faiss 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +103 -3
- data/ext/faiss/ext.cpp +99 -32
- data/ext/faiss/extconf.rb +12 -2
- data/lib/faiss/ext.bundle +0 -0
- data/lib/faiss/index.rb +3 -3
- data/lib/faiss/index_binary.rb +3 -3
- data/lib/faiss/kmeans.rb +1 -1
- data/lib/faiss/pca_matrix.rb +2 -2
- data/lib/faiss/product_quantizer.rb +3 -3
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/AutoTune.cpp +719 -0
- data/vendor/faiss/AutoTune.h +212 -0
- data/vendor/faiss/Clustering.cpp +261 -0
- data/vendor/faiss/Clustering.h +101 -0
- data/vendor/faiss/IVFlib.cpp +339 -0
- data/vendor/faiss/IVFlib.h +132 -0
- data/vendor/faiss/Index.cpp +171 -0
- data/vendor/faiss/Index.h +261 -0
- data/vendor/faiss/Index2Layer.cpp +437 -0
- data/vendor/faiss/Index2Layer.h +85 -0
- data/vendor/faiss/IndexBinary.cpp +77 -0
- data/vendor/faiss/IndexBinary.h +163 -0
- data/vendor/faiss/IndexBinaryFlat.cpp +83 -0
- data/vendor/faiss/IndexBinaryFlat.h +54 -0
- data/vendor/faiss/IndexBinaryFromFloat.cpp +78 -0
- data/vendor/faiss/IndexBinaryFromFloat.h +52 -0
- data/vendor/faiss/IndexBinaryHNSW.cpp +325 -0
- data/vendor/faiss/IndexBinaryHNSW.h +56 -0
- data/vendor/faiss/IndexBinaryIVF.cpp +671 -0
- data/vendor/faiss/IndexBinaryIVF.h +211 -0
- data/vendor/faiss/IndexFlat.cpp +508 -0
- data/vendor/faiss/IndexFlat.h +175 -0
- data/vendor/faiss/IndexHNSW.cpp +1090 -0
- data/vendor/faiss/IndexHNSW.h +170 -0
- data/vendor/faiss/IndexIVF.cpp +909 -0
- data/vendor/faiss/IndexIVF.h +353 -0
- data/vendor/faiss/IndexIVFFlat.cpp +502 -0
- data/vendor/faiss/IndexIVFFlat.h +118 -0
- data/vendor/faiss/IndexIVFPQ.cpp +1207 -0
- data/vendor/faiss/IndexIVFPQ.h +161 -0
- data/vendor/faiss/IndexIVFPQR.cpp +219 -0
- data/vendor/faiss/IndexIVFPQR.h +65 -0
- data/vendor/faiss/IndexIVFSpectralHash.cpp +331 -0
- data/vendor/faiss/IndexIVFSpectralHash.h +75 -0
- data/vendor/faiss/IndexLSH.cpp +225 -0
- data/vendor/faiss/IndexLSH.h +87 -0
- data/vendor/faiss/IndexLattice.cpp +143 -0
- data/vendor/faiss/IndexLattice.h +68 -0
- data/vendor/faiss/IndexPQ.cpp +1188 -0
- data/vendor/faiss/IndexPQ.h +199 -0
- data/vendor/faiss/IndexPreTransform.cpp +288 -0
- data/vendor/faiss/IndexPreTransform.h +91 -0
- data/vendor/faiss/IndexReplicas.cpp +123 -0
- data/vendor/faiss/IndexReplicas.h +76 -0
- data/vendor/faiss/IndexScalarQuantizer.cpp +317 -0
- data/vendor/faiss/IndexScalarQuantizer.h +127 -0
- data/vendor/faiss/IndexShards.cpp +317 -0
- data/vendor/faiss/IndexShards.h +100 -0
- data/vendor/faiss/InvertedLists.cpp +623 -0
- data/vendor/faiss/InvertedLists.h +334 -0
- data/vendor/faiss/LICENSE +21 -0
- data/vendor/faiss/MatrixStats.cpp +252 -0
- data/vendor/faiss/MatrixStats.h +62 -0
- data/vendor/faiss/MetaIndexes.cpp +351 -0
- data/vendor/faiss/MetaIndexes.h +126 -0
- data/vendor/faiss/OnDiskInvertedLists.cpp +674 -0
- data/vendor/faiss/OnDiskInvertedLists.h +127 -0
- data/vendor/faiss/VectorTransform.cpp +1157 -0
- data/vendor/faiss/VectorTransform.h +322 -0
- data/vendor/faiss/c_api/AutoTune_c.cpp +83 -0
- data/vendor/faiss/c_api/AutoTune_c.h +64 -0
- data/vendor/faiss/c_api/Clustering_c.cpp +139 -0
- data/vendor/faiss/c_api/Clustering_c.h +117 -0
- data/vendor/faiss/c_api/IndexFlat_c.cpp +140 -0
- data/vendor/faiss/c_api/IndexFlat_c.h +115 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +64 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +58 -0
- data/vendor/faiss/c_api/IndexIVF_c.cpp +92 -0
- data/vendor/faiss/c_api/IndexIVF_c.h +135 -0
- data/vendor/faiss/c_api/IndexLSH_c.cpp +37 -0
- data/vendor/faiss/c_api/IndexLSH_c.h +40 -0
- data/vendor/faiss/c_api/IndexShards_c.cpp +44 -0
- data/vendor/faiss/c_api/IndexShards_c.h +42 -0
- data/vendor/faiss/c_api/Index_c.cpp +105 -0
- data/vendor/faiss/c_api/Index_c.h +183 -0
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +49 -0
- data/vendor/faiss/c_api/MetaIndexes_c.h +49 -0
- data/vendor/faiss/c_api/clone_index_c.cpp +23 -0
- data/vendor/faiss/c_api/clone_index_c.h +32 -0
- data/vendor/faiss/c_api/error_c.h +42 -0
- data/vendor/faiss/c_api/error_impl.cpp +27 -0
- data/vendor/faiss/c_api/error_impl.h +16 -0
- data/vendor/faiss/c_api/faiss_c.h +58 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +96 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +56 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +52 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +68 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +17 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +30 -0
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +38 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +86 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +66 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +54 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +53 -0
- data/vendor/faiss/c_api/gpu/macros_impl.h +42 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +220 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +149 -0
- data/vendor/faiss/c_api/index_factory_c.cpp +26 -0
- data/vendor/faiss/c_api/index_factory_c.h +30 -0
- data/vendor/faiss/c_api/index_io_c.cpp +42 -0
- data/vendor/faiss/c_api/index_io_c.h +50 -0
- data/vendor/faiss/c_api/macros_impl.h +110 -0
- data/vendor/faiss/clone_index.cpp +147 -0
- data/vendor/faiss/clone_index.h +38 -0
- data/vendor/faiss/demos/demo_imi_flat.cpp +151 -0
- data/vendor/faiss/demos/demo_imi_pq.cpp +199 -0
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +146 -0
- data/vendor/faiss/demos/demo_sift1M.cpp +252 -0
- data/vendor/faiss/gpu/GpuAutoTune.cpp +95 -0
- data/vendor/faiss/gpu/GpuAutoTune.h +27 -0
- data/vendor/faiss/gpu/GpuCloner.cpp +403 -0
- data/vendor/faiss/gpu/GpuCloner.h +82 -0
- data/vendor/faiss/gpu/GpuClonerOptions.cpp +28 -0
- data/vendor/faiss/gpu/GpuClonerOptions.h +53 -0
- data/vendor/faiss/gpu/GpuDistance.h +52 -0
- data/vendor/faiss/gpu/GpuFaissAssert.h +29 -0
- data/vendor/faiss/gpu/GpuIndex.h +148 -0
- data/vendor/faiss/gpu/GpuIndexBinaryFlat.h +89 -0
- data/vendor/faiss/gpu/GpuIndexFlat.h +190 -0
- data/vendor/faiss/gpu/GpuIndexIVF.h +89 -0
- data/vendor/faiss/gpu/GpuIndexIVFFlat.h +85 -0
- data/vendor/faiss/gpu/GpuIndexIVFPQ.h +143 -0
