faiss 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +103 -3
- data/ext/faiss/ext.cpp +99 -32
- data/ext/faiss/extconf.rb +12 -2
- data/lib/faiss/ext.bundle +0 -0
- data/lib/faiss/index.rb +3 -3
- data/lib/faiss/index_binary.rb +3 -3
- data/lib/faiss/kmeans.rb +1 -1
- data/lib/faiss/pca_matrix.rb +2 -2
- data/lib/faiss/product_quantizer.rb +3 -3
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/AutoTune.cpp +719 -0
- data/vendor/faiss/AutoTune.h +212 -0
- data/vendor/faiss/Clustering.cpp +261 -0
- data/vendor/faiss/Clustering.h +101 -0
- data/vendor/faiss/IVFlib.cpp +339 -0
- data/vendor/faiss/IVFlib.h +132 -0
- data/vendor/faiss/Index.cpp +171 -0
- data/vendor/faiss/Index.h +261 -0
- data/vendor/faiss/Index2Layer.cpp +437 -0
- data/vendor/faiss/Index2Layer.h +85 -0
- data/vendor/faiss/IndexBinary.cpp +77 -0
- data/vendor/faiss/IndexBinary.h +163 -0
- data/vendor/faiss/IndexBinaryFlat.cpp +83 -0
- data/vendor/faiss/IndexBinaryFlat.h +54 -0
- data/vendor/faiss/IndexBinaryFromFloat.cpp +78 -0
- data/vendor/faiss/IndexBinaryFromFloat.h +52 -0
- data/vendor/faiss/IndexBinaryHNSW.cpp +325 -0
- data/vendor/faiss/IndexBinaryHNSW.h +56 -0
- data/vendor/faiss/IndexBinaryIVF.cpp +671 -0
- data/vendor/faiss/IndexBinaryIVF.h +211 -0
- data/vendor/faiss/IndexFlat.cpp +508 -0
- data/vendor/faiss/IndexFlat.h +175 -0
- data/vendor/faiss/IndexHNSW.cpp +1090 -0
- data/vendor/faiss/IndexHNSW.h +170 -0
- data/vendor/faiss/IndexIVF.cpp +909 -0
- data/vendor/faiss/IndexIVF.h +353 -0
- data/vendor/faiss/IndexIVFFlat.cpp +502 -0
- data/vendor/faiss/IndexIVFFlat.h +118 -0
- data/vendor/faiss/IndexIVFPQ.cpp +1207 -0
- data/vendor/faiss/IndexIVFPQ.h +161 -0
- data/vendor/faiss/IndexIVFPQR.cpp +219 -0
- data/vendor/faiss/IndexIVFPQR.h +65 -0
- data/vendor/faiss/IndexIVFSpectralHash.cpp +331 -0
- data/vendor/faiss/IndexIVFSpectralHash.h +75 -0
- data/vendor/faiss/IndexLSH.cpp +225 -0
- data/vendor/faiss/IndexLSH.h +87 -0
- data/vendor/faiss/IndexLattice.cpp +143 -0
- data/vendor/faiss/IndexLattice.h +68 -0
- data/vendor/faiss/IndexPQ.cpp +1188 -0
- data/vendor/faiss/IndexPQ.h +199 -0
- data/vendor/faiss/IndexPreTransform.cpp +288 -0
- data/vendor/faiss/IndexPreTransform.h +91 -0
- data/vendor/faiss/IndexReplicas.cpp +123 -0
- data/vendor/faiss/IndexReplicas.h +76 -0
- data/vendor/faiss/IndexScalarQuantizer.cpp +317 -0
- data/vendor/faiss/IndexScalarQuantizer.h +127 -0
- data/vendor/faiss/IndexShards.cpp +317 -0
- data/vendor/faiss/IndexShards.h +100 -0
- data/vendor/faiss/InvertedLists.cpp +623 -0
- data/vendor/faiss/InvertedLists.h +334 -0
- data/vendor/faiss/LICENSE +21 -0
- data/vendor/faiss/MatrixStats.cpp +252 -0
- data/vendor/faiss/MatrixStats.h +62 -0
- data/vendor/faiss/MetaIndexes.cpp +351 -0
- data/vendor/faiss/MetaIndexes.h +126 -0
- data/vendor/faiss/OnDiskInvertedLists.cpp +674 -0
- data/vendor/faiss/OnDiskInvertedLists.h +127 -0
- data/vendor/faiss/VectorTransform.cpp +1157 -0
- data/vendor/faiss/VectorTransform.h +322 -0
- data/vendor/faiss/c_api/AutoTune_c.cpp +83 -0
- data/vendor/faiss/c_api/AutoTune_c.h +64 -0
- data/vendor/faiss/c_api/Clustering_c.cpp +139 -0
- data/vendor/faiss/c_api/Clustering_c.h +117 -0
- data/vendor/faiss/c_api/IndexFlat_c.cpp +140 -0
- data/vendor/faiss/c_api/IndexFlat_c.h +115 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +64 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +58 -0
- data/vendor/faiss/c_api/IndexIVF_c.cpp +92 -0
- data/vendor/faiss/c_api/IndexIVF_c.h +135 -0
- data/vendor/faiss/c_api/IndexLSH_c.cpp +37 -0
- data/vendor/faiss/c_api/IndexLSH_c.h +40 -0
- data/vendor/faiss/c_api/IndexShards_c.cpp +44 -0
- data/vendor/faiss/c_api/IndexShards_c.h +42 -0
- data/vendor/faiss/c_api/Index_c.cpp +105 -0
- data/vendor/faiss/c_api/Index_c.h +183 -0
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +49 -0
