faiss 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +103 -3
- data/ext/faiss/ext.cpp +99 -32
- data/ext/faiss/extconf.rb +12 -2
- data/lib/faiss/ext.bundle +0 -0
- data/lib/faiss/index.rb +3 -3
- data/lib/faiss/index_binary.rb +3 -3
- data/lib/faiss/kmeans.rb +1 -1
- data/lib/faiss/pca_matrix.rb +2 -2
- data/lib/faiss/product_quantizer.rb +3 -3
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/AutoTune.cpp +719 -0
- data/vendor/faiss/AutoTune.h +212 -0
- data/vendor/faiss/Clustering.cpp +261 -0
- data/vendor/faiss/Clustering.h +101 -0
- data/vendor/faiss/IVFlib.cpp +339 -0
- data/vendor/faiss/IVFlib.h +132 -0
- data/vendor/faiss/Index.cpp +171 -0
- data/vendor/faiss/Index.h +261 -0
- data/vendor/faiss/Index2Layer.cpp +437 -0
- data/vendor/faiss/Index2Layer.h +85 -0
- data/vendor/faiss/IndexBinary.cpp +77 -0
- data/vendor/faiss/IndexBinary.h +163 -0
- data/vendor/faiss/IndexBinaryFlat.cpp +83 -0
- data/vendor/faiss/IndexBinaryFlat.h +54 -0
- data/vendor/faiss/IndexBinaryFromFloat.cpp +78 -0
- data/vendor/faiss/IndexBinaryFromFloat.h +52 -0
- data/vendor/faiss/IndexBinaryHNSW.cpp +325 -0
- data/vendor/faiss/IndexBinaryHNSW.h +56 -0
- data/vendor/faiss/IndexBinaryIVF.cpp +671 -0
- data/vendor/faiss/IndexBinaryIVF.h +211 -0
- data/vendor/faiss/IndexFlat.cpp +508 -0
- data/vendor/faiss/IndexFlat.h +175 -0
- data/vendor/faiss/IndexHNSW.cpp +1090 -0
- data/vendor/faiss/IndexHNSW.h +170 -0
- data/vendor/faiss/IndexIVF.cpp +909 -0
- data/vendor/faiss/IndexIVF.h +353 -0
- data/vendor/faiss/IndexIVFFlat.cpp +502 -0
- data/vendor/faiss/IndexIVFFlat.h +118 -0
- data/vendor/faiss/IndexIVFPQ.cpp +1207 -0
- data/vendor/faiss/IndexIVFPQ.h +161 -0
- data/vendor/faiss/IndexIVFPQR.cpp +219 -0
- data/vendor/faiss/IndexIVFPQR.h +65 -0
- data/vendor/faiss/IndexIVFSpectralHash.cpp +331 -0
- data/vendor/faiss/IndexIVFSpectralHash.h +75 -0
- data/vendor/faiss/IndexLSH.cpp +225 -0
- data/vendor/faiss/IndexLSH.h +87 -0
- data/vendor/faiss/IndexLattice.cpp +143 -0
- data/vendor/faiss/IndexLattice.h +68 -0
- data/vendor/faiss/IndexPQ.cpp +1188 -0
- data/vendor/faiss/IndexPQ.h +199 -0
- data/vendor/faiss/IndexPreTransform.cpp +288 -0
- data/vendor/faiss/IndexPreTransform.h +91 -0
- data/vendor/faiss/IndexReplicas.cpp +123 -0
- data/vendor/faiss/IndexReplicas.h +76 -0
- data/vendor/faiss/IndexScalarQuantizer.cpp +317 -0
- data/vendor/faiss/IndexScalarQuantizer.h +127 -0
- data/vendor/faiss/IndexShards.cpp +317 -0
- data/vendor/faiss/IndexShards.h +100 -0
- data/vendor/faiss/InvertedLists.cpp +623 -0
- data/vendor/faiss/InvertedLists.h +334 -0
- data/vendor/faiss/LICENSE +21 -0
- data/vendor/faiss/MatrixStats.cpp +252 -0
- data/vendor/faiss/MatrixStats.h +62 -0
- data/vendor/faiss/MetaIndexes.cpp +351 -0
- data/vendor/faiss/MetaIndexes.h +126 -0
- data/vendor/faiss/OnDiskInvertedLists.cpp +674 -0
- data/vendor/faiss/OnDiskInvertedLists.h +127 -0
- data/vendor/faiss/VectorTransform.cpp +1157 -0
- data/vendor/faiss/VectorTransform.h +322 -0
- data/vendor/faiss/c_api/AutoTune_c.cpp +83 -0
- data/vendor/faiss/c_api/AutoTune_c.h +64 -0
- data/vendor/faiss/c_api/Clustering_c.cpp +139 -0
- data/vendor/faiss/c_api/Clustering_c.h +117 -0
- data/vendor/faiss/c_api/IndexFlat_c.cpp +140 -0
- data/vendor/faiss/c_api/IndexFlat_c.h +115 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +64 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +58 -0
- data/vendor/faiss/c_api/IndexIVF_c.cpp +92 -0
- data/vendor/faiss/c_api/IndexIVF_c.h +135 -0
- data/vendor/faiss/c_api/IndexLSH_c.cpp +37 -0
- data/vendor/faiss/c_api/IndexLSH_c.h +40 -0
- data/vendor/faiss/c_api/IndexShards_c.cpp +44 -0
- data/vendor/faiss/c_api/IndexShards_c.h +42 -0
- data/vendor/faiss/c_api/Index_c.cpp +105 -0
- data/vendor/faiss/c_api/Index_c.h +183 -0
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +49 -0
- data/vendor/faiss/c_api/MetaIndexes_c.h +49 -0
- data/vendor/faiss/c_api/clone_index_c.cpp +23 -0
- data/vendor/faiss/c_api/clone_index_c.h +32 -0
- data/vendor/faiss/c_api/error_c.h +42 -0
- data/vendor/faiss/c_api/error_impl.cpp +27 -0
- data/vendor/faiss/c_api/error_impl.h +16 -0
- data/vendor/faiss/c_api/faiss_c.h +58 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +96 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +56 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +52 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +68 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +17 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +30 -0
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +38 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +86 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +66 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +54 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +53 -0
- data/vendor/faiss/c_api/gpu/macros_impl.h +42 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +220 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +149 -0
- data/vendor/faiss/c_api/index_factory_c.cpp +26 -0
- data/vendor/faiss/c_api/index_factory_c.h +30 -0
- data/vendor/faiss/c_api/index_io_c.cpp +42 -0
- data/vendor/faiss/c_api/index_io_c.h +50 -0
- data/vendor/faiss/c_api/macros_impl.h +110 -0
- data/vendor/faiss/clone_index.cpp +147 -0
- data/vendor/faiss/clone_index.h +38 -0
- data/vendor/faiss/demos/demo_imi_flat.cpp +151 -0
- data/vendor/faiss/demos/demo_imi_pq.cpp +199 -0
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +146 -0
- data/vendor/faiss/demos/demo_sift1M.cpp +252 -0
- data/vendor/faiss/gpu/GpuAutoTune.cpp +95 -0
- data/vendor/faiss/gpu/GpuAutoTune.h +27 -0
- data/vendor/faiss/gpu/GpuCloner.cpp +403 -0
- data/vendor/faiss/gpu/GpuCloner.h +82 -0
- data/vendor/faiss/gpu/GpuClonerOptions.cpp +28 -0
- data/vendor/faiss/gpu/GpuClonerOptions.h +53 -0
- data/vendor/faiss/gpu/GpuDistance.h +52 -0
- data/vendor/faiss/gpu/GpuFaissAssert.h +29 -0
- data/vendor/faiss/gpu/GpuIndex.h +148 -0
- data/vendor/faiss/gpu/GpuIndexBinaryFlat.h +89 -0
- data/vendor/faiss/gpu/GpuIndexFlat.h +190 -0
- data/vendor/faiss/gpu/GpuIndexIVF.h +89 -0
- data/vendor/faiss/gpu/GpuIndexIVFFlat.h +85 -0
- data/vendor/faiss/gpu/GpuIndexIVFPQ.h +143 -0
- data/vendor/faiss/gpu/GpuIndexIVFScalarQuantizer.h +100 -0
- data/vendor/faiss/gpu/GpuIndicesOptions.h +30 -0
- data/vendor/faiss/gpu/GpuResources.cpp +52 -0
- data/vendor/faiss/gpu/GpuResources.h +73 -0
- data/vendor/faiss/gpu/StandardGpuResources.cpp +295 -0
- data/vendor/faiss/gpu/StandardGpuResources.h +114 -0
- data/vendor/faiss/gpu/impl/RemapIndices.cpp +43 -0
- data/vendor/faiss/gpu/impl/RemapIndices.h +24 -0
- data/vendor/faiss/gpu/perf/IndexWrapper-inl.h +71 -0
- data/vendor/faiss/gpu/perf/IndexWrapper.h +39 -0
- data/vendor/faiss/gpu/perf/PerfClustering.cpp +115 -0
- data/vendor/faiss/gpu/perf/PerfIVFPQAdd.cpp +139 -0
- data/vendor/faiss/gpu/perf/WriteIndex.cpp +102 -0
- data/vendor/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +130 -0
- data/vendor/faiss/gpu/test/TestGpuIndexFlat.cpp +371 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +550 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +450 -0
