faiss 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +103 -3
- data/ext/faiss/ext.cpp +99 -32
- data/ext/faiss/extconf.rb +12 -2
- data/lib/faiss/ext.bundle +0 -0
- data/lib/faiss/index.rb +3 -3
- data/lib/faiss/index_binary.rb +3 -3
- data/lib/faiss/kmeans.rb +1 -1
- data/lib/faiss/pca_matrix.rb +2 -2
- data/lib/faiss/product_quantizer.rb +3 -3
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/AutoTune.cpp +719 -0
- data/vendor/faiss/AutoTune.h +212 -0
- data/vendor/faiss/Clustering.cpp +261 -0
- data/vendor/faiss/Clustering.h +101 -0
- data/vendor/faiss/IVFlib.cpp +339 -0
- data/vendor/faiss/IVFlib.h +132 -0
- data/vendor/faiss/Index.cpp +171 -0
- data/vendor/faiss/Index.h +261 -0
- data/vendor/faiss/Index2Layer.cpp +437 -0
- data/vendor/faiss/Index2Layer.h +85 -0
- data/vendor/faiss/IndexBinary.cpp +77 -0
- data/vendor/faiss/IndexBinary.h +163 -0
- data/vendor/faiss/IndexBinaryFlat.cpp +83 -0
- data/vendor/faiss/IndexBinaryFlat.h +54 -0
- data/vendor/faiss/IndexBinaryFromFloat.cpp +78 -0
- data/vendor/faiss/IndexBinaryFromFloat.h +52 -0
- data/vendor/faiss/IndexBinaryHNSW.cpp +325 -0
- data/vendor/faiss/IndexBinaryHNSW.h +56 -0
- data/vendor/faiss/IndexBinaryIVF.cpp +671 -0
- data/vendor/faiss/IndexBinaryIVF.h +211 -0
- data/vendor/faiss/IndexFlat.cpp +508 -0
- data/vendor/faiss/IndexFlat.h +175 -0
- data/vendor/faiss/IndexHNSW.cpp +1090 -0
- data/vendor/faiss/IndexHNSW.h +170 -0
- data/vendor/faiss/IndexIVF.cpp +909 -0
- data/vendor/faiss/IndexIVF.h +353 -0
- data/vendor/faiss/IndexIVFFlat.cpp +502 -0
- data/vendor/faiss/IndexIVFFlat.h +118 -0
- data/vendor/faiss/IndexIVFPQ.cpp +1207 -0
- data/vendor/faiss/IndexIVFPQ.h +161 -0
- data/vendor/faiss/IndexIVFPQR.cpp +219 -0
- data/vendor/faiss/IndexIVFPQR.h +65 -0
- data/vendor/faiss/IndexIVFSpectralHash.cpp +331 -0
- data/vendor/faiss/IndexIVFSpectralHash.h +75 -0
- data/vendor/faiss/IndexLSH.cpp +225 -0
- data/vendor/faiss/IndexLSH.h +87 -0
- data/vendor/faiss/IndexLattice.cpp +143 -0
- data/vendor/faiss/IndexLattice.h +68 -0
- data/vendor/faiss/IndexPQ.cpp +1188 -0
- data/vendor/faiss/IndexPQ.h +199 -0
- data/vendor/faiss/IndexPreTransform.cpp +288 -0
- data/vendor/faiss/IndexPreTransform.h +91 -0
- data/vendor/faiss/IndexReplicas.cpp +123 -0
- data/vendor/faiss/IndexReplicas.h +76 -0
- data/vendor/faiss/IndexScalarQuantizer.cpp +317 -0
- data/vendor/faiss/IndexScalarQuantizer.h +127 -0
- data/vendor/faiss/IndexShards.cpp +317 -0
- data/vendor/faiss/IndexShards.h +100 -0
- data/vendor/faiss/InvertedLists.cpp +623 -0
- data/vendor/faiss/InvertedLists.h +334 -0
- data/vendor/faiss/LICENSE +21 -0
- data/vendor/faiss/MatrixStats.cpp +252 -0
- data/vendor/faiss/MatrixStats.h +62 -0
- data/vendor/faiss/MetaIndexes.cpp +351 -0
- data/vendor/faiss/MetaIndexes.h +126 -0
- data/vendor/faiss/OnDiskInvertedLists.cpp +674 -0
- data/vendor/faiss/OnDiskInvertedLists.h +127 -0
- data/vendor/faiss/VectorTransform.cpp +1157 -0
- data/vendor/faiss/VectorTransform.h +322 -0
- data/vendor/faiss/c_api/AutoTune_c.cpp +83 -0
- data/vendor/faiss/c_api/AutoTune_c.h +64 -0
- data/vendor/faiss/c_api/Clustering_c.cpp +139 -0
- data/vendor/faiss/c_api/Clustering_c.h +117 -0
- data/vendor/faiss/c_api/IndexFlat_c.cpp +140 -0
- data/vendor/faiss/c_api/IndexFlat_c.h +115 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +64 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +58 -0
- data/vendor/faiss/c_api/IndexIVF_c.cpp +92 -0
- data/vendor/faiss/c_api/IndexIVF_c.h +135 -0
- data/vendor/faiss/c_api/IndexLSH_c.cpp +37 -0
- data/vendor/faiss/c_api/IndexLSH_c.h +40 -0
- data/vendor/faiss/c_api/IndexShards_c.cpp +44 -0
- data/vendor/faiss/c_api/IndexShards_c.h +42 -0
- data/vendor/faiss/c_api/Index_c.cpp +105 -0
- data/vendor/faiss/c_api/Index_c.h +183 -0
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +49 -0
- data/vendor/faiss/c_api/MetaIndexes_c.h +49 -0
- data/vendor/faiss/c_api/clone_index_c.cpp +23 -0
- data/vendor/faiss/c_api/clone_index_c.h +32 -0
- data/vendor/faiss/c_api/error_c.h +42 -0
- data/vendor/faiss/c_api/error_impl.cpp +27 -0
- data/vendor/faiss/c_api/error_impl.h +16 -0
- data/vendor/faiss/c_api/faiss_c.h +58 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +96 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +56 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +52 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +68 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +17 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +30 -0
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +38 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +86 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +66 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +54 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +53 -0
- data/vendor/faiss/c_api/gpu/macros_impl.h +42 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +220 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +149 -0
- data/vendor/faiss/c_api/index_factory_c.cpp +26 -0
- data/vendor/faiss/c_api/index_factory_c.h +30 -0
- data/vendor/faiss/c_api/index_io_c.cpp +42 -0
- data/vendor/faiss/c_api/index_io_c.h +50 -0
- data/vendor/faiss/c_api/macros_impl.h +110 -0
- data/vendor/faiss/clone_index.cpp +147 -0
- data/vendor/faiss/clone_index.h +38 -0
- data/vendor/faiss/demos/demo_imi_flat.cpp +151 -0
- data/vendor/faiss/demos/demo_imi_pq.cpp +199 -0
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +146 -0
- data/vendor/faiss/demos/demo_sift1M.cpp +252 -0
- data/vendor/faiss/gpu/GpuAutoTune.cpp +95 -0
- data/vendor/faiss/gpu/GpuAutoTune.h +27 -0
- data/vendor/faiss/gpu/GpuCloner.cpp +403 -0
- data/vendor/faiss/gpu/GpuCloner.h +82 -0
- data/vendor/faiss/gpu/GpuClonerOptions.cpp +28 -0
- data/vendor/faiss/gpu/GpuClonerOptions.h +53 -0
- data/vendor/faiss/gpu/GpuDistance.h +52 -0
- data/vendor/faiss/gpu/GpuFaissAssert.h +29 -0
- data/vendor/faiss/gpu/GpuIndex.h +148 -0
- data/vendor/faiss/gpu/GpuIndexBinaryFlat.h +89 -0
- data/vendor/faiss/gpu/GpuIndexFlat.h +190 -0
- data/vendor/faiss/gpu/GpuIndexIVF.h +89 -0
- data/vendor/faiss/gpu/GpuIndexIVFFlat.h +85 -0
- data/vendor/faiss/gpu/GpuIndexIVFPQ.h +143 -0
- data/vendor/faiss/gpu/GpuIndexIVFScalarQuantizer.h +100 -0
- data/vendor/faiss/gpu/GpuIndicesOptions.h +30 -0
- data/vendor/faiss/gpu/GpuResources.cpp +52 -0
- data/vendor/faiss/gpu/GpuResources.h +73 -0
- data/vendor/faiss/gpu/StandardGpuResources.cpp +295 -0
- data/vendor/faiss/gpu/StandardGpuResources.h +114 -0
- data/vendor/faiss/gpu/impl/RemapIndices.cpp +43 -0
- data/vendor/faiss/gpu/impl/RemapIndices.h +24 -0
- data/vendor/faiss/gpu/perf/IndexWrapper-inl.h +71 -0
- data/vendor/faiss/gpu/perf/IndexWrapper.h +39 -0
- data/vendor/faiss/gpu/perf/PerfClustering.cpp +115 -0
- data/vendor/faiss/gpu/perf/PerfIVFPQAdd.cpp +139 -0
- data/vendor/faiss/gpu/perf/WriteIndex.cpp +102 -0