- data/vendor/faiss/c_api/MetaIndexes_c.h +49 -0
- data/vendor/faiss/c_api/clone_index_c.cpp +23 -0
- data/vendor/faiss/c_api/clone_index_c.h +32 -0
- data/vendor/faiss/c_api/error_c.h +42 -0
- data/vendor/faiss/c_api/error_impl.cpp +27 -0
- data/vendor/faiss/c_api/error_impl.h +16 -0
- data/vendor/faiss/c_api/faiss_c.h +58 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +96 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +56 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +52 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +68 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +17 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +30 -0
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +38 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +86 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +66 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +54 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +53 -0
- data/vendor/faiss/c_api/gpu/macros_impl.h +42 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +220 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +149 -0
- data/vendor/faiss/c_api/index_factory_c.cpp +26 -0
- data/vendor/faiss/c_api/index_factory_c.h +30 -0
- data/vendor/faiss/c_api/index_io_c.cpp +42 -0
- data/vendor/faiss/c_api/index_io_c.h +50 -0
- data/vendor/faiss/c_api/macros_impl.h +110 -0
- data/vendor/faiss/clone_index.cpp +147 -0
- data/vendor/faiss/clone_index.h +38 -0
- data/vendor/faiss/demos/demo_imi_flat.cpp +151 -0
- data/vendor/faiss/demos/demo_imi_pq.cpp +199 -0
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +146 -0
- data/vendor/faiss/demos/demo_sift1M.cpp +252 -0
- data/vendor/faiss/gpu/GpuAutoTune.cpp +95 -0
- data/vendor/faiss/gpu/GpuAutoTune.h +27 -0
- data/vendor/faiss/gpu/GpuCloner.cpp +403 -0
- data/vendor/faiss/gpu/GpuCloner.h +82 -0
- data/vendor/faiss/gpu/GpuClonerOptions.cpp +28 -0
- data/vendor/faiss/gpu/GpuClonerOptions.h +53 -0
- data/vendor/faiss/gpu/GpuDistance.h +52 -0
- data/vendor/faiss/gpu/GpuFaissAssert.h +29 -0
- data/vendor/faiss/gpu/GpuIndex.h +148 -0
- data/vendor/faiss/gpu/GpuIndexBinaryFlat.h +89 -0
- data/vendor/faiss/gpu/GpuIndexFlat.h +190 -0
- data/vendor/faiss/gpu/GpuIndexIVF.h +89 -0
- data/vendor/faiss/gpu/GpuIndexIVFFlat.h +85 -0
- data/vendor/faiss/gpu/GpuIndexIVFPQ.h +143 -0
- data/vendor/faiss/gpu/GpuIndexIVFScalarQuantizer.h +100 -0
- data/vendor/faiss/gpu/GpuIndicesOptions.h +30 -0
- data/vendor/faiss/gpu/GpuResources.cpp +52 -0
- data/vendor/faiss/gpu/GpuResources.h +73 -0
- data/vendor/faiss/gpu/StandardGpuResources.cpp +295 -0
- data/vendor/faiss/gpu/StandardGpuResources.h +114 -0
- data/vendor/faiss/gpu/impl/RemapIndices.cpp +43 -0
- data/vendor/faiss/gpu/impl/RemapIndices.h +24 -0
- data/vendor/faiss/gpu/perf/IndexWrapper-inl.h +71 -0
- data/vendor/faiss/gpu/perf/IndexWrapper.h +39 -0
- data/vendor/faiss/gpu/perf/PerfClustering.cpp +115 -0
- data/vendor/faiss/gpu/perf/PerfIVFPQAdd.cpp +139 -0
- data/vendor/faiss/gpu/perf/WriteIndex.cpp +102 -0
- data/vendor/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +130 -0
- data/vendor/faiss/gpu/test/TestGpuIndexFlat.cpp +371 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +550 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +450 -0
- data/vendor/faiss/gpu/test/TestGpuMemoryException.cpp +84 -0
- data/vendor/faiss/gpu/test/TestUtils.cpp +315 -0
- data/vendor/faiss/gpu/test/TestUtils.h +93 -0
- data/vendor/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +159 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.cpp +77 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.h +71 -0
- data/vendor/faiss/gpu/utils/DeviceUtils.h +185 -0
- data/vendor/faiss/gpu/utils/MemorySpace.cpp +89 -0
- data/vendor/faiss/gpu/utils/MemorySpace.h +44 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.cpp +239 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.h +129 -0
