faiss 0.1.0 → 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +103 -3
- data/ext/faiss/ext.cpp +99 -32
- data/ext/faiss/extconf.rb +12 -2
- data/lib/faiss/ext.bundle +0 -0
- data/lib/faiss/index.rb +3 -3
- data/lib/faiss/index_binary.rb +3 -3
- data/lib/faiss/kmeans.rb +1 -1
- data/lib/faiss/pca_matrix.rb +2 -2
- data/lib/faiss/product_quantizer.rb +3 -3
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/AutoTune.cpp +719 -0
- data/vendor/faiss/AutoTune.h +212 -0
- data/vendor/faiss/Clustering.cpp +261 -0
- data/vendor/faiss/Clustering.h +101 -0
- data/vendor/faiss/IVFlib.cpp +339 -0
- data/vendor/faiss/IVFlib.h +132 -0
- data/vendor/faiss/Index.cpp +171 -0
- data/vendor/faiss/Index.h +261 -0
- data/vendor/faiss/Index2Layer.cpp +437 -0
- data/vendor/faiss/Index2Layer.h +85 -0
- data/vendor/faiss/IndexBinary.cpp +77 -0
- data/vendor/faiss/IndexBinary.h +163 -0
- data/vendor/faiss/IndexBinaryFlat.cpp +83 -0
- data/vendor/faiss/IndexBinaryFlat.h +54 -0
- data/vendor/faiss/IndexBinaryFromFloat.cpp +78 -0
- data/vendor/faiss/IndexBinaryFromFloat.h +52 -0
- data/vendor/faiss/IndexBinaryHNSW.cpp +325 -0
- data/vendor/faiss/IndexBinaryHNSW.h +56 -0
- data/vendor/faiss/IndexBinaryIVF.cpp +671 -0
- data/vendor/faiss/IndexBinaryIVF.h +211 -0
- data/vendor/faiss/IndexFlat.cpp +508 -0
- data/vendor/faiss/IndexFlat.h +175 -0
- data/vendor/faiss/IndexHNSW.cpp +1090 -0
- data/vendor/faiss/IndexHNSW.h +170 -0
- data/vendor/faiss/IndexIVF.cpp +909 -0
- data/vendor/faiss/IndexIVF.h +353 -0
- data/vendor/faiss/IndexIVFFlat.cpp +502 -0
- data/vendor/faiss/IndexIVFFlat.h +118 -0
- data/vendor/faiss/IndexIVFPQ.cpp +1207 -0
- data/vendor/faiss/IndexIVFPQ.h +161 -0
- data/vendor/faiss/IndexIVFPQR.cpp +219 -0
- data/vendor/faiss/IndexIVFPQR.h +65 -0
- data/vendor/faiss/IndexIVFSpectralHash.cpp +331 -0
- data/vendor/faiss/IndexIVFSpectralHash.h +75 -0
- data/vendor/faiss/IndexLSH.cpp +225 -0
- data/vendor/faiss/IndexLSH.h +87 -0
- data/vendor/faiss/IndexLattice.cpp +143 -0
- data/vendor/faiss/IndexLattice.h +68 -0
- data/vendor/faiss/IndexPQ.cpp +1188 -0
- data/vendor/faiss/IndexPQ.h +199 -0
- data/vendor/faiss/IndexPreTransform.cpp +288 -0
- data/vendor/faiss/IndexPreTransform.h +91 -0
- data/vendor/faiss/IndexReplicas.cpp +123 -0
- data/vendor/faiss/IndexReplicas.h +76 -0
- data/vendor/faiss/IndexScalarQuantizer.cpp +317 -0
- data/vendor/faiss/IndexScalarQuantizer.h +127 -0
- data/vendor/faiss/IndexShards.cpp +317 -0
- data/vendor/faiss/IndexShards.h +100 -0
- data/vendor/faiss/InvertedLists.cpp +623 -0
- data/vendor/faiss/InvertedLists.h +334 -0
- data/vendor/faiss/LICENSE +21 -0
- data/vendor/faiss/MatrixStats.cpp +252 -0
- data/vendor/faiss/MatrixStats.h +62 -0
- data/vendor/faiss/MetaIndexes.cpp +351 -0
- data/vendor/faiss/MetaIndexes.h +126 -0
- data/vendor/faiss/OnDiskInvertedLists.cpp +674 -0
- data/vendor/faiss/OnDiskInvertedLists.h +127 -0
- data/vendor/faiss/VectorTransform.cpp +1157 -0
- data/vendor/faiss/VectorTransform.h +322 -0
- data/vendor/faiss/c_api/AutoTune_c.cpp +83 -0
- data/vendor/faiss/c_api/AutoTune_c.h +64 -0
- data/vendor/faiss/c_api/Clustering_c.cpp +139 -0
- data/vendor/faiss/c_api/Clustering_c.h +117 -0
- data/vendor/faiss/c_api/IndexFlat_c.cpp +140 -0
- data/vendor/faiss/c_api/IndexFlat_c.h +115 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +64 -0
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +58 -0
- data/vendor/faiss/c_api/IndexIVF_c.cpp +92 -0
- data/vendor/faiss/c_api/IndexIVF_c.h +135 -0
- data/vendor/faiss/c_api/IndexLSH_c.cpp +37 -0
- data/vendor/faiss/c_api/IndexLSH_c.h +40 -0
- data/vendor/faiss/c_api/IndexShards_c.cpp +44 -0
- data/vendor/faiss/c_api/IndexShards_c.h +42 -0
- data/vendor/faiss/c_api/Index_c.cpp +105 -0
- data/vendor/faiss/c_api/Index_c.h +183 -0
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +49 -0
- data/vendor/faiss/c_api/MetaIndexes_c.h +49 -0
- data/vendor/faiss/c_api/clone_index_c.cpp +23 -0
- data/vendor/faiss/c_api/clone_index_c.h +32 -0
- data/vendor/faiss/c_api/error_c.h +42 -0
- data/vendor/faiss/c_api/error_impl.cpp +27 -0
- data/vendor/faiss/c_api/error_impl.h +16 -0
- data/vendor/faiss/c_api/faiss_c.h +58 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +96 -0
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +56 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +52 -0
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +68 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +17 -0
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +30 -0
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +38 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +86 -0
