faiss 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +103 -3
- data/ext/faiss/ext.cpp +99 -32
- data/ext/faiss/extconf.rb +12 -2
- data/lib/faiss/ext.bundle +0 -0
- data/lib/faiss/index.rb +3 -3
- data/lib/faiss/index_binary.rb +3 -3
- data/lib/faiss/kmeans.rb +1 -1
- data/lib/faiss/pca_matrix.rb +2 -2
- data/lib/faiss/product_quantizer.rb +3 -3
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/AutoTune.cpp +719 -0
- data/vendor/faiss/AutoTune.h +212 -0
- data/vendor/faiss/Clustering.cpp +261 -0
- data/vendor/faiss/Clustering.h +101 -0
- data/vendor/faiss/IVFlib.cpp +339 -0
- data/vendor/faiss/IVFlib.h +132 -0
- data/vendor/faiss/Index.cpp +171 -0
- data/vendor/faiss/Index.h +261 -0
- data/vendor/faiss/Index2Layer.cpp +437 -0
- data/vendor/faiss/Index2Layer.h +85 -0
- data/vendor/faiss/IndexBinary.cpp +77 -0
- data/vendor/faiss/IndexBinary.h +163 -0
- data/vendor/faiss/IndexBinaryFlat.cpp +83 -0
- data/vendor/faiss/IndexBinaryFlat.h +54 -0
- data/vendor/faiss/IndexBinaryFromFloat.cpp +78 -0
- data/vendor/faiss/IndexBinaryFromFloat.h +52 -0
- data/vendor/faiss/IndexBinaryHNSW.cpp +325 -0
- data/vendor/faiss/IndexBinaryHNSW.h +56 -0
- data/vendor/faiss/IndexBinaryIVF.cpp +671 -0
- data/vendor/faiss/IndexBinaryIVF.h +211 -0
- data/vendor/faiss/IndexFlat.cpp +508 -0
- data/vendor/faiss/IndexFlat.h +175 -0
- data/vendor/faiss/IndexHNSW.cpp +1090 -0
- data/vendor/faiss/IndexHNSW.h +170 -0
- data/vendor/faiss/IndexIVF.cpp +909 -0
- data/vendor/faiss/IndexIVF.h +353 -0
- data/vendor/faiss/IndexIVFFlat.cpp +502 -0
- data/vendor/faiss/IndexIVFFlat.h +118 -0
- data/vendor/faiss/IndexIVFPQ.cpp +1207 -0
- data/vendor/faiss/IndexIVFPQ.h +161 -0
- data/vendor/faiss/IndexIVFPQR.cpp +219 -0
- data/vendor/faiss/IndexIVFPQR.h +65 -0
- data/vendor/faiss/IndexIVFSpectralHash.cpp +331 -0
- data/vendor/faiss/IndexIVFSpectralHash.h +75 -0
- data/vendor/faiss/IndexLSH.cpp +225 -0
- data/vendor/faiss/IndexLSH.h +87 -0
- data/vendor/faiss/IndexLattice.cpp +143 -0
- data/vendor/faiss/IndexLattice.h +68 -0
- data/vendor/faiss/IndexPQ.cpp +1188 -0
- data/vendor/faiss/IndexPQ.h +199 -0
- data/vendor/faiss/IndexPreTransform.cpp +288 -0
- data/vendor/faiss/IndexPreTransform.h +91 -0
- data/vendor/faiss/IndexReplicas.cpp +123 -0
- data/vendor/faiss/IndexReplicas.h +76 -0
- data/vendor/faiss/IndexScalarQuantizer.cpp +317 -0
- data/vendor/faiss/IndexScalarQuantizer.h +127 -0
- data/vendor/faiss/IndexShards.cpp +317 -0
- data/vendor/faiss/IndexShards.h +100 -0
- data/vendor/faiss/InvertedLists.cpp +623 -0
- data/vendor/faiss/InvertedLists.h +334 -0
- data/vendor/faiss/LICENSE +21 -0
- data/vendor/faiss/MatrixStats.cpp +252 -0
- data/vendor/faiss/MatrixStats.h +62 -0
- data/vendor/faiss/MetaIndexes.cpp +351 -0
- data/vendor/faiss/MetaIndexes.h +126 -0
- data/vendor/faiss/OnDiskInvertedLists.cpp +674 -0
- data/vendor/faiss/OnDiskInvertedLists.h +127 -0
- data/vendor/faiss/VectorTransform.cpp +1157 -0
- data/vendor/faiss/VectorTransform.h +322 -0
- data/vendor/faiss/c_api/AutoTune_c.cpp +83 -0
- data/vendor/faiss/c_api/AutoTune_c.h +64 -0
- data/vendor/faiss/c_api/Clustering_c.cpp +139 -0
- data/vendor/faiss/c_api/Clustering_c.h +117 -0
- data/vendor/faiss/c_api/IndexFlat_c.cpp +140 -0
- data/vendor/faiss/c_api/IndexFlat_c.h +115 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +64 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +58 -0
- data/vendor/faiss/c_api/IndexIVF_c.cpp +92 -0
- data/vendor/faiss/c_api/IndexIVF_c.h +135 -0
- data/vendor/faiss/c_api/IndexLSH_c.cpp +37 -0
- data/vendor/faiss/c_api/IndexLSH_c.h +40 -0
- data/vendor/faiss/c_api/IndexShards_c.cpp +44 -0
- data/vendor/faiss/c_api/IndexShards_c.h +42 -0
- data/vendor/faiss/c_api/Index_c.cpp +105 -0
- data/vendor/faiss/c_api/Index_c.h +183 -0
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +49 -0
- data/vendor/faiss/c_api/MetaIndexes_c.h +49 -0
- data/vendor/faiss/c_api/clone_index_c.cpp +23 -0
- data/vendor/faiss/c_api/clone_index_c.h +32 -0
- data/vendor/faiss/c_api/error_c.h +42 -0
- data/vendor/faiss/c_api/error_impl.cpp +27 -0
- data/vendor/faiss/c_api/error_impl.h +16 -0
- data/vendor/faiss/c_api/faiss_c.h +58 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +96 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +56 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +52 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +68 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +17 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +30 -0
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +38 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +86 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +66 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +54 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +53 -0
- data/vendor/faiss/c_api/gpu/macros_impl.h +42 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +220 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +149 -0
- data/vendor/faiss/c_api/index_factory_c.cpp +26 -0
- data/vendor/faiss/c_api/index_factory_c.h +30 -0
- data/vendor/faiss/c_api/index_io_c.cpp +42 -0
- data/vendor/faiss/c_api/index_io_c.h +50 -0
- data/vendor/faiss/c_api/macros_impl.h +110 -0
- data/vendor/faiss/clone_index.cpp +147 -0
- data/vendor/faiss/clone_index.h +38 -0
- data/vendor/faiss/demos/demo_imi_flat.cpp +151 -0
- data/vendor/faiss/demos/demo_imi_pq.cpp +199 -0
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +146 -0
- data/vendor/faiss/demos/demo_sift1M.cpp +252 -0
- data/vendor/faiss/gpu/GpuAutoTune.cpp +95 -0
- data/vendor/faiss/gpu/GpuAutoTune.h +27 -0
- data/vendor/faiss/gpu/GpuCloner.cpp +403 -0
- data/vendor/faiss/gpu/GpuCloner.h +82 -0
- data/vendor/faiss/gpu/GpuClonerOptions.cpp +28 -0
- data/vendor/faiss/gpu/GpuClonerOptions.h +53 -0
- data/vendor/faiss/gpu/GpuDistance.h +52 -0
- data/vendor/faiss/gpu/GpuFaissAssert.h +29 -0
- data/vendor/faiss/gpu/GpuIndex.h +148 -0
- data/vendor/faiss/gpu/GpuIndexBinaryFlat.h +89 -0
- data/vendor/faiss/gpu/GpuIndexFlat.h +190 -0
- data/vendor/faiss/gpu/GpuIndexIVF.h +89 -0
- data/vendor/faiss/gpu/GpuIndexIVFFlat.h +85 -0
- data/vendor/faiss/gpu/GpuIndexIVFPQ.h +143 -0
- data/vendor/faiss/gpu/GpuIndexIVFScalarQuantizer.h +100 -0
- data/vendor/faiss/gpu/GpuIndicesOptions.h +30 -0
- data/vendor/faiss/gpu/GpuResources.cpp +52 -0
- data/vendor/faiss/gpu/GpuResources.h +73 -0
- data/vendor/faiss/gpu/StandardGpuResources.cpp +295 -0
- data/vendor/faiss/gpu/StandardGpuResources.h +114 -0
- data/vendor/faiss/gpu/impl/RemapIndices.cpp +43 -0
- data/vendor/faiss/gpu/impl/RemapIndices.h +24 -0
- data/vendor/faiss/gpu/perf/IndexWrapper-inl.h +71 -0
- data/vendor/faiss/gpu/perf/IndexWrapper.h +39 -0
- data/vendor/faiss/gpu/perf/PerfClustering.cpp +115 -0
- data/vendor/faiss/gpu/perf/PerfIVFPQAdd.cpp +139 -0
- data/vendor/faiss/gpu/perf/WriteIndex.cpp +102 -0
- data/vendor/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +130 -0
- data/vendor/faiss/gpu/test/TestGpuIndexFlat.cpp +371 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +550 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +450 -0
- data/vendor/faiss/gpu/test/TestGpuMemoryException.cpp +84 -0
- data/vendor/faiss/gpu/test/TestUtils.cpp +315 -0
