gsl 1.12.109 → 1.14.5
Sign up to get free protection for your applications and to get access to all the features.
- data/AUTHORS +6 -0
- data/COPYING +339 -0
- data/ChangeLog +556 -0
- data/{README.rdoc → README} +3 -0
- data/Rakefile +54 -10
- data/THANKS +17 -0
- data/VERSION +1 -2
- data/examples/alf/alf.gp +15 -0
- data/examples/alf/alf.rb +32 -0
- data/examples/blas/blas.rb +13 -0
- data/examples/blas/dnrm2.rb +16 -0
- data/examples/blas/level1.rb +81 -0
- data/examples/blas/level2.rb +11 -0
- data/examples/blas/level3.rb +12 -0
- data/examples/bspline.rb +57 -0
- data/examples/cdf.rb +16 -0
- data/examples/cheb.rb +21 -0
- data/examples/combination.rb +23 -0
- data/examples/complex/RC-lpf.rb +47 -0
- data/examples/complex/add.rb +36 -0
- data/examples/complex/coerce.rb +14 -0
- data/examples/complex/complex.rb +25 -0
- data/examples/complex/fpmi.rb +70 -0
- data/examples/complex/functions.rb +77 -0
- data/examples/complex/michelson.rb +36 -0
- data/examples/complex/mul.rb +28 -0
- data/examples/complex/oscillator.rb +17 -0
- data/examples/complex/set.rb +37 -0
- data/examples/const/physconst.rb +151 -0
- data/examples/const/travel.rb +45 -0
- data/examples/deriv/demo.rb +13 -0
- data/examples/deriv/deriv.rb +36 -0
- data/examples/deriv/diff.rb +35 -0
- data/examples/dht.rb +42 -0
- data/examples/dirac.rb +56 -0
- data/examples/eigen/eigen.rb +34 -0
- data/examples/eigen/herm.rb +22 -0
- data/examples/eigen/narray.rb +9 -0
- data/examples/eigen/nonsymm.rb +37 -0
- data/examples/eigen/nonsymmv.rb +43 -0
- data/examples/eigen/qhoscillator.gp +35 -0
- data/examples/eigen/qhoscillator.rb +90 -0
- data/examples/eigen/vander.rb +41 -0
- data/examples/fft/fft.rb +17 -0
- data/examples/fft/fft2.rb +17 -0
- data/examples/fft/forward.rb +25 -0
- data/examples/fft/forward2.rb +26 -0
- data/examples/fft/radix2.rb +18 -0
- data/examples/fft/real-halfcomplex.rb +33 -0
- data/examples/fft/real-halfcomplex2.rb +30 -0
- data/examples/fft/realradix2.rb +19 -0
- data/examples/fft/sunspot.dat +256 -0
- data/examples/fft/sunspot.rb +16 -0
- data/examples/fit/expdata.dat +20 -0
- data/examples/fit/expfit.rb +31 -0
- data/examples/fit/gaussfit.rb +29 -0
- data/examples/fit/gaussian_2peaks.rb +34 -0
- data/examples/fit/hillfit.rb +40 -0
- data/examples/fit/lognormal.rb +26 -0
- data/examples/fit/lorentzfit.rb +22 -0
- data/examples/fit/multifit.rb +72 -0
- data/examples/fit/ndlinear.rb +133 -0
- data/examples/fit/nonlinearfit.rb +89 -0
- data/examples/fit/plot.gp +36 -0
- data/examples/fit/polyfit.rb +9 -0
- data/examples/fit/powerfit.rb +21 -0
- data/examples/fit/sigmoidfit.rb +40 -0
- data/examples/fit/sinfit.rb +22 -0
- data/examples/fit/wlinear.rb +46 -0
- data/examples/fresnel.rb +11 -0
- data/examples/function/function.rb +36 -0
- data/examples/function/log.rb +7 -0
- data/examples/function/min.rb +33 -0
- data/examples/function/sin.rb +10 -0
- data/examples/function/synchrotron.rb +18 -0
- data/examples/gallery/butterfly.rb +7 -0
- data/examples/gallery/cayley.rb +12 -0
- data/examples/gallery/cornu.rb +23 -0
- data/examples/gallery/eight.rb +11 -0
- data/examples/gallery/koch.rb +40 -0
- data/examples/gallery/lemniscate.rb +11 -0
- data/examples/gallery/polar.rb +11 -0
- data/examples/gallery/rgplot/cossin.rb +35 -0
- data/examples/gallery/rgplot/rgplot.replaced +0 -0
- data/examples/gallery/rgplot/roesller.rb +55 -0
- data/examples/gallery/roesller.rb +39 -0
- data/examples/gallery/scarabaeus.rb +14 -0
- data/examples/histogram/cauchy.rb +27 -0
- data/examples/histogram/cauchy.sh +2 -0
- data/examples/histogram/exponential.rb +19 -0
- data/examples/histogram/gauss.rb +16 -0
- data/examples/histogram/gsl-histogram.rb +40 -0
- data/examples/histogram/histo2d.rb +31 -0
- data/examples/histogram/histo3d.rb +34 -0
- data/examples/histogram/histogram-pdf.rb +27 -0
- data/examples/histogram/histogram.rb +26 -0
- data/examples/histogram/integral.rb +28 -0
- data/examples/histogram/poisson.rb +27 -0
- data/examples/histogram/power.rb +25 -0
- data/examples/histogram/rebin.rb +17 -0
- data/examples/histogram/smp.dat +5 -0
- data/examples/histogram/xexp.rb +21 -0
- data/examples/integration/ahmed.rb +21 -0
- data/examples/integration/cosmology.rb +75 -0
- data/examples/integration/friedmann.gp +16 -0
- data/examples/integration/friedmann.rb +35 -0
- data/examples/integration/gamma-zeta.rb +35 -0
- data/examples/integration/integration.rb +22 -0
- data/examples/integration/qag.rb +8 -0
- data/examples/integration/qag2.rb +14 -0
- data/examples/integration/qag3.rb +8 -0
- data/examples/integration/qagi.rb +28 -0
- data/examples/integration/qagi2.rb +49 -0
- data/examples/integration/qagiu.rb +29 -0
- data/examples/integration/qagp.rb +20 -0
- data/examples/integration/qags.rb +14 -0
- data/examples/integration/qawc.rb +18 -0
- data/examples/integration/qawf.rb +41 -0
- data/examples/integration/qawo.rb +29 -0
- data/examples/integration/qaws.rb +30 -0
- data/examples/integration/qng.rb +17 -0
- data/examples/interp/demo.gp +20 -0
- data/examples/interp/demo.rb +45 -0
- data/examples/interp/interp.rb +37 -0
- data/examples/interp/points +10 -0
- data/examples/interp/spline.rb +20 -0
- data/examples/jacobi/deriv.rb +40 -0
- data/examples/jacobi/integrate.rb +34 -0
- data/examples/jacobi/interp.rb +43 -0
- data/examples/jacobi/jacobi.rb +11 -0
- data/examples/linalg/HH.rb +15 -0
- data/examples/linalg/HH_narray.rb +13 -0
- data/examples/linalg/LQ_solve.rb +73 -0
- data/examples/linalg/LU.rb +84 -0
- data/examples/linalg/LU2.rb +31 -0
- data/examples/linalg/LU_narray.rb +24 -0
- data/examples/linalg/PTLQ.rb +47 -0
- data/examples/linalg/QR.rb +18 -0
- data/examples/linalg/QRPT.rb +47 -0
- data/examples/linalg/QR_solve.rb +78 -0
- data/examples/linalg/QR_solve_narray.rb +13 -0
- data/examples/linalg/SV.rb +16 -0
- data/examples/linalg/SV_narray.rb +12 -0
- data/examples/linalg/SV_solve.rb +49 -0
- data/examples/linalg/chol.rb +29 -0
- data/examples/linalg/chol_narray.rb +15 -0
- data/examples/linalg/complex.rb +57 -0
- data/examples/linalg/invert_narray.rb +10 -0
- data/examples/math/const.rb +67 -0
- data/examples/math/elementary.rb +35 -0
- data/examples/math/functions.rb +41 -0
- data/examples/math/inf_nan.rb +34 -0
- data/examples/math/minmax.rb +22 -0
- data/examples/math/power.rb +18 -0
- data/examples/math/test.rb +31 -0
- data/examples/matrix/a.dat +0 -0