- data/vendor/faiss/gpu/GpuIndexIVFScalarQuantizer.h +100 -0
- data/vendor/faiss/gpu/GpuIndicesOptions.h +30 -0
- data/vendor/faiss/gpu/GpuResources.cpp +52 -0
- data/vendor/faiss/gpu/GpuResources.h +73 -0
- data/vendor/faiss/gpu/StandardGpuResources.cpp +295 -0
- data/vendor/faiss/gpu/StandardGpuResources.h +114 -0
- data/vendor/faiss/gpu/impl/RemapIndices.cpp +43 -0
- data/vendor/faiss/gpu/impl/RemapIndices.h +24 -0
- data/vendor/faiss/gpu/perf/IndexWrapper-inl.h +71 -0
- data/vendor/faiss/gpu/perf/IndexWrapper.h +39 -0
- data/vendor/faiss/gpu/perf/PerfClustering.cpp +115 -0
- data/vendor/faiss/gpu/perf/PerfIVFPQAdd.cpp +139 -0
- data/vendor/faiss/gpu/perf/WriteIndex.cpp +102 -0
- data/vendor/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +130 -0
- data/vendor/faiss/gpu/test/TestGpuIndexFlat.cpp +371 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +550 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +450 -0
- data/vendor/faiss/gpu/test/TestGpuMemoryException.cpp +84 -0
- data/vendor/faiss/gpu/test/TestUtils.cpp +315 -0
- data/vendor/faiss/gpu/test/TestUtils.h +93 -0
- data/vendor/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +159 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.cpp +77 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.h +71 -0
- data/vendor/faiss/gpu/utils/DeviceUtils.h +185 -0
- data/vendor/faiss/gpu/utils/MemorySpace.cpp +89 -0
- data/vendor/faiss/gpu/utils/MemorySpace.h +44 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.cpp +239 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.h +129 -0
- data/vendor/faiss/gpu/utils/StaticUtils.h +83 -0
- data/vendor/faiss/gpu/utils/Timer.cpp +60 -0
- data/vendor/faiss/gpu/utils/Timer.h +52 -0
- data/vendor/faiss/impl/AuxIndexStructures.cpp +305 -0
- data/vendor/faiss/impl/AuxIndexStructures.h +246 -0
- data/vendor/faiss/impl/FaissAssert.h +95 -0
- data/vendor/faiss/impl/FaissException.cpp +66 -0
- data/vendor/faiss/impl/FaissException.h +71 -0
- data/vendor/faiss/impl/HNSW.cpp +818 -0
- data/vendor/faiss/impl/HNSW.h +275 -0
- data/vendor/faiss/impl/PolysemousTraining.cpp +953 -0
- data/vendor/faiss/impl/PolysemousTraining.h +158 -0
- data/vendor/faiss/impl/ProductQuantizer.cpp +876 -0
- data/vendor/faiss/impl/ProductQuantizer.h +242 -0
- data/vendor/faiss/impl/ScalarQuantizer.cpp +1628 -0
- data/vendor/faiss/impl/ScalarQuantizer.h +120 -0
- data/vendor/faiss/impl/ThreadedIndex-inl.h +192 -0
- data/vendor/faiss/impl/ThreadedIndex.h +80 -0
- data/vendor/faiss/impl/index_read.cpp +793 -0
- data/vendor/faiss/impl/index_write.cpp +558 -0
- data/vendor/faiss/impl/io.cpp +142 -0
- data/vendor/faiss/impl/io.h +98 -0
- data/vendor/faiss/impl/lattice_Zn.cpp +712 -0
- data/vendor/faiss/impl/lattice_Zn.h +199 -0
- data/vendor/faiss/index_factory.cpp +392 -0
- data/vendor/faiss/index_factory.h +25 -0
- data/vendor/faiss/index_io.h +75 -0
- data/vendor/faiss/misc/test_blas.cpp +84 -0
- data/vendor/faiss/tests/test_binary_flat.cpp +64 -0
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +183 -0
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +67 -0
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +98 -0
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +566 -0
- data/vendor/faiss/tests/test_merge.cpp +258 -0
- data/vendor/faiss/tests/test_omp_threads.cpp +14 -0
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +220 -0
- data/vendor/faiss/tests/test_pairs_decoding.cpp +189 -0
- data/vendor/faiss/tests/test_params_override.cpp +231 -0
- data/vendor/faiss/tests/test_pq_encoding.cpp +98 -0
- data/vendor/faiss/tests/test_sliding_ivf.cpp +240 -0
- data/vendor/faiss/tests/test_threaded_index.cpp +253 -0
- data/vendor/faiss/tests/test_transfer_invlists.cpp +159 -0
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +98 -0
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +81 -0
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +93 -0
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +119 -0
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +99 -0
- data/vendor/faiss/utils/Heap.cpp +122 -0
- data/vendor/faiss/utils/Heap.h +495 -0
- data/vendor/faiss/utils/WorkerThread.cpp +126 -0
- data/vendor/faiss/utils/WorkerThread.h +61 -0
- data/vendor/faiss/utils/distances.cpp +765 -0
- data/vendor/faiss/utils/distances.h +243 -0
- data/vendor/faiss/utils/distances_simd.cpp +809 -0
- data/vendor/faiss/utils/extra_distances.cpp +336 -0
- data/vendor/faiss/utils/extra_distances.h +54 -0
- data/vendor/faiss/utils/hamming-inl.h +472 -0
- data/vendor/faiss/utils/hamming.cpp +792 -0
- data/vendor/faiss/utils/hamming.h +220 -0
- data/vendor/faiss/utils/random.cpp +192 -0
- data/vendor/faiss/utils/random.h +60 -0
- data/vendor/faiss/utils/utils.cpp +783 -0
- data/vendor/faiss/utils/utils.h +181 -0
- metadata +216 -2
@@ -0,0 +1,158 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#ifndef FAISS_POLYSEMOUS_TRAINING_INCLUDED
|
11
|
+
#define FAISS_POLYSEMOUS_TRAINING_INCLUDED
|
12
|
+
|
13
|
+
|
14
|
+
#include <faiss/impl/ProductQuantizer.h>
|
15
|
+
|
16
|
+
|
17
|
+
namespace faiss {
|
18
|
+
|
19
|
+
|
20
|
+
/// parameters used for the simulated annealing method
|
21
|
+
struct SimulatedAnnealingParameters {
|
22
|
+
|
23
|
+
// optimization parameters
|
24
|
+
double init_temperature; // init probaility of accepting a bad swap
|
25
|
+
double temperature_decay; // at each iteration the temp is multiplied by this
|
26
|
+
int n_iter; // nb of iterations
|
27
|
+
int n_redo; // nb of runs of the simulation
|
28
|
+
int seed; // random seed
|
29
|
+
int verbose;
|
30
|
+
bool only_bit_flips; // restrict permutation changes to bit flips
|
31
|
+
bool init_random; // intialize with a random permutation (not identity)
|
32
|
+
|
33
|
+
// set reasonable defaults
|
34
|
+
SimulatedAnnealingParameters ();
|
35
|
+
|
36
|
+
};
|
37
|
+
|
38
|
+
|
39
|
+
/// abstract class for the loss function
|
40
|
+
struct PermutationObjective {
|
41
|
+
|
42
|
+
int n;
|
43
|
+
|
44
|
+
virtual double compute_cost (const int *perm) const = 0;
|
45
|
+
|
46
|
+
// what would the cost update be if iw and jw were swapped?