- data/vendor/faiss/gpu/test/TestUtils.h +93 -0
- data/vendor/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +159 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.cpp +77 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.h +71 -0
- data/vendor/faiss/gpu/utils/DeviceUtils.h +185 -0
- data/vendor/faiss/gpu/utils/MemorySpace.cpp +89 -0
- data/vendor/faiss/gpu/utils/MemorySpace.h +44 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.cpp +239 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.h +129 -0
- data/vendor/faiss/gpu/utils/StaticUtils.h +83 -0
- data/vendor/faiss/gpu/utils/Timer.cpp +60 -0
- data/vendor/faiss/gpu/utils/Timer.h +52 -0
- data/vendor/faiss/impl/AuxIndexStructures.cpp +305 -0
- data/vendor/faiss/impl/AuxIndexStructures.h +246 -0
- data/vendor/faiss/impl/FaissAssert.h +95 -0
- data/vendor/faiss/impl/FaissException.cpp +66 -0
- data/vendor/faiss/impl/FaissException.h +71 -0
- data/vendor/faiss/impl/HNSW.cpp +818 -0
- data/vendor/faiss/impl/HNSW.h +275 -0
- data/vendor/faiss/impl/PolysemousTraining.cpp +953 -0
- data/vendor/faiss/impl/PolysemousTraining.h +158 -0
- data/vendor/faiss/impl/ProductQuantizer.cpp +876 -0
- data/vendor/faiss/impl/ProductQuantizer.h +242 -0
- data/vendor/faiss/impl/ScalarQuantizer.cpp +1628 -0
- data/vendor/faiss/impl/ScalarQuantizer.h +120 -0
- data/vendor/faiss/impl/ThreadedIndex-inl.h +192 -0
- data/vendor/faiss/impl/ThreadedIndex.h +80 -0
- data/vendor/faiss/impl/index_read.cpp +793 -0
- data/vendor/faiss/impl/index_write.cpp +558 -0
- data/vendor/faiss/impl/io.cpp +142 -0
- data/vendor/faiss/impl/io.h +98 -0
- data/vendor/faiss/impl/lattice_Zn.cpp +712 -0
- data/vendor/faiss/impl/lattice_Zn.h +199 -0
- data/vendor/faiss/index_factory.cpp +392 -0
- data/vendor/faiss/index_factory.h +25 -0
- data/vendor/faiss/index_io.h +75 -0
- data/vendor/faiss/misc/test_blas.cpp +84 -0
- data/vendor/faiss/tests/test_binary_flat.cpp +64 -0
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +183 -0
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +67 -0
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +98 -0
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +566 -0
- data/vendor/faiss/tests/test_merge.cpp +258 -0
- data/vendor/faiss/tests/test_omp_threads.cpp +14 -0
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +220 -0
- data/vendor/faiss/tests/test_pairs_decoding.cpp +189 -0
- data/vendor/faiss/tests/test_params_override.cpp +231 -0
- data/vendor/faiss/tests/test_pq_encoding.cpp +98 -0
- data/vendor/faiss/tests/test_sliding_ivf.cpp +240 -0
- data/vendor/faiss/tests/test_threaded_index.cpp +253 -0
- data/vendor/faiss/tests/test_transfer_invlists.cpp +159 -0
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +98 -0
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +81 -0
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +93 -0
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +119 -0
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +99 -0
- data/vendor/faiss/utils/Heap.cpp +122 -0
- data/vendor/faiss/utils/Heap.h +495 -0
- data/vendor/faiss/utils/WorkerThread.cpp +126 -0
- data/vendor/faiss/utils/WorkerThread.h +61 -0
- data/vendor/faiss/utils/distances.cpp +765 -0
- data/vendor/faiss/utils/distances.h +243 -0
- data/vendor/faiss/utils/distances_simd.cpp +809 -0
- data/vendor/faiss/utils/extra_distances.cpp +336 -0
- data/vendor/faiss/utils/extra_distances.h +54 -0
- data/vendor/faiss/utils/hamming-inl.h +472 -0
- data/vendor/faiss/utils/hamming.cpp +792 -0
- data/vendor/faiss/utils/hamming.h +220 -0
- data/vendor/faiss/utils/random.cpp +192 -0
- data/vendor/faiss/utils/random.h +60 -0
- data/vendor/faiss/utils/utils.cpp +783 -0
- data/vendor/faiss/utils/utils.h +181 -0
- metadata +216 -2
@@ -0,0 +1,275 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#pragma once
|
11
|
+
|
12
|
+
#include <vector>
|
13
|
+
#include <unordered_set>
|
14
|
+
#include <queue>
|
15
|
+
|
16
|
+
#include <omp.h>
|
17
|
+
|
18
|
+
#include <faiss/Index.h>
|
19
|
+
#include <faiss/impl/FaissAssert.h>
|
20
|
+
#include <faiss/utils/random.h>
|
21
|
+
#include <faiss/utils/Heap.h>
|
22
|
+
|
23
|
+
|
24
|
+
namespace faiss {
|
25
|
+
|
26
|
+
|
27
|
+
/** Implementation of the Hierarchical Navigable Small World
|
28
|
+
* datastructure.
|
29
|
+
*
|
30
|
+
* Efficient and robust approximate nearest neighbor search using
|
31
|
+
* Hierarchical Navigable Small World graphs
|
32
|
+
*
|
33
|
+
* Yu. A. Malkov, D. A. Yashunin, arXiv 2017
|
34
|
+
*
|
35
|
+
* This implmentation is heavily influenced by the NMSlib
|
36
|
+
* implementation by Yury Malkov and Leonid Boystov
|
37
|
+
* (https://github.com/searchivarius/nmslib)
|
38
|
+
*
|
39
|
+
* The HNSW object stores only the neighbor link structure, see
|
40
|
+
* IndexHNSW.h for the full index object.
|
41
|
+
*/
|
42
|
+
|
43
|
+
|
44
|
+
struct VisitedTable;
|
45
|
+
struct DistanceComputer; // from AuxIndexStructures
|
46
|
+
|
47
|
+
struct HNSW {
|
48
|
+
/// internal storage of vectors (32 bits: this is expensive)
|
49
|
+
typedef int storage_idx_t;
|
50
|
+
|
51
|
+
/// Faiss results are 64-bit
|
52
|
+
typedef Index::idx_t idx_t;
|
53
|
+
|
54
|
+
typedef std::pair<float, storage_idx_t> Node;
|
55
|
+
|
56
|
+
/** Heap structure that allows fast
|
57
|
+
*/
|
58
|
+
struct MinimaxHeap {
|
59
|
+
int n;
|
60
|
+
int k;
|
61
|
+
int nvalid;
|
62
|
+
|
63
|
+
std::vector<storage_idx_t> ids;
|
64
|
+
std::vector<float> dis;
|
65
|
+
typedef faiss::CMax<float, storage_idx_t> HC;
|
66
|
+
|
67
|
+
explicit MinimaxHeap(int n): n(n), k(0), nvalid(0), ids(n), dis(n) {}
|
68
|
+
|
69
|
+
void push(storage_idx_t i, float v);
|
70
|
+
|
71
|
+
float max() const;
|
72
|
+
|
73
|
+
int size() const;
|
74
|
+
|
75
|
+
void clear();
|
76
|
+
|
77
|
+
int pop_min(float *vmin_out = nullptr);
|
78
|
+
|
79
|
+
int count_below(float thresh);
|
80
|
+
};
|
81
|
+
|
82
|
+
|
83
|
+
/// to sort pairs of (id, distance) from nearest to fathest or the reverse
|
84
|
+
struct NodeDistCloser {
|
85
|
+
float d;
|
86
|
+
int id;
|
87
|
+
NodeDistCloser(float d, int id): d(d), id(id) {}
|
88
|
+
bool operator < (const NodeDistCloser &obj1) const { return d < obj1.d; }
|
89
|
+
};
|
90
|
+
|
91
|
+
struct NodeDistFarther {
|
92
|
+
float d;
|
93
|
+
int id;
|
94
|
+
NodeDistFarther(float d, int id): d(d), id(id) {}
|
95
|
+
bool operator < (const NodeDistFarther &obj1) const { return d > obj1.d; }
|
96
|
+
};
|
97
|
+
|
98
|
+
|
99
|
+
/// assignment probability to each layer (sum=1)
|
100
|
+
std::vector<double> assign_probas;
|
101
|
+
|
102
|
+
/// number of neighbors stored per layer (cumulative), should not
|
103
|
+
/// be changed after first add
|
104
|
+
std::vector<int> cum_nneighbor_per_level;
|
105
|
+
|
106
|
+
/// level of each vector (base level = 1), size = ntotal
|
107
|
+
std::vector<int> levels;
|
108
|
+
|
109
|
+
/// offsets[i] is the offset in the neighbors array where vector i is stored
|
110
|
+
/// size ntotal + 1
|
111
|
+
std::vector<size_t> offsets;
|
112
|
+
|
113
|
+
/// neighbors[offsets[i]:offsets[i+1]] is the list of neighbors of vector i
|
114
|
+
/// for all levels. this is where all storage goes.