- data/vendor/faiss/gpu/test/TestGpuMemoryException.cpp +84 -0
- data/vendor/faiss/gpu/test/TestUtils.cpp +315 -0
- data/vendor/faiss/gpu/test/TestUtils.h +93 -0
- data/vendor/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +159 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.cpp +77 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.h +71 -0
- data/vendor/faiss/gpu/utils/DeviceUtils.h +185 -0
- data/vendor/faiss/gpu/utils/MemorySpace.cpp +89 -0
- data/vendor/faiss/gpu/utils/MemorySpace.h +44 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.cpp +239 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.h +129 -0
- data/vendor/faiss/gpu/utils/StaticUtils.h +83 -0
- data/vendor/faiss/gpu/utils/Timer.cpp +60 -0
- data/vendor/faiss/gpu/utils/Timer.h +52 -0
- data/vendor/faiss/impl/AuxIndexStructures.cpp +305 -0
- data/vendor/faiss/impl/AuxIndexStructures.h +246 -0
- data/vendor/faiss/impl/FaissAssert.h +95 -0
- data/vendor/faiss/impl/FaissException.cpp +66 -0
- data/vendor/faiss/impl/FaissException.h +71 -0
- data/vendor/faiss/impl/HNSW.cpp +818 -0
- data/vendor/faiss/impl/HNSW.h +275 -0
- data/vendor/faiss/impl/PolysemousTraining.cpp +953 -0
- data/vendor/faiss/impl/PolysemousTraining.h +158 -0
- data/vendor/faiss/impl/ProductQuantizer.cpp +876 -0
- data/vendor/faiss/impl/ProductQuantizer.h +242 -0
- data/vendor/faiss/impl/ScalarQuantizer.cpp +1628 -0
- data/vendor/faiss/impl/ScalarQuantizer.h +120 -0
- data/vendor/faiss/impl/ThreadedIndex-inl.h +192 -0
- data/vendor/faiss/impl/ThreadedIndex.h +80 -0
- data/vendor/faiss/impl/index_read.cpp +793 -0
- data/vendor/faiss/impl/index_write.cpp +558 -0
- data/vendor/faiss/impl/io.cpp +142 -0
- data/vendor/faiss/impl/io.h +98 -0
- data/vendor/faiss/impl/lattice_Zn.cpp +712 -0
- data/vendor/faiss/impl/lattice_Zn.h +199 -0
- data/vendor/faiss/index_factory.cpp +392 -0
- data/vendor/faiss/index_factory.h +25 -0
- data/vendor/faiss/index_io.h +75 -0
- data/vendor/faiss/misc/test_blas.cpp +84 -0
- data/vendor/faiss/tests/test_binary_flat.cpp +64 -0
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +183 -0
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +67 -0
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +98 -0
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +566 -0
- data/vendor/faiss/tests/test_merge.cpp +258 -0
- data/vendor/faiss/tests/test_omp_threads.cpp +14 -0
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +220 -0
- data/vendor/faiss/tests/test_pairs_decoding.cpp +189 -0
- data/vendor/faiss/tests/test_params_override.cpp +231 -0
- data/vendor/faiss/tests/test_pq_encoding.cpp +98 -0
- data/vendor/faiss/tests/test_sliding_ivf.cpp +240 -0
- data/vendor/faiss/tests/test_threaded_index.cpp +253 -0
- data/vendor/faiss/tests/test_transfer_invlists.cpp +159 -0
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +98 -0
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +81 -0
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +93 -0
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +119 -0
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +99 -0
- data/vendor/faiss/utils/Heap.cpp +122 -0
- data/vendor/faiss/utils/Heap.h +495 -0
- data/vendor/faiss/utils/WorkerThread.cpp +126 -0
- data/vendor/faiss/utils/WorkerThread.h +61 -0
- data/vendor/faiss/utils/distances.cpp +765 -0
- data/vendor/faiss/utils/distances.h +243 -0
- data/vendor/faiss/utils/distances_simd.cpp +809 -0
- data/vendor/faiss/utils/extra_distances.cpp +336 -0
- data/vendor/faiss/utils/extra_distances.h +54 -0
- data/vendor/faiss/utils/hamming-inl.h +472 -0
- data/vendor/faiss/utils/hamming.cpp +792 -0
- data/vendor/faiss/utils/hamming.h +220 -0
- data/vendor/faiss/utils/random.cpp +192 -0
- data/vendor/faiss/utils/random.h +60 -0
- data/vendor/faiss/utils/utils.cpp +783 -0
- data/vendor/faiss/utils/utils.h +181 -0
- metadata +216 -2
@@ -0,0 +1,175 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#ifndef INDEX_FLAT_H
|
11
|
+
#define INDEX_FLAT_H
|
12
|
+
|
13
|
+
#include <vector>
|
14
|
+
|
15
|
+
#include <faiss/Index.h>
|
16
|
+
|
17
|
+
|
18
|
+
namespace faiss {
|
19
|
+
|
20
|
+
/** Index that stores the full vectors and performs exhaustive search */
|
21
|
+
struct IndexFlat: Index {
|
22
|
+
/// database vectors, size ntotal * d
|
23
|
+
std::vector<float> xb;
|
24
|
+
|
25
|
+
explicit IndexFlat (idx_t d, MetricType metric = METRIC_L2);
|
26
|
+
|
27
|
+
void add(idx_t n, const float* x) override;
|
28
|
+
|
29
|
+
void reset() override;
|
30
|
+
|
31
|
+
void search(
|
32
|
+
idx_t n,
|
33
|
+
const float* x,
|
34
|
+
idx_t k,
|
35
|
+
float* distances,
|
36
|
+
idx_t* labels) const override;
|
37
|
+
|
38
|
+
void range_search(
|
39
|
+
idx_t n,
|
40
|
+
const float* x,
|
41
|
+
float radius,
|
42
|
+
RangeSearchResult* result) const override;
|
43
|
+
|
44
|
+
void reconstruct(idx_t key, float* recons) const override;
|
45
|
+
|
46
|
+
/** compute distance with a subset of vectors
|
47
|
+
*
|
48
|
+
* @param x query vectors, size n * d
|
49
|
+
* @param labels indices of the vectors that should be compared
|
50
|
+
* for each query vector, size n * k
|
51
|
+
* @param distances
|
52
|
+
* corresponding output distances, size n * k
|
53
|
+
*/
|
54
|
+
void compute_distance_subset (
|
55
|
+
idx_t n,
|
56
|
+
const float *x,
|
57
|
+
idx_t k,
|
58
|
+
float *distances,
|
59
|
+
const idx_t *labels) const;
|
60
|
+
|
61
|
+
/** remove some ids. NB that Because of the structure of the
|
62
|
+
* indexing structure, the semantics of this operation are
|
63
|
+
* different from the usual ones: the new ids are shifted */
|
64
|
+
size_t remove_ids(const IDSelector& sel) override;
|
65
|
+
|
66
|
+
IndexFlat () {}
|
67
|
+
|
68
|
+
DistanceComputer * get_distance_computer() const override;
|
69
|
+
|
70
|
+
/* The stanadlone codec interface (just memcopies in this case) */
|
71
|
+
size_t sa_code_size () const override;
|
72
|
+
|
73
|
+
void sa_encode (idx_t n, const float *x,
|
74
|
+
uint8_t *bytes) const override;
|
75
|
+
|
76
|
+
void sa_decode (idx_t n, const uint8_t *bytes,
|
77
|
+
float *x) const override;
|
78
|
+
|
79
|
+
};
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
struct IndexFlatIP:IndexFlat {
|
84
|
+
explicit IndexFlatIP (idx_t d): IndexFlat (d, METRIC_INNER_PRODUCT) {}
|
85
|
+
IndexFlatIP () {}
|
86
|
+
};
|
87
|
+
|
88
|
+
|
89
|
+
struct IndexFlatL2:IndexFlat {
|
90
|
+
explicit IndexFlatL2 (idx_t d): IndexFlat (d, METRIC_L2) {}
|
91
|
+
IndexFlatL2 () {}
|
92
|
+
};
|
93
|
+
|
94
|
+
|
95
|
+
// same as an IndexFlatL2 but a value is subtracted from each distance
|
96
|
+
struct IndexFlatL2BaseShift: IndexFlatL2 {
|
97
|
+
std::vector<float> shift;
|
98
|
+
|
99
|
+
IndexFlatL2BaseShift (idx_t d, size_t nshift, const float *shift);
|
100
|
+
|
101
|
+
void search(
|
102
|
+
idx_t n,
|
103
|
+
const float* x,
|
104
|
+
idx_t k,
|
105
|
+
float* distances,
|
106
|
+
idx_t* labels) const override;
|
107
|
+
};
|
108
|
+
|
109
|
+
|
110
|
+
/** Index that queries in a base_index (a fast one) and refines the
|
111
|
+
* results with an exact search, hopefully improving the results.