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +66 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +54 -0
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +53 -0
- data/vendor/faiss/c_api/gpu/macros_impl.h +42 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +220 -0
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +149 -0
- data/vendor/faiss/c_api/index_factory_c.cpp +26 -0
- data/vendor/faiss/c_api/index_factory_c.h +30 -0
- data/vendor/faiss/c_api/index_io_c.cpp +42 -0
- data/vendor/faiss/c_api/index_io_c.h +50 -0
- data/vendor/faiss/c_api/macros_impl.h +110 -0
- data/vendor/faiss/clone_index.cpp +147 -0
- data/vendor/faiss/clone_index.h +38 -0
- data/vendor/faiss/demos/demo_imi_flat.cpp +151 -0
- data/vendor/faiss/demos/demo_imi_pq.cpp +199 -0
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +146 -0
- data/vendor/faiss/demos/demo_sift1M.cpp +252 -0
- data/vendor/faiss/gpu/GpuAutoTune.cpp +95 -0
- data/vendor/faiss/gpu/GpuAutoTune.h +27 -0
- data/vendor/faiss/gpu/GpuCloner.cpp +403 -0
- data/vendor/faiss/gpu/GpuCloner.h +82 -0
- data/vendor/faiss/gpu/GpuClonerOptions.cpp +28 -0
- data/vendor/faiss/gpu/GpuClonerOptions.h +53 -0
- data/vendor/faiss/gpu/GpuDistance.h +52 -0
- data/vendor/faiss/gpu/GpuFaissAssert.h +29 -0
- data/vendor/faiss/gpu/GpuIndex.h +148 -0
- data/vendor/faiss/gpu/GpuIndexBinaryFlat.h +89 -0
- data/vendor/faiss/gpu/GpuIndexFlat.h +190 -0
- data/vendor/faiss/gpu/GpuIndexIVF.h +89 -0
- data/vendor/faiss/gpu/GpuIndexIVFFlat.h +85 -0
- data/vendor/faiss/gpu/GpuIndexIVFPQ.h +143 -0
- data/vendor/faiss/gpu/GpuIndexIVFScalarQuantizer.h +100 -0
- data/vendor/faiss/gpu/GpuIndicesOptions.h +30 -0
- data/vendor/faiss/gpu/GpuResources.cpp +52 -0
- data/vendor/faiss/gpu/GpuResources.h +73 -0
- data/vendor/faiss/gpu/StandardGpuResources.cpp +295 -0
- data/vendor/faiss/gpu/StandardGpuResources.h +114 -0
- data/vendor/faiss/gpu/impl/RemapIndices.cpp +43 -0
- data/vendor/faiss/gpu/impl/RemapIndices.h +24 -0
- data/vendor/faiss/gpu/perf/IndexWrapper-inl.h +71 -0
- data/vendor/faiss/gpu/perf/IndexWrapper.h +39 -0
- data/vendor/faiss/gpu/perf/PerfClustering.cpp +115 -0
- data/vendor/faiss/gpu/perf/PerfIVFPQAdd.cpp +139 -0
- data/vendor/faiss/gpu/perf/WriteIndex.cpp +102 -0
- data/vendor/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +130 -0
- data/vendor/faiss/gpu/test/TestGpuIndexFlat.cpp +371 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +550 -0
- data/vendor/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +450 -0
- data/vendor/faiss/gpu/test/TestGpuMemoryException.cpp +84 -0
- data/vendor/faiss/gpu/test/TestUtils.cpp +315 -0
- data/vendor/faiss/gpu/test/TestUtils.h +93 -0
- data/vendor/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +159 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.cpp +77 -0
- data/vendor/faiss/gpu/utils/DeviceMemory.h +71 -0
- data/vendor/faiss/gpu/utils/DeviceUtils.h +185 -0
- data/vendor/faiss/gpu/utils/MemorySpace.cpp +89 -0
- data/vendor/faiss/gpu/utils/MemorySpace.h +44 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.cpp +239 -0
- data/vendor/faiss/gpu/utils/StackDeviceMemory.h +129 -0
- data/vendor/faiss/gpu/utils/StaticUtils.h +83 -0
- data/vendor/faiss/gpu/utils/Timer.cpp +60 -0
- data/vendor/faiss/gpu/utils/Timer.h +52 -0
- data/vendor/faiss/impl/AuxIndexStructures.cpp +305 -0
- data/vendor/faiss/impl/AuxIndexStructures.h +246 -0
- data/vendor/faiss/impl/FaissAssert.h +95 -0
- data/vendor/faiss/impl/FaissException.cpp +66 -0
- data/vendor/faiss/impl/FaissException.h +71 -0
- data/vendor/faiss/impl/HNSW.cpp +818 -0
- data/vendor/faiss/impl/HNSW.h +275 -0
- data/vendor/faiss/impl/PolysemousTraining.cpp +953 -0
- data/vendor/faiss/impl/PolysemousTraining.h +158 -0
- data/vendor/faiss/impl/ProductQuantizer.cpp +876 -0
- data/vendor/faiss/impl/ProductQuantizer.h +242 -0
- data/vendor/faiss/impl/ScalarQuantizer.cpp +1628 -0
- data/vendor/faiss/impl/ScalarQuantizer.h +120 -0
- data/vendor/faiss/impl/ThreadedIndex-inl.h +192 -0
- data/vendor/faiss/impl/ThreadedIndex.h +80 -0
- data/vendor/faiss/impl/index_read.cpp +793 -0
- data/vendor/faiss/impl/index_write.cpp +558 -0
- data/vendor/faiss/impl/io.cpp +142 -0
- data/vendor/faiss/impl/io.h +98 -0
- data/vendor/faiss/impl/lattice_Zn.cpp +712 -0
- data/vendor/faiss/impl/lattice_Zn.h +199 -0
- data/vendor/faiss/index_factory.cpp +392 -0
- data/vendor/faiss/index_factory.h +25 -0
- data/vendor/faiss/index_io.h +75 -0
- data/vendor/faiss/misc/test_blas.cpp +84 -0
- data/vendor/faiss/tests/test_binary_flat.cpp +64 -0
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +183 -0
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +67 -0
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +98 -0