|
115
|
+
std::vector<storage_idx_t> neighbors;
|
116
|
+
|
117
|
+
/// entry point in the search structure (one of the points with maximum level
|
118
|
+
storage_idx_t entry_point;
|
119
|
+
|
120
|
+
faiss::RandomGenerator rng;
|
121
|
+
|
122
|
+
/// maximum level
|
123
|
+
int max_level;
|
124
|
+
|
125
|
+
/// expansion factor at construction time
|
126
|
+
int efConstruction;
|
127
|
+
|
128
|
+
/// expansion factor at search time
|
129
|
+
int efSearch;
|
130
|
+
|
131
|
+
/// during search: do we check whether the next best distance is good enough?
|
132
|
+
bool check_relative_distance = true;
|
133
|
+
|
134
|
+
/// number of entry points in levels > 0.
|
135
|
+
int upper_beam;
|
136
|
+
|
137
|
+
/// use bounded queue during exploration
|
138
|
+
bool search_bounded_queue = true;
|
139
|
+
|
140
|
+
// methods that initialize the tree sizes
|
141
|
+
|
142
|
+
/// initialize the assign_probas and cum_nneighbor_per_level to
|
143
|
+
/// have 2*M links on level 0 and M links on levels > 0
|
144
|
+
void set_default_probas(int M, float levelMult);
|
145
|
+
|
146
|
+
/// set nb of neighbors for this level (before adding anything)
|
147
|
+
void set_nb_neighbors(int level_no, int n);
|
148
|
+
|
149
|
+
// methods that access the tree sizes
|
150
|
+
|
151
|
+
/// nb of neighbors for this level
|
152
|
+
int nb_neighbors(int layer_no) const;
|
153
|
+
|
154
|
+
/// cumumlative nb up to (and excluding) this level
|
155
|
+
int cum_nb_neighbors(int layer_no) const;
|
156
|
+
|
157
|
+
/// range of entries in the neighbors table of vertex no at layer_no
|
158
|
+
void neighbor_range(idx_t no, int layer_no,
|
159
|
+
size_t * begin, size_t * end) const;
|
160
|
+
|
161
|
+
/// only mandatory parameter: nb of neighbors
|
162
|
+
explicit HNSW(int M = 32);
|
163
|
+
|
164
|
+
/// pick a random level for a new point
|
165
|
+
int random_level();
|
166
|
+
|
167
|
+
/// add n random levels to table (for debugging...)
|
168
|
+
void fill_with_random_links(size_t n);
|
169
|
+
|
170
|
+
void add_links_starting_from(DistanceComputer& ptdis,
|
171
|
+
storage_idx_t pt_id,
|
172
|
+
storage_idx_t nearest,
|
173
|
+
float d_nearest,
|
174
|
+
int level,
|
175
|
+
omp_lock_t *locks,
|
176
|
+
VisitedTable &vt);
|
177
|
+
|
178
|
+
|
179
|
+
/** add point pt_id on all levels <= pt_level and build the link
|
180
|
+
* structure for them. */
|
181
|
+
void add_with_locks(DistanceComputer& ptdis, int pt_level, int pt_id,
|
182
|
+
std::vector<omp_lock_t>& locks,
|
183
|
+
VisitedTable& vt);
|
184
|
+
|
185
|
+
int search_from_candidates(DistanceComputer& qdis, int k,
|
186
|
+
idx_t *I, float *D,
|
187
|
+
MinimaxHeap& candidates,
|
188
|
+
VisitedTable &vt,
|
189
|
+
int level, int nres_in = 0) const;
|
190
|
+
|
191
|
+
std::priority_queue<Node> search_from_candidate_unbounded(
|
192
|
+
const Node& node,
|
193
|
+
DistanceComputer& qdis,
|
194
|
+
int ef,
|
195
|
+
VisitedTable *vt
|
196
|
+
) const;
|
197
|
+
|
198
|
+
/// search interface
|
199
|
+
void search(DistanceComputer& qdis, int k,
|
200
|
+
idx_t *I, float *D,
|
201
|
+
VisitedTable& vt) const;
|
202
|
+
|
203
|
+
void reset();
|
204
|
+
|
205
|
+
void clear_neighbor_tables(int level);
|
206
|
+
void print_neighbor_stats(int level) const;
|
207
|
+
|
208
|
+
int prepare_level_tab(size_t n, bool preset_levels = false);
|
209
|
+
|
210
|
+
static void shrink_neighbor_list(
|
211
|
+
DistanceComputer& qdis,
|
212
|
+
std::priority_queue<NodeDistFarther>& input,
|
213
|
+
std::vector<NodeDistFarther>& output,
|
214
|
+
int max_size);
|
215
|
+
|
216
|
+
};
|
217
|
+
|
218
|
+
|
219
|
+
/**************************************************************
|
220
|
+
* Auxiliary structures
|
221
|
+
**************************************************************/
|
222
|
+
|
223
|
+
/// set implementation optimized for fast access.
|
224
|
+
struct VisitedTable {
|
225
|
+
std::vector<uint8_t> visited;
|
226
|
+
int visno;
|
227
|
+
|
228
|
+
explicit VisitedTable(int size)
|
229
|
+
: visited(size), visno(1) {}
|
230
|
+
|
231
|
+
/// set flog #no to true
|
232
|
+
void set(int no) {
|
233
|
+
visited[no] = visno;
|
234
|
+
}
|
235
|
+
|
236
|
+
/// get flag #no
|
237
|
+
bool get(int no) const {
|
238
|
+
return visited[no] == visno;
|
239
|
+
}
|
240
|
+
|
241
|
+
/// reset all flags to false
|
242
|
+
void advance() {
|
243
|
+
visno++;
|
244
|
+
if (visno == 250) {
|
245
|
+
// 250 rather than 255 because sometimes we use visno and visno+1
|
246
|
+
memset(visited.data(), 0, sizeof(visited[0]) * visited.size());
|
247
|
+
visno = 1;
|
248
|
+
}
|
249
|
+
}
|
250
|
+
};
|
251
|
+
|
252
|
+
|
253
|
+
struct HNSWStats {
|
254
|
+
size_t n1, n2, n3;
|
255
|
+
size_t ndis;
|
256
|
+
size_t nreorder;
|
257
|
+
bool view;
|
258
|
+
|
259
|
+
HNSWStats() {
|
260
|
+
reset();
|
261
|
+
}
|
262
|
+
|
263
|
+
void reset() {
|
264
|
+
n1 = n2 = n3 = 0;
|
265
|
+
ndis = 0;
|
266
|
+
nreorder = 0;
|
267
|
+
view = false;
|
268
|
+
}
|
269
|
+
};
|
270
|
+
|
271
|
+
// global var that collects them all
|
272
|
+
extern HNSWStats hnsw_stats;
|
273
|
+
|
274
|
+
|
275
|
+
} // namespace faiss
|
@@ -0,0 +1,953 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/impl/PolysemousTraining.h>
|
11
|
+
|
12
|
+
#include <cstdlib>
|
13
|
+
#include <cmath>
|
14
|
+
#include <cstring>
|
15
|
+
#include <stdint.h>
|
16
|
+
|
17
|
+
#include <algorithm>
|
18
|
+
|
19
|
+
#include <faiss/utils/random.h>
|
20
|
+
#include <faiss/utils/utils.h>
|
21
|
+
#include <faiss/utils/distances.h>
|
22
|
+
#include <faiss/utils/hamming.h>
|
23
|
+
|
24
|
+
#include <faiss/impl/FaissAssert.h>
|
25
|
+
|
26
|
+
/*****************************************
|
27
|
+
* Mixed PQ / Hamming
|
28
|
+
******************************************/
|
29
|
+
|
30
|
+
namespace faiss {
|
31
|
+
|
32
|
+
|
33
|
+
/****************************************************
|
34
|
+
* Optimization code
|
35
|
+
****************************************************/
|
36
|
+
|
37
|
+
SimulatedAnnealingParameters::SimulatedAnnealingParameters ()
|
38
|
+
{
|
39
|
+
// set some reasonable defaults for the optimization
|
40
|
+
init_temperature = 0.7;
|
41
|
+
temperature_decay = pow (0.9, 1/500.);
|
42
|
+
// reduce by a factor 0.9 every 500 it
|
43
|
+
n_iter = 500000;
|
44
|
+
n_redo = 2;
|
45
|
+
seed = 123;
|
46
|
+
verbose = 0;
|
47
|
+
only_bit_flips = false;
|
48
|
+
init_random = false;
|
49
|
+
}
|
50
|
+
|
51
|
+
// what would the cost update be if iw and jw were swapped?