|
112
|
+
*/
|
113
|
+
struct IndexRefineFlat: Index {
|
114
|
+
|
115
|
+
/// storage for full vectors
|
116
|
+
IndexFlat refine_index;
|
117
|
+
|
118
|
+
/// faster index to pre-select the vectors that should be filtered
|
119
|
+
Index *base_index;
|
120
|
+
bool own_fields; ///< should the base index be deallocated?
|
121
|
+
|
122
|
+
/// factor between k requested in search and the k requested from
|
123
|
+
/// the base_index (should be >= 1)
|
124
|
+
float k_factor;
|
125
|
+
|
126
|
+
explicit IndexRefineFlat (Index *base_index);
|
127
|
+
|
128
|
+
IndexRefineFlat ();
|
129
|
+
|
130
|
+
void train(idx_t n, const float* x) override;
|
131
|
+
|
132
|
+
void add(idx_t n, const float* x) override;
|
133
|
+
|
134
|
+
void reset() override;
|
135
|
+
|
136
|
+
void search(
|
137
|
+
idx_t n,
|
138
|
+
const float* x,
|
139
|
+
idx_t k,
|
140
|
+
float* distances,
|
141
|
+
idx_t* labels) const override;
|
142
|
+
|
143
|
+
~IndexRefineFlat() override;
|
144
|
+
};
|
145
|
+
|
146
|
+
|
147
|
+
/// optimized version for 1D "vectors"
|
148
|
+
struct IndexFlat1D:IndexFlatL2 {
|
149
|
+
bool continuous_update; ///< is the permutation updated continuously?
|
150
|
+
|
151
|
+
std::vector<idx_t> perm; ///< sorted database indices
|
152
|
+
|
153
|
+
explicit IndexFlat1D (bool continuous_update=true);
|
154
|
+
|
155
|
+
/// if not continuous_update, call this between the last add and
|
156
|
+
/// the first search
|
157
|
+
void update_permutation ();
|
158
|
+
|
159
|
+
void add(idx_t n, const float* x) override;
|
160
|
+
|
161
|
+
void reset() override;
|
162
|
+
|
163
|
+
/// Warn: the distances returned are L1 not L2
|
164
|
+
void search(
|
165
|
+
idx_t n,
|
166
|
+
const float* x,
|
167
|
+
idx_t k,
|
168
|
+
float* distances,
|
169
|
+
idx_t* labels) const override;
|
170
|
+
};
|
171
|
+
|
172
|
+
|
173
|
+
}
|
174
|
+
|
175
|
+
#endif
|
@@ -0,0 +1,1090 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/IndexHNSW.h>
|
11
|
+
|
12
|
+
|
13
|
+
#include <cstdlib>
|
14
|
+
#include <cassert>
|
15
|
+
#include <cstring>
|
16
|
+
#include <cstdio>
|
17
|
+
#include <cmath>
|
18
|
+
#include <omp.h>
|
19
|
+
|
20
|
+
#include <unordered_set>
|
21
|
+
#include <queue>
|
22
|
+
|
23
|
+
#include <sys/types.h>
|
24
|
+
#include <sys/stat.h>
|
25
|
+
#include <unistd.h>
|
26
|
+
#include <stdint.h>
|
27
|
+
|
28
|
+
#ifdef __SSE__
|
29
|
+
#include <immintrin.h>
|
30
|
+
#endif
|
31
|
+
|
32
|
+
#include <faiss/utils/distances.h>
|
33
|
+
#include <faiss/utils/random.h>
|
34
|
+
#include <faiss/utils/Heap.h>
|
35
|
+
#include <faiss/impl/FaissAssert.h>
|
36
|
+
#include <faiss/IndexFlat.h>
|
37
|
+
#include <faiss/IndexIVFPQ.h>
|
38
|
+
#include <faiss/Index2Layer.h>
|
39
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
40
|
+
|
41
|
+
|
42
|
+
extern "C" {
|
43
|
+
|
44
|
+
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
45
|
+
|
46
|
+
int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER *
|
47
|
+
n, FINTEGER *k, const float *alpha, const float *a,
|
48
|
+
FINTEGER *lda, const float *b, FINTEGER *
|
49
|
+
ldb, float *beta, float *c, FINTEGER *ldc);
|
50
|
+
|
51
|
+
}
|
52
|
+
|
53
|
+
namespace faiss {
|
54
|
+
|
55
|
+
using idx_t = Index::idx_t;
|
56
|
+
using MinimaxHeap = HNSW::MinimaxHeap;
|
57
|
+
using storage_idx_t = HNSW::storage_idx_t;
|
58
|
+
using NodeDistCloser = HNSW::NodeDistCloser;
|
59
|
+
using NodeDistFarther = HNSW::NodeDistFarther;
|
60
|
+
|
61
|
+
HNSWStats hnsw_stats;
|
62
|
+
|
63
|
+
/**************************************************************
|
64
|
+
* add / search blocks of descriptors
|
65
|
+
**************************************************************/
|
66
|
+
|
67
|
+
namespace {
|
68
|
+
|
69
|
+
|
70
|
+
void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
71
|
+
size_t n0,
|
72
|
+
size_t n, const float *x,
|
73
|
+
bool verbose,
|
74
|
+
bool preset_levels = false) {
|
75
|
+
size_t d = index_hnsw.d;
|
76
|
+
HNSW & hnsw = index_hnsw.hnsw;
|
77
|
+
size_t ntotal = n0 + n;
|
78
|
+
double t0 = getmillisecs();
|
79
|
+
if (verbose) {
|
80
|
+
printf("hnsw_add_vertices: adding %ld elements on top of %ld "
|
81
|
+
"(preset_levels=%d)\n",
|
82
|
+
n, n0, int(preset_levels));
|
83
|
+
}
|
84
|
+
|
85
|
+
if (n == 0) {
|
86
|
+
return;
|
87
|
+
}
|
88
|
+
|
89
|
+
int max_level = hnsw.prepare_level_tab(n, preset_levels);
|
90
|
+
|
91
|
+
if (verbose) {
|
92
|
+
printf(" max_level = %d\n", max_level);
|
93
|
+
}
|
94
|
+
|
95
|
+
std::vector<omp_lock_t> locks(ntotal);
|
96
|
+
for(int i = 0; i < ntotal; i++)
|
97
|
+
omp_init_lock(&locks[i]);
|
98
|
+
|
99
|
+
// add vectors from highest to lowest level
|
100
|
+
std::vector<int> hist;
|
101
|
+
std::vector<int> order(n);
|
102
|
+
|
103
|
+
{ // make buckets with vectors of the same level
|
104
|
+
|
105
|
+
// build histogram
|
106
|
+
for (int i = 0; i < n; i++) {
|
107
|
+
storage_idx_t pt_id = i + n0;
|
108
|
+
int pt_level = hnsw.levels[pt_id] - 1;
|
109
|
+
while (pt_level >= hist.size())
|
110
|
+
hist.push_back(0);
|
111
|
+
hist[pt_level] ++;
|
112
|
+
}
|
113
|
+
|
114
|
+
// accumulate
|
115
|
+
std::vector<int> offsets(hist.size() + 1, 0);
|
116
|
+
for (int i = 0; i < hist.size() - 1; i++) {
|
117
|
+
offsets[i + 1] = offsets[i] + hist[i];
|
118
|
+
}
|
119
|
+
|
120
|
+
// bucket sort
|
121
|
+
for (int i = 0; i < n; i++) {
|
122
|
+
storage_idx_t pt_id = i + n0;
|
123
|
+
int pt_level = hnsw.levels[pt_id] - 1;
|
124
|
+
order[offsets[pt_level]++] = pt_id;
|
125
|
+
}
|
126
|
+
}
|
127
|
+
|
128
|
+
idx_t check_period = InterruptCallback::get_period_hint
|
129
|
+
(max_level * index_hnsw.d * hnsw.efConstruction);
|
130
|
+
|
131
|
+
{ // perform add
|
132
|
+
RandomGenerator rng2(789);
|
133
|
+
|
134
|
+
int i1 = n;
|
135
|
+
|
136
|
+
for (int pt_level = hist.size() - 1; pt_level >= 0; pt_level--) {