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +566 -0
- data/vendor/faiss/tests/test_merge.cpp +258 -0
- data/vendor/faiss/tests/test_omp_threads.cpp +14 -0
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +220 -0
- data/vendor/faiss/tests/test_pairs_decoding.cpp +189 -0
- data/vendor/faiss/tests/test_params_override.cpp +231 -0
- data/vendor/faiss/tests/test_pq_encoding.cpp +98 -0
- data/vendor/faiss/tests/test_sliding_ivf.cpp +240 -0
- data/vendor/faiss/tests/test_threaded_index.cpp +253 -0
- data/vendor/faiss/tests/test_transfer_invlists.cpp +159 -0
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +98 -0
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +81 -0
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +93 -0
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +119 -0
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +99 -0
- data/vendor/faiss/utils/Heap.cpp +122 -0
- data/vendor/faiss/utils/Heap.h +495 -0
- data/vendor/faiss/utils/WorkerThread.cpp +126 -0
- data/vendor/faiss/utils/WorkerThread.h +61 -0
- data/vendor/faiss/utils/distances.cpp +765 -0
- data/vendor/faiss/utils/distances.h +243 -0
- data/vendor/faiss/utils/distances_simd.cpp +809 -0
- data/vendor/faiss/utils/extra_distances.cpp +336 -0
- data/vendor/faiss/utils/extra_distances.h +54 -0
- data/vendor/faiss/utils/hamming-inl.h +472 -0
- data/vendor/faiss/utils/hamming.cpp +792 -0
- data/vendor/faiss/utils/hamming.h +220 -0
- data/vendor/faiss/utils/random.cpp +192 -0
- data/vendor/faiss/utils/random.h +60 -0
- data/vendor/faiss/utils/utils.cpp +783 -0
- data/vendor/faiss/utils/utils.h +181 -0
- metadata +216 -2
@@ -0,0 +1,68 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#ifndef FAISS_INDEX_LATTICE_H
|
11
|
+
#define FAISS_INDEX_LATTICE_H
|
12
|
+
|
13
|
+
|
14
|
+
#include <vector>
|
15
|
+
|
16
|
+
#include <faiss/IndexIVF.h>
|
17
|
+
#include <faiss/impl/lattice_Zn.h>
|
18
|
+
|
19
|
+
namespace faiss {
|
20
|
+
|
21
|
+
|
22
|
+
|
23
|
+
|
24
|
+
|
25
|
+
/** Index that encodes a vector with a series of Zn lattice quantizers
|
26
|
+
*/
|
27
|
+
struct IndexLattice: Index {
|
28
|
+
|
29
|
+
/// number of sub-vectors
|
30
|
+
int nsq;
|
31
|
+
/// dimension of sub-vectors
|
32
|
+
size_t dsq;
|
33
|
+
|
34
|
+
/// the lattice quantizer
|
35
|
+
ZnSphereCodecAlt zn_sphere_codec;
|
36
|
+
|
37
|
+
/// nb bits used to encode the scale, per subvector
|
38
|
+
int scale_nbit, lattice_nbit;
|
39
|
+
/// total, in bytes
|
40
|
+
size_t code_size;
|
41
|
+
|
42
|
+
/// mins and maxes of the vector norms, per subquantizer
|
43
|
+
std::vector<float> trained;
|
44
|
+
|
45
|
+
IndexLattice (idx_t d, int nsq, int scale_nbit, int r2);
|
46
|
+
|
47
|
+
void train(idx_t n, const float* x) override;
|
48
|
+
|
49
|
+
/* The standalone codec interface */
|
50
|
+
size_t sa_code_size () const override;
|
51
|
+
|
52
|
+
void sa_encode (idx_t n, const float *x,
|
53
|
+
uint8_t *bytes) const override;
|
54
|
+
|
55
|
+
void sa_decode (idx_t n, const uint8_t *bytes,
|
56
|
+
float *x) const override;
|
57
|
+
|
58
|
+
/// not implemented
|
59
|
+
void add(idx_t n, const float* x) override;
|
60
|
+
void search(idx_t n, const float* x, idx_t k,
|
61
|
+
float* distances, idx_t* labels) const override;
|
62
|
+
void reset() override;
|
63
|
+
|
64
|
+
};
|
65
|
+
|
66
|
+
} // namespace faiss
|
67
|
+
|
68
|
+
#endif
|
@@ -0,0 +1,1188 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/IndexPQ.h>
|
11
|
+
|
12
|
+
|
13
|
+
#include <cstddef>
|
14
|
+
#include <cstring>
|
15
|
+
#include <cstdio>
|
16
|
+
#include <cmath>
|
17
|
+
|
18
|
+
#include <algorithm>
|
19
|
+
|
20
|
+
#include <faiss/impl/FaissAssert.h>
|
21
|
+
#include <faiss/impl/AuxIndexStructures.h>
|
22
|
+
#include <faiss/utils/hamming.h>
|
23
|
+
|
24
|
+
namespace faiss {
|
25
|
+
|
26
|
+
/*********************************************************
|
27
|
+
* IndexPQ implementation
|
28
|
+
********************************************************/
|
29
|
+
|
30
|
+
|
31
|
+
IndexPQ::IndexPQ (int d, size_t M, size_t nbits, MetricType metric):
|
32
|
+
Index(d, metric), pq(d, M, nbits)
|
33
|
+
{
|
34
|
+
is_trained = false;
|
35
|
+
do_polysemous_training = false;
|
36
|
+
polysemous_ht = nbits * M + 1;
|
37
|
+
search_type = ST_PQ;
|
38
|
+
encode_signs = false;
|
39
|
+
}
|
40
|
+
|
41
|
+
IndexPQ::IndexPQ ()
|
42
|
+
{
|
43
|
+
metric_type = METRIC_L2;
|
44
|
+
is_trained = false;
|
45
|
+
do_polysemous_training = false;
|
46
|
+
polysemous_ht = pq.nbits * pq.M + 1;
|
47
|
+
search_type = ST_PQ;
|
48
|
+
encode_signs = false;
|
49
|
+
}
|
50
|
+
|
51
|
+
|
52
|
+
void IndexPQ::train (idx_t n, const float *x)