|
52
|
+
// default implementation just computes both and computes the difference
|
53
|
+
double PermutationObjective::cost_update (
|
54
|
+
const int *perm, int iw, int jw) const
|
55
|
+
{
|
56
|
+
double orig_cost = compute_cost (perm);
|
57
|
+
|
58
|
+
std::vector<int> perm2 (n);
|
59
|
+
for (int i = 0; i < n; i++)
|
60
|
+
perm2[i] = perm[i];
|
61
|
+
perm2[iw] = perm[jw];
|
62
|
+
perm2[jw] = perm[iw];
|
63
|
+
|
64
|
+
double new_cost = compute_cost (perm2.data());
|
65
|
+
return new_cost - orig_cost;
|
66
|
+
}
|
67
|
+
|
68
|
+
|
69
|
+
|
70
|
+
|
71
|
+
SimulatedAnnealingOptimizer::SimulatedAnnealingOptimizer (
|
72
|
+
PermutationObjective *obj,
|
73
|
+
const SimulatedAnnealingParameters &p):
|
74
|
+
SimulatedAnnealingParameters (p),
|
75
|
+
obj (obj),
|
76
|
+
n(obj->n),
|
77
|
+
logfile (nullptr)
|
78
|
+
{
|
79
|
+
rnd = new RandomGenerator (p.seed);
|
80
|
+
FAISS_THROW_IF_NOT (n < 100000 && n >=0 );
|
81
|
+
}
|
82
|
+
|
83
|
+
SimulatedAnnealingOptimizer::~SimulatedAnnealingOptimizer ()
|
84
|
+
{
|
85
|
+
delete rnd;
|
86
|
+
}
|
87
|
+
|
88
|
+
// run the optimization and return the best result in best_perm
|
89
|
+
double SimulatedAnnealingOptimizer::run_optimization (int * best_perm)
|
90
|
+
{
|
91
|
+
double min_cost = 1e30;
|
92
|
+
|
93
|
+
// just do a few runs of the annealing and keep the lowest output cost
|
94
|
+
for (int it = 0; it < n_redo; it++) {
|
95
|
+
std::vector<int> perm(n);
|
96
|
+
for (int i = 0; i < n; i++)
|
97
|
+
perm[i] = i;
|
98
|
+
if (init_random) {
|
99
|
+
for (int i = 0; i < n; i++) {
|
100
|
+
int j = i + rnd->rand_int (n - i);
|
101
|
+
std::swap (perm[i], perm[j]);
|
102
|
+
}
|
103
|
+
}
|
104
|
+
float cost = optimize (perm.data());
|
105
|
+
if (logfile) fprintf (logfile, "\n");
|
106
|
+
if(verbose > 1) {
|
107
|
+
printf (" optimization run %d: cost=%g %s\n",
|
108
|
+
it, cost, cost < min_cost ? "keep" : "");
|
109
|
+
}
|
110
|
+
if (cost < min_cost) {
|
111
|
+
memcpy (best_perm, perm.data(), sizeof(perm[0]) * n);
|
112
|
+
min_cost = cost;
|
113
|
+
}
|
114
|
+
}
|
115
|
+
return min_cost;
|
116
|
+
}
|
117
|
+
|
118
|
+
// perform the optimization loop, starting from and modifying
|
119
|
+
// permutation in-place
|
120
|
+
double SimulatedAnnealingOptimizer::optimize (int *perm)
|
121
|
+
{
|
122
|
+
double cost = init_cost = obj->compute_cost (perm);
|
123
|
+
int log2n = 0;
|
124
|
+
while (!(n <= (1 << log2n))) log2n++;
|
125
|
+
double temperature = init_temperature;
|
126
|
+
int n_swap = 0, n_hot = 0;
|
127
|
+
for (int it = 0; it < n_iter; it++) {
|
128
|
+
temperature = temperature * temperature_decay;
|
129
|
+
int iw, jw;
|
130
|
+
if (only_bit_flips) {
|
131
|
+
iw = rnd->rand_int (n);
|
132
|
+
jw = iw ^ (1 << rnd->rand_int (log2n));
|
133
|
+
} else {
|
134
|
+
iw = rnd->rand_int (n);
|
135
|
+
jw = rnd->rand_int (n - 1);
|
136
|
+
if (jw == iw) jw++;
|
137
|
+
}
|
138
|
+
double delta_cost = obj->cost_update (perm, iw, jw);
|
139
|
+
if (delta_cost < 0 || rnd->rand_float () < temperature) {
|
140
|
+
std::swap (perm[iw], perm[jw]);
|
141
|
+
cost += delta_cost;
|
142
|
+
n_swap++;
|
143
|
+
if (delta_cost >= 0) n_hot++;
|
144
|
+
}
|
145
|
+
if (verbose > 2 || (verbose > 1 && it % 10000 == 0)) {
|
146
|
+
printf (" iteration %d cost %g temp %g n_swap %d "
|
147
|
+
"(%d hot) \r",
|
148
|
+
it, cost, temperature, n_swap, n_hot);
|
149
|
+
fflush(stdout);
|
150
|
+
}
|
151
|
+
if (logfile) {
|
152
|
+
fprintf (logfile, "%d %g %g %d %d\n",
|
153
|
+
it, cost, temperature, n_swap, n_hot);
|
154
|
+
}
|
155
|
+
}
|
156
|
+
if (verbose > 1) printf("\n");
|
157
|
+
return cost;
|
158
|
+
}
|
159
|
+
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
|
164
|
+
/****************************************************
|
165
|
+
* Cost functions: ReproduceDistanceTable
|
166
|
+
****************************************************/
|
167
|
+
|
168
|
+
|
169
|
+
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
static inline int hamming_dis (uint64_t a, uint64_t b)
|
174
|
+
{
|
175
|
+
return __builtin_popcountl (a ^ b);
|
176
|
+
}
|
177
|
+
|
178
|
+
namespace {
|
179
|
+
|
180
|
+
/// optimize permutation to reproduce a distance table with Hamming distances
|
181
|
+
struct ReproduceWithHammingObjective : PermutationObjective {
|
182
|
+
int nbits;
|
183
|
+
double dis_weight_factor;
|
184
|
+
|
185
|
+
static double sqr (double x) { return x * x; }
|
186
|
+
|
187
|
+
|
188
|
+
// weihgting of distances: it is more important to reproduce small
|
189
|
+
// distances well
|
190
|
+
double dis_weight (double x) const
|
191
|
+
{
|
192
|
+
return exp (-dis_weight_factor * x);
|
193
|
+
}
|
194
|
+
|
195
|
+
std::vector<double> target_dis; // wanted distances (size n^2)
|
196
|
+
std::vector<double> weights; // weights for each distance (size n^2)
|
197
|
+
|
198
|
+
// cost = quadratic difference between actual distance and Hamming distance
|
199
|
+
double compute_cost(const int* perm) const override {
|
200
|
+
double cost = 0;
|
201
|
+
for (int i = 0; i < n; i++) {
|
202
|
+
for (int j = 0; j < n; j++) {
|
203
|
+
double wanted = target_dis[i * n + j];
|
204
|
+
double w = weights[i * n + j];
|
205
|
+
double actual = hamming_dis(perm[i], perm[j]);
|
206
|
+
cost += w * sqr(wanted - actual);
|
207
|
+
}
|
208
|
+
}
|
209
|
+
return cost;
|
210
|
+
}
|
211
|
+
|
212
|
+
|
213
|
+
// what would the cost update be if iw and jw were swapped?