- data/examples/matrix/add.rb +45 -0
- data/examples/matrix/b.dat +4 -0
- data/examples/matrix/cat.rb +31 -0
- data/examples/matrix/colvectors.rb +24 -0
- data/examples/matrix/complex.rb +41 -0
- data/examples/matrix/det.rb +29 -0
- data/examples/matrix/diagonal.rb +23 -0
- data/examples/matrix/get_all.rb +159 -0
- data/examples/matrix/hilbert.rb +31 -0
- data/examples/matrix/iterator.rb +19 -0
- data/examples/matrix/matrix.rb +57 -0
- data/examples/matrix/minmax.rb +53 -0
- data/examples/matrix/mul.rb +39 -0
- data/examples/matrix/rand.rb +20 -0
- data/examples/matrix/read.rb +29 -0
- data/examples/matrix/rowcol.rb +47 -0
- data/examples/matrix/set.rb +41 -0
- data/examples/matrix/set_all.rb +100 -0
- data/examples/matrix/view.rb +32 -0
- data/examples/matrix/view_all.rb +148 -0
- data/examples/matrix/write.rb +23 -0
- data/examples/min.rb +29 -0
- data/examples/monte/miser.rb +47 -0
- data/examples/monte/monte.rb +47 -0
- data/examples/monte/plain.rb +47 -0
- data/examples/monte/vegas.rb +46 -0
- data/examples/multimin/bundle.rb +66 -0
- data/examples/multimin/cqp.rb +109 -0
- data/examples/multimin/fdfminimizer.rb +40 -0
- data/examples/multimin/fminimizer.rb +41 -0
- data/examples/multiroot/demo.rb +36 -0
- data/examples/multiroot/fdfsolver.rb +50 -0
- data/examples/multiroot/fsolver.rb +33 -0
- data/examples/multiroot/fsolver2.rb +32 -0
- data/examples/multiroot/fsolver3.rb +26 -0
- data/examples/narray/histogram.rb +14 -0
- data/examples/narray/mandel.rb +27 -0
- data/examples/narray/narray.rb +28 -0
- data/examples/narray/narray2.rb +44 -0
- data/examples/narray/sf.rb +26 -0
- data/examples/ntuple/create.rb +17 -0
- data/examples/ntuple/project.rb +31 -0
- data/examples/odeiv/binarysystem.gp +23 -0
- data/examples/odeiv/binarysystem.rb +104 -0
- data/examples/odeiv/demo.gp +24 -0
- data/examples/odeiv/demo.rb +69 -0
- data/examples/odeiv/demo2.gp +26 -0
- data/examples/odeiv/duffing.rb +45 -0
- data/examples/odeiv/frei1.rb +109 -0
- data/examples/odeiv/frei2.rb +76 -0
- data/examples/odeiv/legendre.rb +52 -0
- data/examples/odeiv/odeiv.rb +32 -0
- data/examples/odeiv/odeiv2.rb +45 -0
- data/examples/odeiv/oscillator.rb +42 -0
- data/examples/odeiv/sedov.rb +97 -0
- data/examples/odeiv/whitedwarf.gp +40 -0
- data/examples/odeiv/whitedwarf.rb +158 -0
- data/examples/ool/conmin.rb +100 -0
- data/examples/ool/gencan.rb +99 -0
- data/examples/ool/pgrad.rb +100 -0
- data/examples/ool/spg.rb +100 -0
- data/examples/pdf/bernoulli.rb +5 -0
- data/examples/pdf/beta.rb +7 -0
- data/examples/pdf/binomiral.rb +10 -0
- data/examples/pdf/cauchy.rb +6 -0
- data/examples/pdf/chisq.rb +8 -0
- data/examples/pdf/exponential.rb +7 -0
- data/examples/pdf/exppow.rb +6 -0
- data/examples/pdf/fdist.rb +7 -0
- data/examples/pdf/flat.rb +7 -0
- data/examples/pdf/gamma.rb +8 -0
- data/examples/pdf/gauss-tail.rb +5 -0
- data/examples/pdf/gauss.rb +6 -0
- data/examples/pdf/geometric.rb +5 -0
- data/examples/pdf/gumbel.rb +6 -0
- data/examples/pdf/hypergeometric.rb +11 -0
- data/examples/pdf/landau.rb +5 -0
- data/examples/pdf/laplace.rb +7 -0
- data/examples/pdf/logarithmic.rb +5 -0
- data/examples/pdf/logistic.rb +6 -0
- data/examples/pdf/lognormal.rb +6 -0
- data/examples/pdf/neg-binomiral.rb +10 -0
- data/examples/pdf/pareto.rb +7 -0
- data/examples/pdf/pascal.rb +10 -0
- data/examples/pdf/poisson.rb +5 -0
- data/examples/pdf/rayleigh-tail.rb +6 -0
- data/examples/pdf/rayleigh.rb +6 -0
- data/examples/pdf/tdist.rb +6 -0
- data/examples/pdf/weibull.rb +8 -0
- data/examples/permutation/ex1.rb +22 -0
- data/examples/permutation/permutation.rb +16 -0
- data/examples/poly/bell.rb +6 -0
- data/examples/poly/bessel.rb +6 -0
- data/examples/poly/cheb.rb +6 -0
- data/examples/poly/cheb_II.rb +6 -0
- data/examples/poly/cubic.rb +9 -0
- data/examples/poly/demo.rb +20 -0
- data/examples/poly/eval.rb +28 -0
- data/examples/poly/eval_derivs.rb +14 -0
- data/examples/poly/fit.rb +21 -0
- data/examples/poly/hermite.rb +6 -0
- data/examples/poly/poly.rb +13 -0
- data/examples/poly/quadratic.rb +25 -0
- data/examples/random/diffusion.rb +34 -0
- data/examples/random/gaussian.rb +9 -0
- data/examples/random/generator.rb +27 -0
- data/examples/random/hdsobol.rb +21 -0
- data/examples/random/poisson.rb +9 -0
- data/examples/random/qrng.rb +19 -0
- data/examples/random/randomwalk.rb +37 -0
- data/examples/random/randomwalk2d.rb +19 -0
- data/examples/random/rayleigh.rb +36 -0
- data/examples/random/rng.rb +33 -0
- data/examples/random/rngextra.rb +14 -0
- data/examples/roots/bisection.rb +25 -0
- data/examples/roots/brent.rb +43 -0
- data/examples/roots/demo.rb +30 -0
- data/examples/roots/newton.rb +46 -0
- data/examples/roots/recombination.gp +12 -0
- data/examples/roots/recombination.rb +61 -0
- data/examples/roots/steffenson.rb +48 -0
- data/examples/sf/ShiChi.rb +6 -0
- data/examples/sf/SiCi.rb +6 -0
- data/examples/sf/airy_Ai.rb +8 -0
- data/examples/sf/airy_Bi.rb +8 -0
- data/examples/sf/bessel_IK.rb +12 -0
- data/examples/sf/bessel_JY.rb +13 -0
- data/examples/sf/beta_inc.rb +9 -0
- data/examples/sf/clausen.rb +6 -0
- data/examples/sf/dawson.rb +5 -0
- data/examples/sf/debye.rb +9 -0
- data/examples/sf/dilog.rb +6 -0
- data/examples/sf/ellint.rb +6 -0
- data/examples/sf/expint.rb +8 -0
- data/examples/sf/fermi.rb +10 -0
- data/examples/sf/gamma_inc_P.rb +9 -0
- data/examples/sf/gegenbauer.rb +8 -0
- data/examples/sf/hyperg.rb +7 -0
- data/examples/sf/laguerre.rb +19 -0
- data/examples/sf/lambertW.rb +5 -0
- data/examples/sf/legendre_P.rb +10 -0
- data/examples/sf/lngamma.rb +5 -0
- data/examples/sf/psi.rb +54 -0
- data/examples/sf/sphbessel.gp +27 -0
- data/examples/sf/sphbessel.rb +30 -0
- data/examples/sf/synchrotron.rb +5 -0
- data/examples/sf/transport.rb +10 -0
- data/examples/sf/zetam1.rb +5 -0
- data/examples/siman.rb +44 -0
- data/examples/sort/heapsort.rb +23 -0
- data/examples/sort/heapsort_vector_complex.rb +21 -0
- data/examples/sort/sort.rb +23 -0
- data/examples/sort/sort2.rb +16 -0
- data/examples/stats/mean.rb +17 -0
- data/examples/stats/statistics.rb +18 -0
- data/examples/stats/test.rb +9 -0
- data/examples/sum.rb +34 -0
- data/examples/tamu_anova.rb +18 -0
- data/examples/vector/a.dat +0 -0
- data/examples/vector/add.rb +56 -0
- data/examples/vector/b.dat +4 -0
- data/examples/vector/c.dat +3 -0
- data/examples/vector/collect.rb +26 -0