|
47
|
+
// default implementation just computes both and computes the difference
|
48
|
+
virtual double cost_update (const int *perm, int iw, int jw) const;
|
49
|
+
|
50
|
+
virtual ~PermutationObjective () {}
|
51
|
+
};
|
52
|
+
|
53
|
+
|
54
|
+
struct ReproduceDistancesObjective : PermutationObjective {
|
55
|
+
|
56
|
+
double dis_weight_factor;
|
57
|
+
|
58
|
+
static double sqr (double x) { return x * x; }
|
59
|
+
|
60
|
+
// weihgting of distances: it is more important to reproduce small
|
61
|
+
// distances well
|
62
|
+
double dis_weight (double x) const;
|
63
|
+
|
64
|
+
std::vector<double> source_dis; ///< "real" corrected distances (size n^2)
|
65
|
+
const double * target_dis; ///< wanted distances (size n^2)
|
66
|
+
std::vector<double> weights; ///< weights for each distance (size n^2)
|
67
|
+
|
68
|
+
double get_source_dis (int i, int j) const;
|
69
|
+
|
70
|
+
// cost = quadratic difference between actual distance and Hamming distance
|
71
|
+
double compute_cost(const int* perm) const override;
|
72
|
+
|
73
|
+
// what would the cost update be if iw and jw were swapped?
|
74
|
+
// computed in O(n) instead of O(n^2) for the full re-computation
|
75
|
+
double cost_update(const int* perm, int iw, int jw) const override;
|
76
|
+
|
77
|
+
ReproduceDistancesObjective (
|
78
|
+
int n,
|
79
|
+
const double *source_dis_in,
|
80
|
+
const double *target_dis_in,
|
81
|
+
double dis_weight_factor);
|
82
|
+
|
83
|
+
static void compute_mean_stdev (const double *tab, size_t n2,
|
84
|
+
double *mean_out, double *stddev_out);
|
85
|
+
|
86
|
+
void set_affine_target_dis (const double *source_dis_in);
|
87
|
+
|
88
|
+
~ReproduceDistancesObjective() override {}
|
89
|
+
};
|
90
|
+
|
91
|
+
struct RandomGenerator;
|
92
|
+
|
93
|
+
/// Simulated annealing optimization algorithm for permutations.
|
94
|
+
struct SimulatedAnnealingOptimizer: SimulatedAnnealingParameters {
|
95
|
+
|
96
|
+
PermutationObjective *obj;
|
97
|
+
int n; ///< size of the permutation
|
98
|
+
FILE *logfile; /// logs values of the cost function
|
99
|
+
|
100
|
+
SimulatedAnnealingOptimizer (PermutationObjective *obj,
|
101
|
+
const SimulatedAnnealingParameters &p);
|
102
|
+
RandomGenerator *rnd;
|
103
|
+
|
104
|
+
/// remember intial cost of optimization
|
105
|
+
double init_cost;
|
106
|
+
|
107
|
+
// main entry point. Perform the optimization loop, starting from
|
108
|
+
// and modifying permutation in-place
|
109
|
+
double optimize (int *perm);
|
110
|
+
|
111
|
+
// run the optimization and return the best result in best_perm
|
112
|
+
double run_optimization (int * best_perm);
|
113
|
+
|
114
|
+
virtual ~SimulatedAnnealingOptimizer ();
|
115
|
+
};
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
|
120
|
+
/// optimizes the order of indices in a ProductQuantizer
|
121
|
+
struct PolysemousTraining: SimulatedAnnealingParameters {
|
122
|
+
|
123
|
+
enum Optimization_type_t {
|
124
|
+
OT_None,
|
125
|
+
OT_ReproduceDistances_affine, ///< default
|
126
|
+
OT_Ranking_weighted_diff /// same as _2, but use rank of y+ - rank of y-
|
127
|
+
};
|
128
|
+
Optimization_type_t optimization_type;
|
129
|
+
|
130
|
+
// use 1/4 of the training points for the optimization, with
|
131
|
+
// max. ntrain_permutation. If ntrain_permutation == 0: train on
|
132
|
+
// centroids
|
133
|
+
int ntrain_permutation;
|
134
|
+
double dis_weight_factor; // decay of exp that weights distance loss
|
135
|
+
|
136
|
+
// filename pattern for the logging of iterations
|
137
|
+
std::string log_pattern;
|
138
|
+
|
139
|
+
// sets default values
|
140
|
+
PolysemousTraining ();
|
141
|
+
|
142
|
+
/// reorder the centroids so that the Hamming distace becomes a
|
143
|
+
/// good approximation of the SDC distance (called by train)
|
144
|
+
void optimize_pq_for_hamming (ProductQuantizer & pq,
|
145
|
+
size_t n, const float *x) const;
|
146
|
+
|
147
|
+
/// called by optimize_pq_for_hamming
|
148
|
+
void optimize_ranking (ProductQuantizer &pq, size_t n, const float *x) const;
|
149
|
+
/// called by optimize_pq_for_hamming
|
150
|
+
void optimize_reproduce_distances (ProductQuantizer &pq) const;
|
151
|
+
|
152
|
+
};
|
153
|
+
|
154
|
+
|
155
|
+
} // namespace faiss
|
156
|
+
|
157
|
+
|
158
|
+
#endif
|
@@ -0,0 +1,876 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/impl/ProductQuantizer.h>
|
11
|
+
|
12
|
+
|
13
|
+
#include <cstddef>
|
14
|
+
#include <cstring>
|
15
|
+
#include <cstdio>
|
16
|
+
#include <memory>
|
17
|
+
|
18
|
+
#include <algorithm>
|
19
|
+
|
20
|
+
#include <faiss/impl/FaissAssert.h>
|
21
|
+
#include <faiss/VectorTransform.h>
|
22
|
+
#include <faiss/IndexFlat.h>
|
23
|
+
#include <faiss/utils/distances.h>
|
24
|
+
|
25
|
+
|
26
|
+
extern "C" {
|
27
|
+
|
28
|
+
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
29
|
+
|
30
|
+
int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER *
|
31
|
+
n, FINTEGER *k, const float *alpha, const float *a,
|
32
|
+
FINTEGER *lda, const float *b, FINTEGER *
|
33
|
+
ldb, float *beta, float *c, FINTEGER *ldc);
|