|
53
|
+
{
|
54
|
+
if (!do_polysemous_training) { // standard training
|
55
|
+
pq.train(n, x);
|
56
|
+
} else {
|
57
|
+
idx_t ntrain_perm = polysemous_training.ntrain_permutation;
|
58
|
+
|
59
|
+
if (ntrain_perm > n / 4)
|
60
|
+
ntrain_perm = n / 4;
|
61
|
+
if (verbose) {
|
62
|
+
printf ("PQ training on %ld points, remains %ld points: "
|
63
|
+
"training polysemous on %s\n",
|
64
|
+
n - ntrain_perm, ntrain_perm,
|
65
|
+
ntrain_perm == 0 ? "centroids" : "these");
|
66
|
+
}
|
67
|
+
pq.train(n - ntrain_perm, x);
|
68
|
+
|
69
|
+
polysemous_training.optimize_pq_for_hamming (
|
70
|
+
pq, ntrain_perm, x + (n - ntrain_perm) * d);
|
71
|
+
}
|
72
|
+
is_trained = true;
|
73
|
+
}
|
74
|
+
|
75
|
+
|
76
|
+
void IndexPQ::add (idx_t n, const float *x)
|
77
|
+
{
|
78
|
+
FAISS_THROW_IF_NOT (is_trained);
|
79
|
+
codes.resize ((n + ntotal) * pq.code_size);
|
80
|
+
pq.compute_codes (x, &codes[ntotal * pq.code_size], n);
|
81
|
+
ntotal += n;
|
82
|
+
}
|
83
|
+
|
84
|
+
|
85
|
+
size_t IndexPQ::remove_ids (const IDSelector & sel)
|
86
|
+
{
|
87
|
+
idx_t j = 0;
|
88
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
89
|
+
if (sel.is_member (i)) {
|
90
|
+
// should be removed
|
91
|
+
} else {
|
92
|
+
if (i > j) {
|
93
|
+
memmove (&codes[pq.code_size * j], &codes[pq.code_size * i], pq.code_size);
|
94
|
+
}
|
95
|
+
j++;
|
96
|
+
}
|
97
|
+
}
|
98
|
+
size_t nremove = ntotal - j;
|
99
|
+
if (nremove > 0) {
|
100
|
+
ntotal = j;
|
101
|
+
codes.resize (ntotal * pq.code_size);
|
102
|
+
}
|
103
|
+
return nremove;
|
104
|
+
}
|
105
|
+
|
106
|
+
|
107
|
+
void IndexPQ::reset()
|
108
|
+
{
|
109
|
+
codes.clear();
|
110
|
+
ntotal = 0;
|
111
|
+
}
|
112
|
+
|
113
|
+
void IndexPQ::reconstruct_n (idx_t i0, idx_t ni, float *recons) const
|
114
|
+
{
|
115
|
+
FAISS_THROW_IF_NOT (ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
|
116
|
+
for (idx_t i = 0; i < ni; i++) {
|
117
|
+
const uint8_t * code = &codes[(i0 + i) * pq.code_size];
|
118
|
+
pq.decode (code, recons + i * d);
|
119
|
+
}
|
120
|
+
}
|
121
|
+
|
122
|
+
|
123
|
+
void IndexPQ::reconstruct (idx_t key, float * recons) const
|
124
|
+
{
|
125
|
+
FAISS_THROW_IF_NOT (key >= 0 && key < ntotal);
|
126
|
+
pq.decode (&codes[key * pq.code_size], recons);
|
127
|
+
}
|
128
|
+
|
129
|
+
|
130
|
+
namespace {
|
131
|
+
|
132
|
+
|
133
|
+
struct PQDis: DistanceComputer {
|
134
|
+
size_t d;
|
135
|
+
Index::idx_t nb;
|
136
|
+
const uint8_t *codes;
|
137
|
+
size_t code_size;
|
138
|
+
const ProductQuantizer & pq;
|
139
|
+
const float *sdc;
|
140
|
+
std::vector<float> precomputed_table;
|
141
|
+
size_t ndis;
|
142
|
+
|
143
|
+
float operator () (idx_t i) override
|
144
|
+
{
|
145
|
+
const uint8_t *code = codes + i * code_size;
|
146
|
+
const float *dt = precomputed_table.data();
|
147
|
+
float accu = 0;
|
148
|
+
for (int j = 0; j < pq.M; j++) {
|
149
|
+
accu += dt[*code++];
|
150
|
+
dt += 256;
|
151
|
+
}
|
152
|
+
ndis++;
|
153
|
+
return accu;
|
154
|
+
}
|
155
|
+
|
156
|
+
float symmetric_dis(idx_t i, idx_t j) override
|
157
|
+
{
|
158
|
+
const float * sdci = sdc;
|
159
|
+
float accu = 0;
|
160
|
+
const uint8_t *codei = codes + i * code_size;
|
161
|
+
const uint8_t *codej = codes + j * code_size;
|
162
|
+
|
163
|
+
for (int l = 0; l < pq.M; l++) {
|
164
|
+
accu += sdci[(*codei++) + (*codej++) * 256];
|
165
|
+
sdci += 256 * 256;
|
166
|
+
}
|
167
|
+
return accu;
|
168
|
+
}
|
169
|
+
|
170
|
+
explicit PQDis(const IndexPQ& storage, const float* /*q*/ = nullptr)
|
171
|
+
: pq(storage.pq) {
|
172
|
+
precomputed_table.resize(pq.M * pq.ksub);
|
173
|
+
nb = storage.ntotal;
|
174
|
+
d = storage.d;
|
175
|
+
codes = storage.codes.data();
|
176
|
+
code_size = pq.code_size;
|
177
|
+
FAISS_ASSERT(pq.ksub == 256);
|
178
|
+
FAISS_ASSERT(pq.sdc_table.size() == pq.ksub * pq.ksub * pq.M);
|
179
|
+
sdc = pq.sdc_table.data();
|
180
|
+
ndis = 0;
|
181
|
+
}
|
182
|
+
|
183
|
+
void set_query(const float *x) override {
|
184
|
+
pq.compute_distance_table(x, precomputed_table.data());
|
185
|
+
}
|
186
|
+
};
|
187
|
+
|
188
|
+
|
189
|
+
} // namespace
|
190
|
+
|
191
|
+
|
192
|
+
DistanceComputer * IndexPQ::get_distance_computer() const {
|
193
|
+
FAISS_THROW_IF_NOT(pq.nbits == 8);
|
194
|
+
return new PQDis(*this);
|
195
|
+
}
|
196
|
+
|
197
|
+
|
198
|
+
/*****************************************
|
199
|
+
* IndexPQ polysemous search routines
|
200
|
+
******************************************/
|
201
|
+
|
202
|
+
|
203
|
+
|
204
|
+
|
205
|
+
|
206
|
+
void IndexPQ::search (idx_t n, const float *x, idx_t k,
|
207
|
+
float *distances, idx_t *labels) const
|
208