- data/vendor/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +130 -0
- data/vendor/faiss/gpu/test/TestGpuIndexFlat.cpp +371 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +550 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +450 -0
- data/vendor/faiss/gpu/test/TestGpuMemoryException.cpp +84 -0
- data/vendor/faiss/gpu/test/TestUtils.cpp +315 -0
- data/vendor/faiss/gpu/test/TestUtils.h +93 -0
- data/vendor/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +159 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.cpp +77 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.h +71 -0
- data/vendor/faiss/gpu/utils/DeviceUtils.h +185 -0
- data/vendor/faiss/gpu/utils/MemorySpace.cpp +89 -0
- data/vendor/faiss/gpu/utils/MemorySpace.h +44 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.cpp +239 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.h +129 -0
- data/vendor/faiss/gpu/utils/StaticUtils.h +83 -0
- data/vendor/faiss/gpu/utils/Timer.cpp +60 -0
- data/vendor/faiss/gpu/utils/Timer.h +52 -0
- data/vendor/faiss/impl/AuxIndexStructures.cpp +305 -0
- data/vendor/faiss/impl/AuxIndexStructures.h +246 -0
- data/vendor/faiss/impl/FaissAssert.h +95 -0
- data/vendor/faiss/impl/FaissException.cpp +66 -0
- data/vendor/faiss/impl/FaissException.h +71 -0
- data/vendor/faiss/impl/HNSW.cpp +818 -0
- data/vendor/faiss/impl/HNSW.h +275 -0
- data/vendor/faiss/impl/PolysemousTraining.cpp +953 -0
- data/vendor/faiss/impl/PolysemousTraining.h +158 -0
- data/vendor/faiss/impl/ProductQuantizer.cpp +876 -0
- data/vendor/faiss/impl/ProductQuantizer.h +242 -0
- data/vendor/faiss/impl/ScalarQuantizer.cpp +1628 -0
- data/vendor/faiss/impl/ScalarQuantizer.h +120 -0
- data/vendor/faiss/impl/ThreadedIndex-inl.h +192 -0
- data/vendor/faiss/impl/ThreadedIndex.h +80 -0
- data/vendor/faiss/impl/index_read.cpp +793 -0
- data/vendor/faiss/impl/index_write.cpp +558 -0
- data/vendor/faiss/impl/io.cpp +142 -0
- data/vendor/faiss/impl/io.h +98 -0
- data/vendor/faiss/impl/lattice_Zn.cpp +712 -0
- data/vendor/faiss/impl/lattice_Zn.h +199 -0
- data/vendor/faiss/index_factory.cpp +392 -0
- data/vendor/faiss/index_factory.h +25 -0
- data/vendor/faiss/index_io.h +75 -0
- data/vendor/faiss/misc/test_blas.cpp +84 -0
- data/vendor/faiss/tests/test_binary_flat.cpp +64 -0
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +183 -0
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +67 -0
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +98 -0
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +566 -0
- data/vendor/faiss/tests/test_merge.cpp +258 -0
- data/vendor/faiss/tests/test_omp_threads.cpp +14 -0
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +220 -0
- data/vendor/faiss/tests/test_pairs_decoding.cpp +189 -0
- data/vendor/faiss/tests/test_params_override.cpp +231 -0
- data/vendor/faiss/tests/test_pq_encoding.cpp +98 -0
- data/vendor/faiss/tests/test_sliding_ivf.cpp +240 -0
- data/vendor/faiss/tests/test_threaded_index.cpp +253 -0
- data/vendor/faiss/tests/test_transfer_invlists.cpp +159 -0
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +98 -0
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +81 -0
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +93 -0
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +119 -0
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +99 -0
- data/vendor/faiss/utils/Heap.cpp +122 -0
- data/vendor/faiss/utils/Heap.h +495 -0
- data/vendor/faiss/utils/WorkerThread.cpp +126 -0
- data/vendor/faiss/utils/WorkerThread.h +61 -0
- data/vendor/faiss/utils/distances.cpp +765 -0
- data/vendor/faiss/utils/distances.h +243 -0
- data/vendor/faiss/utils/distances_simd.cpp +809 -0
- data/vendor/faiss/utils/extra_distances.cpp +336 -0
- data/vendor/faiss/utils/extra_distances.h +54 -0
- data/vendor/faiss/utils/hamming-inl.h +472 -0
- data/vendor/faiss/utils/hamming.cpp +792 -0
- data/vendor/faiss/utils/hamming.h +220 -0
- data/vendor/faiss/utils/random.cpp +192 -0
- data/vendor/faiss/utils/random.h +60 -0
- data/vendor/faiss/utils/utils.cpp +783 -0
- data/vendor/faiss/utils/utils.h +181 -0
- metadata +216 -2
@@ -0,0 +1,118 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#ifndef FAISS_INDEX_IVF_FLAT_H
|
11
|
+
#define FAISS_INDEX_IVF_FLAT_H
|
12
|
+
|
13
|
+
#include <unordered_map>
|
14
|
+
#include <stdint.h>
|
15
|
+
|
16
|
+
#include <faiss/IndexIVF.h>
|
17
|
+
|
18
|
+
|
19
|
+
namespace faiss {
|
20
|
+
|
21
|
+
/** Inverted file with stored vectors. Here the inverted file
|
22
|
+
* pre-selects the vectors to be searched, but they are not otherwise
|
23
|
+
* encoded, the code array just contains the raw float entries.
|
24
|
+
*/
|
25
|
+
struct IndexIVFFlat: IndexIVF {
|
26
|
+
|
27
|
+
IndexIVFFlat (
|
28
|
+
Index * quantizer, size_t d, size_t nlist_,
|
29
|
+
MetricType = METRIC_L2);
|
30
|
+
|
31
|
+
/// same as add_with_ids, with precomputed coarse quantizer
|
32
|
+
virtual void add_core (idx_t n, const float * x, const int64_t *xids,
|
33
|
+
const int64_t *precomputed_idx);
|
34
|
+
|
35
|
+
/// implemented for all IndexIVF* classes
|
36
|
+
void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;
|
37
|
+
|
38
|
+
void encode_vectors(idx_t n, const float* x,
|
39
|
+
const idx_t *list_nos,
|
40
|
+
uint8_t * codes,
|
41
|
+
bool include_listnos=false) const override;
|
42
|
+
|
43
|
+
|
44
|
+
InvertedListScanner *get_InvertedListScanner (bool store_pairs)
|
45
|
+
const override;
|
46
|
+
|
47
|
+
/** Update a subset of vectors.
|
48
|
+
*
|
49
|
+
* The index must have a direct_map
|
50
|
+
*
|
51
|
+
* @param nv nb of vectors to update
|
52
|
+
* @param idx vector indices to update, size nv
|
53
|
+
* @param v vectors of new values, size nv*d
|
54
|
+
*/
|
55
|
+
virtual void update_vectors (int nv, idx_t *idx, const float *v);
|
56
|
+
|
57
|
+
void reconstruct_from_offset (int64_t list_no, int64_t offset,
|
58
|
+
float* recons) const override;
|
59
|
+
|
60
|
+
void sa_decode (idx_t n, const uint8_t *bytes,
|
61
|
+
float *x) const override;
|
62
|
+
|
63
|
+
IndexIVFFlat () {}
|
64
|
+
};
|
65
|
+
|
66
|
+
|
67
|
+
struct IndexIVFFlatDedup: IndexIVFFlat {
|
68
|
+
|
69
|
+
/** Maps ids stored in the index to the ids of vectors that are
|
70
|
+
* the same. When a vector is unique, it does not appear in the
|
71
|
+
* instances map */
|
72
|
+
std::unordered_multimap <idx_t, idx_t> instances;
|
73
|
+
|
74
|
+
IndexIVFFlatDedup (
|
75
|
+
Index * quantizer, size_t d, size_t nlist_,
|
76
|
+
MetricType = METRIC_L2);
|
77
|
+
|
78
|
+
/// also dedups the training set
|
79
|
+
void train(idx_t n, const float* x) override;
|
80
|
+
|
81
|
+
/// implemented for all IndexIVF* classes
|
82
|
+
void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;
|
83
|
+
|
84
|
+
void search_preassigned (idx_t n, const float *x, idx_t k,
|
85
|
+
const idx_t *assign,