- data/vendor/faiss/gpu/utils/StaticUtils.h +83 -0
- data/vendor/faiss/gpu/utils/Timer.cpp +60 -0
- data/vendor/faiss/gpu/utils/Timer.h +52 -0
- data/vendor/faiss/impl/AuxIndexStructures.cpp +305 -0
- data/vendor/faiss/impl/AuxIndexStructures.h +246 -0
- data/vendor/faiss/impl/FaissAssert.h +95 -0
- data/vendor/faiss/impl/FaissException.cpp +66 -0
- data/vendor/faiss/impl/FaissException.h +71 -0
- data/vendor/faiss/impl/HNSW.cpp +818 -0
- data/vendor/faiss/impl/HNSW.h +275 -0
- data/vendor/faiss/impl/PolysemousTraining.cpp +953 -0
- data/vendor/faiss/impl/PolysemousTraining.h +158 -0
- data/vendor/faiss/impl/ProductQuantizer.cpp +876 -0
- data/vendor/faiss/impl/ProductQuantizer.h +242 -0
- data/vendor/faiss/impl/ScalarQuantizer.cpp +1628 -0
- data/vendor/faiss/impl/ScalarQuantizer.h +120 -0
- data/vendor/faiss/impl/ThreadedIndex-inl.h +192 -0
- data/vendor/faiss/impl/ThreadedIndex.h +80 -0
- data/vendor/faiss/impl/index_read.cpp +793 -0
- data/vendor/faiss/impl/index_write.cpp +558 -0
- data/vendor/faiss/impl/io.cpp +142 -0
- data/vendor/faiss/impl/io.h +98 -0
- data/vendor/faiss/impl/lattice_Zn.cpp +712 -0
- data/vendor/faiss/impl/lattice_Zn.h +199 -0
- data/vendor/faiss/index_factory.cpp +392 -0
- data/vendor/faiss/index_factory.h +25 -0
- data/vendor/faiss/index_io.h +75 -0
- data/vendor/faiss/misc/test_blas.cpp +84 -0
- data/vendor/faiss/tests/test_binary_flat.cpp +64 -0
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +183 -0
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +67 -0
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +98 -0
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +566 -0
- data/vendor/faiss/tests/test_merge.cpp +258 -0
- data/vendor/faiss/tests/test_omp_threads.cpp +14 -0
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +220 -0
- data/vendor/faiss/tests/test_pairs_decoding.cpp +189 -0
- data/vendor/faiss/tests/test_params_override.cpp +231 -0
- data/vendor/faiss/tests/test_pq_encoding.cpp +98 -0
- data/vendor/faiss/tests/test_sliding_ivf.cpp +240 -0
- data/vendor/faiss/tests/test_threaded_index.cpp +253 -0
- data/vendor/faiss/tests/test_transfer_invlists.cpp +159 -0
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +98 -0
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +81 -0
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +93 -0
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +119 -0
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +99 -0
- data/vendor/faiss/utils/Heap.cpp +122 -0
- data/vendor/faiss/utils/Heap.h +495 -0
- data/vendor/faiss/utils/WorkerThread.cpp +126 -0
- data/vendor/faiss/utils/WorkerThread.h +61 -0
- data/vendor/faiss/utils/distances.cpp +765 -0
- data/vendor/faiss/utils/distances.h +243 -0
- data/vendor/faiss/utils/distances_simd.cpp +809 -0
- data/vendor/faiss/utils/extra_distances.cpp +336 -0
- data/vendor/faiss/utils/extra_distances.h +54 -0
- data/vendor/faiss/utils/hamming-inl.h +472 -0
- data/vendor/faiss/utils/hamming.cpp +792 -0
- data/vendor/faiss/utils/hamming.h +220 -0
- data/vendor/faiss/utils/random.cpp +192 -0
- data/vendor/faiss/utils/random.h +60 -0
- data/vendor/faiss/utils/utils.cpp +783 -0
- data/vendor/faiss/utils/utils.h +181 -0
- metadata +216 -2
@@ -0,0 +1,38 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
// I/O code for indexes
|
11
|
+
|
12
|
+
#pragma once
|
13
|
+
|
14
|
+
|
15
|
+
|
16
|
+
namespace faiss {
|
17
|
+
|
18
|
+
struct Index;
|
19
|
+
struct IndexIVF;
|
20
|
+
struct VectorTransform;
|
21
|
+
|
22
|
+
|
23
|
+
/* cloning functions */
|
24
|
+
Index *clone_index (const Index *);
|
25
|
+
|
26
|
+
/** Cloner class, useful to override classes with other cloning
|
27
|
+
* functions. The cloning function above just calls
|
28
|
+