34
|
+
|
35
|
+
}
|
36
|
+
|
37
|
+
|
38
|
+
namespace faiss {
|
39
|
+
|
40
|
+
|
41
|
+
/* compute an estimator using look-up tables for typical values of M */
|
42
|
+
template <typename CT, class C>
|
43
|
+
void pq_estimators_from_tables_Mmul4 (int M, const CT * codes,
|
44
|
+
size_t ncodes,
|
45
|
+
const float * __restrict dis_table,
|
46
|
+
size_t ksub,
|
47
|
+
size_t k,
|
48
|
+
float * heap_dis,
|
49
|
+
int64_t * heap_ids)
|
50
|
+
{
|
51
|
+
|
52
|
+
for (size_t j = 0; j < ncodes; j++) {
|
53
|
+
float dis = 0;
|
54
|
+
const float *dt = dis_table;
|
55
|
+
|
56
|
+
for (size_t m = 0; m < M; m+=4) {
|
57
|
+
float dism = 0;
|
58
|
+
dism = dt[*codes++]; dt += ksub;
|
59
|
+
dism += dt[*codes++]; dt += ksub;
|
60
|
+
dism += dt[*codes++]; dt += ksub;
|
61
|
+
dism += dt[*codes++]; dt += ksub;
|
62
|
+
dis += dism;
|
63
|
+
}
|
64
|
+
|
65
|
+
if (C::cmp (heap_dis[0], dis)) {
|
66
|
+
heap_pop<C> (k, heap_dis, heap_ids);
|
67
|
+
heap_push<C> (k, heap_dis, heap_ids, dis, j);
|
68
|
+
}
|
69
|
+
}
|
70
|
+
}
|
71
|
+
|
72
|
+
|
73
|
+
template <typename CT, class C>
|
74
|
+
void pq_estimators_from_tables_M4 (const CT * codes,
|
75
|
+
size_t ncodes,
|
76
|
+
const float * __restrict dis_table,
|
77
|
+
size_t ksub,
|
78
|
+
size_t k,
|
79
|
+
float * heap_dis,
|
80
|
+
int64_t * heap_ids)
|
81
|
+
{
|
82
|
+
|
83
|
+
for (size_t j = 0; j < ncodes; j++) {
|
84
|
+
float dis = 0;
|
85
|
+
const float *dt = dis_table;
|
86
|
+
dis = dt[*codes++]; dt += ksub;
|
87
|
+
dis += dt[*codes++]; dt += ksub;
|
88
|
+
dis += dt[*codes++]; dt += ksub;
|
89
|
+
dis += dt[*codes++];
|
90
|
+
|
91
|
+
if (C::cmp (heap_dis[0], dis)) {
|
92
|
+
heap_pop<C> (k, heap_dis, heap_ids);
|
93
|
+
heap_push<C> (k, heap_dis, heap_ids, dis, j);
|
94
|
+
}
|
95
|
+
}
|
96
|
+
}
|
97
|
+
|
98
|
+
|
99
|
+
template <typename CT, class C>
|
100
|
+
static inline void pq_estimators_from_tables (const ProductQuantizer& pq,
|
101
|
+
const CT * codes,
|
102
|
+
size_t ncodes,
|
103
|
+
const float * dis_table,
|
104
|
+
size_t k,
|
105
|
+
float * heap_dis,
|
106
|
+
int64_t * heap_ids)
|
107
|
+
{
|
108
|
+
|
109
|
+
if (pq.M == 4) {
|
110
|
+
|
111
|
+
pq_estimators_from_tables_M4<CT, C> (codes, ncodes,
|
112
|
+
dis_table, pq.ksub, k,
|
113
|
+
heap_dis, heap_ids);
|
114
|
+
return;
|
115
|
+
}
|
116
|
+
|
117
|
+
if (pq.M % 4 == 0) {
|
118
|
+
pq_estimators_from_tables_Mmul4<CT, C> (pq.M, codes, ncodes,
|
119
|
+
dis_table, pq.ksub, k,
|
120
|
+
heap_dis, heap_ids);
|
121
|
+
return;
|
122
|
+
}
|
123
|
+
|
124
|
+
/* Default is relatively slow */
|
125
|
+
const size_t M = pq.M;
|
126
|
+
const size_t ksub = pq.ksub;
|
127
|
+
for (size_t j = 0; j < ncodes; j++) {
|
128
|
+
float dis = 0;
|
129
|
+
const float * __restrict dt = dis_table;
|
130
|
+
for (int m = 0; m < M; m++) {
|
131
|
+
dis += dt[*codes++];
|
132
|
+
dt += ksub;
|
133
|
+
}
|
134
|
+
if (C::cmp (heap_dis[0], dis)) {
|
135
|
+
heap_pop<C> (k, heap_dis, heap_ids);
|
136
|
+
heap_push<C> (k, heap_dis, heap_ids, dis, j);
|
137
|
+
}
|
138
|
+
}
|
139
|
+
}
|
140
|
+
|
141
|
+
template <class C>
|
142
|
+
static inline void pq_estimators_from_tables_generic(const ProductQuantizer& pq,
|
143
|
+
size_t nbits,
|
144
|
+
const uint8_t *codes,
|
145
|
+
size_t ncodes,
|
146
|
+
const float *dis_table,
|
147
|
+
size_t k,
|
148
|
+
float *heap_dis,
|
149
|
+
int64_t *heap_ids)
|
150
|
+
{
|
151
|
+
const size_t M = pq.M;
|
152
|
+
const size_t ksub = pq.ksub;
|
153
|
+
for (size_t j = 0; j < ncodes; ++j) {
|
154
|
+
faiss::ProductQuantizer::PQDecoderGeneric decoder(
|
155
|
+
codes + j * pq.code_size, nbits
|
156
|
+
);
|
157
|
+
float dis = 0;
|
158
|
+
const float * __restrict dt = dis_table;
|
159
|
+
for (size_t m = 0; m < M; m++) {
|
160
|
+
uint64_t c = decoder.decode();
|
161
|
+
dis += dt[c];
|
162
|
+
dt += ksub;
|
163
|
+
}
|
164
|
+
|
165
|
+
if (C::cmp(heap_dis[0], dis)) {
|
166
|
+
heap_pop<C>(k, heap_dis, heap_ids);
|
167
|
+
heap_push<C>(k, heap_dis, heap_ids, dis, j);
|
168
|
+
}
|
169
|
+
}
|
170
|
+
}
|
171
|
+
|
172
|
+
/*********************************************
|
173
|
+
* PQ implementation
|
174
|
+
*********************************************/
|
175
|
+
|
176
|
+
|
177
|
+
|
178
|
+
ProductQuantizer::ProductQuantizer (size_t d, size_t M, size_t nbits):
|
179
|
+
d(d), M(M), nbits(nbits), assign_index(nullptr)
|
180
|
+
{
|
181
|
+
set_derived_values ();
|
182
|
+
}
|
183
|
+
|
184
|
+
ProductQuantizer::ProductQuantizer ()
|
185
|
+
: ProductQuantizer(0, 1, 0) {}
|
186
|
+
|
187
|
+
void ProductQuantizer::set_derived_values () {
|
188
|
+
// quite a few derived values
|
189
|
+
FAISS_THROW_IF_NOT (d % M == 0);
|
190
|
+
dsub = d / M;
|
191
|
+
code_size = (nbits * M + 7) / 8;
|
192
|
+
ksub = 1 << nbits;
|
193
|
+
centroids.resize (d * ksub);
|
194
|
+
verbose = false;
|
195
|
+
train_type = Train_default;
|
196
|
+
}
|
197
|
+
|
198
|
+
void ProductQuantizer::set_params (const float * centroids_, int m)
|
199
|
+
{
|
200
|
+
memcpy (get_centroids(m, 0), centroids_,
|
201
|
+
ksub * dsub * sizeof (centroids_[0]));