|
137
|
+
int i0 = i1 - hist[pt_level];
|
138
|
+
|
139
|
+
if (verbose) {
|
140
|
+
printf("Adding %d elements at level %d\n",
|
141
|
+
i1 - i0, pt_level);
|
142
|
+
}
|
143
|
+
|
144
|
+
// random permutation to get rid of dataset order bias
|
145
|
+
for (int j = i0; j < i1; j++)
|
146
|
+
std::swap(order[j], order[j + rng2.rand_int(i1 - j)]);
|
147
|
+
|
148
|
+
bool interrupt = false;
|
149
|
+
|
150
|
+
#pragma omp parallel if(i1 > i0 + 100)
|
151
|
+
{
|
152
|
+
VisitedTable vt (ntotal);
|
153
|
+
|
154
|
+
DistanceComputer *dis =
|
155
|
+
index_hnsw.storage->get_distance_computer();
|
156
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
157
|
+
int prev_display = verbose && omp_get_thread_num() == 0 ? 0 : -1;
|
158
|
+
size_t counter = 0;
|
159
|
+
|
160
|
+
#pragma omp for schedule(dynamic)
|
161
|
+
for (int i = i0; i < i1; i++) {
|
162
|
+
storage_idx_t pt_id = order[i];
|
163
|
+
dis->set_query (x + (pt_id - n0) * d);
|
164
|
+
|
165
|
+
// cannot break
|
166
|
+
if (interrupt) {
|
167
|
+
continue;
|
168
|
+
}
|
169
|
+
|
170
|
+
hnsw.add_with_locks(*dis, pt_level, pt_id, locks, vt);
|
171
|
+
|
172
|
+
if (prev_display >= 0 && i - i0 > prev_display + 10000) {
|
173
|
+
prev_display = i - i0;
|
174
|
+
printf(" %d / %d\r", i - i0, i1 - i0);
|
175
|
+
fflush(stdout);
|
176
|
+
}
|
177
|
+
|
178
|
+
if (counter % check_period == 0) {
|
179
|
+
if (InterruptCallback::is_interrupted ()) {
|
180
|
+
interrupt = true;
|
181
|
+
}
|
182
|
+
}
|
183
|
+
counter++;
|
184
|
+
}
|
185
|
+
|
186
|
+
}
|
187
|
+
if (interrupt) {
|
188
|
+
FAISS_THROW_MSG ("computation interrupted");
|
189
|
+
}
|
190
|
+
i1 = i0;
|
191
|
+
}
|
192
|
+
FAISS_ASSERT(i1 == 0);
|
193
|
+
}
|
194
|
+
if (verbose) {
|
195
|
+
printf("Done in %.3f ms\n", getmillisecs() - t0);
|
196
|
+
}
|
197
|
+
|
198
|
+
for(int i = 0; i < ntotal; i++) {
|
199
|
+
omp_destroy_lock(&locks[i]);
|
200
|
+
}
|
201
|
+
}
|
202
|
+
|
203
|
+
|
204
|
+
} // namespace
|
205
|
+
|
206
|
+
|
207
|
+
|
208
|
+
|
209
|
+
/**************************************************************
|
210
|
+
* IndexHNSW implementation
|
211
|
+
**************************************************************/
|
212
|
+
|
213
|
+
IndexHNSW::IndexHNSW(int d, int M):
|
214
|
+
Index(d, METRIC_L2),
|
215
|
+
hnsw(M),
|
216
|
+
own_fields(false),
|
217
|
+
storage(nullptr),
|
218
|
+
reconstruct_from_neighbors(nullptr)
|
219
|
+
{}
|
220
|
+
|
221
|
+
IndexHNSW::IndexHNSW(Index *storage, int M):
|
222
|
+
Index(storage->d, storage->metric_type),
|
223
|
+
hnsw(M),
|
224
|
+
own_fields(false),
|
225
|
+
storage(storage),
|
226
|
+
reconstruct_from_neighbors(nullptr)
|
227
|
+
{}
|
228
|
+
|
229
|
+
IndexHNSW::~IndexHNSW() {
|
230
|
+
if (own_fields) {
|
231
|
+
delete storage;
|
232
|
+
}
|
233
|
+
}
|
234
|
+
|
235
|
+
void IndexHNSW::train(idx_t n, const float* x)
|
236
|
+
{
|
237
|
+
FAISS_THROW_IF_NOT_MSG(storage,
|
238
|
+
"Please use IndexHSNWFlat (or variants) instead of IndexHNSW directly");
|
239
|
+
// hnsw structure does not require training
|
240
|
+
storage->train (n, x);
|
241
|
+
is_trained = true;
|
242
|
+
}
|
243
|
+
|
244
|
+
void IndexHNSW::search (idx_t n, const float *x, idx_t k,
|
245
|
+
float *distances, idx_t *labels) const
|
246
|
+
|
247
|
+
{
|
248
|
+
FAISS_THROW_IF_NOT_MSG(storage,
|
249
|
+
"Please use IndexHSNWFlat (or variants) instead of IndexHNSW directly");
|
250
|
+
size_t nreorder = 0;
|
251
|
+
|
252
|
+
idx_t check_period = InterruptCallback::get_period_hint (
|
253
|
+
hnsw.max_level * d * hnsw.efSearch);
|
254
|
+
|
255
|
+
for (idx_t i0 = 0; i0 < n; i0 += check_period) {
|
256
|
+
idx_t i1 = std::min(i0 + check_period, n);
|
257
|
+
|
258
|
+
#pragma omp parallel reduction(+ : nreorder)
|
259
|
+
{
|
260
|
+
VisitedTable vt (ntotal);
|
261
|
+
DistanceComputer *dis = storage->get_distance_computer();
|
262
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
263
|
+
|
264
|
+
#pragma omp for
|
265
|
+
for(idx_t i = i0; i < i1; i++) {
|
266
|
+
idx_t * idxi = labels + i * k;
|
267
|
+
float * simi = distances + i * k;
|
268
|
+
dis->set_query(x + i * d);
|
269
|
+
|
270
|
+
maxheap_heapify (k, simi, idxi);
|
271
|
+
hnsw.search(*dis, k, idxi, simi, vt);
|
272
|
+
|
273
|
+
maxheap_reorder (k, simi, idxi);
|
274
|
+
|
275
|
+
if (reconstruct_from_neighbors &&
|
276
|
+
reconstruct_from_neighbors->k_reorder != 0) {
|
277
|
+
int k_reorder = reconstruct_from_neighbors->k_reorder;
|
278
|
+
if (k_reorder == -1 || k_reorder > k) k_reorder = k;
|
279
|
+
|
280
|
+
nreorder += reconstruct_from_neighbors->compute_distances(
|
281
|
+
k_reorder, idxi, x + i * d, simi);
|
282
|
+
|
283
|
+
// sort top k_reorder
|
284
|
+
maxheap_heapify (k_reorder, simi, idxi, simi, idxi, k_reorder);
|
285
|
+
maxheap_reorder (k_reorder, simi, idxi);
|
286
|
+
}
|
287
|
+
|
288
|
+
}
|
289
|
+
|
290
|
+
}
|
291
|
+
InterruptCallback::check ();
|
292
|
+
}
|
293
|
+
hnsw_stats.nreorder += nreorder;
|
294
|
+
}
|
295
|
+
|
296
|
+
|
297
|
+
void IndexHNSW::add(idx_t n, const float *x)
|
298
|
+
{
|
299
|
+
FAISS_THROW_IF_NOT_MSG(storage,
|
300
|
+
"Please use IndexHSNWFlat (or variants) instead of IndexHNSW directly");
|
301
|
+
FAISS_THROW_IF_NOT(is_trained);
|
302
|
+
int n0 = ntotal;
|
303
|
+
storage->add(n, x);
|
304
|
+
ntotal = storage->ntotal;
|
305
|
+
|
306
|
+
hnsw_add_vertices (*this, n0, n, x, verbose,
|
307
|
+
hnsw.levels.size() == ntotal);
|
308
|
+
}
|
309
|
+
|
310
|
+
void IndexHNSW::reset()
|
311
|
+
{
|
312
|
+
hnsw.reset();
|
313
|
+
storage->reset();
|
314
|
+
ntotal = 0;
|
315
|
+
}
|
316
|
+
|
317
|
+
void IndexHNSW::reconstruct (idx_t key, float* recons) const
|
318
|
+
{
|
319
|
+
storage->reconstruct(key, recons);
|
320
|
+
}
|
321
|
+
|
322
|
+
void IndexHNSW::shrink_level_0_neighbors(int new_size)
|
323
|
+
{
|
324
|
+
#pragma omp parallel
|
325
|
+
{