* Cloner::clone_Index. */
|
29
|
+
struct Cloner {
|
30
|
+
virtual VectorTransform *clone_VectorTransform (const VectorTransform *);
|
31
|
+
virtual Index *clone_Index (const Index *);
|
32
|
+
virtual IndexIVF *clone_IndexIVF (const IndexIVF *);
|
33
|
+
virtual ~Cloner() {}
|
34
|
+
};
|
35
|
+
|
36
|
+
|
37
|
+
|
38
|
+
} // namespace faiss
|
@@ -0,0 +1,151 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
|
9
|
+
|
10
|
+
#include <cmath>
|
11
|
+
#include <cstdio>
|
12
|
+
#include <cstdlib>
|
13
|
+
|
14
|
+
#include <sys/time.h>
|
15
|
+
|
16
|
+
|
17
|
+
#include <faiss/IndexPQ.h>
|
18
|
+
#include <faiss/IndexIVFFlat.h>
|
19
|
+
#include <faiss/IndexFlat.h>
|
20
|
+
#include <faiss/index_io.h>
|
21
|
+
|
22
|
+
double elapsed ()
|
23
|
+
{
|
24
|
+
struct timeval tv;
|
25
|
+
gettimeofday (&tv, nullptr);
|
26
|
+
return tv.tv_sec + tv.tv_usec * 1e-6;
|
27
|
+
}
|
28
|
+
|
29
|
+
|
30
|
+
int main ()
|
31
|
+
{
|
32
|
+
double t0 = elapsed();
|
33
|
+
|
34
|
+
// dimension of the vectors to index
|
35
|
+
int d = 128;
|
36
|
+
|
37
|
+
// size of the database we plan to index
|
38
|
+
size_t nb = 1000 * 1000;
|
39
|
+
|
40
|
+
// make a set of nt training vectors in the unit cube
|
41
|
+
// (could be the database)
|
42
|
+
size_t nt = 100 * 1000;
|
43
|
+
|
44
|
+
//---------------------------------------------------------------
|
45
|
+
// Define the core quantizer
|
46
|
+
// We choose a multiple inverted index for faster training with less data
|
47
|
+
// and because it usually offers best accuracy/speed trade-offs
|
48
|
+
//
|
49
|
+
// We here assume that its lifespan of this coarse quantizer will cover the
|
50
|
+
// lifespan of the inverted-file quantizer IndexIVFFlat below
|
51
|
+
// With dynamic allocation, one may give the responsability to free the
|
52
|
+
// quantizer to the inverted-file index (with attribute do_delete_quantizer)
|
53
|
+
//
|
54
|
+
// Note: a regular clustering algorithm would be defined as:
|
55
|
+
// faiss::IndexFlatL2 coarse_quantizer (d);
|
56
|
+
//
|
57
|
+
// Use nhash=2 subquantizers used to define the product coarse quantizer
|
58
|
+
// Number of bits: we will have 2^nbits_coarse centroids per subquantizer
|
59
|
+
// meaning (2^12)^nhash distinct inverted lists
|
60
|
+
size_t nhash = 2;
|
61
|
+
size_t nbits_subq = int (log2 (nb+1) / 2); // good choice in general
|
62
|
+
size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids
|
63
|
+
|
64
|
+
faiss::MultiIndexQuantizer coarse_quantizer (d, nhash, nbits_subq);
|
65
|
+
|
66
|
+
printf ("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
|
67
|
+
nhash, nbits_subq, ncentroids, nb);
|
68
|
+
|
69
|
+
// the coarse quantizer should not be dealloced before the index
|
70
|
+
// 4 = nb of bytes per code (d must be a multiple of this)
|
71
|
+
// 8 = nb of bits per sub-code (almost always 8)
|
72
|
+
faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
|
73
|
+
faiss::IndexIVFFlat index (&coarse_quantizer, d, ncentroids, metric);
|
74
|
+
index.quantizer_trains_alone = true;
|
75
|
+
|
76
|
+
// define the number of probes. 2048 is for high-dim, overkilled in practice
|
77
|
+
// Use 4-1024 depending on the trade-off speed accuracy that you want
|
78
|
+
index.nprobe = 2048;
|
79
|
+
|
80
|
+
|
81
|
+
{ // training
|
82
|
+
printf ("[%.3f s] Generating %ld vectors in %dD for training\n",
|
83
|
+
elapsed() - t0, nt, d);
|
84
|
+
|
85
|
+
std::vector <float> trainvecs (nt * d);
|
86
|
+
for (size_t i = 0; i < nt * d; i++) {
|
87
|
+
trainvecs[i] = drand48();
|
88
|
+
}
|
89
|
+
|
90
|
+
printf ("[%.3f s] Training the index\n", elapsed() - t0);
|
91
|
+
index.verbose = true;
|
92
|
+
index.train (nt, trainvecs.data());
|
93
|
+
}
|
94
|
+
|
95
|
+
size_t nq;
|
96
|
+
std::vector<float> queries;
|
97
|
+
|
98
|
+
{ // populating the database
|