- data/examples/vector/compare.rb +28 -0
- data/examples/vector/complex.rb +51 -0
- data/examples/vector/complex_get_all.rb +85 -0
- data/examples/vector/complex_set_all.rb +131 -0
- data/examples/vector/complex_view_all.rb +77 -0
- data/examples/vector/connect.rb +22 -0
- data/examples/vector/decimate.rb +38 -0
- data/examples/vector/diff.rb +31 -0
- data/examples/vector/filescan.rb +17 -0
- data/examples/vector/floor.rb +23 -0
- data/examples/vector/get_all.rb +82 -0
- data/examples/vector/gnuplot.rb +38 -0
- data/examples/vector/graph.rb +28 -0
- data/examples/vector/histogram.rb +22 -0
- data/examples/vector/linspace.rb +24 -0
- data/examples/vector/log.rb +17 -0
- data/examples/vector/logic.rb +33 -0
- data/examples/vector/logspace.rb +25 -0
- data/examples/vector/minmax.rb +47 -0
- data/examples/vector/mul.rb +49 -0
- data/examples/vector/narray.rb +46 -0
- data/examples/vector/read.rb +29 -0
- data/examples/vector/set.rb +35 -0
- data/examples/vector/set_all.rb +121 -0
- data/examples/vector/smpv.dat +15 -0
- data/examples/vector/test.rb +43 -0
- data/examples/vector/test_gslblock.rb +58 -0
- data/examples/vector/vector.rb +110 -0
- data/examples/vector/view.rb +35 -0
- data/examples/vector/view_all.rb +73 -0
- data/examples/vector/where.rb +29 -0
- data/examples/vector/write.rb +24 -0
- data/examples/vector/zip.rb +34 -0
- data/examples/wavelet/ecg.dat +256 -0
- data/examples/wavelet/wavelet1.rb +50 -0
- data/ext/extconf.rb +9 -0
- data/ext/gsl.c +10 -1
- data/ext/histogram.c +6 -2
- data/ext/integration.c +39 -0
- data/ext/matrix_complex.c +1 -1
- data/ext/multiset.c +214 -0
- data/ext/nmf.c +4 -0
- data/ext/nmf_wrap.c +3 -0
- data/ext/vector_complex.c +1 -1
- data/ext/vector_double.c +3 -3
- data/ext/vector_source.c +6 -6
- data/include/rb_gsl.h +7 -0
- data/include/rb_gsl_common.h +6 -0
- data/rdoc/alf.rdoc +77 -0
- data/rdoc/blas.rdoc +269 -0
- data/rdoc/bspline.rdoc +42 -0
- data/rdoc/changes.rdoc +164 -0
- data/rdoc/cheb.rdoc +99 -0
- data/rdoc/cholesky_complex.rdoc +46 -0
- data/rdoc/combi.rdoc +125 -0
- data/rdoc/complex.rdoc +210 -0
- data/rdoc/const.rdoc +546 -0
- data/rdoc/dht.rdoc +122 -0
- data/rdoc/diff.rdoc +133 -0
- data/rdoc/ehandling.rdoc +50 -0
- data/rdoc/eigen.rdoc +401 -0
- data/rdoc/fft.rdoc +535 -0
- data/rdoc/fit.rdoc +284 -0
- data/rdoc/function.rdoc +94 -0
- data/rdoc/graph.rdoc +137 -0
- data/rdoc/hist.rdoc +409 -0
- data/rdoc/hist2d.rdoc +279 -0
- data/rdoc/hist3d.rdoc +112 -0
- data/rdoc/index.rdoc +62 -0
- data/rdoc/integration.rdoc +398 -0
- data/rdoc/interp.rdoc +231 -0
- data/rdoc/intro.rdoc +27 -0
- data/rdoc/linalg.rdoc +681 -0
- data/rdoc/linalg_complex.rdoc +88 -0
- data/rdoc/math.rdoc +276 -0
- data/rdoc/matrix.rdoc +1093 -0
- data/rdoc/min.rdoc +189 -0
- data/rdoc/monte.rdoc +234 -0
- data/rdoc/multimin.rdoc +312 -0
- data/rdoc/multiroot.rdoc +293 -0
- data/rdoc/narray.rdoc +173 -0
- data/rdoc/ndlinear.rdoc +247 -0
- data/rdoc/nonlinearfit.rdoc +348 -0
- data/rdoc/ntuple.rdoc +88 -0
- data/rdoc/odeiv.rdoc +378 -0
- data/rdoc/perm.rdoc +221 -0
- data/rdoc/poly.rdoc +335 -0
- data/rdoc/qrng.rdoc +90 -0
- data/rdoc/randist.rdoc +233 -0
- data/rdoc/ref.rdoc +93 -0
- data/rdoc/rng.rdoc +203 -0
- data/rdoc/rngextra.rdoc +11 -0
- data/rdoc/roots.rdoc +305 -0
- data/rdoc/screenshot.rdoc +40 -0
- data/rdoc/sf.rdoc +1622 -0
- data/rdoc/siman.rdoc +89 -0
- data/rdoc/sort.rdoc +94 -0
- data/rdoc/start.rdoc +16 -0
- data/rdoc/stats.rdoc +219 -0
- data/rdoc/sum.rdoc +65 -0
- data/rdoc/tensor.rdoc +251 -0
- data/rdoc/tut.rdoc +5 -0
- data/rdoc/use.rdoc +177 -0
- data/rdoc/vector.rdoc +1243 -0
- data/rdoc/vector_complex.rdoc +347 -0
- data/rdoc/wavelet.rdoc +218 -0
- data/setup.rb +1585 -0
- data/tests/blas/amax.rb +14 -0
- data/tests/blas/asum.rb +16 -0
- data/tests/blas/axpy.rb +25 -0
- data/tests/blas/copy.rb +23 -0
- data/tests/blas/dot.rb +23 -0
- data/tests/bspline.rb +53 -0
- data/tests/cdf.rb +1388 -0
- data/tests/cheb.rb +112 -0
- data/tests/combination.rb +123 -0
- data/tests/complex.rb +17 -0
- data/tests/const.rb +24 -0
- data/tests/deriv.rb +85 -0
- data/tests/dht/dht1.rb +17 -0
- data/tests/dht/dht2.rb +23 -0
- data/tests/dht/dht3.rb +23 -0
- data/tests/dht/dht4.rb +23 -0
- data/tests/diff.rb +78 -0
- data/tests/eigen/eigen.rb +220 -0
- data/tests/eigen/gen.rb +105 -0
- data/tests/eigen/genherm.rb +66 -0
- data/tests/eigen/gensymm.rb +68 -0
- data/tests/eigen/nonsymm.rb +53 -0
- data/tests/eigen/nonsymmv.rb +53 -0
- data/tests/eigen/symm-herm.rb +74 -0
- data/tests/err.rb +58 -0
- data/tests/fit.rb +124 -0
- data/tests/gsl_test.rb +118 -0
- data/tests/gsl_test2.rb +107 -0
- data/tests/histo.rb +12 -0
- data/tests/integration/integration1.rb +72 -0
- data/tests/integration/integration2.rb +71 -0
- data/tests/integration/integration3.rb +71 -0
- data/tests/integration/integration4.rb +71 -0
- data/tests/interp.rb +45 -0
- data/tests/linalg/HH.rb +64 -0
- data/tests/linalg/LU.rb +47 -0
- data/tests/linalg/QR.rb +77 -0
- data/tests/linalg/SV.rb +24 -0
- data/tests/linalg/TDN.rb +116 -0
- data/tests/linalg/TDS.rb +122 -0
- data/tests/linalg/bidiag.rb +73 -0
- data/tests/linalg/cholesky.rb +20 -0
- data/tests/linalg/linalg.rb +158 -0
- data/tests/matrix/matrix_nmf_test.rb +39 -0
- data/tests/matrix/matrix_test.rb +48 -0
- data/tests/min.rb +99 -0
- data/tests/monte/miser.rb +31 -0
- data/tests/monte/vegas.rb +45 -0
- data/tests/multifit/test_2dgauss.rb +112 -0
- data/tests/multifit/test_brown.rb +90 -0
- data/tests/multifit/test_enso.rb +246 -0
- data/tests/multifit/test_filip.rb +155 -0
- data/tests/multifit/test_gauss.rb +97 -0
- data/tests/multifit/test_longley.rb +110 -0
- data/tests/multifit/test_multifit.rb +52 -0
- data/tests/multimin.rb +139 -0
- data/tests/multiroot.rb +131 -0
- data/tests/multiset.rb +52 -0
- data/tests/odeiv.rb +353 -0
- data/tests/poly/poly.rb +242 -0
- data/tests/poly/special.rb +65 -0
- data/tests/qrng.rb +131 -0
- data/tests/quartic.rb +29 -0
- data/tests/randist.rb +134 -0
- data/tests/rng.rb +305 -0
- data/tests/roots.rb +76 -0
- data/tests/run-test.sh +17 -0
- data/tests/sf/gsl_test_sf.rb +249 -0
- data/tests/sf/test_airy.rb +83 -0
- data/tests/sf/test_bessel.rb +306 -0
- data/tests/sf/test_coulomb.rb +17 -0
- data/tests/sf/test_dilog.rb +25 -0
- data/tests/sf/test_gamma.rb +209 -0
- data/tests/sf/test_hyperg.rb +356 -0
- data/tests/sf/test_legendre.rb +227 -0
