.200e+03
|
1012
|
+
# -1.400e+02 1.680e+03 -4.200e+03 2.800e+03 ]
|
1013
|
+
# >> invm2 = m.inv
|
1014
|
+
# => GSL::Matrix
|
1015
|
+
# [ 1.600e+01 -1.200e+02 2.400e+02 -1.400e+02
|
1016
|
+
# -1.200e+02 1.200e+03 -2.700e+03 1.680e+03
|
1017
|
+
# 2.400e+02 -2.700e+03 6.480e+03 -4.200e+03
|
1018
|
+
# -1.400e+02 1.680e+03 -4.200e+03 2.800e+03 ]
|
1019
|
+
# >> m*invm
|
1020
|
+
# => GSL::Matrix
|
1021
|
+
# [ 1.000e+00 5.684e-14 -2.274e-13 1.137e-13
|
1022
|
+
# 1.998e-15 1.000e+00 -4.663e-14 3.109e-14
|
1023
|
+
# 3.664e-15 -7.239e-14 1.000e+00 -1.017e-13
|
1024
|
+
# -2.442e-15 1.510e-14 -8.038e-14 1.000e+00 ]
|
1025
|
+
# >> m*invm2
|
1026
|
+
# => GSL::Matrix
|
1027
|
+
# [ 1.000e+00 0.000e+00 0.000e+00 0.000e+00
|
1028
|
+
# -1.554e-15 1.000e+00 -2.389e-14 8.349e-15
|
1029
|
+
# 1.295e-15 3.405e-15 1.000e+00 -6.957e-15
|
1030
|
+
# 1.110e-15 1.916e-14 1.707e-14 1.000e+00 ]
|
1031
|
+
#
|
1032
|
+
# ---
|
1033
|
+
# * GSL::Matrix.pascal(n)
|
1034
|
+
#
|
1035
|
+
# Returns the Pascal matrix of order <tt>n</tt>, created from Pascal's triangle.
|
1036
|
+
#
|
1037
|
+
# >> GSL::Matrix::Int.pascal(10)
|
1038
|
+
# => GSL::Matrix::Int
|
1039
|
+
# [ 1 1 1 1 1 1 1 1 1 1
|
1040
|
+
# 1 2 3 4 5 6 7 8 9 10
|
1041
|
+
# 1 3 6 10 15 21 28 36 45 55
|
1042
|
+
# 1 4 10 20 35 56 84 120 165 220
|
1043
|
+
# 1 5 15 35 70 126 210 330 495 715
|
1044
|
+
# 1 6 21 56 126 252 462 792 1287 2002
|
1045
|
+
# 1 7 28 84 210 462 924 1716 3003 5005
|
1046
|
+
# 1 8 36 120 330 792 1716 3432 6435 11440
|
1047
|
+
# 1 9 45 165 495 1287 3003 6435 12870 24310
|
1048
|
+
# 1 10 55 220 715 2002 5005 11440 24310 48620 ]
|
1049
|
+
#
|
1050
|
+
# ---
|
1051
|
+
# * GSL::Matrix.vandermonde(v)
|
1052
|
+
#
|
1053
|
+
# Creates a Vendermonde matrix from a vector or an array <tt>v</tt>.
|
1054
|
+
#
|
1055
|
+
# >> GSL::Matrix.vander([1, 2, 3, 4])
|
1056
|
+
# => GSL::Matrix
|
1057
|
+
# [ 1.000e+00 1.000e+00 1.000e+00 1.000e+00
|
1058
|
+
# 8.000e+00 4.000e+00 2.000e+00 1.000e+00
|
1059
|
+
# 2.700e+01 9.000e+00 3.000e+00 1.000e+00
|
1060
|
+
# 6.400e+01 1.600e+01 4.000e+00 1.000e+00 ]
|
1061
|
+
#
|
1062
|
+
# ---
|
1063
|
+
# * GSL::Matrix.toeplitz(v)
|
1064
|
+
#
|
1065
|
+
# Creates a Toeplitz matrix from a vector or an array <tt>v</tt>.
|
1066
|
+
#
|
1067
|
+
# >> GSL::Matrix::Int.toeplitz([1, 2, 3, 4, 5])
|
1068
|
+
# => GSL::Matrix::Int
|
1069
|
+
# [ 1 2 3 4 5
|
1070
|
+
# 2 1 2 3 4
|
1071
|
+
# 3 2 1 2 3
|
1072
|
+
# 4 3 2 1 2
|
1073
|
+
# 5 4 3 2 1 ]
|
1074
|
+
#
|
1075
|
+
# ---
|
1076
|
+
# * GSL::Matrix.circulant(v)
|
1077
|
+
#
|
1078
|
+
# Creates a circulant matrix from a vector or an array <tt>v</tt>.
|
1079
|
+
#
|
1080
|
+
# >> GSL::Matrix::Int.circulant([1, 2, 3, 4])
|
1081
|
+
# => GSL::Matrix::Int
|
1082
|
+
# [ 4 1 2 3
|
1083
|
+
# 3 4 1 2
|
1084
|
+
# 2 3 4 1
|
1085
|
+
# 1 2 3 4 ]
|
1086
|
+
#
|
1087
|
+
# {prev}[link:files/rdoc/vector_rdoc.html]
|
1088
|
+
# {next}[link:files/rdoc/perm_rdoc.html]
|
1089
|
+
#
|
1090
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
1091
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
1092
|
+
#
|
1093
|
+
#
|