99
|
+
printf ("[%.3f s] Building a dataset of %ld vectors to index\n",
|
100
|
+
elapsed() - t0, nb);
|
101
|
+
|
102
|
+
std::vector <float> database (nb * d);
|
103
|
+
for (size_t i = 0; i < nb * d; i++) {
|
104
|
+
database[i] = drand48();
|
105
|
+
}
|
106
|
+
|
107
|
+
printf ("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
|
108
|
+
|
109
|
+
index.add (nb, database.data());
|
110
|
+
|
111
|
+
// remember a few elements from the database as queries
|
112
|
+
int i0 = 1234;
|
113
|
+
int i1 = 1244;
|
114
|
+
|
115
|
+
nq = i1 - i0;
|
116
|
+
queries.resize (nq * d);
|
117
|
+
for (int i = i0; i < i1; i++) {
|
118
|
+
for (int j = 0; j < d; j++) {
|
119
|
+
queries [(i - i0) * d + j] = database [i * d + j];
|
120
|
+
}
|
121
|
+
}
|
122
|
+
}
|
123
|
+
|
124
|
+
{ // searching the database
|
125
|
+
int k = 5;
|
126
|
+
printf ("[%.3f s] Searching the %d nearest neighbors "
|
127
|
+
"of %ld vectors in the index\n",
|
128
|
+
elapsed() - t0, k, nq);
|
129
|
+
|
130
|
+
std::vector<faiss::Index::idx_t> nns (k * nq);
|
131
|
+
std::vector<float> dis (k * nq);
|
132
|
+
|
133
|
+
index.search (nq, queries.data(), k, dis.data(), nns.data());
|
134
|
+
|
135
|
+
printf ("[%.3f s] Query results (vector ids, then distances):\n",
|
136
|
+
elapsed() - t0);
|
137
|
+
|
138
|
+
for (int i = 0; i < nq; i++) {
|
139
|
+
printf ("query %2d: ", i);
|
140
|
+
for (int j = 0; j < k; j++) {
|
141
|
+
printf ("%7ld ", nns[j + i * k]);
|
142
|
+
}
|
143
|
+
printf ("\n dis: ");
|
144
|
+
for (int j = 0; j < k; j++) {
|
145
|
+
printf ("%7g ", dis[j + i * k]);
|
146
|
+
}
|
147
|
+
printf ("\n");
|
148
|
+
}
|
149
|
+
}
|
150
|
+
return 0;
|
151
|
+
}
|
@@ -0,0 +1,199 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
|
9
|
+
|
10
|
+
#include <cmath>
|
11
|
+
#include <cstdio>
|
12
|
+
#include <cstdlib>
|
13
|
+
|
14
|
+
#include <sys/time.h>
|
15
|
+
|
16
|
+
|
17
|
+
#include <faiss/IndexPQ.h>
|
18
|
+
#include <faiss/IndexIVFPQ.h>
|
19
|
+
#include <faiss/IndexFlat.h>
|
20
|
+
#include <faiss/index_io.h>
|
21
|
+
|
22
|
+
double elapsed ()
|
23
|
+
{
|
24
|
+
struct timeval tv;
|
25
|
+
gettimeofday (&tv, nullptr);
|
26
|
+
return tv.tv_sec + tv.tv_usec * 1e-6;
|
27
|
+
}
|
28
|
+
|
29
|
+
|
30
|
+
int main ()
|
31
|
+
{
|
32
|
+
double t0 = elapsed();
|
33
|
+
|
34
|
+
// dimension of the vectors to index
|
35
|
+
int d = 64;
|
36
|
+
|
37
|
+
// size of the database we plan to index
|
38
|
+
size_t nb = 1000 * 1000;
|
39
|
+
size_t add_bs = 10000; // # size of the blocks to add
|
40
|
+
|
41
|
+
// make a set of nt training vectors in the unit cube
|
42
|
+
// (could be the database)
|
43
|
+
size_t nt = 100 * 1000;
|
44
|
+
|
45
|
+
//---------------------------------------------------------------
|
46
|
+
// Define the core quantizer
|
47
|
+
// We choose a multiple inverted index for faster training with less data
|
48
|
+
// and because it usually offers best accuracy/speed trade-offs
|
49
|
+
//
|
50
|
+
// We here assume that its lifespan of this coarse quantizer will cover the
|
51
|
+
// lifespan of the inverted-file quantizer IndexIVFFlat below
|
52
|
+
// With dynamic allocation, one may give the responsability to free the
|
53
|
+
// quantizer to the inverted-file index (with attribute do_delete_quantizer)
|
54
|
+
//
|
55
|
+
// Note: a regular clustering algorithm would be defined as:
|
56
|
+
// faiss::IndexFlatL2 coarse_quantizer (d);
|
57
|
+
//
|
58
|
+
// Use nhash=2 subquantizers used to define the product coarse quantizer
|
59
|
+
// Number of bits: we will have 2^nbits_coarse centroids per subquantizer
|
60
|
+
// meaning (2^12)^nhash distinct inverted lists
|
61
|
+
//
|
62
|
+
// The parameter bytes_per_code is determined by the memory
|
63
|
+
// constraint, the dataset will use nb * (bytes_per_code + 8)
|
64
|
+
// bytes.