|
214
|
+
// computed in O(n) instead of O(n^2) for the full re-computation
|
215
|
+
double cost_update(const int* perm, int iw, int jw) const override {
|
216
|
+
double delta_cost = 0;
|
217
|
+
|
218
|
+
for (int i = 0; i < n; i++) {
|
219
|
+
if (i == iw) {
|
220
|
+
for (int j = 0; j < n; j++) {
|
221
|
+
double wanted = target_dis[i * n + j], w = weights[i * n + j];
|
222
|
+
double actual = hamming_dis(perm[i], perm[j]);
|
223
|
+
delta_cost -= w * sqr(wanted - actual);
|
224
|
+
double new_actual =
|
225
|
+
hamming_dis(perm[jw], perm[j == iw ? jw : j == jw ? iw : j]);
|
226
|
+
delta_cost += w * sqr(wanted - new_actual);
|
227
|
+
}
|
228
|
+
} else if (i == jw) {
|
229
|
+
for (int j = 0; j < n; j++) {
|
230
|
+
double wanted = target_dis[i * n + j], w = weights[i * n + j];
|
231
|
+
double actual = hamming_dis(perm[i], perm[j]);
|
232
|
+
delta_cost -= w * sqr(wanted - actual);
|
233
|
+
double new_actual =
|
234
|
+
hamming_dis(perm[iw], perm[j == iw ? jw : j == jw ? iw : j]);
|
235
|
+
delta_cost += w * sqr(wanted - new_actual);
|
236
|
+
}
|
237
|
+
} else {
|
238
|
+
int j = iw;
|
239
|
+
{
|
240
|
+
double wanted = target_dis[i * n + j], w = weights[i * n + j];
|
241
|
+
double actual = hamming_dis(perm[i], perm[j]);
|
242
|
+
delta_cost -= w * sqr(wanted - actual);
|
243
|
+
double new_actual = hamming_dis(perm[i], perm[jw]);
|
244
|
+
delta_cost += w * sqr(wanted - new_actual);
|
245
|
+
}
|
246
|
+
j = jw;
|
247
|
+
{
|
248
|
+
double wanted = target_dis[i * n + j], w = weights[i * n + j];
|
249
|
+
double actual = hamming_dis(perm[i], perm[j]);
|
250
|
+
delta_cost -= w * sqr(wanted - actual);
|
251
|
+
double new_actual = hamming_dis(perm[i], perm[iw]);
|
252
|
+
delta_cost += w * sqr(wanted - new_actual);
|
253
|
+
}
|
254
|
+
}
|
255
|
+
}
|
256
|
+
|
257
|
+
return delta_cost;
|
258
|
+
}
|
259
|
+
|
260
|
+
|
261
|
+
|
262
|
+
ReproduceWithHammingObjective (
|
263
|
+
int nbits,
|
264
|
+
const std::vector<double> & dis_table,
|
265
|
+
double dis_weight_factor):
|
266
|
+
nbits (nbits), dis_weight_factor (dis_weight_factor)
|
267
|
+
{
|
268
|
+
n = 1 << nbits;
|
269
|
+
FAISS_THROW_IF_NOT (dis_table.size() == n * n);
|
270
|
+
set_affine_target_dis (dis_table);
|
271
|
+
}
|
272
|
+
|
273
|
+
void set_affine_target_dis (const std::vector<double> & dis_table)
|
274
|
+
{
|
275
|
+
double sum = 0, sum2 = 0;
|
276
|
+
int n2 = n * n;
|
277
|
+
for (int i = 0; i < n2; i++) {
|
278
|
+
sum += dis_table [i];
|
279
|
+
sum2 += dis_table [i] * dis_table [i];
|
280
|
+
}
|
281
|
+
double mean = sum / n2;
|
282
|
+
double stddev = sqrt(sum2 / n2 - (sum / n2) * (sum / n2));
|
283
|
+
|
284
|
+
target_dis.resize (n2);
|
285
|
+
|
286
|
+
for (int i = 0; i < n2; i++) {
|
287
|
+
// the mapping function
|
288
|
+
double td = (dis_table [i] - mean) / stddev * sqrt(nbits / 4) +
|
289
|
+
nbits / 2;
|
290
|
+
target_dis[i] = td;
|
291
|
+
// compute a weight
|
292
|
+
weights.push_back (dis_weight (td));
|
293
|
+
}
|
294
|
+
|
295
|
+
}
|
296
|
+
|
297
|
+
~ReproduceWithHammingObjective() override {}
|
298
|
+
};
|
299
|
+
|
300
|
+
} // anonymous namespace
|
301
|
+
|
302
|
+
// weihgting of distances: it is more important to reproduce small
|
303
|
+
// distances well
|
304
|
+
double ReproduceDistancesObjective::dis_weight (double x) const
|
305
|
+
{
|
306
|
+
return exp (-dis_weight_factor * x);
|
307
|
+
}
|
308
|
+
|
309
|
+
|
310
|
+
double ReproduceDistancesObjective::get_source_dis (int i, int j) const
|
311
|
+
{
|
312
|
+
return source_dis [i * n + j];
|
313
|
+
}
|
314
|
+
|
315
|
+
// cost = quadratic difference between actual distance and Hamming distance
|
316
|
+
double ReproduceDistancesObjective::compute_cost (const int *perm) const
|
317
|
+
{
|
318
|
+
double cost = 0;
|
319
|
+
for (int i = 0; i < n; i++) {
|
320
|
+
for (int j = 0; j < n; j++) {
|
321
|
+
double wanted = target_dis [i * n + j];
|
322
|
+
double w = weights [i * n + j];
|
323
|
+
double actual = get_source_dis (perm[i], perm[j]);
|
324
|
+
cost += w * sqr (wanted - actual);
|
325
|
+
}
|
326
|
+
}
|
327
|
+
return cost;
|
328
|
+
}
|
329
|
+
|
330
|
+
// what would the cost update be if iw and jw were swapped?
|
331
|
+
// computed in O(n) instead of O(n^2) for the full re-computation
|
332
|
+
double ReproduceDistancesObjective::cost_update(
|
333
|
+
const int *perm, int iw, int jw) const
|
334
|
+
{
|
335
|
+
double delta_cost = 0;
|
336
|
+
for (int i = 0; i < n; i++) {
|
337
|
+
if (i == iw) {
|
338
|
+
for (int j = 0; j < n; j++) {
|
339
|
+
double wanted = target_dis [i * n + j],
|
340
|
+
w = weights [i * n + j];
|
341
|
+
double actual = get_source_dis (perm[i], perm[j]);
|
342
|
+
delta_cost -= w * sqr (wanted - actual);
|
343
|
+
double new_actual = get_source_dis (
|
344
|
+
perm[jw],
|
345
|
+
perm[j == iw ? jw : j == jw ? iw : j]);
|
346
|
+
delta_cost += w * sqr (wanted - new_actual);
|
347
|
+
}
|
348
|
+
} else if (i == jw) {
|
349
|
+
for (int j = 0; j < n; j++) {
|
350
|
+
double wanted = target_dis [i * n + j],
|
351
|
+
w = weights [i * n + j];
|
352
|
+
double actual = get_source_dis (perm[i], perm[j]);
|
353
|
+
delta_cost -= w * sqr (wanted - actual);
|
354
|
+
double new_actual = get_source_dis (
|
355
|
+
perm[iw],
|
356
|
+
perm[j == iw ? jw : j == jw ? iw : j]);
|
357
|
+
delta_cost += w * sqr (wanted - new_actual);
|
358
|
+
}
|
359
|
+
} else {
|
360
|
+
int j = iw;
|
361
|
+
{
|
362
|
+
double wanted = target_dis [i * n + j],
|
363
|
+
w = weights [i * n + j];
|
364
|
+
double actual = get_source_dis (perm[i], perm[j]);
|
365
|
+
delta_cost -= w * sqr (wanted - actual);
|
366
|
+
double new_actual = get_source_dis (perm[i], perm[jw]);
|
367
|
+
delta_cost += w * sqr (wanted - new_actual);
|
368
|
+
}
|
369
|
+
j = jw;
|
370
|
+
{
|
371
|
+
double wanted = target_dis [i * n + j],
|
372
|
+
w = weights [i * n + j];
|
373
|
+
double actual = get_source_dis (perm[i], perm[j]);
|
374
|
+
delta_cost -= w * sqr (wanted - actual);
|
375
|
+
double new_actual = get_source_dis (perm[i], perm[iw]);
|
376
|
+
delta_cost += w * sqr (wanted - new_actual);
|
377
|
+
}
|
378
|
+
}
|
379
|
+
}
|
380
|
+
return delta_cost;
|
381
|
+
}
|
382
|
+
|
383
|
+
|
384
|
+
|
385
|
+
ReproduceDistancesObjective::ReproduceDistancesObjective (
|
386
|
+
int n,
|
387
|
+
const double *source_dis_in,
|
388
|
+
const double *target_dis_in,
|
389
|
+
double dis_weight_factor):
|
390
|
+
dis_weight_factor (dis_weight_factor),
|
391
|
+
target_dis (target_dis_in)
|
392
|
+
{
|
393
|
+
this->n = n;
|
394
|
+
set_affine_target_dis (source_dis_in);
|
395
|
+
}
|
396
|
+
|
397
|
+
void ReproduceDistancesObjective::compute_mean_stdev (
|
398
|
+
const double *tab, size_t n2,
|
399
|
+
double *mean_out, double *stddev_out)
|
400
|
+
{
|
401
|
+
double sum = 0, sum2 = 0;
|
402
|
+
for (int i = 0; i < n2; i++) {
|
403
|
+
sum += tab [i];
|
404
|
+
sum2 += tab [i] * tab [i];
|
405
|
+
}
|
406
|
+
double mean = sum / n2;
|
407
|
+
double stddev = sqrt(sum2 / n2 - (sum / n2) * (sum / n2));
|
408
|
+
*mean_out = mean;
|
409
|
+
*stddev_out = stddev;
|
410
|
+
}
|
411
|
+
|
412
|
+
void ReproduceDistancesObjective::set_affine_target_dis (
|
413
|
+
const double *source_dis_in)
|
414
|
+
{
|
415
|
+
int n2 = n * n;
|
416
|
+
|
417
|
+
double mean_src, stddev_src;
|
418
|
+
compute_mean_stdev (source_dis_in, n2, &mean_src, &stddev_src);
|
419
|
+
|
420
|
+
double mean_target, stddev_target;
|
421
|
+
compute_mean_stdev (target_dis, n2, &mean_target, &stddev_target);
|
422
|
+
|
423
|
+
printf ("map mean %g std %g -> mean %g std %g\n",
|
424
|
+
mean_src, stddev_src, mean_target, stddev_target);
|
425
|
+
|
426
|
+
source_dis.resize (n2);
|
427
|
+
weights.resize (n2);
|
428
|
+
|
429
|
+
for (int i = 0; i < n2; i++) {
|
430
|
+
// the mapping function
|
431
|
+
source_dis[i] = (source_dis_in[i] - mean_src) / stddev_src
|
432
|
+
* stddev_target + mean_target;
|
433
|
+
|
434
|
+
// compute a weight
|
435
|
+
weights [i] = dis_weight (target_dis[i]);
|
436
|
+
}
|
437
|
+
|
438
|
+
}
|
439
|
+
|
440
|
+
/****************************************************
|
441
|
+
* Cost functions: RankingScore
|
442
|
+
****************************************************/
|
443
|
+
|
444
|
+
/// Maintains a 3D table of elementary costs.