|
86
|
+
const float *centroid_dis,
|
87
|
+
float *distances, idx_t *labels,
|
88
|
+
bool store_pairs,
|
89
|
+
const IVFSearchParameters *params=nullptr
|
90
|
+
) const override;
|
91
|
+
|
92
|
+
size_t remove_ids(const IDSelector& sel) override;
|
93
|
+
|
94
|
+
/// not implemented
|
95
|
+
void range_search(
|
96
|
+
idx_t n,
|
97
|
+
const float* x,
|
98
|
+
float radius,
|
99
|
+
RangeSearchResult* result) const override;
|
100
|
+
|
101
|
+
/// not implemented
|
102
|
+
void update_vectors (int nv, idx_t *idx, const float *v) override;
|
103
|
+
|
104
|
+
|
105
|
+
/// not implemented
|
106
|
+
void reconstruct_from_offset (int64_t list_no, int64_t offset,
|
107
|
+
float* recons) const override;
|
108
|
+
|
109
|
+
IndexIVFFlatDedup () {}
|
110
|
+
|
111
|
+
|
112
|
+
};
|
113
|
+
|
114
|
+
|
115
|
+
|
116
|
+
} // namespace faiss
|
117
|
+
|
118
|
+
#endif
|
@@ -0,0 +1,1207 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/IndexIVFPQ.h>
|
11
|
+
|
12
|
+
#include <cmath>
|
13
|
+
#include <cstdio>
|
14
|
+
#include <cassert>
|
15
|
+
#include <stdint.h>
|
16
|
+
|
17
|
+
#include <algorithm>
|
18
|
+
|
19
|
+
#include <faiss/utils/Heap.h>
|
20
|
+
#include <faiss/utils/utils.h>
|
21
|
+
#include <faiss/utils/distances.h>
|
22
|
+
|
23
|
+
#include <faiss/Clustering.h>
|
24
|
+
#include <faiss/IndexFlat.h>
|
25
|
+
|
26
|
+
#include <faiss/utils/hamming.h>
|
27
|
+
|
28
|
+
#include <faiss/impl/FaissAssert.h>
|
29
|
+
|
30
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
31
|
+
|
32
|
+
namespace faiss {
|
33
|
+
|
34
|
+
/*****************************************
|
35
|
+
* IndexIVFPQ implementation
|
36
|
+
******************************************/
|
37
|
+
|
38
|
+
IndexIVFPQ::IndexIVFPQ (Index * quantizer, size_t d, size_t nlist,
|
39
|
+
size_t M, size_t nbits_per_idx):
|
40
|
+
IndexIVF (quantizer, d, nlist, 0, METRIC_L2),
|
41
|
+
pq (d, M, nbits_per_idx)
|
42
|
+
{
|
43
|
+
FAISS_THROW_IF_NOT (nbits_per_idx <= 8);
|
44
|
+
code_size = pq.code_size;
|
45
|
+
invlists->code_size = code_size;
|
46
|
+
is_trained = false;
|
47
|
+
by_residual = true;
|
48
|
+
use_precomputed_table = 0;
|
49
|
+
scan_table_threshold = 0;
|
50
|
+
|
51
|
+
polysemous_training = nullptr;
|
52
|
+
do_polysemous_training = false;
|
53
|
+
polysemous_ht = 0;
|
54
|
+
|
55
|
+
}
|
56
|
+
|
57
|
+
|
58
|
+
/****************************************************************
|
59
|
+
* training */
|
60
|
+
|
61
|
+
void IndexIVFPQ::train_residual (idx_t n, const float *x)
|
62
|
+
{
|
63
|
+
train_residual_o (n, x, nullptr);
|
64
|
+
}
|
65
|
+
|
66
|
+
|
67
|
+
void IndexIVFPQ::train_residual_o (idx_t n, const float *x, float *residuals_2)
|
68
|
+
{
|
69
|
+
const float * x_in = x;
|
70
|
+
|
71
|
+
x = fvecs_maybe_subsample (
|
72
|
+
d, (size_t*)&n, pq.cp.max_points_per_centroid * pq.ksub,
|
73
|
+
x, verbose, pq.cp.seed);
|
74
|
+
|
75
|
+
ScopeDeleter<float> del_x (x_in == x ? nullptr : x);
|
76
|
+
|
77
|
+
const float *trainset;
|
78
|
+
ScopeDeleter<float> del_residuals;
|
79
|
+
if (by_residual) {
|
80
|
+
if(verbose) printf("computing residuals\n");
|
81
|
+
idx_t * assign = new idx_t [n]; // assignement to coarse centroids
|
82
|
+
ScopeDeleter<idx_t> del (assign);
|
83
|
+
quantizer->assign (n, x, assign);
|
84
|
+
float *residuals = new float [n * d];
|
85
|
+
del_residuals.set (residuals);
|
86
|
+
for (idx_t i = 0; i < n; i++)
|
87
|
+
quantizer->compute_residual (x + i * d, residuals+i*d, assign[i]);
|
88
|
+
|
89
|
+
trainset = residuals;
|
90
|
+
} else {
|
91
|
+
trainset = x;
|
92
|
+
}
|
93
|
+
if (verbose)
|
94
|
+
printf ("training %zdx%zd product quantizer on %ld vectors in %dD\n",
|
95
|
+
pq.M, pq.ksub, n, d);
|
96
|
+
pq.verbose = verbose;
|
97
|
+
pq.train (n, trainset);
|
98
|
+
|
99
|
+
if (do_polysemous_training) {
|
100
|
+
if (verbose)
|
101
|
+
printf("doing polysemous training for PQ\n");
|
102
|
+
PolysemousTraining default_pt;
|
103
|
+
PolysemousTraining *pt = polysemous_training;
|
104
|
+
if (!pt) pt = &default_pt;
|
105
|
+
pt->optimize_pq_for_hamming (pq, n, trainset);
|
106
|
+
}
|
107
|
+
|
108
|
+
// prepare second-level residuals for refine PQ
|
109
|
+
if (residuals_2) {
|
110
|
+
uint8_t *train_codes = new uint8_t [pq.code_size * n];
|
111
|
+
ScopeDeleter<uint8_t> del (train_codes);
|
112
|
+
pq.compute_codes (trainset, train_codes, n);
|
113
|
+
|
114
|
+
for (idx_t i = 0; i < n; i++) {
|
115
|
+
const float *xx = trainset + i * d;
|
116
|
+
float * res = residuals_2 + i * d;
|
117
|
+
pq.decode (train_codes + i * pq.code_size, res);
|
118
|
+
for (int j = 0; j < d; j++)
|
119
|
+
res[j] = xx[j] - res[j];
|
120
|
+
}
|
121
|
+
|
122
|
+
}
|
123
|
+
|
124
|
+
if (by_residual) {
|
125
|
+
precompute_table ();
|
126
|
+
}
|
127
|
+
|
128
|
+
}
|
129
|
+
|
130
|
+
|
131
|
+
|
132
|
+
|
133
|
+
|
134
|
+
|
135
|
+
/****************************************************************
|
136
|
+
* IVFPQ as codec */
|
137
|
+
|
138
|
+
|
139
|
+
/* produce a binary signature based on the residual vector */
|
140
|
+
void IndexIVFPQ::encode (idx_t key, const float * x, uint8_t * code) const
|
141
|
+
{
|
142
|
+
if (by_residual) {
|
143
|
+
float residual_vec[d];
|
144
|
+
quantizer->compute_residual (x, residual_vec, key);
|
145
|
+
pq.compute_code (residual_vec, code);
|
146
|
+
}
|
147
|
+
else pq.compute_code (x, code);
|
148
|
+
}
|
149
|
+
|
150
|
+
void IndexIVFPQ::encode_multiple (size_t n, idx_t *keys,
|
151
|
+
const float * x, uint8_t * xcodes,
|
152
|
+
bool compute_keys) const
|
153
|
+
{
|
154
|
+
if (compute_keys)
|
155
|
+
quantizer->assign (n, x, keys);
|
156
|
+
|
157
|
+
encode_vectors (n, x, keys, xcodes);
|
158
|
+
}
|
159
|
+
|
160
|
+
void IndexIVFPQ::decode_multiple (size_t n, const idx_t *keys,
|
161
|
+
const uint8_t * xcodes, float * x) const
|
162
|
+
{
|
163
|
+
pq.decode (xcodes, x, n);
|
164
|
+
if (by_residual) {
|
165
|
+
std::vector<float> centroid (d);
|
166
|
+
for (size_t i = 0; i < n; i++) {
|
167
|
+
quantizer->reconstruct (keys[i], centroid.data());
|
168
|
+
float *xi = x + i * d;
|
169
|
+
for (size_t j = 0; j < d; j++) {
|
170
|
+
xi [j] += centroid [j];
|
171
|
+
}
|
172
|
+
}
|
173
|
+
}
|
174
|
+
}
|
175
|
+
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
/****************************************************************
|
180
|
+
* add */
|
181
|
+
|
182
|
+
|
183
|
+
void IndexIVFPQ::add_with_ids (idx_t n, const float * x, const idx_t *xids)
|
184
|
+
{
|
185
|
+
add_core_o (n, x, xids, nullptr);
|
186
|
+
}
|
187
|
+
|
188
|
+
|
189
|
+
static float * compute_residuals (
|
190
|
+
const Index *quantizer,
|
191
|
+
Index::idx_t n, const float* x,
|
192
|
+
const Index::idx_t *list_nos)
|
193
|
+
{
|
194
|
+
size_t d = quantizer->d;
|
195
|
+
float *residuals = new float [n * d];
|
196
|
+
// TODO: parallelize?