- data/tests/sf/test_mathieu.rb +59 -0
- data/tests/sf/test_sf.rb +839 -0
- data/tests/stats.rb +174 -0
- data/tests/sum.rb +98 -0
- data/tests/sys.rb +323 -0
- data/tests/tensor.rb +419 -0
- data/tests/vector/vector_complex_test.rb +101 -0
- data/tests/vector/vector_test.rb +141 -0
- data/tests/wavelet.rb +142 -0
- metadata +596 -15
data/rdoc/ndlinear.rdoc
ADDED
@@ -0,0 +1,247 @@
|
|
1
|
+
#
|
2
|
+
# = NDLINAR: multi-linear, multi-parameter least squares fitting
|
3
|
+
#
|
4
|
+
# The multi-dimension fitting library NDLINEAR is not included in GSL,
|
5
|
+
# but is provided as an extension library. This is available at the
|
6
|
+
# {Patric Alken's page}[http://ucsu.colorado.edu/~alken/gsl/"target="_top].
|
7
|
+
#
|
8
|
+
# Contents:
|
9
|
+
# 1. {Introduction}[link:files/rdoc/ndlinear_rdoc.html#1]
|
10
|
+
# 1. {Class and methods}[link:files/rdoc/ndlinear_rdoc.html#2]
|
11
|
+
# 1. {Examples}[link:files/rdoc/ndlinear_rdoc.html#3]
|
12
|
+
#
|
13
|
+
# == {}[link:index.html"name="1] Introduction
|
14
|
+
# The NDLINEAR extension provides support for general linear least squares
|
15
|
+
# fitting to data which is a function of more than one variable (multi-linear or
|
16
|
+
# multi-dimensional least squares fitting). This model has the form where
|
17
|
+
# <tt>x</tt> is a vector of independent variables, a_i are the fit coefficients,
|
18
|
+
# and F_i are the basis functions of the fit. This GSL extension computes the
|
19
|
+
# design matrix X_{ij = F_j(x_i) in the special case that the basis functions
|
20
|
+
# separate: Here the superscript value j indicates the basis function
|
21
|
+
# corresponding to the independent variable x_j. The subscripts (i_1, i_2, i_3,
|
22
|
+
# �c) refer to which basis function to use from the complete set. These
|
23
|
+
# subscripts are related to the index i in a complex way, which is the main
|
24
|
+
# problem this extension addresses. The model then becomes where n is the
|
25
|
+
# dimension of the fit and N_i is the number of basis functions for the variable
|
26
|
+
# x_i. Computationally, it is easier to supply the individual basis functions
|
27
|
+
# u^{(j) than the total basis functions F_i(x). However the design matrix X is
|
28
|
+
# easiest to construct given F_i(x). Therefore the routines below allow the user
|
29
|
+
# to specify the individual basis functions u^{(j) and then automatically
|
30
|
+
# construct the design matrix X.
|
31
|
+
#
|
32
|
+
#
|
33
|
+
# == {}[link:index.html"name="2] Class and Methods
|
34
|
+
# ---
|
35
|
+
# * GSL::MultiFit::Ndlinear.alloc(n_dim, N, u, params)
|
36
|
+
# * GSL::MultiFit::Ndlinear::Workspace.alloc(n_dim, N, u, params)
|
37
|
+
#
|
38
|
+
# Creates a workspace for solving multi-parameter, multi-dimensional linear
|
39
|
+
# least squares problems. <tt>n_dim</tt> specifies the dimension of the fit
|
40
|
+
# (the number of independent variables in the model). The array <tt>N</tt> of
|
41
|
+
# length <tt>n_dim</tt> specifies the number of terms in each sum, so that
|
42
|
+
# <tt>N[i]</tt>
|
43
|
+
# specifies the number of terms in the sum of the i-th independent variable.
|
44
|
+
# The array of <tt>Proc</tt> objects <tt>u</tt> of length <tt>n_dim</tt> specifies
|
45
|
+
# the basis functions for each independent fit variable, so that <tt>u[i]</tt>
|
46
|
+
# is a procedure to calculate the basis function for the i-th
|
47
|
+
# independent variable.
|
48
|
+
# Each of the procedures <tt>u</tt> takes three block parameters: a point
|
49
|
+
# <tt>x</tt> at which to evaluate the basis function, an array y of length
|
50
|
+
# <tt>N[i]</tt> which is filled on output with the basis function values at
|
51
|
+
# <tt>x</tt> for all i, and a params argument which contains parameters needed
|
52
|
+
# by the basis function. These parameters are supplied in the <tt>params</tt>
|
53
|
+
# argument to this method.
|
54
|
+
#
|
55
|
+
# Ex)
|
56
|
+
#
|
57
|
+
# N_DIM = 3
|
58
|
+
# N_SUM_R = 10
|
59
|
+
# N_SUM_THETA = 11
|
60
|
+
# N_SUM_PHI = 9
|
61
|
+
#
|
62
|
+
# basis_r = Proc.new { |r, y, params|
|
63
|
+
# params.eval(r, y)
|
64
|
+
# }
|
65
|
+
#
|
66
|
+
# basis_theta = Proc.new { |theta, y, params|
|
67
|
+
# for i in 0...N_SUM_THETA do
|
68
|
+
# y[i] = GSL::Sf::legendre_Pl(i, Math::cos(theta));
|
69
|
+
# end
|
70
|
+
# }
|
71
|
+
#
|
72
|
+
# basis_phi = Proc.new { |phi, y, params|
|
73
|
+
# for i in 0...N_SUM_PHI do
|
74
|
+
# if i%2 == 0
|
75
|
+
# y[i] = Math::cos(i*0.5*phi)
|
76
|
+
# else
|
77
|
+
# y[i] = Math::sin((i+1.0)*0.5*phi)
|
78
|
+
# end
|
79
|
+
# end
|
80
|
+
# }
|
81
|
+
#
|
82
|
+
# N = [N_SUM_R, N_SUM_THETA, N_SUM_PHI]
|
83
|
+
# u = [basis_r, basis_theta, basis_phi]
|
84
|
+
#
|
85
|
+
# bspline = GSL::BSpline.alloc(4, N_SUM_R - 2)
|
86
|
+
#
|
87
|
+
# ndlinear = GSL::MultiFit::Ndlinear.alloc(N_DIM, N, u, bspline)
|
88
|
+
#
|
89
|
+
# ---
|
90
|
+
# * GSL::MultiFit::Ndlinear.design(vars, X, w)
|
91
|
+
# * GSL::MultiFit::Ndlinear.design(vars, w)
|
92
|
+
# * GSL::MultiFit::Ndlinear::Workspace#design(vars, X)
|
93
|
+
# * GSL::MultiFit::Ndlinear::Workspace#design(vars)
|
94
|
+
#
|
95
|
+
# Construct the least squares design matrix <tt>X</tt> from the input <tt>vars</tt>
|
96
|
+
# and the previously specified basis functions. vars is a ndata-by-n_dim
|
97
|
+
# matrix where the ith row specifies the n_dim independent variables for the
|
98
|
+
# ith observation.
|
99
|
+
#
|
100
|
+
# ---
|
101
|
+
# * GSL::MultiFit::Ndlinear.est(x, c, cov, w)
|
102
|
+
# * GSL::MultiFit::Ndlinear::Workspace#est(x, c, cov)
|
103
|
+
#
|
104
|
+
# After the least squares problem is solved via <tt>GSL::MultiFit::linear</tt>,
|
105
|
+
# this method can be used to evaluate the model at the data point <tt>x</tt>.
|
106
|
+
# The coefficient vector <tt>c</tt> and covariance matrix <tt>cov</tt> are
|
107
|
+
# outputs from <tt>GSL::MultiFit::linear</tt>. The model output value and
|
108
|
+
# its error [<tt>y, yerr</tt>] are returned as an array.
|
109
|
+
#
|
110
|
+
# ---
|
111
|
+
# * GSL::MultiFit::Ndlinear.calc(x, c, w)
|
112
|
+
# * GSL::MultiFit::Ndlinear::Workspace#calc(x, c)
|
113
|
+
#
|
114
|
+
# This method is similar to <tt>GSL::MultiFit::Ndlinear.est</tt>, but does not compute the model error. It computes the model value at the data point <tt>x</tt> using the coefficient vector <tt>c</tt> and returns the model value.