|
445
|
+
/// Accumulates elements based on Hamming distance comparisons
|
446
|
+
template <typename Ttab, typename Taccu>
|
447
|
+
struct Score3Computer: PermutationObjective {
|
448
|
+
|
449
|
+
int nc;
|
450
|
+
|
451
|
+
// cost matrix of size nc * nc *nc
|
452
|
+
// n_gt (i,j,k) = count of d_gt(x, y-) < d_gt(x, y+)
|
453
|
+
// where x has PQ code i, y- PQ code j and y+ PQ code k
|
454
|
+
std::vector<Ttab> n_gt;
|
455
|
+
|
456
|
+
|
457
|
+
/// the cost is a triple loop on the nc * nc * nc matrix of entries.
|
458
|
+
///
|
459
|
+
Taccu compute (const int * perm) const
|
460
|
+
{
|
461
|
+
Taccu accu = 0;
|
462
|
+
const Ttab *p = n_gt.data();
|
463
|
+
for (int i = 0; i < nc; i++) {
|
464
|
+
int ip = perm [i];
|
465
|
+
for (int j = 0; j < nc; j++) {
|
466
|
+
int jp = perm [j];
|
467
|
+
for (int k = 0; k < nc; k++) {
|
468
|
+
int kp = perm [k];
|
469
|
+
if (hamming_dis (ip, jp) <
|
470
|
+
hamming_dis (ip, kp)) {
|
471
|
+
accu += *p; // n_gt [ ( i * nc + j) * nc + k];
|
472
|
+
}
|
473
|
+
p++;
|
474
|
+
}
|
475
|
+
}
|
476
|
+
}
|
477
|
+
return accu;
|
478
|
+
}
|
479
|
+
|
480
|
+
|
481
|
+
/** cost update if entries iw and jw of the permutation would be
|
482
|
+
* swapped.
|
483
|
+
*
|
484
|
+
* The computation is optimized by avoiding elements in the
|
485
|
+
* nc*nc*nc cube that are known not to change. For nc=256, this
|
486
|
+
* reduces the nb of cells to visit to about 6/256 th of the
|
487
|
+
* cells. Practical speedup is about 8x, and the code is quite
|
488
|
+
* complex :-/
|
489
|
+
*/
|
490
|
+
Taccu compute_update (const int *perm, int iw, int jw) const
|
491
|
+
{
|
492
|
+
assert (iw != jw);
|
493
|
+
if (iw > jw) std::swap (iw, jw);
|
494
|
+
|
495
|
+
Taccu accu = 0;
|
496
|
+
const Ttab * n_gt_i = n_gt.data();
|
497
|
+
for (int i = 0; i < nc; i++) {
|
498
|
+
int ip0 = perm [i];
|
499
|
+
int ip = perm [i == iw ? jw : i == jw ? iw : i];
|
500
|
+
|
501
|
+
//accu += update_i (perm, iw, jw, ip0, ip, n_gt_i);
|
502
|
+
|
503
|
+
accu += update_i_cross (perm, iw, jw,
|
504
|
+
ip0, ip, n_gt_i);
|
505
|
+
|
506
|
+
if (ip != ip0)
|
507
|
+
accu += update_i_plane (perm, iw, jw,
|
508
|
+
ip0, ip, n_gt_i);
|
509
|
+
|
510
|
+
n_gt_i += nc * nc;
|
511
|
+
}
|
512
|
+
|
513
|
+
return accu;
|
514
|
+
}
|
515
|
+
|
516
|
+
|
517
|
+
Taccu update_i (const int *perm, int iw, int jw,
|
518
|
+
int ip0, int ip, const Ttab * n_gt_i) const
|
519
|
+
{
|
520
|
+
Taccu accu = 0;
|
521
|
+
const Ttab *n_gt_ij = n_gt_i;
|
522
|
+
for (int j = 0; j < nc; j++) {
|
523
|
+
int jp0 = perm[j];
|
524
|
+
int jp = perm [j == iw ? jw : j == jw ? iw : j];
|
525
|
+
for (int k = 0; k < nc; k++) {
|
526
|
+
int kp0 = perm [k];
|
527
|
+
int kp = perm [k == iw ? jw : k == jw ? iw : k];
|
528
|
+
int ng = n_gt_ij [k];
|
529
|
+
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
|
530
|
+
accu += ng;
|
531
|
+
}
|
532
|
+
if (hamming_dis (ip0, jp0) < hamming_dis (ip0, kp0)) {
|
533
|
+
accu -= ng;
|
534
|
+
}
|
535
|
+
}
|
536
|
+
n_gt_ij += nc;
|
537
|
+
}
|
538
|
+
return accu;
|
539
|
+
}
|
540
|
+
|
541
|
+
// 2 inner loops for the case ip0 != ip
|
542
|
+
Taccu update_i_plane (const int *perm, int iw, int jw,
|
543
|
+
int ip0, int ip, const Ttab * n_gt_i) const
|
544
|
+
{
|
545
|
+
Taccu accu = 0;
|
546
|
+
const Ttab *n_gt_ij = n_gt_i;
|
547
|
+
|
548
|
+
for (int j = 0; j < nc; j++) {
|
549
|
+
if (j != iw && j != jw) {
|
550
|
+
int jp = perm[j];
|
551
|
+
for (int k = 0; k < nc; k++) {
|
552
|
+
if (k != iw && k != jw) {
|
553
|
+
int kp = perm [k];
|
554
|
+
Ttab ng = n_gt_ij [k];
|
555
|
+
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
|
556
|
+
accu += ng;
|
557
|
+
}
|
558
|
+
if (hamming_dis (ip0, jp) < hamming_dis (ip0, kp)) {
|
559
|
+
accu -= ng;
|
560
|
+
}
|
561
|
+
}
|
562
|
+
}
|
563
|
+
}
|
564
|
+
n_gt_ij += nc;
|
565
|
+
}
|
566
|
+
return accu;
|
567
|
+
}
|
568
|
+
|
569
|
+
/// used for the 8 cells were the 3 indices are swapped
|
570
|
+
inline Taccu update_k (const int *perm, int iw, int jw,
|
571
|
+
int ip0, int ip, int jp0, int jp,
|
572
|
+
int k,
|
573
|
+
const Ttab * n_gt_ij) const
|
574
|
+
{
|
575
|
+
Taccu accu = 0;
|
576
|
+
int kp0 = perm [k];
|
577
|
+
int kp = perm [k == iw ? jw : k == jw ? iw : k];
|
578
|
+
Ttab ng = n_gt_ij [k];
|
579
|
+
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
|
580
|
+
accu += ng;
|
581
|
+
}
|
582
|
+
if (hamming_dis (ip0, jp0) < hamming_dis (ip0, kp0)) {
|
583
|
+
accu -= ng;
|
584
|
+
}
|
585
|
+
return accu;
|
586
|
+
}
|
587
|
+
|
588
|
+
/// compute update on a line of k's, where i and j are swapped
|