|
65
|
+
//
|
66
|
+
// The parameter nbits_subq is determined by the size of the dataset to index.
|
67
|
+
//
|
68
|
+
size_t nhash = 2;
|
69
|
+
size_t nbits_subq = 9;
|
70
|
+
size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids
|
71
|
+
int bytes_per_code = 16;
|
72
|
+
|
73
|
+
faiss::MultiIndexQuantizer coarse_quantizer (d, nhash, nbits_subq);
|
74
|
+
|
75
|
+
printf ("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
|
76
|
+
nhash, nbits_subq, ncentroids, nb);
|
77
|
+
|
78
|
+
// the coarse quantizer should not be dealloced before the index
|
79
|
+
// 4 = nb of bytes per code (d must be a multiple of this)
|
80
|
+
// 8 = nb of bits per sub-code (almost always 8)
|
81
|
+
faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
|
82
|
+
faiss::IndexIVFPQ index (&coarse_quantizer, d, ncentroids, bytes_per_code, 8);
|
83
|
+
index.quantizer_trains_alone = true;
|
84
|
+
|
85
|
+
// define the number of probes. 2048 is for high-dim, overkill in practice
|
86
|
+
// Use 4-1024 depending on the trade-off speed accuracy that you want
|
87
|
+
index.nprobe = 2048;
|
88
|
+
|
89
|
+
|
90
|
+
{ // training.
|
91
|
+
|
92
|
+
// The distribution of the training vectors should be the same
|
93
|
+
// as the database vectors. It could be a sub-sample of the
|
94
|
+
// database vectors, if sampling is not biased. Here we just
|
95
|
+
// randomly generate the vectors.
|
96
|
+
|
97
|
+
printf ("[%.3f s] Generating %ld vectors in %dD for training\n",
|
98
|
+
elapsed() - t0, nt, d);
|
99
|
+
|
100
|
+
std::vector <float> trainvecs (nt * d);
|
101
|
+
for (size_t i = 0; i < nt; i++) {
|
102
|
+
for (size_t j = 0; j < d; j++) {
|
103
|
+
trainvecs[i * d + j] = drand48();
|
104
|
+
}
|
105
|
+
}
|
106
|
+
|
107
|
+
printf ("[%.3f s] Training the index\n", elapsed() - t0);
|
108
|
+
index.verbose = true;
|
109
|
+
index.train (nt, trainvecs.data());
|
110
|
+
}
|
111
|
+
|
112
|
+
// the index can be re-loaded later with
|
113
|
+
// faiss::Index * idx = faiss::read_index("/tmp/trained_index.faissindex");
|
114
|
+
faiss::write_index(&index, "/tmp/trained_index.faissindex");
|
115
|
+
|
116
|
+
size_t nq;
|
117
|
+
std::vector<float> queries;
|
118
|
+
|
119
|
+
{ // populating the database
|
120
|
+
printf ("[%.3f s] Building a dataset of %ld vectors to index\n",
|
121
|
+
elapsed() - t0, nb);
|
122
|
+
|
123
|
+
std::vector <float> database (nb * d);
|
124
|
+
std::vector <long> ids (nb);
|
125
|
+
for (size_t i = 0; i < nb; i++) {
|
126
|
+
for (size_t j = 0; j < d; j++) {
|
127
|
+
database[i * d + j] = drand48();
|
128
|
+
}
|
129
|
+
ids[i] = 8760000000L + i;
|
130
|
+
}
|
131
|
+
|
132
|
+
printf ("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
|
133
|
+
|
134
|
+
for (size_t begin = 0; begin < nb; begin += add_bs) {
|
135
|
+
size_t end = std::min (begin + add_bs, nb);
|
136
|
+
index.add_with_ids (end - begin,
|
137
|
+
database.data() + d * begin,
|
138
|
+
ids.data() + begin);
|
139
|
+
}
|
140
|
+
|
141
|
+
// remember a few elements from the database as queries
|
142
|
+
int i0 = 1234;
|
143
|
+
int i1 = 1244;
|
144