|
+
{
|
209
|
+
FAISS_THROW_IF_NOT (is_trained);
|
210
|
+
if (search_type == ST_PQ) { // Simple PQ search
|
211
|
+
|
212
|
+
if (metric_type == METRIC_L2) {
|
213
|
+
float_maxheap_array_t res = {
|
214
|
+
size_t(n), size_t(k), labels, distances };
|
215
|
+
pq.search (x, n, codes.data(), ntotal, &res, true);
|
216
|
+
} else {
|
217
|
+
float_minheap_array_t res = {
|
218
|
+
size_t(n), size_t(k), labels, distances };
|
219
|
+
pq.search_ip (x, n, codes.data(), ntotal, &res, true);
|
220
|
+
}
|
221
|
+
indexPQ_stats.nq += n;
|
222
|
+
indexPQ_stats.ncode += n * ntotal;
|
223
|
+
|
224
|
+
} else if (search_type == ST_polysemous ||
|
225
|
+
search_type == ST_polysemous_generalize) {
|
226
|
+
|
227
|
+
FAISS_THROW_IF_NOT (metric_type == METRIC_L2);
|
228
|
+
|
229
|
+
search_core_polysemous (n, x, k, distances, labels);
|
230
|
+
|
231
|
+
} else { // code-to-code distances
|
232
|
+
|
233
|
+
uint8_t * q_codes = new uint8_t [n * pq.code_size];
|
234
|
+
ScopeDeleter<uint8_t> del (q_codes);
|
235
|
+
|
236
|
+
|
237
|
+
if (!encode_signs) {
|
238
|
+
pq.compute_codes (x, q_codes, n);
|
239
|
+
} else {
|
240
|
+
FAISS_THROW_IF_NOT (d == pq.nbits * pq.M);
|
241
|
+
memset (q_codes, 0, n * pq.code_size);
|
242
|
+
for (size_t i = 0; i < n; i++) {
|
243
|
+
const float *xi = x + i * d;
|
244
|
+
uint8_t *code = q_codes + i * pq.code_size;
|
245
|
+
for (int j = 0; j < d; j++)
|
246
|
+
if (xi[j] > 0) code [j>>3] |= 1 << (j & 7);
|
247
|
+
}
|
248
|
+
}
|
249
|
+
|
250
|
+
if (search_type == ST_SDC) {
|
251
|
+
|
252
|
+
float_maxheap_array_t res = {
|
253
|
+
size_t(n), size_t(k), labels, distances};
|
254
|
+
|
255
|
+
pq.search_sdc (q_codes, n, codes.data(), ntotal, &res, true);
|
256
|
+
|
257
|
+
} else {
|
258
|
+
int * idistances = new int [n * k];
|
259
|
+
ScopeDeleter<int> del (idistances);
|
260
|
+
|
261
|
+
int_maxheap_array_t res = {
|
262
|
+
size_t (n), size_t (k), labels, idistances};
|
263
|
+
|
264
|
+
if (search_type == ST_HE) {
|
265
|
+
|
266
|
+
hammings_knn_hc (&res, q_codes, codes.data(),
|
267
|
+
ntotal, pq.code_size, true);
|
268
|
+
|
269
|
+
} else if (search_type == ST_generalized_HE) {
|
270
|
+
|
271
|
+
generalized_hammings_knn_hc (&res, q_codes, codes.data(),
|
272
|
+
ntotal, pq.code_size, true);
|
273
|
+
}
|
274
|
+
|
275
|
+
// convert distances to floats
|
276
|
+
for (int i = 0; i < k * n; i++)
|
277
|
+
distances[i] = idistances[i];
|
278
|
+
|
279
|
+
}
|
280
|
+
|
281
|
+
|
282
|
+
indexPQ_stats.nq += n;
|
283
|
+
indexPQ_stats.ncode += n * ntotal;
|
284
|
+
}
|
285
|
+
}
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
|
290
|
+
|
291
|
+
void IndexPQStats::reset()
|
292
|
+
{
|
293
|
+
nq = ncode = n_hamming_pass = 0;
|
294
|
+
}
|
295
|
+
|
296
|
+
IndexPQStats indexPQ_stats;
|
297
|
+
|
298
|
+
|
299
|
+
template <class HammingComputer>
|
300
|
+
static size_t polysemous_inner_loop (
|
301
|
+
const IndexPQ & index,
|
302
|
+
const float *dis_table_qi, const uint8_t *q_code,
|
303
|
+
size_t k, float *heap_dis, int64_t *heap_ids)
|
304
|
+
{
|
305
|
+
|
306
|
+
int M = index.pq.M;
|
307
|
+
int code_size = index.pq.code_size;
|
308
|
+
int ksub = index.pq.ksub;
|
309
|
+
size_t ntotal = index.ntotal;
|
310
|
+
int ht = index.polysemous_ht;
|
311
|
+
|
312
|
+
const uint8_t *b_code = index.codes.data();
|
313
|
+
|
314
|
+
size_t n_pass_i = 0;
|
315
|
+
|
316
|
+
HammingComputer hc (q_code, code_size);
|
317
|
+
|
318
|
+
for (int64_t bi = 0; bi < ntotal; bi++) {
|
319
|
+
int hd = hc.hamming (b_code);
|
320
|
+
|
321
|
+
if (hd < ht) {
|
322
|
+
n_pass_i ++;
|
323
|
+
|
324
|
+
float dis = 0;
|
325
|
+
const float * dis_table = dis_table_qi;
|
326
|
+
for (int m = 0; m < M; m++) {
|
327
|
+
dis += dis_table [b_code[m]];
|
328
|
+
dis_table += ksub;
|
329
|
+
}
|
330
|
+
|
331
|
+
if (dis < heap_dis[0]) {
|
332
|
+
maxheap_pop (k, heap_dis, heap_ids);
|
333
|
+
maxheap_push (k, heap_dis, heap_ids, dis, bi);
|
334
|
+
}
|
335
|
+
}
|
336
|
+
b_code += code_size;
|
337
|
+
}
|
338
|
+
return n_pass_i;
|
339
|
+
}
|
340
|
+
|
341
|
+
|
342
|
+
void IndexPQ::search_core_polysemous (idx_t n, const float *x, idx_t k,
|
343
|
+
float *distances, idx_t *labels) const
|
344
|
+
{
|
345
|
+
FAISS_THROW_IF_NOT (pq.nbits == 8);
|
346
|
+
|
347
|
+
// PQ distance tables
|
348
|
+
float * dis_tables = new float [n * pq.ksub * pq.M];
|
349
|
+
ScopeDeleter<float> del (dis_tables);
|
350
|
+
pq.compute_distance_tables (n, x, dis_tables);
|
351
|
+
|
352
|
+
// Hamming embedding queries
|
353
|
+
uint8_t * q_codes = new uint8_t [n * pq.code_size];
|
354
|
+
ScopeDeleter<uint8_t> del2 (q_codes);
|
355
|
+
|
356
|
+
if (false) {
|
357