|
326
|
+
DistanceComputer *dis = storage->get_distance_computer();
|
327
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
328
|
+
|
329
|
+
#pragma omp for
|
330
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
331
|
+
|
332
|
+
size_t begin, end;
|
333
|
+
hnsw.neighbor_range(i, 0, &begin, &end);
|
334
|
+
|
335
|
+
std::priority_queue<NodeDistFarther> initial_list;
|
336
|
+
|
337
|
+
for (size_t j = begin; j < end; j++) {
|
338
|
+
int v1 = hnsw.neighbors[j];
|
339
|
+
if (v1 < 0) break;
|
340
|
+
initial_list.emplace(dis->symmetric_dis(i, v1), v1);
|
341
|
+
|
342
|
+
// initial_list.emplace(qdis(v1), v1);
|
343
|
+
}
|
344
|
+
|
345
|
+
std::vector<NodeDistFarther> shrunk_list;
|
346
|
+
HNSW::shrink_neighbor_list(*dis, initial_list,
|
347
|
+
shrunk_list, new_size);
|
348
|
+
|
349
|
+
for (size_t j = begin; j < end; j++) {
|
350
|
+
if (j - begin < shrunk_list.size())
|
351
|
+
hnsw.neighbors[j] = shrunk_list[j - begin].id;
|
352
|
+
else
|
353
|
+
hnsw.neighbors[j] = -1;
|
354
|
+
}
|
355
|
+
}
|
356
|
+
}
|
357
|
+
|
358
|
+
}
|
359
|
+
|
360
|
+
void IndexHNSW::search_level_0(
|
361
|
+
idx_t n, const float *x, idx_t k,
|
362
|
+
const storage_idx_t *nearest, const float *nearest_d,
|
363
|
+
float *distances, idx_t *labels, int nprobe,
|
364
|
+
int search_type) const
|
365
|
+
{
|
366
|
+
|
367
|
+
storage_idx_t ntotal = hnsw.levels.size();
|
368
|
+
#pragma omp parallel
|
369
|
+
{
|
370
|
+
DistanceComputer *qdis = storage->get_distance_computer();
|
371
|
+
ScopeDeleter1<DistanceComputer> del(qdis);
|
372
|
+
|
373
|
+
VisitedTable vt (ntotal);
|
374
|
+
|
375
|
+
#pragma omp for
|
376
|
+
for(idx_t i = 0; i < n; i++) {
|
377
|
+
idx_t * idxi = labels + i * k;
|
378
|
+
float * simi = distances + i * k;
|
379
|
+
|
380
|
+
qdis->set_query(x + i * d);
|
381
|
+
maxheap_heapify (k, simi, idxi);
|
382
|
+
|
383
|
+
if (search_type == 1) {
|
384
|
+
|
385
|
+
int nres = 0;
|
386
|
+
|
387
|
+
for(int j = 0; j < nprobe; j++) {
|
388
|
+
storage_idx_t cj = nearest[i * nprobe + j];
|
389
|
+
|
390
|
+
if (cj < 0) break;
|
391
|
+
|
392
|
+
if (vt.get(cj)) continue;
|
393
|
+
|
394
|
+
int candidates_size = std::max(hnsw.efSearch, int(k));
|
395
|
+
MinimaxHeap candidates(candidates_size);
|
396
|
+
|
397
|
+
candidates.push(cj, nearest_d[i * nprobe + j]);
|
398
|
+
|
399
|
+
nres = hnsw.search_from_candidates(
|
400
|
+
*qdis, k, idxi, simi,
|
401
|
+
candidates, vt, 0, nres
|
402
|
+
);
|
403
|
+
}
|
404
|
+
} else if (search_type == 2) {
|
405
|
+
|
406
|
+
int candidates_size = std::max(hnsw.efSearch, int(k));
|
407
|
+
candidates_size = std::max(candidates_size, nprobe);
|
408
|
+
|
409
|
+
MinimaxHeap candidates(candidates_size);
|
410
|
+
for(int j = 0; j < nprobe; j++) {
|
411
|
+
storage_idx_t cj = nearest[i * nprobe + j];
|
412
|
+
|
413
|
+
if (cj < 0) break;
|
414
|
+
candidates.push(cj, nearest_d[i * nprobe + j]);
|
415
|
+
}
|
416
|
+
hnsw.search_from_candidates(
|
417
|
+
*qdis, k, idxi, simi,
|
418
|
+
candidates, vt, 0
|
419
|
+
);
|
420
|
+
|
421
|
+
}
|
422
|
+
vt.advance();
|
423
|
+
|
424
|
+
maxheap_reorder (k, simi, idxi);
|
425
|
+
|
426
|
+
}
|
427
|
+
}
|
428
|
+
|
429
|
+
|
430
|
+
}
|
431
|
+
|
432
|
+
void IndexHNSW::init_level_0_from_knngraph(
|
433
|
+
int k, const float *D, const idx_t *I)
|
434
|
+
{
|
435
|
+
int dest_size = hnsw.nb_neighbors (0);
|
436
|
+
|
437
|
+
#pragma omp parallel for
|
438
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
439
|
+
DistanceComputer *qdis = storage->get_distance_computer();
|
440
|
+
float vec[d];
|
441
|
+
storage->reconstruct(i, vec);
|
442
|
+
qdis->set_query(vec);
|
443
|
+
|
444
|
+
std::priority_queue<NodeDistFarther> initial_list;
|
445
|
+
|
446
|
+
for (size_t j = 0; j < k; j++) {
|
447
|
+
int v1 = I[i * k + j];
|
448
|
+
if (v1 == i) continue;
|
449
|
+
if (v1 < 0) break;
|
450
|
+
initial_list.emplace(D[i * k + j], v1);
|
451
|
+
}
|
452
|
+
|
453
|
+
std::vector<NodeDistFarther> shrunk_list;
|
454
|
+
HNSW::shrink_neighbor_list(*qdis, initial_list, shrunk_list, dest_size);
|
455
|
+
|
456
|
+
size_t begin, end;
|
457
|
+
hnsw.neighbor_range(i, 0, &begin, &end);
|
458
|
+
|
459
|
+
for (size_t j = begin; j < end; j++) {
|
460
|
+
if (j - begin < shrunk_list.size())
|
461
|
+
hnsw.neighbors[j] = shrunk_list[j - begin].id;
|
462
|
+
else
|
463
|
+
hnsw.neighbors[j] = -1;
|
464
|
+
}
|
465
|
+
}
|
466
|
+
}
|
467
|
+
|
468
|
+
|
469
|
+
|
470
|
+
void IndexHNSW::init_level_0_from_entry_points(
|
471
|
+
int n, const storage_idx_t *points,
|
472
|
+
const storage_idx_t *nearests)
|
473
|
+
{
|
474
|
+
|
475
|
+
std::vector<omp_lock_t> locks(ntotal);
|
476
|
+
for(int i = 0; i < ntotal; i++)
|
477
|
+
omp_init_lock(&locks[i]);
|
478
|
+
|
479
|
+
#pragma omp parallel
|
480
|
+
{
|
481
|
+
VisitedTable vt (ntotal);
|
482
|
+
|
483
|
+
DistanceComputer *dis = storage->get_distance_computer();
|
484
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
485
|
+
float vec[storage->d];
|
486
|
+
|
487
|
+
#pragma omp for schedule(dynamic)
|
488
|
+
for (int i = 0; i < n; i++) {
|
489
|
+
storage_idx_t pt_id = points[i];
|
490
|
+
storage_idx_t nearest = nearests[i];
|
491
|
+
storage->reconstruct (pt_id, vec);
|
492
|
+
dis->set_query (vec);
|
493
|
+
|
494
|
+
hnsw.add_links_starting_from(*dis, pt_id,
|
495
|
+
nearest, (*dis)(nearest),
|
496
|
+
0, locks.data(), vt);
|
497
|
+
|
498
|
+
if (verbose && i % 10000 == 0) {
|
499
|
+
printf(" %d / %d\r", i, n);
|
500
|
+
fflush(stdout);
|
501
|
+
}
|
502
|
+
}
|
503
|
+
}
|
504
|
+
if (verbose) {
|
505
|
+
printf("\n");
|
506
|
+
}
|
507
|
+
|
508
|
+
for(int i = 0; i < ntotal; i++)
|
509
|
+
omp_destroy_lock(&locks[i]);
|
510
|
+
}
|
511
|
+
|
512
|
+
void IndexHNSW::reorder_links()
|
513
|
+
{
|
514
|
+
int M = hnsw.nb_neighbors(0);
|
515
|
+
|
516
|
+
#pragma omp parallel
|
517
|
+
{
|
518