|
+
|
145
|
+
nq = i1 - i0;
|
146
|
+
queries.resize (nq * d);
|
147
|
+
for (int i = i0; i < i1; i++) {
|
148
|
+
for (int j = 0; j < d; j++) {
|
149
|
+
queries [(i - i0) * d + j] = database [i * d + j];
|
150
|
+
}
|
151
|
+
}
|
152
|
+
}
|
153
|
+
|
154
|
+
// A few notes on the internal format of the index:
|
155
|
+
//
|
156
|
+
// - the positing lists for PQ codes are index.codes, which is a
|
157
|
+
// std::vector < std::vector<uint8_t> >
|
158
|
+
// if n is the length of posting list #i, codes[i] has length bytes_per_code * n
|
159
|
+
//
|
160
|
+
// - the corresponding ids are stored in index.ids
|
161
|
+
//
|
162
|
+
// - given a vector float *x, finding which k centroids are
|
163
|
+
// closest to it (ie to find the nearest neighbors) can be done with
|
164
|
+
//
|
165
|
+
// long *centroid_ids = new long[k];
|
166
|
+
// float *distances = new float[k];
|
167
|
+
// index.quantizer->search (1, x, k, dis, centroids_ids);
|
168
|
+
//
|
169
|
+
|
170
|
+
faiss::write_index(&index, "/tmp/populated_index.faissindex");
|
171
|
+
|
172
|
+
{ // searching the database
|
173
|
+
int k = 5;
|
174
|
+
printf ("[%.3f s] Searching the %d nearest neighbors "
|
175
|
+
"of %ld vectors in the index\n",
|
176
|
+
elapsed() - t0, k, nq);
|
177
|
+
|
178
|
+
std::vector<faiss::Index::idx_t> nns (k * nq);
|
179
|
+
std::vector<float> dis (k * nq);
|
180
|
+
|
181
|
+
index.search (nq, queries.data(), k, dis.data(), nns.data());
|
182
|
+
|
183
|
+
printf ("[%.3f s] Query results (vector ids, then distances):\n",
|
184
|
+
elapsed() - t0);
|
185
|
+
|
186
|
+
for (int i = 0; i < nq; i++) {
|
187
|
+
printf ("query %2d: ", i);
|
188
|
+
for (int j = 0; j < k; j++) {
|
189
|
+
printf ("%7ld ", nns[j + i * k]);
|
190
|
+
}
|
191
|
+
printf ("\n dis: ");
|
192
|
+
for (int j = 0; j < k; j++) {
|
193
|
+
printf ("%7g ", dis[j + i * k]);
|
194
|
+
}
|
195
|
+
printf ("\n");
|
196
|
+
}
|
197
|
+
}
|
198
|
+
return 0;
|
199
|
+
}
|
@@ -0,0 +1,146 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
|
9
|
+
|
10
|
+
#include <cmath>
|
11
|
+
#include <cstdio>
|
12
|
+
#include <cstdlib>
|
13
|
+
|
14
|
+
#include <sys/time.h>
|
15
|
+
|
16
|
+
|
17
|
+
#include <faiss/IndexIVFPQ.h>
|
18
|
+
#include <faiss/IndexFlat.h>
|
19
|
+
#include <faiss/index_io.h>
|
20
|
+
|
21
|
+
double elapsed ()
|
22
|
+
{
|
23
|
+
struct timeval tv;
|
24
|
+
gettimeofday (&tv, NULL);
|
25
|
+
return tv.tv_sec + tv.tv_usec * 1e-6;
|
26
|
+
}
|
27
|
+
|
28
|
+
|
29
|
+
int main ()
|
30
|
+
{
|
31
|
+
|
32
|
+
double t0 = elapsed();
|
33
|
+
|
34
|
+
// dimension of the vectors to index
|
35
|
+
int d = 128;
|
36
|
+
|
37
|
+
// size of the database we plan to index
|
38
|
+
size_t nb = 200 * 1000;
|
39
|
+
|
40
|
+
// make a set of nt training vectors in the unit cube
|
41
|
+
// (could be the database)
|
42
|
+
size_t nt = 100 * 1000;
|
43
|
+
|
44
|
+
// make the index object and train it
|
45
|
+
faiss::IndexFlatL2 coarse_quantizer (d);
|
46
|
+
|
47
|
+
// a reasonable number of centroids to index nb vectors
|
48
|
+
int ncentroids = int (4 * sqrt (nb));
|
49
|
+
|
50