|
+
pq.compute_codes (x, q_codes, n);
|
358
|
+
} else {
|
359
|
+
#pragma omp parallel for
|
360
|
+
for (idx_t qi = 0; qi < n; qi++) {
|
361
|
+
pq.compute_code_from_distance_table
|
362
|
+
(dis_tables + qi * pq.M * pq.ksub,
|
363
|
+
q_codes + qi * pq.code_size);
|
364
|
+
}
|
365
|
+
}
|
366
|
+
|
367
|
+
size_t n_pass = 0;
|
368
|
+
|
369
|
+
#pragma omp parallel for reduction (+: n_pass)
|
370
|
+
for (idx_t qi = 0; qi < n; qi++) {
|
371
|
+
const uint8_t * q_code = q_codes + qi * pq.code_size;
|
372
|
+
|
373
|
+
const float * dis_table_qi = dis_tables + qi * pq.M * pq.ksub;
|
374
|
+
|
375
|
+
int64_t * heap_ids = labels + qi * k;
|
376
|
+
float *heap_dis = distances + qi * k;
|
377
|
+
maxheap_heapify (k, heap_dis, heap_ids);
|
378
|
+
|
379
|
+
if (search_type == ST_polysemous) {
|
380
|
+
|
381
|
+
switch (pq.code_size) {
|
382
|
+
case 4:
|
383
|
+
n_pass += polysemous_inner_loop<HammingComputer4>
|
384
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
385
|
+
break;
|
386
|
+
case 8:
|
387
|
+
n_pass += polysemous_inner_loop<HammingComputer8>
|
388
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
389
|
+
break;
|
390
|
+
case 16:
|
391
|
+
n_pass += polysemous_inner_loop<HammingComputer16>
|
392
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
393
|
+
break;
|
394
|
+
case 32:
|
395
|
+
n_pass += polysemous_inner_loop<HammingComputer32>
|
396
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
397
|
+
break;
|
398
|
+
case 20:
|
399
|
+
n_pass += polysemous_inner_loop<HammingComputer20>
|
400
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
401
|
+
break;
|
402
|
+
default:
|
403
|
+
if (pq.code_size % 8 == 0) {
|
404
|
+
n_pass += polysemous_inner_loop<HammingComputerM8>
|
405
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
406
|
+
} else if (pq.code_size % 4 == 0) {
|
407
|
+
n_pass += polysemous_inner_loop<HammingComputerM4>
|
408
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
409
|
+
} else {
|
410
|
+
FAISS_THROW_FMT(
|
411
|
+
"code size %zd not supported for polysemous",
|
412
|
+
pq.code_size);
|
413
|
+
}
|
414
|
+
break;
|
415
|
+
}
|
416
|
+
} else {
|
417
|
+
switch (pq.code_size) {
|
418
|
+
case 8:
|
419
|
+
n_pass += polysemous_inner_loop<GenHammingComputer8>
|
420
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
421
|
+
break;
|
422
|
+
case 16:
|
423
|
+
n_pass += polysemous_inner_loop<GenHammingComputer16>
|
424
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
425
|
+
break;
|
426
|
+
case 32:
|
427
|
+
n_pass += polysemous_inner_loop<GenHammingComputer32>
|
428
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
429
|
+
break;
|
430
|
+
default:
|
431
|
+
if (pq.code_size % 8 == 0) {
|
432
|
+
n_pass += polysemous_inner_loop<GenHammingComputerM8>
|
433
|
+
(*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
|
434
|
+
} else {
|
435
|
+
FAISS_THROW_FMT(
|
436
|
+
"code size %zd not supported for polysemous",
|
437
|
+
pq.code_size);
|
438
|
+
}
|
439
|
+
break;
|
440
|
+
}
|
441
|
+
}
|
442
|
+
maxheap_reorder (k, heap_dis, heap_ids);
|
443
|
+
}
|
444
|
+
|
445
|
+
indexPQ_stats.nq += n;
|
446
|
+
indexPQ_stats.ncode += n * ntotal;
|
447
|
+
indexPQ_stats.n_hamming_pass += n_pass;
|
448
|
+
|
449
|
+
|
450
|
+
}
|
451
|
+
|
452
|
+
|
453
|
+
/* The standalone codec interface (just remaps to the PQ functions) */
|
454
|
+
size_t IndexPQ::sa_code_size () const
|
455
|
+
{
|
456
|
+
return pq.code_size;
|
457
|
+
}
|
458
|
+
|
459
|
+
void IndexPQ::sa_encode (idx_t n, const float *x, uint8_t *bytes) const
|
460
|
+
{
|
461
|
+
pq.compute_codes (x, bytes, n);
|
462
|
+
}
|
463
|
+
|
464
|
+
void IndexPQ::sa_decode (idx_t n, const uint8_t *bytes, float *x) const
|
465
|
+
{
|
466
|
+
pq.decode (bytes, x, n);
|
467
|
+
}
|
468
|
+
|
469
|
+
|
470
|
+
|
471
|
+
|
472
|
+
/*****************************************
|
473
|
+
* Stats of IndexPQ codes
|
474
|
+
******************************************/
|
475
|
+
|
476
|
+
|
477
|
+
|
478
|
+
|
479
|
+
void IndexPQ::hamming_distance_table (idx_t n, const float *x,
|
480
|
+
int32_t *dis) const
|
481
|
+
{
|
482
|
+
uint8_t * q_codes = new uint8_t [n * pq.code_size];
|
483
|
+
ScopeDeleter<uint8_t> del (q_codes);
|
484
|
+
|
485
|
+
pq.compute_codes (x, q_codes, n);
|
486
|
+
|
487
|
+
hammings (q_codes, codes.data(), n, ntotal, pq.code_size, dis);
|
488
|
+
}
|
489
|
+
|
490
|
+
|
491
|
+
void IndexPQ::hamming_distance_histogram (idx_t n, const float *x,
|
492
|
+
idx_t nb, const float *xb,
|
493
|
+
int64_t *hist)
|
494
|
+
{
|
495
|
+
FAISS_THROW_IF_NOT (metric_type == METRIC_L2);
|
496
|
+
FAISS_THROW_IF_NOT (pq.code_size % 8 == 0);
|
497
|
+