589
|
+
Taccu update_j_line (const int *perm, int iw, int jw,
|
590
|
+
int ip0, int ip, int jp0, int jp,
|
591
|
+
const Ttab * n_gt_ij) const
|
592
|
+
{
|
593
|
+
Taccu accu = 0;
|
594
|
+
for (int k = 0; k < nc; k++) {
|
595
|
+
if (k == iw || k == jw) continue;
|
596
|
+
int kp = perm [k];
|
597
|
+
Ttab ng = n_gt_ij [k];
|
598
|
+
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
|
599
|
+
accu += ng;
|
600
|
+
}
|
601
|
+
if (hamming_dis (ip0, jp0) < hamming_dis (ip0, kp)) {
|
602
|
+
accu -= ng;
|
603
|
+
}
|
604
|
+
}
|
605
|
+
return accu;
|
606
|
+
}
|
607
|
+
|
608
|
+
|
609
|
+
/// considers the 2 pairs of crossing lines j=iw or jw and k = iw or kw
|
610
|
+
Taccu update_i_cross (const int *perm, int iw, int jw,
|
611
|
+
int ip0, int ip, const Ttab * n_gt_i) const
|
612
|
+
{
|
613
|
+
Taccu accu = 0;
|
614
|
+
const Ttab *n_gt_ij = n_gt_i;
|
615
|
+
|
616
|
+
for (int j = 0; j < nc; j++) {
|
617
|
+
int jp0 = perm[j];
|
618
|
+
int jp = perm [j == iw ? jw : j == jw ? iw : j];
|
619
|
+
|
620
|
+
accu += update_k (perm, iw, jw, ip0, ip, jp0, jp, iw, n_gt_ij);
|
621
|
+
accu += update_k (perm, iw, jw, ip0, ip, jp0, jp, jw, n_gt_ij);
|
622
|
+
|
623
|
+
if (jp != jp0)
|
624
|
+
accu += update_j_line (perm, iw, jw, ip0, ip, jp0, jp, n_gt_ij);
|
625
|
+
|
626
|
+
n_gt_ij += nc;
|
627
|
+
}
|
628
|
+
return accu;
|
629
|
+
}
|
630
|
+
|
631
|
+
|
632
|
+
/// PermutationObjective implementeation (just negates the scores
|
633
|
+
/// for minimization)
|
634
|
+
|
635
|
+
double compute_cost(const int* perm) const override {
|
636
|
+
return -compute(perm);
|
637
|
+
}
|
638
|
+
|
639
|
+
double cost_update(const int* perm, int iw, int jw) const override {
|
640
|
+
double ret = -compute_update(perm, iw, jw);
|
641
|
+
return ret;
|
642
|
+
}
|
643
|
+
|
644
|
+
~Score3Computer() override {}
|
645
|
+
};
|
646
|
+
|
647
|
+
|
648
|
+
|
649
|
+
|
650
|
+
|
651
|
+
struct IndirectSort {
|
652
|
+
const float *tab;
|
653
|
+
bool operator () (int a, int b) {return tab[a] < tab[b]; }
|
654
|
+
};
|
655
|
+
|
656
|
+
|
657
|
+
|
658
|
+
struct RankingScore2: Score3Computer<float, double> {
|
659
|
+
int nbits;
|
660
|
+
int nq, nb;
|
661
|
+
const uint32_t *qcodes, *bcodes;
|
662
|
+
const float *gt_distances;
|
663
|
+
|
664
|
+
RankingScore2 (int nbits, int nq, int nb,
|
665
|
+
const uint32_t *qcodes, const uint32_t *bcodes,
|
666
|
+
const float *gt_distances):
|
667
|
+
nbits(nbits), nq(nq), nb(nb), qcodes(qcodes),
|
668
|
+
bcodes(bcodes), gt_distances(gt_distances)
|
669
|
+
{
|
670
|
+
n = nc = 1 << nbits;
|
671
|
+
n_gt.resize (nc * nc * nc);
|
672
|
+
init_n_gt ();
|
673
|
+
}
|
674
|
+
|
675
|
+
|
676
|
+
double rank_weight (int r)
|
677
|
+
{
|
678
|
+
return 1.0 / (r + 1);
|
679
|
+
}
|
680
|
+
|
681
|
+
/// count nb of i, j in a x b st. i < j
|
682
|
+
/// a and b should be sorted on input
|
683
|
+
/// they are the ranks of j and k respectively.
|
684
|
+
/// specific version for diff-of-rank weighting, cannot optimized
|
685
|
+
/// with a cumulative table
|
686
|
+
double accum_gt_weight_diff (const std::vector<int> & a,
|
687
|
+
const std::vector<int> & b)
|
688
|
+
{
|
689
|
+
int nb = b.size(), na = a.size();
|
690
|
+
|
691
|
+
double accu = 0;
|
692
|
+
int j = 0;
|
693
|
+
for (int i = 0; i < na; i++) {
|
694
|
+
int ai = a[i];
|
695
|
+
while (j < nb && ai >= b[j]) j++;
|
696
|
+
|
697
|
+
double accu_i = 0;
|
698
|
+
for (int k = j; k < b.size(); k++)
|
699
|
+
accu_i += rank_weight (b[k] - ai);
|
700
|
+
|
701
|
+
accu += rank_weight (ai) * accu_i;
|
702
|
+
|
703
|
+
}
|
704
|
+
return accu;
|
705
|
+
}
|
706
|
+
|
707
|
+
void init_n_gt ()
|
708
|
+
{
|
709
|
+
for (int q = 0; q < nq; q++) {
|
710
|
+
const float *gtd = gt_distances + q * nb;
|
711
|
+
const uint32_t *cb = bcodes;// all same codes
|
712
|
+
float * n_gt_q = & n_gt [qcodes[q] * nc * nc];
|
713
|
+
|
714
|
+
printf("init gt for q=%d/%d \r", q, nq); fflush(stdout);
|
715
|
+
|
716
|
+
std::vector<int> rankv (nb);
|
717
|
+
int * ranks = rankv.data();
|
718
|
+
|
719
|
+
// elements in each code bin, ordered by rank within each bin
|
720
|
+
std::vector<std::vector<int> > tab (nc);
|
721
|
+
|
722
|
+
{ // build rank table
|
723
|
+
IndirectSort s = {gtd};
|
724
|
+
for (int j = 0; j < nb; j++) ranks[j] = j;
|
725
|
+
std::sort (ranks, ranks + nb, s);
|
726
|
+
}
|
727
|
+
|
728
|
+
for (int rank = 0; rank < nb; rank++) {
|
729
|
+
int i = ranks [rank];
|
730
|
+
tab [cb[i]].push_back (rank);
|
731
|
+
}
|
732
|
+
|
733
|
+
|
734
|
+
// this is very expensive. Any suggestion for improvement
|
735
|
+
// welcome.