|
+
// the coarse quantizer should not be dealloced before the index
|
51
|
+
// 4 = nb of bytes per code (d must be a multiple of this)
|
52
|
+
// 8 = nb of bits per sub-code (almost always 8)
|
53
|
+
faiss::IndexIVFPQ index (&coarse_quantizer, d,
|
54
|
+
ncentroids, 4, 8);
|
55
|
+
|
56
|
+
|
57
|
+
{ // training
|
58
|
+
printf ("[%.3f s] Generating %ld vectors in %dD for training\n",
|
59
|
+
elapsed() - t0, nt, d);
|
60
|
+
|
61
|
+
std::vector <float> trainvecs (nt * d);
|
62
|
+
for (size_t i = 0; i < nt * d; i++) {
|
63
|
+
trainvecs[i] = drand48();
|
64
|
+
}
|
65
|
+
|
66
|
+
printf ("[%.3f s] Training the index\n",
|
67
|
+
elapsed() - t0);
|
68
|
+
index.verbose = true;
|
69
|
+
|
70
|
+
index.train (nt, trainvecs.data());
|
71
|
+
}
|
72
|
+
|
73
|
+
{ // I/O demo
|
74
|
+
const char *outfilename = "/tmp/index_trained.faissindex";
|
75
|
+
printf ("[%.3f s] storing the pre-trained index to %s\n",
|
76
|
+
elapsed() - t0, outfilename);
|
77
|
+
|
78
|
+
write_index (&index, outfilename);
|
79
|
+
}
|
80
|
+
|
81
|
+
size_t nq;
|
82
|
+
std::vector<float> queries;
|
83
|
+
|
84
|
+
{ // populating the database
|
85
|
+
printf ("[%.3f s] Building a dataset of %ld vectors to index\n",
|
86
|
+
elapsed() - t0, nb);
|
87
|
+
|
88
|
+
std::vector <float> database (nb * d);
|
89
|
+
for (size_t i = 0; i < nb * d; i++) {
|
90
|
+
database[i] = drand48();
|
91
|
+
}
|
92
|
+
|
93
|
+
printf ("[%.3f s] Adding the vectors to the index\n",
|
94
|
+
elapsed() - t0);
|
95
|
+
|
96
|
+
index.add (nb, database.data());
|
97
|
+
|
98
|
+
printf ("[%.3f s] imbalance factor: %g\n",
|
99
|
+
elapsed() - t0, index.invlists->imbalance_factor ());
|
100
|
+
|
101
|
+
// remember a few elements from the database as queries
|
102
|
+
int i0 = 1234;
|
103
|
+
int i1 = 1243;
|
104
|
+
|
105
|
+
nq = i1 - i0;
|
106
|
+
queries.resize (nq * d);
|
107
|
+
for (int i = i0; i < i1; i++) {
|
108
|
+
for (int j = 0; j < d; j++) {
|
109
|
+
queries [(i - i0) * d + j] = database [i * d + j];
|
110
|
+
}
|
111
|
+
}
|
112
|
+
|
113
|
+
}
|
114
|
+
|
115
|
+
{ // searching the database
|
116
|
+
int k = 5;
|
117
|
+
printf ("[%.3f s] Searching the %d nearest neighbors "
|
118
|
+
"of %ld vectors in the index\n",
|
119
|
+
elapsed() - t0, k, nq);
|
120
|
+
|
121
|
+
std::vector<faiss::Index::idx_t> nns (k * nq);
|
122
|
+
std::vector<float> dis (k * nq);
|
123
|
+
|
124
|
+
index.search (nq, queries.data(), k, dis.data(), nns.data());
|
125
|
+
|
126
|
+
printf ("[%.3f s] Query results (vector ids, then distances):\n",
|
127
|
+
elapsed() - t0);
|
128
|
+
|
129
|
+
for (int i = 0; i < nq; i++) {
|
130
|
+
printf ("query %2d: ", i);
|
131
|
+
for (int j = 0; j < k; j++) {
|
132
|
+
printf ("%7ld ", nns[j + i * k]);
|
133
|
+
}
|
134
|
+
printf ("\n dis: ");
|
135
|
+
for (int j = 0; j < k; j++) {
|
136
|
+
printf ("%7g ", dis[j + i * k]);
|
137
|
+
}
|
138
|
+
printf ("\n");
|
139
|
+
}
|
140
|
+
|
141
|
+
printf ("note that the nearest neighbor is not at "
|
142
|
+
"distance 0 due to quantization errors\n");
|
143
|
+
}
|
144
|
+
|
145
|
+
return 0;
|
146
|
+
}
|