|
115
|
+
#
|
116
|
+
# == {}[link:index.html"name="3] Examples
|
117
|
+
# This example program generates data from the 3D isotropic harmonic oscillator
|
118
|
+
# wavefunction (real part) and then fits a model to the data using B-splines in
|
119
|
+
# the r coordinate, Legendre polynomials in theta, and sines/cosines in phi.
|
120
|
+
# The exact form of the solution is (neglecting the normalization constant for
|
121
|
+
# simplicity) The example program models psi by default.
|
122
|
+
#
|
123
|
+
# #!/usr/bin/env ruby
|
124
|
+
# require("gsl")
|
125
|
+
#
|
126
|
+
# N_DIM = 3
|
127
|
+
# N_SUM_R = 10
|
128
|
+
# N_SUM_THETA = 10
|
129
|
+
# N_SUM_PHI = 9
|
130
|
+
# R_MAX = 3.0
|
131
|
+
#
|
132
|
+
# def psi_real_exact(k, l, m, r, theta, phi)
|
133
|
+
# rr = GSL::pow(r, l)*Math::exp(-r*r)*GSL::Sf::laguerre_n(k, l + 0.5, 2 * r * r)
|
134
|
+
# tt = GSL::Sf::legendre_sphPlm(l, m, Math::cos(theta))
|
135
|
+
# pp = Math::cos(m*phi)
|
136
|
+
# rr*tt*pp
|
137
|
+
# end
|
138
|
+
#
|
139
|
+
# basis_r = Proc.new { |r, y, params|
|
140
|
+
# params.eval(r, y)
|
141
|
+
# }
|
142
|
+
#
|
143
|
+
# basis_theta = Proc.new { |theta, y, params|
|
144
|
+
# for i in 0...N_SUM_THETA do
|
145
|
+
# y[i] = GSL::Sf::legendre_Pl(i, Math::cos(theta));
|
146
|
+
# end
|
147
|
+
# }
|
148
|
+
#
|
149
|
+
# basis_phi = Proc.new { |phi, y, params|
|
150
|
+
# for i in 0...N_SUM_PHI do
|
151
|
+
# if i%2 == 0
|
152
|
+
# y[i] = Math::cos(i*0.5*phi)
|
153
|
+
# else
|
154
|
+
# y[i] = Math::sin((i+1.0)*0.5*phi)
|
155
|
+
# end
|
156
|
+
# end
|
157
|
+
# }
|
158
|
+
#
|
159
|
+
#
|
160
|
+
# GSL::Rng::env_setup()
|
161
|
+
#
|
162
|
+
# k = 5
|
163
|
+
# l = 4
|
164
|
+
# m = 2
|
165
|
+
#
|
166
|
+
# NDATA = 3000
|
167
|
+
#
|
168
|
+
# N = [N_SUM_R, N_SUM_THETA, N_SUM_PHI]
|
169
|
+
# u = [basis_r, basis_theta, basis_phi]
|
170
|
+
#
|
171
|
+
# rng = GSL::Rng.alloc()
|
172
|
+
#
|
173
|
+
# bspline = GSL::BSpline.alloc(4, N_SUM_R - 2)
|
174
|
+
# bspline.knots_uniform(0.0, R_MAX)
|
175
|
+
#
|
176
|
+
# ndlinear = GSL::MultiFit::Ndlinear.alloc(N_DIM, N, u, bspline)
|
177
|
+
# multifit = GSL::MultiFit.alloc(NDATA, ndlinear.n_coeffs)
|
178
|
+
# vars = GSL::Matrix.alloc(NDATA, N_DIM)
|
179
|
+
# data = GSL::Vector.alloc(NDATA)
|
180
|
+
#
|
181
|
+
#
|
182
|
+
# for i in 0...NDATA do
|
183
|
+
# r = rng.uniform()*R_MAX
|
184
|
+
# theta = rng.uniform()*Math::PI
|
185
|
+
# phi = rng.uniform()*2*Math::PI
|
186
|
+
# psi = psi_real_exact(k, l, m, r, theta, phi)
|
187
|
+
# dpsi = rng.gaussian(0.05*psi)
|
188
|
+
#
|
189
|
+
# vars[i][0] = r
|
190
|
+
# vars[i][1] = theta
|
191
|
+
# vars[i][2] = phi
|
192
|
+
#
|
193
|
+
# data[i] = psi + dpsi
|
194
|
+
# end
|
195
|
+
#
|
196
|
+
# X = GSL::MultiFit::Ndlinear::design(vars, ndlinear)
|
197
|
+
#
|
198
|
+
# coeffs, cov, chisq, = GSL::MultiFit::linear(X, data, multifit)
|
199
|
+
#
|
200
|
+
# rsq = 1.0 - chisq/data.tss
|
201
|
+
# STDERR.printf("chisq = %e, Rsq = %f\n", chisq, rsq)
|
202
|
+
#
|
203
|
+
# eps_rms = 0.0
|
204
|
+
# volume = 0.0
|
205
|
+
# dr = 0.05;
|
206
|
+
# dtheta = 5.0 * Math::PI / 180.0
|
207
|
+
# dphi = 5.0 * Math::PI / 180.0
|
208
|
+
# x = GSL::Vector.alloc(N_DIM)
|
209
|
+
#
|
210
|
+
# r = 0.01
|
211
|
+
# while r < R_MAX do
|
212
|
+
# theta = 0.0
|
213
|
+
# while theta < Math::PI do
|
214
|
+
# phi = 0.0
|
215
|
+
# while phi < 2*Math::PI do
|
216
|
+
# dV = r*r*Math::sin(theta)*r*dtheta*dphi
|
217
|
+
# x[0] = r
|
218
|
+
# x[1] = theta
|
219
|
+
# x[2] = phi
|
220
|
+
#
|
221
|
+
# psi_model, err = GSL::MultiFit::Ndlinear.calc(x, coeffs, ndlinear)
|
222
|
+
# psi = psi_real_exact(k, l, m, r, theta, phi)
|
223
|
+
# err = psi_model - psi
|
224
|
+
# eps_rms += err * err * dV;
|
225
|
+
# volume += dV;
|
226
|
+
#
|
227
|
+
# if phi == 0.0
|
228
|
+
# printf("%e %e %e %e\n", r, theta, psi, psi_model)
|
229
|
+
# end
|
230
|
+
#
|
231
|
+
# phi += dphi
|
232
|
+
# end
|
233
|
+
# theta += dtheta
|
234
|
+
# end
|
235
|
+
# printf("\n");
|
236
|
+
# r += dr
|
237
|
+
# end
|
238
|
+
#
|
239
|
+
# eps_rms /= volume
|
240
|
+
# eps_rms = Math::sqrt(eps_rms)
|
241
|
+
# STDERR.printf("rms error over all parameter space = %e\n", eps_rms)
|
242
|
+
#
|
243
|
+
#
|
244
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
245
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
246
|
+
#
|
247
|
+
#
|
@@ -0,0 +1,348 @@
|
|
1
|
+
#
|
2
|
+
# = Nonlinear Least-Squares Fitting
|
3
|
+
# This chapter describes functions for multidimensional nonlinear least-squares
|
4
|
+
# fitting. The library provides low level components for a variety of iterative
|
5
|
+
# solvers and convergence tests. These can be combined by the user to achieve
|
6
|
+
# the desired solution, with full access to the intermediate steps of the
|
7
|
+
# iteration. Each class of methods uses the same framework, so that you can
|
8
|
+
# switch between solvers at runtime without needing to recompile your program.
|
9
|
+
# Each instance of a solver keeps track of its own state, allowing the solvers
|
10
|
+
# to be used in multi-threaded programs.
|
11
|
+
#
|
12
|
+
# Contents:
|
13
|
+
# 1. {Overview}[link:files/rdoc/nonlinearfit_rdoc.html#1]
|
14
|
+
# 1. {Initializing the Solver}[link:files/rdoc/nonlinearfit_rdoc.html#2]
|
15
|
+
# 1. {GSL::MultiFit::FdfSolver class}[link:files/rdoc/nonlinearfit_rdoc.html#2.1]
|
16
|
+
# 1. {Providing the function to be minimized}[link:files/rdoc/nonlinearfit_rdoc.html#3]
|