|
202
|
+
}
|
203
|
+
|
204
|
+
|
205
|
+
static void init_hypercube (int d, int nbits,
|
206
|
+
int n, const float * x,
|
207
|
+
float *centroids)
|
208
|
+
{
|
209
|
+
|
210
|
+
std::vector<float> mean (d);
|
211
|
+
for (int i = 0; i < n; i++)
|
212
|
+
for (int j = 0; j < d; j++)
|
213
|
+
mean [j] += x[i * d + j];
|
214
|
+
|
215
|
+
float maxm = 0;
|
216
|
+
for (int j = 0; j < d; j++) {
|
217
|
+
mean [j] /= n;
|
218
|
+
if (fabs(mean[j]) > maxm) maxm = fabs(mean[j]);
|
219
|
+
}
|
220
|
+
|
221
|
+
for (int i = 0; i < (1 << nbits); i++) {
|
222
|
+
float * cent = centroids + i * d;
|
223
|
+
for (int j = 0; j < nbits; j++)
|
224
|
+
cent[j] = mean [j] + (((i >> j) & 1) ? 1 : -1) * maxm;
|
225
|
+
for (int j = nbits; j < d; j++)
|
226
|
+
cent[j] = mean [j];
|
227
|
+
}
|
228
|
+
|
229
|
+
|
230
|
+
}
|
231
|
+
|
232
|
+
static void init_hypercube_pca (int d, int nbits,
|
233
|
+
int n, const float * x,
|
234
|
+
float *centroids)
|
235
|
+
{
|
236
|
+
PCAMatrix pca (d, nbits);
|
237
|
+
pca.train (n, x);
|
238
|
+
|
239
|
+
|
240
|
+
for (int i = 0; i < (1 << nbits); i++) {
|
241
|
+
float * cent = centroids + i * d;
|
242
|
+
for (int j = 0; j < d; j++) {
|
243
|
+
cent[j] = pca.mean[j];
|
244
|
+
float f = 1.0;
|
245
|
+
for (int k = 0; k < nbits; k++)
|
246
|
+
cent[j] += f *
|
247
|
+
sqrt (pca.eigenvalues [k]) *
|
248
|
+
(((i >> k) & 1) ? 1 : -1) *
|
249
|
+
pca.PCAMat [j + k * d];
|
250
|
+
}
|
251
|
+
}
|
252
|
+
|
253
|
+
}
|
254
|
+
|
255
|
+
void ProductQuantizer::train (int n, const float * x)
|
256
|
+
{
|
257
|
+
if (train_type != Train_shared) {
|
258
|
+
train_type_t final_train_type;
|
259
|
+
final_train_type = train_type;
|
260
|
+
if (train_type == Train_hypercube ||
|
261
|
+
train_type == Train_hypercube_pca) {
|
262
|
+
if (dsub < nbits) {
|
263
|
+
final_train_type = Train_default;
|
264
|
+
printf ("cannot train hypercube: nbits=%ld > log2(d=%ld)\n",
|
265
|
+
nbits, dsub);
|
266
|
+
}
|
267
|
+
}
|
268
|
+
|
269
|
+
float * xslice = new float[n * dsub];
|
270
|
+
ScopeDeleter<float> del (xslice);
|
271
|
+
for (int m = 0; m < M; m++) {
|
272
|
+
for (int j = 0; j < n; j++)
|
273
|
+
memcpy (xslice + j * dsub,
|
274
|
+
x + j * d + m * dsub,
|
275
|
+
dsub * sizeof(float));
|
276
|
+
|
277
|
+
Clustering clus (dsub, ksub, cp);
|
278
|
+
|
279
|
+
// we have some initialization for the centroids
|
280
|
+
if (final_train_type != Train_default) {
|
281
|
+
clus.centroids.resize (dsub * ksub);
|
282
|
+
}
|
283
|
+
|
284
|
+
switch (final_train_type) {
|
285
|
+
case Train_hypercube:
|
286
|
+
init_hypercube (dsub, nbits, n, xslice,
|
287
|
+
clus.centroids.data ());
|
288
|
+
break;
|
289
|
+
case Train_hypercube_pca:
|
290
|
+
init_hypercube_pca (dsub, nbits, n, xslice,
|
291
|
+
clus.centroids.data ());
|
292
|
+
break;
|
293
|
+
case Train_hot_start:
|
294
|
+
memcpy (clus.centroids.data(),
|
295
|
+
get_centroids (m, 0),
|
296
|
+
dsub * ksub * sizeof (float));
|
297
|
+
break;
|
298
|
+
default: ;
|
299
|
+
}
|
300
|
+
|
301
|
+
if(verbose) {
|
302
|
+
clus.verbose = true;
|
303
|
+
printf ("Training PQ slice %d/%zd\n", m, M);
|
304
|
+
}
|
305
|
+
IndexFlatL2 index (dsub);
|
306
|
+
clus.train (n, xslice, assign_index ? *assign_index : index);
|
307
|
+
set_params (clus.centroids.data(), m);
|
308
|
+
}
|
309
|
+
|
310
|
+
|
311
|
+
} else {
|
312
|
+
|
313
|
+
Clustering clus (dsub, ksub, cp);
|
314
|
+
|
315
|
+
if(verbose) {
|
316
|
+
clus.verbose = true;
|
317
|
+
printf ("Training all PQ slices at once\n");
|
318
|
+
}
|
319
|
+
|
320
|
+
IndexFlatL2 index (dsub);
|
321
|
+
|
322
|
+
clus.train (n * M, x, assign_index ? *assign_index : index);
|
323
|
+
for (int m = 0; m < M; m++) {
|
324
|
+
set_params (clus.centroids.data(), m);
|
325
|
+
}
|
326
|
+
|
327
|
+
}
|
328
|
+
}
|
329
|
+
|
330
|
+
template<class PQEncoder>
|
331
|
+
void compute_code(const ProductQuantizer& pq, const float *x, uint8_t *code) {
|
332
|
+
float distances [pq.ksub];
|
333
|
+
PQEncoder encoder(code, pq.nbits);
|
334
|
+
for (size_t m = 0; m < pq.M; m++) {
|
335
|
+
float mindis = 1e20;
|
336
|
+
uint64_t idxm = 0;
|
337
|
+
const float * xsub = x + m * pq.dsub;
|
338
|
+
|
339
|
+
fvec_L2sqr_ny(distances, xsub, pq.get_centroids(m, 0), pq.dsub, pq.ksub);
|
340
|
+
|
341
|
+
/* Find best centroid */
|
342
|
+
for (size_t i = 0; i < pq.ksub; i++) {
|
343
|
+
float dis = distances[i];
|
344
|
+
if (dis < mindis) {
|
345
|
+
mindis = dis;
|
346
|
+
idxm = i;
|
347
|
+
}
|
348
|
+
}
|
349
|
+
|
350
|
+
encoder.encode(idxm);
|
351
|
+
}
|
352
|
+
}
|
353
|
+
|
354
|
+
void ProductQuantizer::compute_code(const float * x, uint8_t * code) const {
|
355
|
+
switch (nbits) {
|
356
|
+
case 8:
|
357
|
+
faiss::compute_code<PQEncoder8>(*this, x, code);
|
358
|
+
break;
|
359
|
+
|
360
|
+
case 16:
|
361
|
+
faiss::compute_code<PQEncoder16>(*this, x, code);
|
362
|
+
break;
|
363
|
+
|
364
|
+
default:
|
365
|
+
faiss::compute_code<PQEncoderGeneric>(*this, x, code);
|
366
|
+
break;
|
367
|
+
}
|
368
|
+
}
|
369
|
+
|
370
|
+
template<class PQDecoder>
|
371
|