|
+
std::vector<float> distances (M);
|
519
|
+
std::vector<size_t> order (M);
|
520
|
+
std::vector<storage_idx_t> tmp (M);
|
521
|
+
DistanceComputer *dis = storage->get_distance_computer();
|
522
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
523
|
+
|
524
|
+
#pragma omp for
|
525
|
+
for(storage_idx_t i = 0; i < ntotal; i++) {
|
526
|
+
|
527
|
+
size_t begin, end;
|
528
|
+
hnsw.neighbor_range(i, 0, &begin, &end);
|
529
|
+
|
530
|
+
for (size_t j = begin; j < end; j++) {
|
531
|
+
storage_idx_t nj = hnsw.neighbors[j];
|
532
|
+
if (nj < 0) {
|
533
|
+
end = j;
|
534
|
+
break;
|
535
|
+
}
|
536
|
+
distances[j - begin] = dis->symmetric_dis(i, nj);
|
537
|
+
tmp [j - begin] = nj;
|
538
|
+
}
|
539
|
+
|
540
|
+
fvec_argsort (end - begin, distances.data(), order.data());
|
541
|
+
for (size_t j = begin; j < end; j++) {
|
542
|
+
hnsw.neighbors[j] = tmp[order[j - begin]];
|
543
|
+
}
|
544
|
+
}
|
545
|
+
|
546
|
+
}
|
547
|
+
}
|
548
|
+
|
549
|
+
|
550
|
+
void IndexHNSW::link_singletons()
|
551
|
+
{
|
552
|
+
printf("search for singletons\n");
|
553
|
+
|
554
|
+
std::vector<bool> seen(ntotal);
|
555
|
+
|
556
|
+
for (size_t i = 0; i < ntotal; i++) {
|
557
|
+
size_t begin, end;
|
558
|
+
hnsw.neighbor_range(i, 0, &begin, &end);
|
559
|
+
for (size_t j = begin; j < end; j++) {
|
560
|
+
storage_idx_t ni = hnsw.neighbors[j];
|
561
|
+
if (ni >= 0) seen[ni] = true;
|
562
|
+
}
|
563
|
+
}
|
564
|
+
|
565
|
+
int n_sing = 0, n_sing_l1 = 0;
|
566
|
+
std::vector<storage_idx_t> singletons;
|
567
|
+
for (storage_idx_t i = 0; i < ntotal; i++) {
|
568
|
+
if (!seen[i]) {
|
569
|
+
singletons.push_back(i);
|
570
|
+
n_sing++;
|
571
|
+
if (hnsw.levels[i] > 1)
|
572
|
+
n_sing_l1++;
|
573
|
+
}
|
574
|
+
}
|
575
|
+
|
576
|
+
printf(" Found %d / %ld singletons (%d appear in a level above)\n",
|
577
|
+
n_sing, ntotal, n_sing_l1);
|
578
|
+
|
579
|
+
std::vector<float>recons(singletons.size() * d);
|
580
|
+
for (int i = 0; i < singletons.size(); i++) {
|
581
|
+
|
582
|
+
FAISS_ASSERT(!"not implemented");
|
583
|
+
|
584
|
+
}
|
585
|
+
|
586
|
+
|
587
|
+
}
|
588
|
+
|
589
|
+
|
590
|
+
/**************************************************************
|
591
|
+
* ReconstructFromNeighbors implementation
|
592
|
+
**************************************************************/
|
593
|
+
|
594
|
+
|
595
|
+
ReconstructFromNeighbors::ReconstructFromNeighbors(
|
596
|
+
const IndexHNSW & index, size_t k, size_t nsq):
|
597
|
+
index(index), k(k), nsq(nsq) {
|
598
|
+
M = index.hnsw.nb_neighbors(0);
|
599
|
+
FAISS_ASSERT(k <= 256);
|
600
|
+
code_size = k == 1 ? 0 : nsq;
|
601
|
+
ntotal = 0;
|
602
|
+
d = index.d;
|
603
|
+
FAISS_ASSERT(d % nsq == 0);
|
604
|
+
dsub = d / nsq;
|
605
|
+
k_reorder = -1;
|
606
|
+
}
|
607
|
+
|
608
|
+
void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp) const
|
609
|
+
{
|
610
|
+
|
611
|
+
|
612
|
+
const HNSW & hnsw = index.hnsw;
|
613
|
+
size_t begin, end;
|
614
|
+
hnsw.neighbor_range(i, 0, &begin, &end);
|
615
|
+
|
616
|
+
if (k == 1 || nsq == 1) {
|
617
|
+
const float * beta;
|
618
|
+
if (k == 1) {
|
619
|
+
beta = codebook.data();
|
620
|
+
} else {
|
621
|
+
int idx = codes[i];
|
622
|
+
beta = codebook.data() + idx * (M + 1);
|
623
|
+
}
|
624
|
+
|
625
|
+
float w0 = beta[0]; // weight of image itself
|
626
|
+
index.storage->reconstruct(i, tmp);
|
627
|
+
|
628
|
+
for (int l = 0; l < d; l++)
|
629
|
+
x[l] = w0 * tmp[l];
|
630
|
+
|
631
|
+
for (size_t j = begin; j < end; j++) {
|
632
|
+
|
633
|
+
storage_idx_t ji = hnsw.neighbors[j];
|
634
|
+
if (ji < 0) ji = i;
|
635
|
+
float w = beta[j - begin + 1];
|
636
|
+
index.storage->reconstruct(ji, tmp);
|
637
|
+
for (int l = 0; l < d; l++)
|
638
|
+
x[l] += w * tmp[l];
|
639
|
+
}
|
640
|
+
} else if (nsq == 2) {
|
641
|
+
int idx0 = codes[2 * i];
|
642
|
+
int idx1 = codes[2 * i + 1];
|
643
|
+
|
644
|
+
const float *beta0 = codebook.data() + idx0 * (M + 1);
|
645
|
+
const float *beta1 = codebook.data() + (idx1 + k) * (M + 1);
|
646
|
+
|
647
|
+
index.storage->reconstruct(i, tmp);
|
648
|
+
|
649
|
+
float w0;
|
650
|
+
|
651
|
+
w0 = beta0[0];
|
652
|
+
for (int l = 0; l < dsub; l++)
|
653
|
+
x[l] = w0 * tmp[l];
|
654
|
+
|
655
|
+
w0 = beta1[0];
|
656
|
+
for (int l = dsub; l < d; l++)
|
657
|
+
x[l] = w0 * tmp[l];
|
658
|
+
|
659
|
+
for (size_t j = begin; j < end; j++) {
|
660
|
+
storage_idx_t ji = hnsw.neighbors[j];
|
661
|
+
if (ji < 0) ji = i;
|
662
|
+
index.storage->reconstruct(ji, tmp);
|
663
|
+
float w;
|
664
|
+
w = beta0[j - begin + 1];
|
665
|
+
for (int l = 0; l < dsub; l++)
|
666
|
+
x[l] += w * tmp[l];
|
667
|
+
|
668
|
+
w = beta1[j - begin + 1];
|
669
|
+
for (int l = dsub; l < d; l++)
|
670
|
+
x[l] += w * tmp[l];
|
671
|
+
}
|
672
|
+
} else {
|
673
|
+
const float *betas[nsq];
|
674
|
+
{
|
675
|
+
const float *b = codebook.data();
|
676
|
+
const uint8_t *c = &codes[i * code_size];
|
677
|
+
for (int sq = 0; sq < nsq; sq++) {
|
678
|
+
betas[sq] = b + (*c++) * (M + 1);
|
679
|
+
b += (M + 1) * k;
|
680
|
+
}
|
681
|
+
}
|
682
|
+
|
683
|
+
index.storage->reconstruct(i, tmp);
|
684
|
+
{
|
685
|
+
int d0 = 0;
|
686
|
+
for (int sq = 0; sq < nsq; sq++) {
|
687
|
+
float w = *(betas[sq]++);
|
688
|
+
int d1 = d0 + dsub;
|
689
|
+
for (int l = d0; l < d1; l++) {
|
690
|
+
x[l] = w * tmp[l];
|
691
|
+
}
|
692
|
+
d0 = d1;
|
693
|
+
}
|
694
|
+
}
|
695
|
+
|
696
|
+
for (size_t j = begin; j < end; j++) {
|
697
|
+
storage_idx_t ji = hnsw.neighbors[j];
|
698
|
+
if (ji < 0) ji = i;
|
699
|
+
|
700
|
+
index.storage->reconstruct(ji, tmp);
|
701
|
+
int d0 = 0;
|
702
|
+
for (int sq = 0; sq < nsq; sq++) {
|
703
|
+
float w = *(betas[sq]++);
|
704
|
+
int d1 = d0 + dsub;
|
705
|
+
for (int l = d0; l < d1; l++) {
|
706
|
+
x[l] += w * tmp[l];
|
707
|
+
}
|
708
|
+
d0 = d1;
|
709
|
+
}
|
710
|
+
}
|
711
|
+
}
|