17
|
+
# 1. {GSL::MultiFit::Function_fdf class}[link:files/rdoc/nonlinearfit_rdoc.html#3.1]
|
18
|
+
# 1. {Iteration}[link:files/rdoc/nonlinearfit_rdoc.html#4]
|
19
|
+
# 1. {Search Stopping Parameters}[link:files/rdoc/nonlinearfit_rdoc.html#5]
|
20
|
+
# 1. {Computing the covariance matrix of best fit parameters}[link:files/rdoc/nonlinearfit_rdoc.html#6]
|
21
|
+
# 1. {Higher level interfaces}[link:files/rdoc/nonlinearfit_rdoc.html#7]
|
22
|
+
# 1. {Examples}[link:files/rdoc/nonlinearfit_rdoc.html#8]
|
23
|
+
# 1. {Fitting to user-defined functions}[link:files/rdoc/nonlinearfit_rdoc.html#8.1]
|
24
|
+
# 1. {Fitting to built-in functions}[link:files/rdoc/nonlinearfit_rdoc.html#8.2]
|
25
|
+
#
|
26
|
+
# == {}[link:index.html"name="1] Overview
|
27
|
+
# The problem of multidimensional nonlinear least-squares fitting requires the
|
28
|
+
# minimization of the squared residuals of n functions, f_i, in p parameters,
|
29
|
+
# x_i, All algorithms proceed from an initial guess using the linearization,
|
30
|
+
# where x is the initial point, p is the proposed step and J is the Jacobian
|
31
|
+
# matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the
|
32
|
+
# region of convergence. These include requiring a decrease in the norm ||F||
|
33
|
+
# on each step or using a trust region to avoid steps which fall outside the
|
34
|
+
# linear regime.
|
35
|
+
#
|
36
|
+
# To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data
|
37
|
+
# (t_i, y_i) with independent gaussian errors \sigma_i, use function components
|
38
|
+
# of the following form, Note that the model parameters are denoted by x in this
|
39
|
+
# chapter since the non-linear least-squares algorithms are described
|
40
|
+
# geometrically (i.e. finding the minimum of a surface). The independent
|
41
|
+
# variable of any data to be fitted is denoted by t.
|
42
|
+
#
|
43
|
+
# With the definition above the Jacobian is
|
44
|
+
# J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).
|
45
|
+
#
|
46
|
+
# == {}[link:index.html"name="2] Initializing the Solver
|
47
|
+
#
|
48
|
+
# === {}[link:index.html"name="2.1] GSL::MultiFit::FdfSolver class
|
49
|
+
# ---
|
50
|
+
# * GSL::MultiFit::FdfSolver.alloc(T, n, p)
|
51
|
+
#
|
52
|
+
# This creates an instance of the <tt>GSL::MultiFit::FdfSolver</tt> class of
|
53
|
+
# type <tt>T</tt> for <tt>n</tt> observations and <tt>p</tt> parameters. The type <tt>T</tt>
|
54
|
+
# is given by a <tt>Fixnum</tt> constant or a <tt>String</tt>,
|
55
|
+
# * <tt>GSL::MultiFit::LMSDER</tt> or <tt>"lmsder"</tt>
|
56
|
+
# * <tt>GSL::MultiFit::LMDER</tt> or <tt>"lmder"</tt>
|
57
|
+
# For example, the following code creates an instance of a Levenberg-Marquardt
|
58
|
+
# solver for 100 data points and 3 parameters,
|
59
|
+
#
|
60
|
+
# solver = MultiFit::FdfSolver.alloc(MultiFit::LMDER, 100, 3)
|
61
|
+
#
|
62
|
+
# ---
|
63
|
+
# * GSL::MultiFit::FdfSolver#set(f, x)
|
64
|
+
#
|
65
|
+
# This method initializes, or reinitializes, an existing solver <tt>self</tt>
|
66
|
+
# to use the function <tt>f</tt> and the initial guess <tt>x</tt>. The function <tt>f</tt>
|
67
|
+
# is an instance of the <tt>GSL::MultiFit::Function_fdf</tt> class (see below). The
|
68
|
+
# initial guess of the parameters <tt>x</tt> is given by a {GSL::Vector}[link:files/rdoc/vector_rdoc.html] object.
|
69
|
+
#
|
70
|
+
# ---
|
71
|
+
# * GSL::MultiFit::FdfSolver#name
|
72
|
+
#
|
73
|
+
# This returns the name of the solver <tt>self</tt> as a String.
|
74
|
+
#
|
75
|
+
#
|
76
|
+
# ---
|
77
|
+
# * GSL::MultiFit::FdfSolver#x
|
78
|
+
# * GSL::MultiFit::FdfSolver#dx
|
79
|
+
# * GSL::MultiFit::FdfSolver#f
|
80
|
+
# * GSL::MultiFit::FdfSolver#J
|
81
|
+
# * GSL::MultiFit::FdfSolver#jacobian
|
82
|
+
# * GSL::MultiFit::FdfSolver#jac
|
83
|
+
#
|
84
|
+
# Access to the members (see <tt>gsl_multifit_nlin.h</tt>)
|
85
|
+
#
|
86
|
+
# == {}[link:index.html"name="3] Providing the function to be minimized
|
87
|
+
# === {}[link:index.html"name="3.1] GSL::MultiFit::Function_fdf class
|
88
|
+
# ---
|
89
|
+
# * GSL::MultiFit::Function_fdf.alloc()
|
90
|
+
# * GSL::MultiFit::Function_fdf.alloc(f, df, p)
|
91
|
+
# * GSL::MultiFit::Function_fdf.alloc(f, df, fdf, p)
|
92
|
+
#
|
93
|
+
# Constructor for the <tt>Function_fdf</tt> class, to a
|
94
|
+
# function with <tt>p</tt> parameters, The first two or three arguments are Ruby Proc objects
|
95
|
+
# to evaluate the function to minimize and its derivative (Jacobian).
|
96
|
+
#
|
97
|
+
# ---
|
98
|
+
# * GSL::MultiFit::Function_fdf#set_procs(f, df, p)
|
99
|
+
# * GSL::MultiFit::Function_fdf#set_procs(f, df, fdf, p)
|
100
|
+
#
|
101
|
+
# This initialize of reinitialize the function <tt>self</tt> with <tt>p</tt> parameters
|
102
|
+
# by two or three Proc objects <tt>f, df</tt> and <tt>fdf</tt>.
|
103
|
+
#
|
104
|
+
# ---
|
105
|
+
# * GSL::MultiFit::Function_fdf#set_data(t, y)
|
106
|
+
# * GSL::MultiFit::Function_fdf#set_data(t, y, sigma)
|
107
|
+
#
|
108
|
+
# This sets the data <tt>t, y, sigma</tt> of length <tt>n</tt>, to the function <tt>self</tt>.
|
109
|
+
#
|
110
|
+
# == {}[link:index.html"name="4] Iteration
|
111
|
+
# ---
|
112
|
+
# * GSL::MultiFit::FdfSolver#iterate
|
113
|
+
#
|
114
|
+
# THis performs a single iteration of the solver <tt>self</tt>. If the iteration
|
115
|
+
# encounters an unexpected problem then an error code will be returned.
|
116
|
+