|
197
|
+
for (size_t i = 0; i < n; i++) {
|
198
|
+
if (list_nos[i] < 0)
|
199
|
+
memset (residuals + i * d, 0, sizeof(*residuals) * d);
|
200
|
+
else
|
201
|
+
quantizer->compute_residual (
|
202
|
+
x + i * d, residuals + i * d, list_nos[i]);
|
203
|
+
}
|
204
|
+
return residuals;
|
205
|
+
}
|
206
|
+
|
207
|
+
void IndexIVFPQ::encode_vectors(idx_t n, const float* x,
|
208
|
+
const idx_t *list_nos,
|
209
|
+
uint8_t * codes,
|
210
|
+
bool include_listnos) const
|
211
|
+
{
|
212
|
+
if (by_residual) {
|
213
|
+
float *to_encode = compute_residuals (quantizer, n, x, list_nos);
|
214
|
+
ScopeDeleter<float> del (to_encode);
|
215
|
+
pq.compute_codes (to_encode, codes, n);
|
216
|
+
} else {
|
217
|
+
pq.compute_codes (x, codes, n);
|
218
|
+
}
|
219
|
+
|
220
|
+
if (include_listnos) {
|
221
|
+
size_t coarse_size = coarse_code_size();
|
222
|
+
for (idx_t i = n - 1; i >= 0; i--) {
|
223
|
+
uint8_t * code = codes + i * (coarse_size + code_size);
|
224
|
+
memmove (code + coarse_size,
|
225
|
+
codes + i * code_size, code_size);
|
226
|
+
encode_listno (list_nos[i], code);
|
227
|
+
}
|
228
|
+
}
|
229
|
+
}
|
230
|
+
|
231
|
+
|
232
|
+
|
233
|
+
void IndexIVFPQ::sa_decode (idx_t n, const uint8_t *codes,
|
234
|
+
float *x) const
|
235
|
+
{
|
236
|
+
size_t coarse_size = coarse_code_size ();
|
237
|
+
|
238
|
+
#pragma omp parallel
|
239
|
+
{
|
240
|
+
std::vector<float> residual (d);
|
241
|
+
|
242
|
+
#pragma omp for
|
243
|
+
for (size_t i = 0; i < n; i++) {
|
244
|
+
const uint8_t *code = codes + i * (code_size + coarse_size);
|
245
|
+
int64_t list_no = decode_listno (code);
|
246
|
+
float *xi = x + i * d;
|
247
|
+
pq.decode (code + coarse_size, xi);
|
248
|
+
if (by_residual) {
|
249
|
+
quantizer->reconstruct (list_no, residual.data());
|
250
|
+
for (size_t j = 0; j < d; j++) {
|
251
|
+
xi[j] += residual[j];
|
252
|
+
}
|
253
|
+
}
|
254
|
+
}
|
255
|
+
}
|
256
|
+
}
|
257
|
+
|
258
|
+
|
259
|
+
void IndexIVFPQ::add_core_o (idx_t n, const float * x, const idx_t *xids,
|
260
|
+
float *residuals_2, const idx_t *precomputed_idx)
|
261
|
+
{
|
262
|
+
|
263
|
+
idx_t bs = 32768;
|
264
|
+
if (n > bs) {
|
265
|
+
for (idx_t i0 = 0; i0 < n; i0 += bs) {
|
266
|
+
idx_t i1 = std::min(i0 + bs, n);
|
267
|
+
if (verbose) {
|
268
|
+
printf("IndexIVFPQ::add_core_o: adding %ld:%ld / %ld\n",
|
269
|
+
i0, i1, n);
|
270
|
+
}
|
271
|
+
add_core_o (i1 - i0, x + i0 * d,
|
272
|
+
xids ? xids + i0 : nullptr,
|
273
|
+
residuals_2 ? residuals_2 + i0 * d : nullptr,
|
274
|
+
precomputed_idx ? precomputed_idx + i0 : nullptr);
|
275
|
+
}
|
276
|
+
return;
|
277
|
+
}
|
278
|
+
|
279
|
+
InterruptCallback::check();
|
280
|
+
|
281
|
+
FAISS_THROW_IF_NOT (is_trained);
|
282
|
+
double t0 = getmillisecs ();
|
283
|
+
const idx_t * idx;
|
284
|
+
ScopeDeleter<idx_t> del_idx;
|
285
|
+
|
286
|
+
if (precomputed_idx) {
|
287
|
+
idx = precomputed_idx;
|
288
|
+
} else {
|
289
|
+
idx_t * idx0 = new idx_t [n];
|
290
|
+
del_idx.set (idx0);
|
291
|
+
quantizer->assign (n, x, idx0);
|
292
|
+
idx = idx0;
|
293
|
+
}
|
294
|
+
|
295
|
+
double t1 = getmillisecs ();
|
296
|
+
uint8_t * xcodes = new uint8_t [n * code_size];
|
297
|
+
ScopeDeleter<uint8_t> del_xcodes (xcodes);
|
298
|
+
|
299
|
+
const float *to_encode = nullptr;
|
300
|
+
ScopeDeleter<float> del_to_encode;
|
301
|
+
|
302
|
+
if (by_residual) {
|
303
|
+
to_encode = compute_residuals (quantizer, n, x, idx);
|
304
|
+
del_to_encode.set (to_encode);
|
305
|
+
} else {
|
306
|
+
to_encode = x;
|
307
|
+
}
|
308
|
+
pq.compute_codes (to_encode, xcodes, n);
|
309
|
+
|
310
|
+
double t2 = getmillisecs ();
|
311
|
+
// TODO: parallelize?
|
312
|
+
size_t n_ignore = 0;
|
313
|
+
for (size_t i = 0; i < n; i++) {
|
314
|
+
idx_t key = idx[i];
|
315
|
+
if (key < 0) {
|
316
|
+
n_ignore ++;
|
317
|
+
if (residuals_2)
|
318
|
+
memset (residuals_2, 0, sizeof(*residuals_2) * d);
|
319
|
+
continue;
|
320
|
+
}
|
321
|
+
idx_t id = xids ? xids[i] : ntotal + i;
|
322
|
+
|
323
|
+
uint8_t *code = xcodes + i * code_size;
|
324
|
+
size_t offset = invlists->add_entry (key, id, code);
|
325
|
+
|
326
|
+
if (residuals_2) {
|
327
|
+
float *res2 = residuals_2 + i * d;
|
328
|
+
const float *xi = to_encode + i * d;
|
329
|
+
pq.decode (code, res2);
|
330
|
+
for (int j = 0; j < d; j++)
|
331
|
+
res2[j] = xi[j] - res2[j];
|
332
|
+
}
|
333
|
+
|
334
|
+
if (maintain_direct_map)
|
335
|
+
direct_map.push_back (key << 32 | offset);
|
336
|
+
}
|
337
|
+
|
338
|
+
|
339
|
+
double t3 = getmillisecs ();
|
340
|
+
if(verbose) {
|
341
|
+
char comment[100] = {0};
|
342
|
+
if (n_ignore > 0)
|
343
|
+
snprintf (comment, 100, "(%ld vectors ignored)", n_ignore);
|
344
|
+
printf(" add_core times: %.3f %.3f %.3f %s\n",
|
345
|
+
t1 - t0, t2 - t1, t3 - t2, comment);
|
346
|
+
}
|
347
|
+
ntotal += n;
|
348
|
+
}
|
349
|
+
|
350
|
+
|
351
|
+
void IndexIVFPQ::reconstruct_from_offset (int64_t list_no, int64_t offset,
|
352
|
+
float* recons) const
|
353
|
+
{
|
354
|
+
const uint8_t* code = invlists->get_single_code (list_no, offset);
|
355
|
+
|
356
|
+
if (by_residual) {
|
357
|
+
std::vector<float> centroid(d);
|
358
|
+
quantizer->reconstruct (list_no, centroid.data());
|
359
|
+
|
360
|
+
pq.decode (code, recons);
|
361
|
+
for (int i = 0; i < d; ++i) {
|
362
|
+
recons[i] += centroid[i];
|
363
|
+
}
|
364
|
+
} else {
|
365
|
+
pq.decode (code, recons);
|
366
|
+
}
|
367
|
+
}
|
368
|
+
|
369
|
+
|
370
|
+
|
371
|
+
/// 2G by default, accommodates tables up to PQ32 w/ 65536 centroids
|
372
|
+
size_t IndexIVFPQ::precomputed_table_max_bytes = ((size_t)1) << 31;
|
373
|
+
|
374
|
+
/** Precomputed tables for residuals
|
375
|
+
*
|
376
|
+
* During IVFPQ search with by_residual, we compute
|
377
|
+
*
|
378
|
+
* d = || x - y_C - y_R ||^2
|
379
|
+
*
|
380
|
+
* where x is the query vector, y_C the coarse centroid, y_R the
|
381
|
+
* refined PQ centroid. The expression can be decomposed as:
|
382
|
+
*
|
383
|
+
* d = || x - y_C ||^2 + || y_R ||^2 + 2 * (y_C|y_R) - 2 * (x|y_R)
|
384
|
+
* --------------- --------------------------- -------
|
385
|
+
* term 1 term 2 term 3
|
386
|
+
*
|
387
|
+
* When using multiprobe, we use the following decomposition:
|
388
|
+
* - term 1 is the distance to the coarse centroid, that is computed
|
389
|
+
* during the 1st stage search.
|
390
|
+
* - term 2 can be precomputed, as it does not involve x. However,
|
391
|
+
* because of the PQ, it needs nlist * M * ksub storage. This is why
|
392
|
+
* use_precomputed_table is off by default
|
393
|
+
* - term 3 is the classical non-residual distance table.
|
394
|
+
*
|
395
|
+
* Since y_R defined by a product quantizer, it is split across
|
396
|
+
* subvectors and stored separately for each subvector. If the coarse
|
397
|
+
* quantizer is a MultiIndexQuantizer then the table can be stored
|
398
|
+
* more compactly.
|
399
|
+
*
|
400
|
+
* At search time, the tables for term 2 and term 3 are added up. This
|
401
|
+
* is faster when the length of the lists is > ksub * M.