FAISS_THROW_IF_NOT (pq.nbits == 8);
|
498
|
+
|
499
|
+
// Hamming embedding queries
|
500
|
+
uint8_t * q_codes = new uint8_t [n * pq.code_size];
|
501
|
+
ScopeDeleter <uint8_t> del (q_codes);
|
502
|
+
pq.compute_codes (x, q_codes, n);
|
503
|
+
|
504
|
+
uint8_t * b_codes ;
|
505
|
+
ScopeDeleter <uint8_t> del_b_codes;
|
506
|
+
|
507
|
+
if (xb) {
|
508
|
+
b_codes = new uint8_t [nb * pq.code_size];
|
509
|
+
del_b_codes.set (b_codes);
|
510
|
+
pq.compute_codes (xb, b_codes, nb);
|
511
|
+
} else {
|
512
|
+
nb = ntotal;
|
513
|
+
b_codes = codes.data();
|
514
|
+
}
|
515
|
+
int nbits = pq.M * pq.nbits;
|
516
|
+
memset (hist, 0, sizeof(*hist) * (nbits + 1));
|
517
|
+
size_t bs = 256;
|
518
|
+
|
519
|
+
#pragma omp parallel
|
520
|
+
{
|
521
|
+
std::vector<int64_t> histi (nbits + 1);
|
522
|
+
hamdis_t *distances = new hamdis_t [nb * bs];
|
523
|
+
ScopeDeleter<hamdis_t> del (distances);
|
524
|
+
#pragma omp for
|
525
|
+
for (size_t q0 = 0; q0 < n; q0 += bs) {
|
526
|
+
// printf ("dis stats: %ld/%ld\n", q0, n);
|
527
|
+
size_t q1 = q0 + bs;
|
528
|
+
if (q1 > n) q1 = n;
|
529
|
+
|
530
|
+
hammings (q_codes + q0 * pq.code_size, b_codes,
|
531
|
+
q1 - q0, nb,
|
532
|
+
pq.code_size, distances);
|
533
|
+
|
534
|
+
for (size_t i = 0; i < nb * (q1 - q0); i++)
|
535
|
+
histi [distances [i]]++;
|
536
|
+
}
|
537
|
+
#pragma omp critical
|
538
|
+
{
|
539
|
+
for (int i = 0; i <= nbits; i++)
|
540
|
+
hist[i] += histi[i];
|
541
|
+
}
|
542
|
+
}
|
543
|
+
|
544
|
+
}
|
545
|
+
|
546
|
+
|
547
|
+
|
548
|
+
|
549
|
+
|
550
|
+
|
551
|
+
|
552
|
+
|
553
|
+
|
554
|
+
|
555
|
+
|
556
|
+
|
557
|
+
|
558
|
+
|
559
|
+
|
560
|
+
|
561
|
+
|
562
|
+
|
563
|
+
|
564
|
+
|
565
|
+
/*****************************************
|
566
|
+
* MultiIndexQuantizer
|
567
|
+
******************************************/
|
568
|
+
|
569
|
+
namespace {
|
570
|
+
|
571
|
+
template <typename T>
|
572
|
+
struct PreSortedArray {
|
573
|
+
|
574
|
+
const T * x;
|
575
|
+
int N;
|
576
|
+
|
577
|
+
explicit PreSortedArray (int N): N(N) {
|
578
|
+
}
|
579
|
+
void init (const T*x) {
|
580
|
+
this->x = x;
|
581
|
+
}
|
582
|
+
// get smallest value
|
583
|
+
T get_0 () {
|
584
|
+
return x[0];
|
585
|
+
}
|
586
|
+
|
587
|
+
// get delta between n-smallest and n-1 -smallest
|
588
|
+
T get_diff (int n) {
|
589
|
+
return x[n] - x[n - 1];
|
590
|
+
}
|
591
|
+
|
592
|
+
// remap orders counted from smallest to indices in array
|
593
|
+
int get_ord (int n) {
|
594
|
+
return n;
|
595
|
+
}
|
596
|
+
|
597
|
+
};
|
598
|
+
|
599
|
+
template <typename T>
|
600
|
+
struct ArgSort {
|
601
|
+
const T * x;
|
602
|
+
bool operator() (size_t i, size_t j) {
|
603
|
+
return x[i] < x[j];
|
604
|
+
}
|
605
|
+
};
|
606
|
+
|
607
|
+
|
608
|
+
/** Array that maintains a permutation of its elements so that the
|
609
|
+
* array's elements are sorted
|
610
|
+
*/
|
611
|
+
template <typename T>
|
612
|
+
struct SortedArray {
|
613
|
+
const T * x;
|
614
|
+
int N;
|
615
|
+
std::vector<int> perm;
|
616
|
+
|
617
|
+
explicit SortedArray (int N) {
|
618
|
+
this->N = N;
|
619
|
+
perm.resize (N);
|
620
|
+
}
|
621
|
+
|
622
|
+
void init (const T*x) {
|
623
|
+
this->x = x;
|
624
|
+
for (int n = 0; n < N; n++)
|
625
|
+
perm[n] = n;
|
626
|
+
ArgSort<T> cmp = {x };
|
627
|
+
std::sort (perm.begin(), perm.end(), cmp);
|
628
|
+
}
|
629
|
+
|
630
|
+
// get smallest value
|
631
|
+
T get_0 () {
|
632
|
+
return x[perm[0]];
|
633
|
+
}
|
634
|
+
|
635
|
+
// get delta between n-smallest and n-1 -smallest
|
636
|
+
T get_diff (int n) {
|
637
|
+
return x[perm[n]] - x[perm[n - 1]];
|
638
|
+
}
|
639
|
+
|
640
|
+
// remap orders counted from smallest to indices in array
|
641
|
+
int get_ord (int n) {
|
642
|
+
return perm[n];
|
643
|
+
}
|
644
|
+
};
|
645
|
+
|
646
|
+
|
647
|
+
|
648
|
+
/** Array has n values. Sort the k first ones and copy the other ones
|
649
|
+
* into elements k..n-1
|
650
|
+
*/
|
651
|
+
template <class C>
|
652
|
+
void partial_sort (int k, int n,
|
653
|
+
const typename C::T * vals, typename C::TI * perm) {
|
654
|
+
// insert first k elts in heap
|
655
|
+
for (int i = 1; i < k; i++) {
|
656
|
+
indirect_heap_push<C> (i + 1, vals, perm, perm[i]);
|
657
|
+
}
|
658
|
+
|
659
|
+
// insert next n - k elts in heap
|
660
|
+
for (int i = k; i < n; i++) {
|
661
|
+
typename C::TI id = perm[i];
|
662
|
+
typename C::TI top = perm[0];
|
663
|
+
|
664
|
+
if (C::cmp(vals[top], vals[id])) {
|
665
|
+
indirect_heap_pop<C> (k, vals, perm);
|
666
|
+
indirect_heap_push<C> (k, vals, perm, id);
|
667
|
+
perm[i] = top;
|
668
|
+
} else {
|
669
|
+
// nothing, elt at i is good where it is.