# The solver maintains a current estimate of the best-fit parameters at all
|
117
|
+
# times. This information can be accessed with the method <tt>position</tt>.
|
118
|
+
#
|
119
|
+
# ---
|
120
|
+
# * GSL::MultiFit::FdfSolver#position
|
121
|
+
#
|
122
|
+
# This returns the current position (i.e. best-fit parameters) of the solver
|
123
|
+
# <tt>self</tt>, as a <tt>GSL::Vector</tt> object.
|
124
|
+
#
|
125
|
+
#
|
126
|
+
# == {}[link:index.html"name="5] Search Stopping Parameters
|
127
|
+
# A minimization procedure should stop when one of the following conditions is true:
|
128
|
+
# * A minimum has been found to within the user-specified precision.
|
129
|
+
# * A user-specified maximum number of iterations has been reached.
|
130
|
+
# * An error has occurred.
|
131
|
+
# The handling of these conditions is under user control. The method below allows
|
132
|
+
# the user to test the current estimate of the best-fit parameters.
|
133
|
+
#
|
134
|
+
# ---
|
135
|
+
# * GSL::MultiFit::FdfSolver#test_delta(epsabs, epsrel)
|
136
|
+
#
|
137
|
+
# This method tests for the convergence of the sequence by comparing the last
|
138
|
+
# step with the absolute error <tt>epsabs</tt> and relative error (<tt>epsrel</tt>
|
139
|
+
# to the current position. The test returns <tt>GSL::SUCCESS</tt> if the following
|
140
|
+
# condition is achieved,
|
141
|
+
# |dx_i| < epsabs + epsrel |x_i|
|
142
|
+
# for each component of <tt>x</tt> and returns <tt>GSL::CONTINUE</tt> otherwise.
|
143
|
+
#
|
144
|
+
# ---
|
145
|
+
# * GSL::MultiFit::FdfSolver#test_gradient(g, epsabs)
|
146
|
+
# * GSL::MultiFit::FdfSolver#test_gradient(epsabs)
|
147
|
+
#
|
148
|
+
# This function tests the residual gradient <tt>g</tt> against the absolute error
|
149
|
+
# bound <tt>epsabs</tt>. If <tt>g</tt> is not given, it is calculated internally.
|
150
|
+
# Mathematically, the gradient should be exactly zero at the minimum.
|
151
|
+
# The test returns <tt>GSL::SUCCESS</tt> if the following condition is achieved,
|
152
|
+
# \sum_i |g_i| < epsabs
|
153
|
+
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
154
|
+
# situations where the precise location of the minimum, x, is unimportant provided
|
155
|
+
# a value can be found where the gradient is small enough.
|
156
|
+
#
|
157
|
+
# ---
|
158
|
+
# * GSL::MultiFit::FdfSolver#gradient
|
159
|
+
#
|
160
|
+
# This method returns the gradient g of \Phi(x) = (1/2) ||F(x)||^2 from the
|
161
|
+
# Jacobian matrix and the function values, using the formula g = J^T f.
|
162
|
+
#
|
163
|
+
# ---
|
164
|
+
# * GSL::MultiFit.test_delta(dx, x, epsabs, epsrel)
|
165
|
+
# * GSL::MultiFit.test_gradient(g, epsabs)
|
166
|
+
# * GSL::MultiFit.gradient(jac, f, g)
|
167
|
+
# * GSL::MultiFit.covar(jac, epsrel)
|
168
|
+
# * GSL::MultiFit.covar(jac, epsrel, covar)
|
169
|
+
#
|
170
|
+
# Singleton methods of the <tt>GSL::MultiFit</tt> module.
|
171
|
+
#
|
172
|
+
#
|
173
|
+
# == {}[link:index.html"name="6] Computing the covariance matrix of best fit parameters
|
174
|
+
# ---
|
175
|
+
# * GSL::MultiFit.covar(J, epsrel)
|
176
|
+
# * GSL::MultiFit.covar(J, epsrel, covar)
|
177
|
+
#
|
178
|
+
# This method uses the Jacobian matrix <tt>J</tt> to compute the covariance
|
179
|
+
# matrix of the best-fit parameters. If an existing matrix <tt>covar</tt> is given,
|
180
|
+
# it is overwritten, and if not, this method returns a new matrix.
|
181
|
+
# The parameter <tt>epsrel</tt> is used to remove linear-dependent columns when
|
182
|
+
# <tt>J</tt> is rank deficient.
|
183
|
+
#
|
184
|
+
# The covariance matrix is given by,
|
185
|
+
# covar = (J^T J)^{-1}
|
186
|
+
# and is computed by QR decomposition of <tt>J</tt> with column-pivoting.
|
187
|
+
# Any columns of R which satisfy
|
188
|
+
# |R_{kk}| <= epsrel |R_{11}|
|
189
|
+
# are considered linearly-dependent and are excluded from the covariance matrix
|
190
|
+
# (the corresponding rows and columns of the covariance matrix are set to zero).
|
191
|
+
#
|
192
|
+
# == {}[link:index.html"name="7] Higher level interfaces
|
193
|
+
# ---
|
194
|
+
# * GSL::MultiFit::FdfSolver.fit(x, y, type[, guess])
|
195
|
+
# * GSL::MultiFit::FdfSolver.fit(x, w, y, type[, guess])
|
196
|
+
#
|
197
|
+
# This method uses <tt>FdfSolver</tt> with the LMSDER algorithm to fit the data
|
198
|
+
# <tt>[x, y]</tt> to a function of type <tt>type</tt>. The returned value is
|
199
|
+
# an array of 4 elements, <tt>[coef, err, chisq, dof]</tt>,
|
200
|
+
# where <tt>coef</tt> is an array of the fitting coefficients, <tt>err</tt> contains
|
201
|
+
# errors in estimating <tt>coef</tt>, <tt>chisq</tt> is the
|
202
|
+
# chi-squared, and <tt>dof</tt> is the degree-of-freedom in the fitting
|
203
|
+
# which equals to (data length - number of fitting coefficients). The optional
|
204
|
+
# argument <tt>guess</tt> is an array of initial guess of the coefficients.
|
205
|
+
# The fitting type <tt>type</tt> is given by a <tt>String</tt> as follows.
|
206
|
+
# * <tt>"gaussian"</tt>: Gaussian fit,
|
207
|
+
# <tt>y = y0 + A exp(-(x-x0)^2/2/var)</tt>, <tt>coef = [y0, A, x0, var]</tt>
|
208
|
+
# * <tt>"gaussian_2peaks"</tt>: 2-peak Gaussian fit,
|
209
|
+
# <tt>y = y0 + A1 exp(-(x-x1)^2/2/var1) + A2 exp(-(x-x2)^2/2/var2)</tt>, <tt>coef = [y0, A1, x1, var1, A2, x2, var2]</tt>
|
210
|
+
# * <tt>"exp"</tt>: Exponential fit,
|
211
|
+
# <tt>y = y0 + A exp(-b x)</tt>, <tt>coef = [y0, A, b]</tt>
|
212
|