|
402
|
+
*/
|
403
|
+
|
404
|
+
void IndexIVFPQ::precompute_table ()
|
405
|
+
{
|
406
|
+
if (use_precomputed_table == -1)
|
407
|
+
return;
|
408
|
+
|
409
|
+
if (use_precomputed_table == 0) { // then choose the type of table
|
410
|
+
if (quantizer->metric_type == METRIC_INNER_PRODUCT) {
|
411
|
+
if (verbose) {
|
412
|
+
printf("IndexIVFPQ::precompute_table: precomputed "
|
413
|
+
"tables not needed for inner product quantizers\n");
|
414
|
+
}
|
415
|
+
return;
|
416
|
+
}
|
417
|
+
const MultiIndexQuantizer *miq =
|
418
|
+
dynamic_cast<const MultiIndexQuantizer *> (quantizer);
|
419
|
+
if (miq && pq.M % miq->pq.M == 0)
|
420
|
+
use_precomputed_table = 2;
|
421
|
+
else {
|
422
|
+
size_t table_size = pq.M * pq.ksub * nlist * sizeof(float);
|
423
|
+
if (table_size > precomputed_table_max_bytes) {
|
424
|
+
if (verbose) {
|
425
|
+
printf(
|
426
|
+
"IndexIVFPQ::precompute_table: not precomputing table, "
|
427
|
+
"it would be too big: %ld bytes (max %ld)\n",
|
428
|
+
table_size, precomputed_table_max_bytes);
|
429
|
+
use_precomputed_table = 0;
|
430
|
+
}
|
431
|
+
return;
|
432
|
+
}
|
433
|
+
use_precomputed_table = 1;
|
434
|
+
}
|
435
|
+
} // otherwise assume user has set appropriate flag on input
|
436
|
+
|
437
|
+
if (verbose) {
|
438
|
+
printf ("precomputing IVFPQ tables type %d\n",
|
439
|
+
use_precomputed_table);
|
440
|
+
}
|
441
|
+
|
442
|
+
// squared norms of the PQ centroids
|
443
|
+
std::vector<float> r_norms (pq.M * pq.ksub, NAN);
|
444
|
+
for (int m = 0; m < pq.M; m++)
|
445
|
+
for (int j = 0; j < pq.ksub; j++)
|
446
|
+
r_norms [m * pq.ksub + j] =
|
447
|
+
fvec_norm_L2sqr (pq.get_centroids (m, j), pq.dsub);
|
448
|
+
|
449
|
+
if (use_precomputed_table == 1) {
|
450
|
+
|
451
|
+
precomputed_table.resize (nlist * pq.M * pq.ksub);
|
452
|
+
std::vector<float> centroid (d);
|
453
|
+
|
454
|
+
for (size_t i = 0; i < nlist; i++) {
|
455
|
+
quantizer->reconstruct (i, centroid.data());
|
456
|
+
|
457
|
+
float *tab = &precomputed_table[i * pq.M * pq.ksub];
|
458
|
+
pq.compute_inner_prod_table (centroid.data(), tab);
|
459
|
+
fvec_madd (pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
|
460
|
+
}
|
461
|
+
} else if (use_precomputed_table == 2) {
|
462
|
+
const MultiIndexQuantizer *miq =
|
463
|
+
dynamic_cast<const MultiIndexQuantizer *> (quantizer);
|
464
|
+
FAISS_THROW_IF_NOT (miq);
|
465
|
+
const ProductQuantizer &cpq = miq->pq;
|
466
|
+
FAISS_THROW_IF_NOT (pq.M % cpq.M == 0);
|
467
|
+
|
468
|
+
precomputed_table.resize(cpq.ksub * pq.M * pq.ksub);
|
469
|
+
|
470
|
+
// reorder PQ centroid table
|
471
|
+
std::vector<float> centroids (d * cpq.ksub, NAN);
|
472
|
+
|
473
|
+
for (int m = 0; m < cpq.M; m++) {
|
474
|
+
for (size_t i = 0; i < cpq.ksub; i++) {
|
475
|
+
memcpy (centroids.data() + i * d + m * cpq.dsub,
|
476
|
+
cpq.get_centroids (m, i),
|
477
|
+
sizeof (*centroids.data()) * cpq.dsub);
|
478
|
+
}
|
479
|
+
}
|
480
|
+
|
481
|
+
pq.compute_inner_prod_tables (cpq.ksub, centroids.data (),
|
482
|
+
precomputed_table.data ());
|
483
|
+
|
484
|
+
for (size_t i = 0; i < cpq.ksub; i++) {
|
485
|
+
float *tab = &precomputed_table[i * pq.M * pq.ksub];
|
486
|
+
fvec_madd (pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
|
487
|
+
}
|
488
|
+
|
489
|
+
}
|
490
|
+
|
491
|
+
}
|
492
|
+
|
493
|
+
namespace {
|
494
|
+
|
495
|
+
using idx_t = Index::idx_t;
|
496
|
+
|
497
|
+
|
498
|
+
#define TIC t0 = get_cycles()
|
499
|
+
#define TOC get_cycles () - t0
|
500
|
+
|
501
|
+
|
502
|
+
|
503
|
+
/** QueryTables manages the various ways of searching an
|
504
|
+
* IndexIVFPQ. The code contains a lot of branches, depending on:
|
505
|
+
* - metric_type: are we computing L2 or Inner product similarity?
|
506
|
+
* - by_residual: do we encode raw vectors or residuals?
|
507
|
+
* - use_precomputed_table: are x_R|x_C tables precomputed?
|
508
|
+
* - polysemous_ht: are we filtering with polysemous codes?
|
509
|
+
*/
|
510
|
+
struct QueryTables {
|
511
|
+
|
512
|
+
/*****************************************************
|
513
|
+
* General data from the IVFPQ
|
514
|
+
*****************************************************/
|
515
|
+
|
516
|
+
const IndexIVFPQ & ivfpq;
|
517
|
+
const IVFSearchParameters *params;
|
518
|
+
|
519
|
+
// copied from IndexIVFPQ for easier access
|
520
|
+
int d;
|
521
|
+
const ProductQuantizer & pq;
|
522
|
+
MetricType metric_type;
|
523
|
+
bool by_residual;
|
524
|
+
int use_precomputed_table;
|
525
|
+
int polysemous_ht;
|
526
|
+
|
527
|
+
// pre-allocated data buffers
|
528
|
+
float * sim_table, * sim_table_2;
|
529
|
+
float * residual_vec, *decoded_vec;
|
530
|
+
|
531
|
+
// single data buffer
|
532
|
+
std::vector<float> mem;
|
533
|
+
|
534
|
+
// for table pointers
|
535
|
+
std::vector<const float *> sim_table_ptrs;
|
536
|
+
|
537
|
+
explicit QueryTables (const IndexIVFPQ & ivfpq,
|
538
|
+
const IVFSearchParameters *params):
|
539
|
+
ivfpq(ivfpq),
|
540
|
+
d(ivfpq.d),
|
541
|
+
pq (ivfpq.pq),
|
542
|
+
metric_type (ivfpq.metric_type),
|
543
|
+
by_residual (ivfpq.by_residual),
|
544
|
+
use_precomputed_table (ivfpq.use_precomputed_table)
|
545
|
+
{
|
546
|
+
mem.resize (pq.ksub * pq.M * 2 + d * 2);
|
547
|
+
sim_table = mem.data ();
|
548
|
+
sim_table_2 = sim_table + pq.ksub * pq.M;
|
549
|
+
residual_vec = sim_table_2 + pq.ksub * pq.M;
|
550
|
+
decoded_vec = residual_vec + d;
|
551
|
+
|
552
|
+
// for polysemous
|
553
|
+
polysemous_ht = ivfpq.polysemous_ht;
|
554
|
+
if (auto ivfpq_params =
|
555
|
+
dynamic_cast<const IVFPQSearchParameters *>(params)) {
|
556
|
+
polysemous_ht = ivfpq_params->polysemous_ht;
|
557
|
+
}
|
558
|
+
if (polysemous_ht != 0) {
|
559
|
+
q_code.resize (pq.code_size);
|
560
|
+
}
|
561
|
+
init_list_cycles = 0;
|
562
|
+
sim_table_ptrs.resize (pq.M);
|
563
|
+
}
|
564
|
+
|
565
|
+
/*****************************************************
|
566
|
+
* What we do when query is known
|
567
|
+
*****************************************************/
|
568
|
+
|
569
|
+
// field specific to query
|
570
|
+
const float * qi;
|
571
|
+
|
572
|
+
// query-specific intialization
|
573
|
+
void init_query (const float * qi) {
|
574
|
+
this->qi = qi;
|
575
|
+
if (metric_type == METRIC_INNER_PRODUCT)
|
576
|
+
init_query_IP ();
|
577
|
+
else
|
578
|
+
init_query_L2 ();
|
579
|
+
if (!by_residual && polysemous_ht != 0)
|
580
|
+
pq.compute_code (qi, q_code.data());
|
581
|
+
}
|
582
|
+
|
583
|
+
void init_query_IP () {
|
584
|
+
// precompute some tables specific to the query qi
|
585
|
+
pq.compute_inner_prod_table (qi, sim_table);
|
586
|
+
}
|
587
|
+
|
588
|
+
void init_query_L2 () {
|
589
|
+
if (!by_residual) {
|
590
|
+
pq.compute_distance_table (qi, sim_table);
|
591
|
+
} else if (use_precomputed_table) {
|
592
|
+
pq.compute_inner_prod_table (qi, sim_table_2);
|
593
|
+
}
|
594
|
+
}
|
595
|
+
|
596
|
+
/*****************************************************
|
597
|
+
* When inverted list is known: prepare computations
|
598
|
+
*****************************************************/
|
599
|
+
|
600
|
+
// fields specific to list
|
601
|
+