+
void decode(const ProductQuantizer& pq, const uint8_t *code, float *x)
|
372
|
+
{
|
373
|
+
PQDecoder decoder(code, pq.nbits);
|
374
|
+
for (size_t m = 0; m < pq.M; m++) {
|
375
|
+
uint64_t c = decoder.decode();
|
376
|
+
memcpy(x + m * pq.dsub, pq.get_centroids(m, c), sizeof(float) * pq.dsub);
|
377
|
+
}
|
378
|
+
}
|
379
|
+
|
380
|
+
void ProductQuantizer::decode (const uint8_t *code, float *x) const
|
381
|
+
{
|
382
|
+
switch (nbits) {
|
383
|
+
case 8:
|
384
|
+
faiss::decode<PQDecoder8>(*this, code, x);
|
385
|
+
break;
|
386
|
+
|
387
|
+
case 16:
|
388
|
+
faiss::decode<PQDecoder16>(*this, code, x);
|
389
|
+
break;
|
390
|
+
|
391
|
+
default:
|
392
|
+
faiss::decode<PQDecoderGeneric>(*this, code, x);
|
393
|
+
break;
|
394
|
+
}
|
395
|
+
}
|
396
|
+
|
397
|
+
|
398
|
+
void ProductQuantizer::decode (const uint8_t *code, float *x, size_t n) const
|
399
|
+
{
|
400
|
+
for (size_t i = 0; i < n; i++) {
|
401
|
+
this->decode (code + code_size * i, x + d * i);
|
402
|
+
}
|
403
|
+
}
|
404
|
+
|
405
|
+
|
406
|
+
void ProductQuantizer::compute_code_from_distance_table (const float *tab,
|
407
|
+
uint8_t *code) const
|
408
|
+
{
|
409
|
+
PQEncoderGeneric encoder(code, nbits);
|
410
|
+
for (size_t m = 0; m < M; m++) {
|
411
|
+
float mindis = 1e20;
|
412
|
+
uint64_t idxm = 0;
|
413
|
+
|
414
|
+
/* Find best centroid */
|
415
|
+
for (size_t j = 0; j < ksub; j++) {
|
416
|
+
float dis = *tab++;
|
417
|
+
if (dis < mindis) {
|
418
|
+
mindis = dis;
|
419
|
+
idxm = j;
|
420
|
+
}
|
421
|
+
}
|
422
|
+
|
423
|
+
encoder.encode(idxm);
|
424
|
+
}
|
425
|
+
}
|
426
|
+
|
427
|
+
void ProductQuantizer::compute_codes_with_assign_index (
|
428
|
+
const float * x,
|
429
|
+
uint8_t * codes,
|
430
|
+
size_t n)
|
431
|
+
{
|
432
|
+
FAISS_THROW_IF_NOT (assign_index && assign_index->d == dsub);
|
433
|
+
|
434
|
+
for (size_t m = 0; m < M; m++) {
|
435
|
+
assign_index->reset ();
|
436
|
+
assign_index->add (ksub, get_centroids (m, 0));
|
437
|
+
size_t bs = 65536;
|
438
|
+
float * xslice = new float[bs * dsub];
|
439
|
+
ScopeDeleter<float> del (xslice);
|
440
|
+
idx_t *assign = new idx_t[bs];
|
441
|
+
ScopeDeleter<idx_t> del2 (assign);
|
442
|
+
|
443
|
+
for (size_t i0 = 0; i0 < n; i0 += bs) {
|
444
|
+
size_t i1 = std::min(i0 + bs, n);
|
445
|
+
|
446
|
+
for (size_t i = i0; i < i1; i++) {
|
447
|
+
memcpy (xslice + (i - i0) * dsub,
|
448
|
+
x + i * d + m * dsub,
|
449
|
+
dsub * sizeof(float));
|
450
|
+
}
|
451
|
+
|
452
|
+
assign_index->assign (i1 - i0, xslice, assign);
|
453
|
+
|
454
|
+
if (nbits == 8) {
|
455
|
+
uint8_t *c = codes + code_size * i0 + m;
|
456
|
+
for (size_t i = i0; i < i1; i++) {
|
457
|
+
*c = assign[i - i0];
|
458
|
+
c += M;
|
459
|
+
}
|
460
|
+
} else if (nbits == 16) {
|
461
|
+
uint16_t *c = (uint16_t*)(codes + code_size * i0 + m * 2);
|
462
|
+
for (size_t i = i0; i < i1; i++) {
|
463
|
+
*c = assign[i - i0];
|
464
|
+
c += M;
|
465
|
+
}
|
466
|
+
} else {
|
467
|
+
for (size_t i = i0; i < i1; ++i) {
|
468
|
+
uint8_t *c = codes + code_size * i + ((m * nbits) / 8);
|
469
|
+
uint8_t offset = (m * nbits) % 8;
|
470
|
+
uint64_t ass = assign[i - i0];
|
471
|
+
|
472
|
+
PQEncoderGeneric encoder(c, nbits, offset);
|
473
|
+
encoder.encode(ass);
|
474
|
+
}
|
475
|
+
}
|
476
|
+
|
477
|
+
}
|
478
|
+
}
|
479
|
+
|
480
|
+
}
|
481
|
+
|
482
|
+
void ProductQuantizer::compute_codes (const float * x,
|
483
|
+
uint8_t * codes,
|
484
|
+
size_t n) const
|
485
|
+
{
|
486
|
+
// process by blocks to avoid using too much RAM
|
487
|
+
size_t bs = 256 * 1024;
|
488
|
+
if (n > bs) {
|
489
|
+
for (size_t i0 = 0; i0 < n; i0 += bs) {
|
490
|
+
size_t i1 = std::min(i0 + bs, n);
|
491
|
+
compute_codes (x + d * i0, codes + code_size * i0, i1 - i0);
|
492
|
+
}
|
493
|
+
return;
|
494
|
+
}
|
495
|
+
|
496
|
+
if (dsub < 16) { // simple direct computation
|
497
|
+
|
498
|
+
#pragma omp parallel for
|
499
|
+
for (size_t i = 0; i < n; i++)
|
500
|
+
compute_code (x + i * d, codes + i * code_size);
|
501
|
+
|
502
|
+
} else { // worthwile to use BLAS
|
503
|
+
float *dis_tables = new float [n * ksub * M];
|
504
|
+
ScopeDeleter<float> del (dis_tables);
|
505
|
+
compute_distance_tables (n, x, dis_tables);
|
506
|
+
|
507
|
+
#pragma omp parallel for
|
508
|
+
for (size_t i = 0; i < n; i++) {
|
509
|
+
uint8_t * code = codes + i * code_size;
|
510
|
+
const float * tab = dis_tables + i * ksub * M;
|
511
|
+
compute_code_from_distance_table (tab, code);
|
512
|
+
}
|
513
|
+
}
|
514
|
+
}
|
515
|
+
|
516
|
+
|
517
|
+
void ProductQuantizer::compute_distance_table (const float * x,
|
518
|
+
float * dis_table) const
|
519
|
+
{
|
520
|
+
size_t m;
|
521
|
+
|
522
|
+
for (m = 0; m < M; m++) {
|
523
|
+
fvec_L2sqr_ny (dis_table + m * ksub,
|
524
|
+
x + m * dsub,
|
525
|
+
get_centroids(m, 0),
|
526
|
+
dsub,
|
527
|
+
ksub);
|
528
|
+
}
|
529
|
+
}
|
530
|
+
|
531
|
+
void ProductQuantizer::compute_inner_prod_table (const float * x,
|
532
|
+
float * dis_table) const
|
533
|
+
{
|
534
|
+
size_t m;
|
535
|
+
|
536
|
+
for (m = 0; m < M; m++) {