712
|
+
}
|
713
|
+
|
714
|
+
void ReconstructFromNeighbors::reconstruct_n(storage_idx_t n0,
|
715
|
+
storage_idx_t ni,
|
716
|
+
float *x) const
|
717
|
+
{
|
718
|
+
#pragma omp parallel
|
719
|
+
{
|
720
|
+
std::vector<float> tmp(index.d);
|
721
|
+
#pragma omp for
|
722
|
+
for (storage_idx_t i = 0; i < ni; i++) {
|
723
|
+
reconstruct(n0 + i, x + i * index.d, tmp.data());
|
724
|
+
}
|
725
|
+
}
|
726
|
+
}
|
727
|
+
|
728
|
+
size_t ReconstructFromNeighbors::compute_distances(
|
729
|
+
size_t n, const idx_t *shortlist,
|
730
|
+
const float *query, float *distances) const
|
731
|
+
{
|
732
|
+
std::vector<float> tmp(2 * index.d);
|
733
|
+
size_t ncomp = 0;
|
734
|
+
for (int i = 0; i < n; i++) {
|
735
|
+
if (shortlist[i] < 0) break;
|
736
|
+
reconstruct(shortlist[i], tmp.data(), tmp.data() + index.d);
|
737
|
+
distances[i] = fvec_L2sqr(query, tmp.data(), index.d);
|
738
|
+
ncomp++;
|
739
|
+
}
|
740
|
+
return ncomp;
|
741
|
+
}
|
742
|
+
|
743
|
+
void ReconstructFromNeighbors::get_neighbor_table(storage_idx_t i, float *tmp1) const
|
744
|
+
{
|
745
|
+
const HNSW & hnsw = index.hnsw;
|
746
|
+
size_t begin, end;
|
747
|
+
hnsw.neighbor_range(i, 0, &begin, &end);
|
748
|
+
size_t d = index.d;
|
749
|
+
|
750
|
+
index.storage->reconstruct(i, tmp1);
|
751
|
+
|
752
|
+
for (size_t j = begin; j < end; j++) {
|
753
|
+
storage_idx_t ji = hnsw.neighbors[j];
|
754
|
+
if (ji < 0) ji = i;
|
755
|
+
index.storage->reconstruct(ji, tmp1 + (j - begin + 1) * d);
|
756
|
+
}
|
757
|
+
|
758
|
+
}
|
759
|
+
|
760
|
+
|
761
|
+
/// called by add_codes
|
762
|
+
void ReconstructFromNeighbors::estimate_code(
|
763
|
+
const float *x, storage_idx_t i, uint8_t *code) const
|
764
|
+
{
|
765
|
+
|
766
|
+
// fill in tmp table with the neighbor values
|
767
|
+
float *tmp1 = new float[d * (M + 1) + (d * k)];
|
768
|
+
float *tmp2 = tmp1 + d * (M + 1);
|
769
|
+
ScopeDeleter<float> del(tmp1);
|
770
|
+
|
771
|
+
// collect coordinates of base
|
772
|
+
get_neighbor_table (i, tmp1);
|
773
|
+
|
774
|
+
for (size_t sq = 0; sq < nsq; sq++) {
|
775
|
+
int d0 = sq * dsub;
|
776
|
+
|
777
|
+
{
|
778
|
+
FINTEGER ki = k, di = d, m1 = M + 1;
|
779
|
+
FINTEGER dsubi = dsub;
|
780
|
+
float zero = 0, one = 1;
|
781
|
+
|
782
|
+
sgemm_ ("N", "N", &dsubi, &ki, &m1, &one,
|
783
|
+
tmp1 + d0, &di,
|
784
|
+
codebook.data() + sq * (m1 * k), &m1,
|
785
|
+
&zero, tmp2, &dsubi);
|
786
|
+
}
|
787
|
+
|
788
|
+
float min = HUGE_VAL;
|
789
|
+
int argmin = -1;
|
790
|
+
for (size_t j = 0; j < k; j++) {
|
791
|
+
float dis = fvec_L2sqr(x + d0, tmp2 + j * dsub, dsub);
|
792
|
+
if (dis < min) {
|
793
|
+
min = dis;
|
794
|
+
argmin = j;
|
795
|
+
}
|
796
|
+
}
|
797
|
+
code[sq] = argmin;
|
798
|
+
}
|
799
|
+
|
800
|
+
}
|
801
|
+
|
802
|
+
void ReconstructFromNeighbors::add_codes(size_t n, const float *x)
|
803
|
+
{
|
804
|
+
if (k == 1) { // nothing to encode
|
805
|
+
ntotal += n;
|
806
|
+
return;
|
807
|
+
}
|
808
|
+
codes.resize(codes.size() + code_size * n);
|
809
|
+
#pragma omp parallel for
|
810
|
+
for (int i = 0; i < n; i++) {
|
811
|
+
estimate_code(x + i * index.d, ntotal + i,
|
812
|
+
codes.data() + (ntotal + i) * code_size);
|
813
|
+
}
|
814
|
+
ntotal += n;
|
815
|
+
FAISS_ASSERT (codes.size() == ntotal * code_size);
|
816
|
+
}
|
817
|
+
|
818
|
+
|
819
|
+
/**************************************************************
|
820
|
+
* IndexHNSWFlat implementation
|
821
|
+
**************************************************************/
|
822
|
+
|
823
|
+
|
824
|
+
IndexHNSWFlat::IndexHNSWFlat()
|
825
|
+
{
|
826
|
+
is_trained = true;
|
827
|
+
}
|
828
|
+
|
829
|
+
IndexHNSWFlat::IndexHNSWFlat(int d, int M):
|
830
|
+
IndexHNSW(new IndexFlatL2(d), M)
|
831
|
+
{
|
832
|
+
own_fields = true;
|
833
|
+
is_trained = true;
|
834
|
+
}
|
835
|
+
|
836
|
+
|
837
|
+
/**************************************************************
|
838
|
+
* IndexHNSWPQ implementation
|
839
|
+
**************************************************************/
|
840
|
+
|
841
|
+
|
842
|
+
IndexHNSWPQ::IndexHNSWPQ() {}
|
843
|
+
|
844
|
+
IndexHNSWPQ::IndexHNSWPQ(int d, int pq_m, int M):
|
845
|
+
IndexHNSW(new IndexPQ(d, pq_m, 8), M)
|
846
|
+
{
|
847
|
+
own_fields = true;
|
848
|
+
is_trained = false;
|
849
|
+
}
|
850
|
+
|
851
|
+
void IndexHNSWPQ::train(idx_t n, const float* x)
|
852
|
+
{
|
853
|
+
IndexHNSW::train (n, x);
|
854
|
+
(dynamic_cast<IndexPQ*> (storage))->pq.compute_sdc_table();
|
855
|
+
}
|
856
|
+
|
857
|
+
|
858
|
+
/**************************************************************
|
859
|
+
* IndexHNSWSQ implementation
|
860
|
+
**************************************************************/
|
861
|
+
|
862
|
+
|
863
|
+
IndexHNSWSQ::IndexHNSWSQ(int d, ScalarQuantizer::QuantizerType qtype, int M):
|
864
|
+
IndexHNSW (new IndexScalarQuantizer (d, qtype), M)
|
865
|
+
{
|
866
|
+
is_trained = false;
|
867
|
+
own_fields = true;
|
868
|
+
}
|
869
|
+
|
870
|
+
IndexHNSWSQ::IndexHNSWSQ() {}
|
871
|
+
|
872
|
+
|
873
|
+
/**************************************************************
|
874
|
+
* IndexHNSW2Level implementation
|
875
|
+
**************************************************************/
|
876
|
+
|
877
|
+
|
878
|
+
IndexHNSW2Level::IndexHNSW2Level(Index *quantizer, size_t nlist, int m_pq, int M):
|
879
|
+
IndexHNSW (new Index2Layer (quantizer, nlist, m_pq), M)
|
880
|
+
{
|
881
|
+
own_fields = true;
|
882
|
+
is_trained = false;
|
883
|
+
}
|
884
|
+
|
885
|
+
IndexHNSW2Level::IndexHNSW2Level() {}
|
886
|
+
|
887
|
+
|
888
|
+
namespace {
|
889
|
+
|
890
|
+
|
891
|
+
// same as search_from_candidates but uses v
|
892
|
+
// visno -> is in result list
|
893
|
+
// visno + 1 -> in result list + in candidates
|
894
|
+
int search_from_candidates_2(const HNSW & hnsw,
|
895
|
+
DistanceComputer & qdis, int k,
|
896
|
+
idx_t *I, float * D,