Index::idx_t key;
|
602
|
+
float coarse_dis;
|
603
|
+
std::vector<uint8_t> q_code;
|
604
|
+
|
605
|
+
uint64_t init_list_cycles;
|
606
|
+
|
607
|
+
/// once we know the query and the centroid, we can prepare the
|
608
|
+
/// sim_table that will be used for accumulation
|
609
|
+
/// and dis0, the initial value
|
610
|
+
float precompute_list_tables () {
|
611
|
+
float dis0 = 0;
|
612
|
+
uint64_t t0; TIC;
|
613
|
+
if (by_residual) {
|
614
|
+
if (metric_type == METRIC_INNER_PRODUCT)
|
615
|
+
dis0 = precompute_list_tables_IP ();
|
616
|
+
else
|
617
|
+
dis0 = precompute_list_tables_L2 ();
|
618
|
+
}
|
619
|
+
init_list_cycles += TOC;
|
620
|
+
return dis0;
|
621
|
+
}
|
622
|
+
|
623
|
+
float precompute_list_table_pointers () {
|
624
|
+
float dis0 = 0;
|
625
|
+
uint64_t t0; TIC;
|
626
|
+
if (by_residual) {
|
627
|
+
if (metric_type == METRIC_INNER_PRODUCT)
|
628
|
+
FAISS_THROW_MSG ("not implemented");
|
629
|
+
else
|
630
|
+
dis0 = precompute_list_table_pointers_L2 ();
|
631
|
+
}
|
632
|
+
init_list_cycles += TOC;
|
633
|
+
return dis0;
|
634
|
+
}
|
635
|
+
|
636
|
+
/*****************************************************
|
637
|
+
* compute tables for inner prod
|
638
|
+
*****************************************************/
|
639
|
+
|
640
|
+
float precompute_list_tables_IP ()
|
641
|
+
{
|
642
|
+
// prepare the sim_table that will be used for accumulation
|
643
|
+
// and dis0, the initial value
|
644
|
+
ivfpq.quantizer->reconstruct (key, decoded_vec);
|
645
|
+
// decoded_vec = centroid
|
646
|
+
float dis0 = fvec_inner_product (qi, decoded_vec, d);
|
647
|
+
|
648
|
+
if (polysemous_ht) {
|
649
|
+
for (int i = 0; i < d; i++) {
|
650
|
+
residual_vec [i] = qi[i] - decoded_vec[i];
|
651
|
+
}
|
652
|
+
pq.compute_code (residual_vec, q_code.data());
|
653
|
+
}
|
654
|
+
return dis0;
|
655
|
+
}
|
656
|
+
|
657
|
+
|
658
|
+
/*****************************************************
|
659
|
+
* compute tables for L2 distance
|
660
|
+
*****************************************************/
|
661
|
+
|
662
|
+
float precompute_list_tables_L2 ()
|
663
|
+
{
|
664
|
+
float dis0 = 0;
|
665
|
+
|
666
|
+
if (use_precomputed_table == 0 || use_precomputed_table == -1) {
|
667
|
+
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
|
668
|
+
pq.compute_distance_table (residual_vec, sim_table);
|
669
|
+
|
670
|
+
if (polysemous_ht != 0) {
|
671
|
+
pq.compute_code (residual_vec, q_code.data());
|
672
|
+
}
|
673
|
+
|
674
|
+
} else if (use_precomputed_table == 1) {
|
675
|
+
dis0 = coarse_dis;
|
676
|
+
|
677
|
+
fvec_madd (pq.M * pq.ksub,
|
678
|
+
&ivfpq.precomputed_table [key * pq.ksub * pq.M],
|
679
|
+
-2.0, sim_table_2,
|
680
|
+
sim_table);
|
681
|
+
|
682
|
+
|
683
|
+
if (polysemous_ht != 0) {
|
684
|
+
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
|
685
|
+
pq.compute_code (residual_vec, q_code.data());
|
686
|
+
}
|
687
|
+
|
688
|
+
} else if (use_precomputed_table == 2) {
|
689
|
+
dis0 = coarse_dis;
|
690
|
+
|
691
|
+
const MultiIndexQuantizer *miq =
|
692
|
+
dynamic_cast<const MultiIndexQuantizer *> (ivfpq.quantizer);
|
693
|
+
FAISS_THROW_IF_NOT (miq);
|
694
|
+
const ProductQuantizer &cpq = miq->pq;
|
695
|
+
int Mf = pq.M / cpq.M;
|
696
|
+
|
697
|
+
const float *qtab = sim_table_2; // query-specific table
|
698
|
+
float *ltab = sim_table; // (output) list-specific table
|
699
|
+
|
700
|
+
long k = key;
|
701
|
+
for (int cm = 0; cm < cpq.M; cm++) {
|
702
|
+
// compute PQ index
|
703
|
+
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
|
704
|
+
k >>= cpq.nbits;
|
705
|
+
|
706
|
+
// get corresponding table
|
707
|
+
const float *pc = &ivfpq.precomputed_table
|
708
|
+
[(ki * pq.M + cm * Mf) * pq.ksub];
|
709
|
+
|
710
|
+
if (polysemous_ht == 0) {
|
711
|
+
|
712
|
+
// sum up with query-specific table
|
713
|
+
fvec_madd (Mf * pq.ksub,
|
714
|
+
pc,
|
715
|
+
-2.0, qtab,
|
716
|
+
ltab);
|
717
|
+
ltab += Mf * pq.ksub;
|
718
|
+
qtab += Mf * pq.ksub;
|
719
|
+
} else {
|
720
|
+
for (int m = cm * Mf; m < (cm + 1) * Mf; m++) {
|
721
|
+
q_code[m] = fvec_madd_and_argmin
|
722
|
+
(pq.ksub, pc, -2, qtab, ltab);
|
723
|
+
pc += pq.ksub;
|
724
|
+
ltab += pq.ksub;
|
725
|
+
qtab += pq.ksub;
|
726
|
+
}
|
727
|
+
}
|
728
|
+
|
729
|
+
}
|
730
|
+
}
|
731
|
+
|
732
|
+
return dis0;
|
733
|
+
}
|
734
|
+
|
735
|
+
float precompute_list_table_pointers_L2 ()
|
736
|
+
{
|
737
|
+
float dis0 = 0;
|
738
|
+
|
739
|
+
if (use_precomputed_table == 1) {
|
740
|
+
dis0 = coarse_dis;
|
741
|
+
|
742
|
+
const float * s = &ivfpq.precomputed_table [key * pq.ksub * pq.M];
|
743
|
+
for (int m = 0; m < pq.M; m++) {
|
744
|
+
sim_table_ptrs [m] = s;
|
745
|
+
s += pq.ksub;
|
746
|
+
}
|
747
|
+
} else if (use_precomputed_table == 2) {
|
748
|
+
dis0 = coarse_dis;
|
749
|
+
|
750
|
+
const MultiIndexQuantizer *miq =
|
751
|
+
dynamic_cast<const MultiIndexQuantizer *> (ivfpq.quantizer);
|
752
|
+
FAISS_THROW_IF_NOT (miq);
|
753
|
+
const ProductQuantizer &cpq = miq->pq;
|
754
|
+
int Mf = pq.M / cpq.M;
|
755
|
+
|
756
|
+
long k = key;
|
757
|
+
int m0 = 0;
|
758
|
+
for (int cm = 0; cm < cpq.M; cm++) {
|
759
|
+
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
|
760
|
+
k >>= cpq.nbits;
|
761
|
+
|
762
|
+
const float *pc = &ivfpq.precomputed_table
|
763
|
+
[(ki * pq.M + cm * Mf) * pq.ksub];
|
764
|
+
|
765
|
+
for (int m = m0; m < m0 + Mf; m++) {
|
766
|
+
sim_table_ptrs [m] = pc;
|
767
|
+
pc += pq.ksub;
|
768
|
+
}
|
769
|
+
m0 += Mf;
|
770
|
+
}
|
771
|
+
} else {
|
772
|
+
FAISS_THROW_MSG ("need precomputed tables");
|
773
|
+
}
|
774
|
+
|
775
|
+
if (polysemous_ht) {
|
776
|
+
FAISS_THROW_MSG ("not implemented");
|
777
|
+
// Not clear that it makes sense to implemente this,
|
778
|
+
// because it costs M * ksub, which is what we wanted to
|
779
|
+
// avoid with the tables pointers.
|
780
|
+
}
|
781
|
+
|
782
|
+
return dis0;
|
783
|
+
}
|
784
|
+
|
785
|
+
|
786
|
+
};
|
787
|
+
|
788
|
+
|
789
|
+
|
790
|
+
template<class C>
|
791
|
+
struct KnnSearchResults {
|
792
|
+
idx_t key;
|
793
|
+
const idx_t *ids;
|
794
|
+
|
795
|
+
// heap params
|
796
|
+
size_t k;
|
797
|
+
float * heap_sim;
|
798
|
+
idx_t * heap_ids;
|
799
|
+
|
800
|
+
size_t nup;
|
801
|
+
|
802
|
+
inline void add (idx_t j, float dis) {
|
803
|
+
if (C::cmp (heap_sim[0], dis)) {
|
804
|
+
heap_pop<C> (k, heap_sim, heap_ids);
|
805
|
+
idx_t id = ids ? ids[j] : (key << 32 | j);
|
806
|
+
heap_push<C> (k, heap_sim, heap_ids, dis, id);
|
807
|
+
nup++;
|
808
|
+
}
|
809
|
+
}
|
810
|
+
|
811
|
+
};
|
812
|
+
|
813
|
+
template<class C>
|
814
|
+
struct RangeSearchResults {
|
815
|
+
idx_t key;
|
816
|
+
const idx_t *ids;
|
817
|
+
|
818
|
+
// wrapped result structure
|
819
|
+
float radius;
|
820
|
+
RangeQueryResult & rres;
|
821
|
+
|
822
|
+
inline void add (idx_t j, float dis) {
|
823
|
+
if (C::cmp (radius, dis)) {
|
824
|
+
idx_t id = ids ? ids[j] : (key << 32 | j);
|
825
|
+
rres.add (dis, id);
|
826
|
+
}
|
827
|
+
}
|
828
|
+
};
|
829
|
+
|
830
|
+
|
831
|
+
|
832
|
+
/*****************************************************
|
833
|
+
* Scaning the codes.