|
736
|
+
for (int i = 0; i < nc; i++) {
|
737
|
+
std::vector<int> & di = tab[i];
|
738
|
+
for (int j = 0; j < nc; j++) {
|
739
|
+
std::vector<int> & dj = tab[j];
|
740
|
+
n_gt_q [i * nc + j] += accum_gt_weight_diff (di, dj);
|
741
|
+
|
742
|
+
}
|
743
|
+
}
|
744
|
+
|
745
|
+
}
|
746
|
+
|
747
|
+
}
|
748
|
+
|
749
|
+
};
|
750
|
+
|
751
|
+
|
752
|
+
/*****************************************
|
753
|
+
* PolysemousTraining
|
754
|
+
******************************************/
|
755
|
+
|
756
|
+
|
757
|
+
|
758
|
+
PolysemousTraining::PolysemousTraining ()
|
759
|
+
{
|
760
|
+
optimization_type = OT_ReproduceDistances_affine;
|
761
|
+
ntrain_permutation = 0;
|
762
|
+
dis_weight_factor = log(2);
|
763
|
+
}
|
764
|
+
|
765
|
+
|
766
|
+
|
767
|
+
void PolysemousTraining::optimize_reproduce_distances (
|
768
|
+
ProductQuantizer &pq) const
|
769
|
+
{
|
770
|
+
|
771
|
+
int dsub = pq.dsub;
|
772
|
+
|
773
|
+
int n = pq.ksub;
|
774
|
+
int nbits = pq.nbits;
|
775
|
+
|
776
|
+
#pragma omp parallel for
|
777
|
+
for (int m = 0; m < pq.M; m++) {
|
778
|
+
std::vector<double> dis_table;
|
779
|
+
|
780
|
+
// printf ("Optimizing quantizer %d\n", m);
|
781
|
+
|
782
|
+
float * centroids = pq.get_centroids (m, 0);
|
783
|
+
|
784
|
+
for (int i = 0; i < n; i++) {
|
785
|
+
for (int j = 0; j < n; j++) {
|
786
|
+
dis_table.push_back (fvec_L2sqr (centroids + i * dsub,
|
787
|
+
centroids + j * dsub,
|
788
|
+
dsub));
|
789
|
+
}
|
790
|
+
}
|
791
|
+
|
792
|
+
std::vector<int> perm (n);
|
793
|
+
ReproduceWithHammingObjective obj (
|
794
|
+
nbits, dis_table,
|
795
|
+
dis_weight_factor);
|
796
|
+
|
797
|
+
|
798
|
+
SimulatedAnnealingOptimizer optim (&obj, *this);
|
799
|
+
|
800
|
+
if (log_pattern.size()) {
|
801
|
+
char fname[256];
|
802
|
+
snprintf (fname, 256, log_pattern.c_str(), m);
|
803
|
+
printf ("opening log file %s\n", fname);
|
804
|
+
optim.logfile = fopen (fname, "w");
|
805
|
+
FAISS_THROW_IF_NOT_MSG (optim.logfile, "could not open logfile");
|
806
|
+
}
|
807
|
+
double final_cost = optim.run_optimization (perm.data());
|
808
|
+
|
809
|
+
if (verbose > 0) {
|
810
|
+
printf ("SimulatedAnnealingOptimizer for m=%d: %g -> %g\n",
|
811
|
+
m, optim.init_cost, final_cost);
|
812
|
+
}
|
813
|
+
|
814
|
+
if (log_pattern.size()) fclose (optim.logfile);
|
815
|
+
|
816
|
+
std::vector<float> centroids_copy;
|
817
|
+
for (int i = 0; i < dsub * n; i++)
|
818
|
+
centroids_copy.push_back (centroids[i]);
|
819
|
+
|
820
|
+
for (int i = 0; i < n; i++)
|
821
|
+
memcpy (centroids + perm[i] * dsub,
|
822
|
+
centroids_copy.data() + i * dsub,
|
823
|
+
dsub * sizeof(centroids[0]));
|
824
|
+
|
825
|
+
}
|
826
|
+
|
827
|
+
}
|
828
|
+
|
829
|
+
|
830
|
+
void PolysemousTraining::optimize_ranking (
|
831
|
+
ProductQuantizer &pq, size_t n, const float *x) const
|
832
|
+
{
|
833
|
+
|
834
|
+
int dsub = pq.dsub;
|
835
|
+
|
836
|
+
int nbits = pq.nbits;
|
837
|
+
|
838
|
+
std::vector<uint8_t> all_codes (pq.code_size * n);
|
839
|
+
|
840
|
+
pq.compute_codes (x, all_codes.data(), n);
|
841
|
+
|
842
|
+
FAISS_THROW_IF_NOT (pq.nbits == 8);
|
843
|
+
|
844
|
+
if (n == 0)
|
845
|
+
pq.compute_sdc_table ();
|
846
|
+
|
847
|
+
#pragma omp parallel for
|
848
|
+
for (int m = 0; m < pq.M; m++) {
|
849
|
+
size_t nq, nb;
|
850
|
+
std::vector <uint32_t> codes; // query codes, then db codes
|
851
|
+
std::vector <float> gt_distances; // nq * nb matrix of distances
|
852
|
+
|
853
|
+
if (n > 0) {
|
854
|
+
std::vector<float> xtrain (n * dsub);
|
855
|
+
for (int i = 0; i < n; i++)
|
856
|
+
memcpy (xtrain.data() + i * dsub,
|
857
|
+
x + i * pq.d + m * dsub,
|
858
|
+
sizeof(float) * dsub);
|
859
|
+
|
860
|
+
codes.resize (n);
|
861
|
+
for (int i = 0; i < n; i++)
|
862
|
+
codes [i] = all_codes [i * pq.code_size + m];
|
863
|
+
|
864
|
+
nq = n / 4; nb = n - nq;
|
865
|
+
const float *xq = xtrain.data();
|
866
|
+
const float *xb = xq + nq * dsub;
|
867
|
+
|
868
|
+
gt_distances.resize (nq * nb);
|
869
|
+
|
870
|
+
pairwise_L2sqr (dsub,
|
871
|
+
nq, xq,
|
872
|
+
nb, xb,
|
873
|
+
gt_distances.data());
|
874
|
+
} else {
|
875
|
+
nq = nb = pq.ksub;
|
876
|
+
codes.resize (2 * nq);
|
877
|
+
for (int i = 0; i < nq; i++)
|
878
|
+
codes[i] = codes [i + nq] = i;
|
879
|
+
|
880
|
+
gt_distances.resize (nq * nb);
|
881
|
+
|
882
|
+
memcpy (gt_distances.data (),
|
883
|
+
pq.sdc_table.data () + m * nq * nb,
|
884
|
+
sizeof (float) * nq * nb);
|
885
|
+
}
|
886
|
+
|
887
|
+
double t0 = getmillisecs ();
|
888
|
+
|
889
|
+
PermutationObjective *obj = new RankingScore2 (
|
890
|
+
nbits, nq, nb,
|
891
|
+
codes.data(), codes.data() + nq,
|
892
|
+
gt_distances.data ());
|
893
|
+
ScopeDeleter1<PermutationObjective> del (obj);
|
894
|
+
|
895
|
+
if (verbose > 0) {
|
896
|
+
printf(" m=%d, nq=%ld, nb=%ld, intialize RankingScore "
|
897
|
+
"in %.3f ms\n",
|
898
|
+
m, nq, nb, getmillisecs () - t0);
|
899
|
+
}
|
900
|
+
|
901
|
+
SimulatedAnnealingOptimizer optim (obj, *this);
|
902
|
+
|
903
|
+
if (log_pattern.size()) {
|
904
|
+
char fname[256];
|
905
|
+
snprintf (fname, 256, log_pattern.c_str(), m);
|
906
|
+
printf ("opening log file %s\n", fname);
|
907
|
+
optim.logfile = fopen (fname, "w");
|
908
|
+
FAISS_THROW_IF_NOT_FMT (optim.logfile,
|
909
|
+
"could not open logfile %s", fname);
|
910
|
+
}
|
911
|
+
|
912
|
+
std::vector<int> perm (pq.ksub);
|
913
|
+
|
914
|
+
double final_cost = optim.run_optimization (perm.data());
|
915
|
+
printf ("SimulatedAnnealingOptimizer for m=%d: %g -> %g\n",
|
916
|
+
m, optim.init_cost, final_cost);
|
917
|
+
|
918
|
+
if (log_pattern.size()) fclose (optim.logfile);
|
919
|
+
|
920
|
+
float * centroids = pq.get_centroids (m, 0);
|
921
|
+
|
922
|
+
std::vector<float> centroids_copy;
|
923
|
+
for (int i = 0; i < dsub * pq.ksub; i++)
|
924
|
+
centroids_copy.push_back (centroids[i]);
|
925
|
+
|
926
|
+
for (int i = 0; i < pq.ksub; i++)
|
927
|
+
memcpy (centroids + perm[i] * dsub,
|
928
|
+
centroids_copy.data() + i * dsub,
|
929
|
+
dsub * sizeof(centroids[0]));
|
930
|
+
|
931
|
+
}
|
932
|
+
|
933
|
+
}
|
934
|
+
|
935
|
+
|
936
|
+
|
937
|
+
void PolysemousTraining::optimize_pq_for_hamming (ProductQuantizer &pq,
|
938
|
+
size_t n, const float *x) const
|
939
|
+
{
|
940
|
+
if (optimization_type == OT_None) {
|
941
|
+
|
942
|
+
} else if (optimization_type == OT_ReproduceDistances_affine) {
|
943
|
+
optimize_reproduce_distances (pq);
|
944
|
+
} else {
|
945
|
+
optimize_ranking (pq, n, x);
|
946
|
+
}
|
947
|
+
|
948
|
+
pq.compute_sdc_table ();
|
949
|
+
|
950
|
+
}
|
951
|
+
|
952
|
+
|
953
|
+
} // namespace faiss
|