|
537
|
+
fvec_inner_products_ny (dis_table + m * ksub,
|
538
|
+
x + m * dsub,
|
539
|
+
get_centroids(m, 0),
|
540
|
+
dsub,
|
541
|
+
ksub);
|
542
|
+
}
|
543
|
+
}
|
544
|
+
|
545
|
+
|
546
|
+
void ProductQuantizer::compute_distance_tables (
|
547
|
+
size_t nx,
|
548
|
+
const float * x,
|
549
|
+
float * dis_tables) const
|
550
|
+
{
|
551
|
+
|
552
|
+
if (dsub < 16) {
|
553
|
+
|
554
|
+
#pragma omp parallel for
|
555
|
+
for (size_t i = 0; i < nx; i++) {
|
556
|
+
compute_distance_table (x + i * d, dis_tables + i * ksub * M);
|
557
|
+
}
|
558
|
+
|
559
|
+
} else { // use BLAS
|
560
|
+
|
561
|
+
for (int m = 0; m < M; m++) {
|
562
|
+
pairwise_L2sqr (dsub,
|
563
|
+
nx, x + dsub * m,
|
564
|
+
ksub, centroids.data() + m * dsub * ksub,
|
565
|
+
dis_tables + ksub * m,
|
566
|
+
d, dsub, ksub * M);
|
567
|
+
}
|
568
|
+
}
|
569
|
+
}
|
570
|
+
|
571
|
+
void ProductQuantizer::compute_inner_prod_tables (
|
572
|
+
size_t nx,
|
573
|
+
const float * x,
|
574
|
+
float * dis_tables) const
|
575
|
+
{
|
576
|
+
|
577
|
+
if (dsub < 16) {
|
578
|
+
|
579
|
+
#pragma omp parallel for
|
580
|
+
for (size_t i = 0; i < nx; i++) {
|
581
|
+
compute_inner_prod_table (x + i * d, dis_tables + i * ksub * M);
|
582
|
+
}
|
583
|
+
|
584
|
+
} else { // use BLAS
|
585
|
+
|
586
|
+
// compute distance tables
|
587
|
+
for (int m = 0; m < M; m++) {
|
588
|
+
FINTEGER ldc = ksub * M, nxi = nx, ksubi = ksub,
|
589
|
+
dsubi = dsub, di = d;
|
590
|
+
float one = 1.0, zero = 0;
|
591
|
+
|
592
|
+
sgemm_ ("Transposed", "Not transposed",
|
593
|
+
&ksubi, &nxi, &dsubi,
|
594
|
+
&one, ¢roids [m * dsub * ksub], &dsubi,
|
595
|
+
x + dsub * m, &di,
|
596
|
+
&zero, dis_tables + ksub * m, &ldc);
|
597
|
+
}
|
598
|
+
|
599
|
+
}
|
600
|
+
}
|
601
|
+
|
602
|
+
template <class C>
|
603
|
+
static void pq_knn_search_with_tables (
|
604
|
+
const ProductQuantizer& pq,
|
605
|
+
size_t nbits,
|
606
|
+
const float *dis_tables,
|
607
|
+
const uint8_t * codes,
|
608
|
+
const size_t ncodes,
|
609
|
+
HeapArray<C> * res,
|
610
|
+
bool init_finalize_heap)
|
611
|
+
{
|
612
|
+
size_t k = res->k, nx = res->nh;
|
613
|
+
size_t ksub = pq.ksub, M = pq.M;
|
614
|
+
|
615
|
+
|
616
|
+
#pragma omp parallel for
|
617
|
+
for (size_t i = 0; i < nx; i++) {
|
618
|
+
/* query preparation for asymmetric search: compute look-up tables */
|
619
|
+
const float* dis_table = dis_tables + i * ksub * M;
|
620
|
+
|
621
|
+
/* Compute distances and keep smallest values */
|
622
|
+
int64_t * __restrict heap_ids = res->ids + i * k;
|
623
|
+
float * __restrict heap_dis = res->val + i * k;
|
624
|
+
|
625
|
+
if (init_finalize_heap) {
|
626
|
+
heap_heapify<C> (k, heap_dis, heap_ids);
|
627
|
+
}
|
628
|
+
|
629
|
+
switch (nbits) {
|
630
|
+
case 8:
|
631
|
+
pq_estimators_from_tables<uint8_t, C> (pq,
|
632
|
+
codes, ncodes,
|
633
|
+
dis_table,
|
634
|
+
k, heap_dis, heap_ids);
|
635
|
+
break;
|
636
|
+
|
637
|
+
case 16:
|
638
|
+
pq_estimators_from_tables<uint16_t, C> (pq,
|
639
|
+
(uint16_t*)codes, ncodes,
|
640
|
+
dis_table,
|
641
|
+
k, heap_dis, heap_ids);
|
642
|
+
break;
|
643
|
+
|
644
|
+
default:
|
645
|
+
pq_estimators_from_tables_generic<C> (pq,
|
646
|
+
nbits,
|
647
|
+
codes, ncodes,
|
648
|
+
dis_table,
|
649
|
+
k, heap_dis, heap_ids);
|
650
|
+
break;
|
651
|
+
}
|
652
|
+
|
653
|
+
if (init_finalize_heap) {
|
654
|
+
heap_reorder<C> (k, heap_dis, heap_ids);
|
655
|
+
}
|
656
|
+
}
|
657
|
+
}
|
658
|
+
|
659
|
+
void ProductQuantizer::search (const float * __restrict x,
|
660
|
+
size_t nx,
|
661
|
+
const uint8_t * codes,
|
662
|
+
const size_t ncodes,
|
663
|
+
float_maxheap_array_t * res,
|
664
|
+
bool init_finalize_heap) const
|
665
|
+
{
|
666
|
+
FAISS_THROW_IF_NOT (nx == res->nh);
|
667
|
+
std::unique_ptr<float[]> dis_tables(new float [nx * ksub * M]);
|
668
|
+
compute_distance_tables (nx, x, dis_tables.get());
|
669
|
+
|
670
|
+
pq_knn_search_with_tables<CMax<float, int64_t>> (
|
671
|
+
*this, nbits, dis_tables.get(), codes, ncodes, res, init_finalize_heap);
|
672
|
+
}
|
673
|
+
|
674
|
+
void ProductQuantizer::search_ip (const float * __restrict x,
|
675
|
+
size_t nx,
|
676
|
+
const uint8_t * codes,
|
677
|
+
const size_t ncodes,
|
678
|
+
float_minheap_array_t * res,
|
679
|
+
bool init_finalize_heap) const
|
680
|
+
{
|
681
|
+
FAISS_THROW_IF_NOT (nx == res->nh);
|
682
|
+
std::unique_ptr<float[]> dis_tables(new float [nx * ksub * M]);
|
683
|
+
compute_inner_prod_tables (nx, x, dis_tables.get());
|
684
|
+
|
685
|
+
pq_knn_search_with_tables<CMin<float, int64_t> > (
|
686
|
+
*this, nbits, dis_tables.get(), codes, ncodes, res, init_finalize_heap);
|
687
|
+
}
|
688
|
+
|
689
|
+
|
690
|
+
|
691
|
+
static float sqr (float x) {
|
692
|
+
return x * x;
|
693
|
+
}
|
694
|
+
|
695
|
+
void ProductQuantizer::compute_sdc_table ()
|
696
|
+
{
|
697
|
+
sdc_table.resize (M * ksub * ksub);
|
698
|
+
|
699
|
+
for (int m = 0; m < M; m++) {
|
700
|
+
|
701
|
+
const float *cents = centroids.data() + m * ksub * dsub;
|
702
|
+
float * dis_tab = sdc_table.data() + m * ksub * ksub;