+
# * <tt>"dblexp"</tt>: Double exponential fit,
|
213
|
+
# <tt>y = y0 + A1 exp(-b1 x) + A2 exp(-b2 x)</tt>, <tt>coef = [y0, A1, b1, A2, b2]</tt>
|
214
|
+
# * <tt>"sin"</tt>: Sinusoidal fit,
|
215
|
+
# <tt>y = y0 + A sin(f x + phi)</tt>, <tt>coef = [y0, A, f, phi]</tt>
|
216
|
+
# * <tt>"lor"</tt>: Lorentzian peak fit,
|
217
|
+
# <tt>y = y0 + A/((x-x0)^2 + B)</tt>, <tt>coef = [y0, A, x0, B]</tt>
|
218
|
+
# * <tt>"hill"</tt>: Hill's equation fit,
|
219
|
+
# <tt>y = y0 + (m - y0)/(1 + (xhalf/x)^r)</tt>, <tt>coef = [y0, n, xhalf, r]</tt>
|
220
|
+
# * <tt>"sigmoid"</tt>: Sigmoid (Fermi-Dirac) function fit,
|
221
|
+
# <tt>y = y0 + m/(1 + exp((x0-x)/r))</tt>, <tt>coef = [y0, m, x0, r]</tt>
|
222
|
+
# * <tt>"power"</tt>: Power-law fit,
|
223
|
+
# <tt>y = y0 + A x^r</tt>, <tt>coef = [y0, A, r]</tt>
|
224
|
+
# * <tt>"lognormal"</tt>: Lognormal peak fit,
|
225
|
+
# <tt>y = y0 + A exp[ -(log(x/x0)/width)^2 ]</tt>, <tt>coef = [y0, A, x0, width]</tt>
|
226
|
+
#
|
227
|
+
# See {Linear fitting}[link:files/rdoc/fit_rdoc.html#2.3] for linear and polynomical fittings.
|
228
|
+
#
|
229
|
+
# == {}[link:index.html"name="8] Examples
|
230
|
+
# === {}[link:index.html"name="8.1] Fitting to user-defined functions
|
231
|
+
#
|
232
|
+
# The following example program fits a weighted exponential model with background
|
233
|
+
# to experimental data, Y = A exp(-lambda t) + b. The first part of the program sets
|
234
|
+
# up the functions <tt>procf</tt> and <tt>procdf</tt> to calculate the model and its Jacobian.
|
235
|
+
# The appropriate fitting function is given by,
|
236
|
+
# f_i = ((A exp(-lambda t_i) + b) - y_i)/sigma_i
|
237
|
+
# where we have chosen t_i = i. The Jacobian matrix <tt>jac</tt> is the derivative of
|
238
|
+
# these functions with respect to the three parameters (A, lambda, b). It is given by,
|
239
|
+
# J_{ij} = d f_i / d x_j
|
240
|
+
# where x_0 = A, x_1 = lambda and x_2 = b.
|
241
|
+
#
|
242
|
+
#
|
243
|
+
# require("gsl")
|
244
|
+
# include GSL::MultiFit
|
245
|
+
#
|
246
|
+
# # x: Vector, list of the parameters to determine
|
247
|
+
# # t, y, sigma: Vectors, observational data
|
248
|
+
# # f: Vector, function to minimize
|
249
|
+
# procf = Proc.new { |x, t, y, sigma, f|
|
250
|
+
# a = x[0]
|
251
|
+
# lambda = x[1]
|
252
|
+
# b = x[2]
|
253
|
+
# n = t.size
|
254
|
+
# for i in 0...n do
|
255
|
+
# yi = a*Math::exp(-lambda*t[i]) + b
|
256
|
+
# f[i] = (yi - y[i])/sigma[i]
|
257
|
+
# end
|
258
|
+
# }
|
259
|
+
#
|
260
|
+
# # jac: Matrix, Jacobian
|
261
|
+
# procdf = Proc.new { |x, t, y, sigma, jac|
|
262
|
+
# a = x[0]
|
263
|
+
# lambda = x[1]
|
264
|
+
# n = t.size
|
265
|
+
# for i in 0...n do
|
266
|
+
# ti = t[i]
|
267
|
+
# si = sigma[i]
|
268
|
+
# ei = Math::exp(-lambda*ti)
|
269
|
+
# jac.set(i, 0, ei/si)
|
270
|
+
# jac.set(i, 1, -ti*a*ei/si)
|
271
|
+
# jac.set(i, 2, 1.0/si)
|
272
|
+
# end
|
273
|
+
# }
|
274
|
+
#
|
275
|
+
# f = GSL::MultiFit::Function_fdf.alloc(procf, procdf, 2)
|
276
|
+
#
|
277
|
+
# # Create data
|
278
|
+
# r = GSL::Rng.alloc()
|
279
|
+
# t = GSL::Vector.alloc(n)
|
280
|
+
# y = GSL::Vector.alloc(n)
|
281
|
+
# sigma = Vector.alloc(n)
|
282
|
+
# for i in 0...n do
|
283
|
+
# t[i] = i
|
284
|
+
# y[i] = 1.0 + 5*Math::exp(-0.1*t[i]) + r.gaussian(0.1)
|
285
|
+
# sigma[i] = 0.1
|
286
|
+
# end
|
287
|
+
#
|
288
|
+
# f.set_data(t, y, sigma)
|
289
|
+
# x = GSL::Vector.alloc(1.0, 0.0, 0.0) # initial guess
|
290
|
+
#
|
291
|
+
# solver = GSL::FdfSolver.alloc(FdfSolver::LMSDER, n, np)
|
292
|
+
#
|
293
|
+
# solver.set(f, x)
|
294
|
+
#
|
295
|
+
# iter = 0
|
296
|
+
# solver.print_state(iter)
|
297
|
+
# begin
|
298
|
+
# iter += 1
|
299
|
+
# status = solver.iterate
|
300
|
+
# solver.print_state(iter)
|
301
|
+
# status = solver.test_delta(1e-4, 1e-4)
|
302
|
+
# end while status == GSL::CONTINUE and iter < 500
|
303
|
+
#
|
304
|
+
# covar = solver.covar(0.0)
|
305
|
+
# position = solver.position
|
306
|
+
# chi2 = pow_2(solver.f.dnrm2)
|
307
|
+
# dof = n - np
|
308
|
+
# printf("A = %.5f +/- %.5f\n", position[0], Math::sqrt(chi2/dof*covar[0][0]))
|
309
|
+
# printf("lambda = %.5f +/- %.5f\n", position[1], Math::sqrt(chi2/dof*covar[1][1]))
|
310
|
+
# printf("b = %.5f +/- %.5f\n", position[2], Math::sqrt(chi2/dof*covar[2][2]))
|
311
|
+
#
|
312
|
+
#
|
313
|
+
# === {}[link:index.html"name="8.2] Fitting to built-in functions
|
314
|
+
# #!/usr/bin/env ruby
|
315
|
+
# require("gsl")
|
316
|
+
# include MultiFit
|
317
|
+
#
|
318
|
+
# N = 100
|
319
|
+
#
|
320
|
+
# y0 = 1.0
|
321
|
+
# A = 2.0
|
322
|
+
# x0 = 3.0
|
323
|
+
# w = 0.5
|
324
|
+
#
|
325
|
+
# r = Rng.alloc
|
326
|
+
# x = Vector.linspace(0.01, 10, N)
|
327
|
+
# sig = 1
|
328
|
+
# # Lognormal function with noise
|
329
|
+
# y = y0 + A*Sf::exp(-pow_2(Sf::log(x/x0)/w)) + 0.1*Ran::gaussian(r, sig, N)
|
330
|
+
#
|
331
|
+
# guess = [0, 3, 2, 1]
|
332
|
+
# coef, err, chi2, dof = MultiFit::FdfSolver.fit(x, y, "lognormal", guess)
|
333
|
+
# y0 = coef[0]
|
334
|
+
# amp = coef[1]
|
335
|
+
# x0 = coef[2]
|
336
|
+
# w = coef[3]
|
337
|
+
#
|
338
|
+
# graph(x, y, y0+amp*Sf::exp(-pow_2(Sf::log(x/x0)/w)))
|
339
|
+
#
|
340
|
+
#
|
341
|
+
# {prev}[link:files/rdoc/fit_rdoc.html]
|
342
|
+
# {next}[link:files/rdoc/bspline_rdoc.html]
|
343
|
+
#
|
344
|
+
# {Reference index}[link:files/rdoc/ref_rdoc.html]
|
345
|
+
# {top}[link:files/rdoc/index_rdoc.html]
|
346
|
+
#
|
347
|
+
#
|
348
|
+
#
|