|
834
|
+
* The scanning functions call their favorite precompute_*
|
835
|
+
* function to precompute the tables they need.
|
836
|
+
*****************************************************/
|
837
|
+
template <typename IDType, MetricType METRIC_TYPE>
|
838
|
+
struct IVFPQScannerT: QueryTables {
|
839
|
+
|
840
|
+
const uint8_t * list_codes;
|
841
|
+
const IDType * list_ids;
|
842
|
+
size_t list_size;
|
843
|
+
|
844
|
+
IVFPQScannerT (const IndexIVFPQ & ivfpq, const IVFSearchParameters *params):
|
845
|
+
QueryTables (ivfpq, params)
|
846
|
+
{
|
847
|
+
FAISS_THROW_IF_NOT (pq.nbits == 8);
|
848
|
+
assert(METRIC_TYPE == metric_type);
|
849
|
+
}
|
850
|
+
|
851
|
+
float dis0;
|
852
|
+
|
853
|
+
void init_list (idx_t list_no, float coarse_dis,
|
854
|
+
int mode) {
|
855
|
+
this->key = list_no;
|
856
|
+
this->coarse_dis = coarse_dis;
|
857
|
+
|
858
|
+
if (mode == 2) {
|
859
|
+
dis0 = precompute_list_tables ();
|
860
|
+
} else if (mode == 1) {
|
861
|
+
dis0 = precompute_list_table_pointers ();
|
862
|
+
}
|
863
|
+
}
|
864
|
+
|
865
|
+
/*****************************************************
|
866
|
+
* Scaning the codes: simple PQ scan.
|
867
|
+
*****************************************************/
|
868
|
+
|
869
|
+
/// version of the scan where we use precomputed tables
|
870
|
+
template<class SearchResultType>
|
871
|
+
void scan_list_with_table (size_t ncode, const uint8_t *codes,
|
872
|
+
SearchResultType & res) const
|
873
|
+
{
|
874
|
+
for (size_t j = 0; j < ncode; j++) {
|
875
|
+
|
876
|
+
float dis = dis0;
|
877
|
+
const float *tab = sim_table;
|
878
|
+
|
879
|
+
for (size_t m = 0; m < pq.M; m++) {
|
880
|
+
dis += tab[*codes++];
|
881
|
+
tab += pq.ksub;
|
882
|
+
}
|
883
|
+
|
884
|
+
res.add(j, dis);
|
885
|
+
}
|
886
|
+
}
|
887
|
+
|
888
|
+
|
889
|
+
/// tables are not precomputed, but pointers are provided to the
|
890
|
+
/// relevant X_c|x_r tables
|
891
|
+
template<class SearchResultType>
|
892
|
+
void scan_list_with_pointer (size_t ncode, const uint8_t *codes,
|
893
|
+
SearchResultType & res) const
|
894
|
+
{
|
895
|
+
for (size_t j = 0; j < ncode; j++) {
|
896
|
+
|
897
|
+
float dis = dis0;
|
898
|
+
const float *tab = sim_table_2;
|
899
|
+
|
900
|
+
for (size_t m = 0; m < pq.M; m++) {
|
901
|
+
int ci = *codes++;
|
902
|
+
dis += sim_table_ptrs [m][ci] - 2 * tab [ci];
|
903
|
+
tab += pq.ksub;
|
904
|
+
}
|
905
|
+
res.add (j, dis);
|
906
|
+
}
|
907
|
+
}
|
908
|
+
|
909
|
+
|
910
|
+
/// nothing is precomputed: access residuals on-the-fly
|
911
|
+
template<class SearchResultType>
|
912
|
+
void scan_on_the_fly_dist (size_t ncode, const uint8_t *codes,
|
913
|
+
SearchResultType &res) const
|
914
|
+
{
|
915
|
+
const float *dvec;
|
916
|
+
float dis0 = 0;
|
917
|
+
if (by_residual) {
|
918
|
+
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
|
919
|
+
ivfpq.quantizer->reconstruct (key, residual_vec);
|
920
|
+
dis0 = fvec_inner_product (residual_vec, qi, d);
|
921
|
+
} else {
|
922
|
+
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
|
923
|
+
}
|
924
|
+
dvec = residual_vec;
|
925
|
+
} else {
|
926
|
+
dvec = qi;
|
927
|
+
dis0 = 0;
|
928
|
+
}
|
929
|
+
|
930
|
+
for (size_t j = 0; j < ncode; j++) {
|
931
|
+
|
932
|
+
pq.decode (codes, decoded_vec);
|
933
|
+
codes += pq.code_size;
|
934
|
+
|
935
|
+
float dis;
|
936
|
+
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
|
937
|
+
dis = dis0 + fvec_inner_product (decoded_vec, qi, d);
|
938
|
+
} else {
|
939
|
+
dis = fvec_L2sqr (decoded_vec, dvec, d);
|
940
|
+
}
|
941
|
+
res.add (j, dis);
|
942
|
+
}
|
943
|
+
}
|
944
|
+
|
945
|
+
/*****************************************************
|
946
|
+
* Scanning codes with polysemous filtering
|
947
|
+
*****************************************************/
|
948
|
+
|
949
|
+
template <class HammingComputer, class SearchResultType>
|
950
|
+
void scan_list_polysemous_hc (
|
951
|
+
size_t ncode, const uint8_t *codes,
|
952
|
+
SearchResultType & res) const
|
953
|
+
{
|
954
|
+
int ht = ivfpq.polysemous_ht;
|
955
|
+
size_t n_hamming_pass = 0, nup = 0;
|
956
|
+
|
957
|
+
int code_size = pq.code_size;
|
958
|
+
|
959
|
+
HammingComputer hc (q_code.data(), code_size);
|
960
|
+
|
961
|
+
for (size_t j = 0; j < ncode; j++) {
|
962
|
+
const uint8_t *b_code = codes;
|
963
|
+
int hd = hc.hamming (b_code);
|
964
|
+
if (hd < ht) {
|
965
|
+
n_hamming_pass ++;
|
966
|
+
|
967
|
+
float dis = dis0;
|
968
|
+
const float *tab = sim_table;
|
969
|
+
|
970
|
+
for (size_t m = 0; m < pq.M; m++) {
|
971
|
+
dis += tab[*b_code++];
|
972
|
+
tab += pq.ksub;
|
973
|
+
}
|
974
|
+
|
975
|
+
res.add (j, dis);
|
976
|
+
}
|
977
|
+
codes += code_size;
|
978
|
+
}
|
979
|
+
#pragma omp critical
|
980
|
+
{
|
981
|
+
indexIVFPQ_stats.n_hamming_pass += n_hamming_pass;
|
982
|
+
}
|
983
|
+
}
|
984
|
+
|
985
|
+
template<class SearchResultType>
|
986
|
+
void scan_list_polysemous (
|
987
|
+
size_t ncode, const uint8_t *codes,
|
988
|
+
SearchResultType &res) const
|
989
|
+
{
|
990
|
+
switch (pq.code_size) {
|
991
|
+
#define HANDLE_CODE_SIZE(cs) \
|
992
|
+
case cs: \
|
993
|
+
scan_list_polysemous_hc \
|
994
|
+
<HammingComputer ## cs, SearchResultType> \
|
995
|
+
(ncode, codes, res); \
|
996
|
+
break
|
997
|
+
HANDLE_CODE_SIZE(4);
|
998
|
+
HANDLE_CODE_SIZE(8);
|
999
|
+
HANDLE_CODE_SIZE(16);
|
1000
|
+
HANDLE_CODE_SIZE(20);
|
1001
|
+
HANDLE_CODE_SIZE(32);
|
1002
|
+
HANDLE_CODE_SIZE(64);
|
1003
|
+
#undef HANDLE_CODE_SIZE
|
1004
|
+
default:
|
1005
|
+
if (pq.code_size % 8 == 0)
|
1006
|
+
scan_list_polysemous_hc
|
1007
|
+
<HammingComputerM8, SearchResultType>
|
1008
|
+
(ncode, codes, res);
|
1009
|
+
else
|
1010
|
+
scan_list_polysemous_hc
|
1011
|
+
<HammingComputerM4, SearchResultType>
|
1012
|
+
(ncode, codes, res);
|
1013
|
+
break;
|
1014
|
+
}
|
1015
|
+
}
|
1016
|
+
|
1017
|
+
};
|
1018
|
+
|
1019
|
+
|
1020
|
+
/* We put as many parameters as possible in template. Hopefully the
|
1021
|
+
* gain in runtime is worth the code bloat. C is the comparator < or
|
1022
|
+
* >, it is directly related to METRIC_TYPE. precompute_mode is how
|
1023
|
+
* much we precompute (2 = precompute distance tables, 1 = precompute
|
1024
|
+
* pointers to distances, 0 = compute distances one by one).