|
703
|
+
|
704
|
+
// TODO optimize with BLAS
|
705
|
+
for (int i = 0; i < ksub; i++) {
|
706
|
+
const float *centi = cents + i * dsub;
|
707
|
+
for (int j = 0; j < ksub; j++) {
|
708
|
+
float accu = 0;
|
709
|
+
const float *centj = cents + j * dsub;
|
710
|
+
for (int k = 0; k < dsub; k++)
|
711
|
+
accu += sqr (centi[k] - centj[k]);
|
712
|
+
dis_tab [i + j * ksub] = accu;
|
713
|
+
}
|
714
|
+
}
|
715
|
+
}
|
716
|
+
}
|
717
|
+
|
718
|
+
void ProductQuantizer::search_sdc (const uint8_t * qcodes,
|
719
|
+
size_t nq,
|
720
|
+
const uint8_t * bcodes,
|
721
|
+
const size_t nb,
|
722
|
+
float_maxheap_array_t * res,
|
723
|
+
bool init_finalize_heap) const
|
724
|
+
{
|
725
|
+
FAISS_THROW_IF_NOT (sdc_table.size() == M * ksub * ksub);
|
726
|
+
FAISS_THROW_IF_NOT (nbits == 8);
|
727
|
+
size_t k = res->k;
|
728
|
+
|
729
|
+
|
730
|
+
#pragma omp parallel for
|
731
|
+
for (size_t i = 0; i < nq; i++) {
|
732
|
+
|
733
|
+
/* Compute distances and keep smallest values */
|
734
|
+
idx_t * heap_ids = res->ids + i * k;
|
735
|
+
float * heap_dis = res->val + i * k;
|
736
|
+
const uint8_t * qcode = qcodes + i * code_size;
|
737
|
+
|
738
|
+
if (init_finalize_heap)
|
739
|
+
maxheap_heapify (k, heap_dis, heap_ids);
|
740
|
+
|
741
|
+
const uint8_t * bcode = bcodes;
|
742
|
+
for (size_t j = 0; j < nb; j++) {
|
743
|
+
float dis = 0;
|
744
|
+
const float * tab = sdc_table.data();
|
745
|
+
for (int m = 0; m < M; m++) {
|
746
|
+
dis += tab[bcode[m] + qcode[m] * ksub];
|
747
|
+
tab += ksub * ksub;
|
748
|
+
}
|
749
|
+
if (dis < heap_dis[0]) {
|
750
|
+
maxheap_pop (k, heap_dis, heap_ids);
|
751
|
+
maxheap_push (k, heap_dis, heap_ids, dis, j);
|
752
|
+
}
|
753
|
+
bcode += code_size;
|
754
|
+
}
|
755
|
+
|
756
|
+
if (init_finalize_heap)
|
757
|
+
maxheap_reorder (k, heap_dis, heap_ids);
|
758
|
+
}
|
759
|
+
|
760
|
+
}
|
761
|
+
|
762
|
+
|
763
|
+
ProductQuantizer::PQEncoderGeneric::PQEncoderGeneric(uint8_t *code, int nbits,
|
764
|
+
uint8_t offset)
|
765
|
+
: code(code), offset(offset), nbits(nbits), reg(0) {
|
766
|
+
assert(nbits <= 64);
|
767
|
+
if (offset > 0) {
|
768
|
+
reg = (*code & ((1 << offset) - 1));
|
769
|
+
}
|
770
|
+
}
|
771
|
+
|
772
|
+
void ProductQuantizer::PQEncoderGeneric::encode(uint64_t x) {
|
773
|
+
reg |= (uint8_t)(x << offset);
|
774
|
+
x >>= (8 - offset);
|
775
|
+
if (offset + nbits >= 8) {
|
776
|
+
*code++ = reg;
|
777
|
+
|
778
|
+
for (int i = 0; i < (nbits - (8 - offset)) / 8; ++i) {
|
779
|
+
*code++ = (uint8_t)x;
|
780
|
+
x >>= 8;
|
781
|
+
}
|
782
|
+
|
783
|
+
offset += nbits;
|
784
|
+
offset &= 7;
|
785
|
+
reg = (uint8_t)x;
|
786
|
+
} else {
|
787
|
+
offset += nbits;
|
788
|
+
}
|
789
|
+
}
|
790
|
+
|
791
|
+
ProductQuantizer::PQEncoderGeneric::~PQEncoderGeneric() {
|
792
|
+
if (offset > 0) {
|
793
|
+
*code = reg;
|
794
|
+
}
|
795
|
+
}
|
796
|
+
|
797
|
+
|
798
|
+
ProductQuantizer::PQEncoder8::PQEncoder8(uint8_t *code, int nbits)
|
799
|
+
: code(code) {
|
800
|
+
assert(8 == nbits);
|
801
|
+
}
|
802
|
+
|
803
|
+
void ProductQuantizer::PQEncoder8::encode(uint64_t x) {
|
804
|
+
*code++ = (uint8_t)x;
|
805
|
+
}
|
806
|
+
|
807
|
+
|
808
|
+
ProductQuantizer::PQEncoder16::PQEncoder16(uint8_t *code, int nbits)
|
809
|
+
: code((uint16_t *)code) {
|
810
|
+
assert(16 == nbits);
|
811
|
+
}
|
812
|
+
|
813
|
+
void ProductQuantizer::PQEncoder16::encode(uint64_t x) {
|
814
|
+
*code++ = (uint16_t)x;
|
815
|
+
}
|
816
|
+
|
817
|
+
|
818
|
+
ProductQuantizer::PQDecoderGeneric::PQDecoderGeneric(const uint8_t *code,
|
819
|
+
int nbits)
|
820
|
+
: code(code),
|
821
|
+
offset(0),
|
822
|
+
nbits(nbits),
|
823
|
+
mask((1ull << nbits) - 1),
|
824
|
+
reg(0) {
|
825
|
+
assert(nbits <= 64);
|
826
|
+
}
|
827
|
+
|
828
|
+
uint64_t ProductQuantizer::PQDecoderGeneric::decode() {
|
829
|
+
if (offset == 0) {
|
830
|
+
reg = *code;
|
831
|
+
}
|
832
|
+
uint64_t c = (reg >> offset);
|
833
|
+
|
834
|
+
if (offset + nbits >= 8) {
|
835
|
+
uint64_t e = 8 - offset;
|
836
|
+
++code;
|
837
|
+
for (int i = 0; i < (nbits - (8 - offset)) / 8; ++i) {
|
838
|
+
c |= ((uint64_t)(*code++) << e);
|
839
|
+
e += 8;
|
840
|
+
}
|
841
|
+
|
842
|
+
offset += nbits;
|
843
|
+
offset &= 7;
|
844
|
+
if (offset > 0) {
|
845
|
+
reg = *code;
|
846
|
+
c |= ((uint64_t)reg << e);
|
847
|
+
}
|
848
|
+
} else {
|
849
|
+
offset += nbits;
|
850
|
+
}
|
851
|
+
|
852
|
+
return c & mask;
|
853
|
+
}
|
854
|
+
|
855
|
+
|
856
|
+
ProductQuantizer::PQDecoder8::PQDecoder8(const uint8_t *code, int nbits)
|
857
|
+
: code(code) {
|
858
|
+
assert(8 == nbits);
|
859
|
+
}
|
860
|
+
|
861
|
+
uint64_t ProductQuantizer::PQDecoder8::decode() {
|
862
|
+
return (uint64_t)(*code++);
|
863
|
+
}
|
864
|
+
|
865
|
+
|
866
|
+
ProductQuantizer::PQDecoder16::PQDecoder16(const uint8_t *code, int nbits)
|
867
|
+
: code((uint16_t *)code) {
|
868
|
+
assert(16 == nbits);
|
869
|
+
}
|
870
|
+
|
871
|
+
uint64_t ProductQuantizer::PQDecoder16::decode() {
|
872
|
+
return (uint64_t)(*code++);
|
873
|
+
}
|
874
|
+
|
875
|
+
|
876
|
+
} // namespace faiss
|