|
897
|
+
MinimaxHeap &candidates,
|
898
|
+
VisitedTable &vt,
|
899
|
+
int level, int nres_in = 0)
|
900
|
+
{
|
901
|
+
int nres = nres_in;
|
902
|
+
int ndis = 0;
|
903
|
+
for (int i = 0; i < candidates.size(); i++) {
|
904
|
+
idx_t v1 = candidates.ids[i];
|
905
|
+
FAISS_ASSERT(v1 >= 0);
|
906
|
+
vt.visited[v1] = vt.visno + 1;
|
907
|
+
}
|
908
|
+
|
909
|
+
int nstep = 0;
|
910
|
+
|
911
|
+
while (candidates.size() > 0) {
|
912
|
+
float d0 = 0;
|
913
|
+
int v0 = candidates.pop_min(&d0);
|
914
|
+
|
915
|
+
size_t begin, end;
|
916
|
+
hnsw.neighbor_range(v0, level, &begin, &end);
|
917
|
+
|
918
|
+
for (size_t j = begin; j < end; j++) {
|
919
|
+
int v1 = hnsw.neighbors[j];
|
920
|
+
if (v1 < 0) break;
|
921
|
+
if (vt.visited[v1] == vt.visno + 1) {
|
922
|
+
// nothing to do
|
923
|
+
} else {
|
924
|
+
ndis++;
|
925
|
+
float d = qdis(v1);
|
926
|
+
candidates.push(v1, d);
|
927
|
+
|
928
|
+
// never seen before --> add to heap
|
929
|
+
if (vt.visited[v1] < vt.visno) {
|
930
|
+
if (nres < k) {
|
931
|
+
faiss::maxheap_push (++nres, D, I, d, v1);
|
932
|
+
} else if (d < D[0]) {
|
933
|
+
faiss::maxheap_pop (nres--, D, I);
|
934
|
+
faiss::maxheap_push (++nres, D, I, d, v1);
|
935
|
+
}
|
936
|
+
}
|
937
|
+
vt.visited[v1] = vt.visno + 1;
|
938
|
+
}
|
939
|
+
}
|
940
|
+
|
941
|
+
nstep++;
|
942
|
+
if (nstep > hnsw.efSearch) {
|
943
|
+
break;
|
944
|
+
}
|
945
|
+
}
|
946
|
+
|
947
|
+
if (level == 0) {
|
948
|
+
#pragma omp critical
|
949
|
+
{
|
950
|
+
hnsw_stats.n1 ++;
|
951
|
+
if (candidates.size() == 0)
|
952
|
+
hnsw_stats.n2 ++;
|
953
|
+
}
|
954
|
+
}
|
955
|
+
|
956
|
+
|
957
|
+
return nres;
|
958
|
+
}
|
959
|
+
|
960
|
+
|
961
|
+
} // namespace
|
962
|
+
|
963
|
+
void IndexHNSW2Level::search (idx_t n, const float *x, idx_t k,
|
964
|
+
float *distances, idx_t *labels) const
|
965
|
+
{
|
966
|
+
if (dynamic_cast<const Index2Layer*>(storage)) {
|
967
|
+
IndexHNSW::search (n, x, k, distances, labels);
|
968
|
+
|
969
|
+
} else { // "mixed" search
|
970
|
+
|
971
|
+
const IndexIVFPQ *index_ivfpq =
|
972
|
+
dynamic_cast<const IndexIVFPQ*>(storage);
|
973
|
+
|
974
|
+
int nprobe = index_ivfpq->nprobe;
|
975
|
+
|
976
|
+
std::unique_ptr<idx_t[]> coarse_assign(new idx_t[n * nprobe]);
|
977
|
+
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
978
|
+
|
979
|
+
index_ivfpq->quantizer->search (n, x, nprobe, coarse_dis.get(),
|
980
|
+
coarse_assign.get());
|
981
|
+
|
982
|
+
index_ivfpq->search_preassigned (n, x, k, coarse_assign.get(),
|
983
|
+
coarse_dis.get(), distances, labels,
|
984
|
+
false);
|
985
|
+
|
986
|
+
#pragma omp parallel
|
987
|
+
{
|
988
|
+
VisitedTable vt (ntotal);
|
989
|
+
DistanceComputer *dis = storage->get_distance_computer();
|
990
|
+
ScopeDeleter1<DistanceComputer> del(dis);
|
991
|
+
|
992
|
+
int candidates_size = hnsw.upper_beam;
|
993
|
+
MinimaxHeap candidates(candidates_size);
|
994
|
+
|
995
|
+
#pragma omp for
|
996
|
+
for(idx_t i = 0; i < n; i++) {
|
997
|
+
idx_t * idxi = labels + i * k;
|
998
|
+
float * simi = distances + i * k;
|
999
|
+
dis->set_query(x + i * d);
|
1000
|
+
|
1001
|
+
// mark all inverted list elements as visited
|
1002
|
+
|
1003
|
+
for (int j = 0; j < nprobe; j++) {
|
1004
|
+
idx_t key = coarse_assign[j + i * nprobe];
|
1005
|
+
if (key < 0) break;
|
1006
|
+
size_t list_length = index_ivfpq->get_list_size (key);
|
1007
|
+
const idx_t * ids = index_ivfpq->invlists->get_ids (key);
|
1008
|
+
|
1009
|
+
for (int jj = 0; jj < list_length; jj++) {
|
1010
|
+
vt.set (ids[jj]);
|
1011
|
+
}
|
1012
|
+
}
|
1013
|
+
|
1014
|
+
candidates.clear();
|
1015
|
+
// copy the upper_beam elements to candidates list
|
1016
|
+
|
1017
|
+
int search_policy = 2;
|
1018
|
+
|
1019
|
+
if (search_policy == 1) {
|
1020
|
+
|
1021
|
+
for (int j = 0 ; j < hnsw.upper_beam && j < k; j++) {
|
1022
|
+
if (idxi[j] < 0) break;
|
1023
|
+
candidates.push (idxi[j], simi[j]);
|
1024
|
+
// search_from_candidates adds them back
|
1025
|
+
idxi[j] = -1;
|
1026
|
+
simi[j] = HUGE_VAL;
|
1027
|
+
}
|
1028
|
+
|
1029
|
+
// reorder from sorted to heap
|
1030
|
+
maxheap_heapify (k, simi, idxi, simi, idxi, k);
|
1031
|
+
|
1032
|
+
hnsw.search_from_candidates(
|
1033
|
+
*dis, k, idxi, simi,
|
1034
|
+
candidates, vt, 0, k
|
1035
|
+
);
|
1036
|
+
|
1037
|
+
vt.advance();
|
1038
|
+
|
1039
|
+
} else if (search_policy == 2) {
|
1040
|
+
|
1041
|
+
for (int j = 0 ; j < hnsw.upper_beam && j < k; j++) {
|
1042
|
+
if (idxi[j] < 0) break;
|
1043
|
+
candidates.push (idxi[j], simi[j]);
|
1044
|
+
}
|
1045
|
+
|
1046
|
+
// reorder from sorted to heap
|
1047
|
+
maxheap_heapify (k, simi, idxi, simi, idxi, k);
|
1048
|
+
|
1049
|
+
search_from_candidates_2 (
|
1050
|
+
hnsw, *dis, k, idxi, simi,
|
1051
|
+
candidates, vt, 0, k);
|
1052
|
+
vt.advance ();
|
1053
|
+
vt.advance ();
|
1054
|
+
|
1055
|
+
}
|
1056
|
+
|
1057
|
+
maxheap_reorder (k, simi, idxi);
|
1058
|
+
}
|
1059
|
+
}
|
1060
|
+
}
|
1061
|
+
|
1062
|
+
|
1063
|
+
}
|
1064
|
+
|
1065
|
+
|
1066
|
+
void IndexHNSW2Level::flip_to_ivf ()
|
1067
|
+
{
|
1068
|
+
Index2Layer *storage2l =
|
1069
|
+
dynamic_cast<Index2Layer*>(storage);
|
1070
|
+
|
1071
|
+
FAISS_THROW_IF_NOT (storage2l);
|
1072
|
+
|
1073
|
+
IndexIVFPQ * index_ivfpq =
|
1074
|
+
new IndexIVFPQ (storage2l->q1.quantizer,
|
1075
|
+
d, storage2l->q1.nlist,
|
1076
|
+
storage2l->pq.M, 8);
|
1077
|
+
index_ivfpq->pq = storage2l->pq;
|
1078
|
+
index_ivfpq->is_trained = storage2l->is_trained;
|
1079
|
+
index_ivfpq->precompute_table();
|
1080
|
+
index_ivfpq->own_fields = storage2l->q1.own_fields;
|
1081
|
+
storage2l->transfer_to_IVFPQ(*index_ivfpq);
|
1082
|
+
index_ivfpq->make_direct_map (true);
|
1083
|
+
|
1084
|
+
storage = index_ivfpq;
|
1085
|
+
delete storage2l;
|
1086
|
+
|
1087
|
+
}
|
1088
|
+
|
1089
|
+
|
1090
|
+
} // namespace faiss
|