|
1025
|
+
* Currently only 2 is supported */
|
1026
|
+
template<MetricType METRIC_TYPE, class C, int precompute_mode>
|
1027
|
+
struct IVFPQScanner:
|
1028
|
+
IVFPQScannerT<Index::idx_t, METRIC_TYPE>,
|
1029
|
+
InvertedListScanner
|
1030
|
+
{
|
1031
|
+
bool store_pairs;
|
1032
|
+
|
1033
|
+
IVFPQScanner(const IndexIVFPQ & ivfpq, bool store_pairs):
|
1034
|
+
IVFPQScannerT<Index::idx_t, METRIC_TYPE>(ivfpq, nullptr),
|
1035
|
+
store_pairs(store_pairs)
|
1036
|
+
{
|
1037
|
+
}
|
1038
|
+
|
1039
|
+
void set_query (const float *query) override {
|
1040
|
+
this->init_query (query);
|
1041
|
+
}
|
1042
|
+
|
1043
|
+
void set_list (idx_t list_no, float coarse_dis) override {
|
1044
|
+
this->init_list (list_no, coarse_dis, precompute_mode);
|
1045
|
+
}
|
1046
|
+
|
1047
|
+
float distance_to_code (const uint8_t *code) const override {
|
1048
|
+
assert(precompute_mode == 2);
|
1049
|
+
float dis = this->dis0;
|
1050
|
+
const float *tab = this->sim_table;
|
1051
|
+
|
1052
|
+
for (size_t m = 0; m < this->pq.M; m++) {
|
1053
|
+
dis += tab[*code++];
|
1054
|
+
tab += this->pq.ksub;
|
1055
|
+
}
|
1056
|
+
return dis;
|
1057
|
+
}
|
1058
|
+
|
1059
|
+
size_t scan_codes (size_t ncode,
|
1060
|
+
const uint8_t *codes,
|
1061
|
+
const idx_t *ids,
|
1062
|
+
float *heap_sim, idx_t *heap_ids,
|
1063
|
+
size_t k) const override
|
1064
|
+
{
|
1065
|
+
KnnSearchResults<C> res = {
|
1066
|
+
/* key */ this->key,
|
1067
|
+
/* ids */ this->store_pairs ? nullptr : ids,
|
1068
|
+
/* k */ k,
|
1069
|
+
/* heap_sim */ heap_sim,
|
1070
|
+
/* heap_ids */ heap_ids,
|
1071
|
+
/* nup */ 0
|
1072
|
+
};
|
1073
|
+
|
1074
|
+
if (this->polysemous_ht > 0) {
|
1075
|
+
assert(precompute_mode == 2);
|
1076
|
+
this->scan_list_polysemous (ncode, codes, res);
|
1077
|
+
} else if (precompute_mode == 2) {
|
1078
|
+
this->scan_list_with_table (ncode, codes, res);
|
1079
|
+
} else if (precompute_mode == 1) {
|
1080
|
+
this->scan_list_with_pointer (ncode, codes, res);
|
1081
|
+
} else if (precompute_mode == 0) {
|
1082
|
+
this->scan_on_the_fly_dist (ncode, codes, res);
|
1083
|
+
} else {
|
1084
|
+
FAISS_THROW_MSG("bad precomp mode");
|
1085
|
+
}
|
1086
|
+
return res.nup;
|
1087
|
+
}
|
1088
|
+
|
1089
|
+
void scan_codes_range (size_t ncode,
|
1090
|
+
const uint8_t *codes,
|
1091
|
+
const idx_t *ids,
|
1092
|
+
float radius,
|
1093
|
+
RangeQueryResult & rres) const override
|
1094
|
+
{
|
1095
|
+
RangeSearchResults<C> res = {
|
1096
|
+
/* key */ this->key,
|
1097
|
+
/* ids */ this->store_pairs ? nullptr : ids,
|
1098
|
+
/* radius */ radius,
|
1099
|
+
/* rres */ rres
|
1100
|
+
};
|
1101
|
+
|
1102
|
+
if (this->polysemous_ht > 0) {
|
1103
|
+
assert(precompute_mode == 2);
|
1104
|
+
this->scan_list_polysemous (ncode, codes, res);
|
1105
|
+
} else if (precompute_mode == 2) {
|
1106
|
+
this->scan_list_with_table (ncode, codes, res);
|
1107
|
+
} else if (precompute_mode == 1) {
|
1108
|
+
this->scan_list_with_pointer (ncode, codes, res);
|
1109
|
+
} else if (precompute_mode == 0) {
|
1110
|
+
this->scan_on_the_fly_dist (ncode, codes, res);
|
1111
|
+
} else {
|
1112
|
+
FAISS_THROW_MSG("bad precomp mode");
|
1113
|
+
}
|
1114
|
+
|
1115
|
+
}
|
1116
|
+
};
|
1117
|
+
|
1118
|
+
|
1119
|
+
|
1120
|
+
|
1121
|
+
} // anonymous namespace
|
1122
|
+
|
1123
|
+
InvertedListScanner *
|
1124
|
+
IndexIVFPQ::get_InvertedListScanner (bool store_pairs) const
|
1125
|
+
{
|
1126
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
1127
|
+
return new IVFPQScanner<METRIC_INNER_PRODUCT, CMin<float, idx_t>, 2>
|
1128
|
+
(*this, store_pairs);
|
1129
|
+
} else if (metric_type == METRIC_L2) {
|
1130
|
+
return new IVFPQScanner<METRIC_L2, CMax<float, idx_t>, 2>
|
1131
|
+
(*this, store_pairs);
|
1132
|
+
}
|
1133
|
+
return nullptr;
|
1134
|
+
|
1135
|
+
}
|
1136
|
+
|
1137
|
+
|
1138
|
+
|
1139
|
+
IndexIVFPQStats indexIVFPQ_stats;
|
1140
|
+
|
1141
|
+
void IndexIVFPQStats::reset () {
|
1142
|
+
memset (this, 0, sizeof (*this));
|
1143
|
+
}
|
1144
|
+
|
1145
|
+
|
1146
|
+
|
1147
|
+
IndexIVFPQ::IndexIVFPQ ()
|
1148
|
+
{
|
1149
|
+
// initialize some runtime values
|
1150
|
+
use_precomputed_table = 0;
|
1151
|
+
scan_table_threshold = 0;
|
1152
|
+
do_polysemous_training = false;
|
1153
|
+
polysemous_ht = 0;
|
1154
|
+
polysemous_training = nullptr;
|
1155
|
+
}
|
1156
|
+
|
1157
|
+
|
1158
|
+
struct CodeCmp {
|
1159
|
+
const uint8_t *tab;
|
1160
|
+
size_t code_size;
|
1161
|
+
bool operator () (int a, int b) const {
|
1162
|
+
return cmp (a, b) > 0;
|
1163
|
+
}
|
1164
|
+
int cmp (int a, int b) const {
|
1165
|
+
return memcmp (tab + a * code_size, tab + b * code_size,
|
1166
|
+
code_size);
|
1167
|
+
}
|
1168
|
+
};
|
1169
|
+
|
1170
|
+
|
1171
|
+
size_t IndexIVFPQ::find_duplicates (idx_t *dup_ids, size_t *lims) const
|
1172
|
+
{
|
1173
|
+
size_t ngroup = 0;
|
1174
|
+
lims[0] = 0;
|
1175
|
+
for (size_t list_no = 0; list_no < nlist; list_no++) {
|
1176
|
+
size_t n = invlists->list_size (list_no);
|
1177
|
+
std::vector<int> ord (n);
|
1178
|
+
for (int i = 0; i < n; i++) ord[i] = i;
|
1179
|
+
InvertedLists::ScopedCodes codes (invlists, list_no);
|
1180
|
+
CodeCmp cs = { codes.get(), code_size };
|
1181
|
+
std::sort (ord.begin(), ord.end(), cs);
|
1182
|
+
|
1183
|
+
InvertedLists::ScopedIds list_ids (invlists, list_no);
|
1184
|
+
int prev = -1; // all elements from prev to i-1 are equal
|
1185
|
+
for (int i = 0; i < n; i++) {
|
1186
|
+
if (prev >= 0 && cs.cmp (ord [prev], ord [i]) == 0) {
|
1187
|
+
// same as previous => remember
|
1188
|
+
if (prev + 1 == i) { // start new group
|
1189
|
+
ngroup++;
|
1190
|
+
lims[ngroup] = lims[ngroup - 1];
|
1191
|
+
dup_ids [lims [ngroup]++] = list_ids [ord [prev]];
|
1192
|
+
}
|
1193
|
+
dup_ids [lims [ngroup]++] = list_ids [ord [i]];
|
1194
|
+
} else { // not same as previous.
|
1195
|
+
prev = i;
|
1196
|
+
}
|
1197
|
+
}
|
1198
|
+
}
|
1199
|
+
return ngroup;
|
1200
|
+
}
|
1201
|
+
|
1202
|
+
|
1203
|
+
|
1204
|
+
|
1205
|
+
|
1206
|
+
|
1207
|
+
} // namespace faiss
|