|
670
|
+
}
|
671
|
+
}
|
672
|
+
|
673
|
+
// order the k first elements in heap
|
674
|
+
for (int i = k - 1; i > 0; i--) {
|
675
|
+
typename C::TI top = perm[0];
|
676
|
+
indirect_heap_pop<C> (i + 1, vals, perm);
|
677
|
+
perm[i] = top;
|
678
|
+
}
|
679
|
+
}
|
680
|
+
|
681
|
+
/** same as SortedArray, but only the k first elements are sorted */
|
682
|
+
template <typename T>
|
683
|
+
struct SemiSortedArray {
|
684
|
+
const T * x;
|
685
|
+
int N;
|
686
|
+
|
687
|
+
// type of the heap: CMax = sort ascending
|
688
|
+
typedef CMax<T, int> HC;
|
689
|
+
std::vector<int> perm;
|
690
|
+
|
691
|
+
int k; // k elements are sorted
|
692
|
+
|
693
|
+
int initial_k, k_factor;
|
694
|
+
|
695
|
+
explicit SemiSortedArray (int N) {
|
696
|
+
this->N = N;
|
697
|
+
perm.resize (N);
|
698
|
+
perm.resize (N);
|
699
|
+
initial_k = 3;
|
700
|
+
k_factor = 4;
|
701
|
+
}
|
702
|
+
|
703
|
+
void init (const T*x) {
|
704
|
+
this->x = x;
|
705
|
+
for (int n = 0; n < N; n++)
|
706
|
+
perm[n] = n;
|
707
|
+
k = 0;
|
708
|
+
grow (initial_k);
|
709
|
+
}
|
710
|
+
|
711
|
+
/// grow the sorted part of the array to size next_k
|
712
|
+
void grow (int next_k) {
|
713
|
+
if (next_k < N) {
|
714
|
+
partial_sort<HC> (next_k - k, N - k, x, &perm[k]);
|
715
|
+
k = next_k;
|
716
|
+
} else { // full sort of remainder of array
|
717
|
+
ArgSort<T> cmp = {x };
|
718
|
+
std::sort (perm.begin() + k, perm.end(), cmp);
|
719
|
+
k = N;
|
720
|
+
}
|
721
|
+
}
|
722
|
+
|
723
|
+
// get smallest value
|
724
|
+
T get_0 () {
|
725
|
+
return x[perm[0]];
|
726
|
+
}
|
727
|
+
|
728
|
+
// get delta between n-smallest and n-1 -smallest
|
729
|
+
T get_diff (int n) {
|
730
|
+
if (n >= k) {
|
731
|
+
// want to keep powers of 2 - 1
|
732
|
+
int next_k = (k + 1) * k_factor - 1;
|
733
|
+
grow (next_k);
|
734
|
+
}
|
735
|
+
return x[perm[n]] - x[perm[n - 1]];
|
736
|
+
}
|
737
|
+
|
738
|
+
// remap orders counted from smallest to indices in array
|
739
|
+
int get_ord (int n) {
|
740
|
+
assert (n < k);
|
741
|
+
return perm[n];
|
742
|
+
}
|
743
|
+
};
|
744
|
+
|
745
|
+
|
746
|
+
|
747
|
+
/*****************************************
|
748
|
+
* Find the k smallest sums of M terms, where each term is taken in a
|
749
|
+
* table x of n values.
|
750
|
+
*
|
751
|
+
* A combination of terms is encoded as a scalar 0 <= t < n^M. The
|
752
|
+
* combination t0 ... t(M-1) that correspond to the sum
|
753
|
+
*
|
754
|
+
* sum = x[0, t0] + x[1, t1] + .... + x[M-1, t(M-1)]
|
755
|
+
*
|
756
|
+
* is encoded as
|
757
|
+
*
|
758
|
+
* t = t0 + t1 * n + t2 * n^2 + ... + t(M-1) * n^(M-1)
|
759
|
+
*
|
760
|
+
* MinSumK is an object rather than a function, so that storage can be
|
761
|
+
* re-used over several computations with the same sizes. use_seen is
|
762
|
+
* good when there may be ties in the x array and it is a concern if
|
763
|
+
* occasionally several t's are returned.
|
764
|
+
*
|
765
|
+
* @param x size M * n, values to add up
|
766
|
+
* @parms k nb of results to retrieve
|
767
|
+
* @param M nb of terms
|
768
|
+
* @param n nb of distinct values
|
769
|
+
* @param sums output, size k, sorted
|
770
|
+
* @prarm terms output, size k, with encoding as above
|
771
|
+
*
|
772
|
+
******************************************/
|
773
|
+
template <typename T, class SSA, bool use_seen>
|
774
|
+
struct MinSumK {
|
775
|
+
int K; ///< nb of sums to return
|
776
|
+
int M; ///< nb of elements to sum up
|
777
|
+
int nbit; ///< nb of bits to encode one entry
|
778
|
+
int N; ///< nb of possible elements for each of the M terms
|
779
|
+
|
780
|
+
/** the heap.
|
781
|
+
* We use a heap to maintain a queue of sums, with the associated
|
782
|
+
* terms involved in the sum.
|
783
|
+
*/
|
784
|
+
typedef CMin<T, int64_t> HC;
|
785
|
+
size_t heap_capacity, heap_size;
|
786
|
+
T *bh_val;
|
787
|
+
int64_t *bh_ids;
|
788
|
+
|
789
|
+
std::vector <SSA> ssx;
|
790
|
+
|
791
|
+
// all results get pushed several times. When there are ties, they
|
792
|
+
// are popped interleaved with others, so it is not easy to
|
793
|
+
// identify them. Therefore, this bit array just marks elements
|
794
|
+
// that were seen before.
|
795
|
+
std::vector <uint8_t> seen;
|
796
|
+
|
797
|
+
MinSumK (int K, int M, int nbit, int N):
|
798
|
+
K(K), M(M), nbit(nbit), N(N) {
|
799
|
+
heap_capacity = K * M;
|
800
|
+
assert (N <= (1 << nbit));
|
801
|
+
|
802
|
+
// we'll do k steps, each step pushes at most M vals
|
803
|
+
bh_val = new T[heap_capacity];
|
804
|
+
bh_ids = new int64_t[heap_capacity];
|
805
|
+
|
806
|
+
if (use_seen) {
|
807
|
+
int64_t n_ids = weight(M);
|
808
|
+
seen.resize ((n_ids + 7) / 8);
|
809
|
+
}
|
810
|
+
|
811
|
+
for (int m = 0; m < M; m++)
|
812
|
+
ssx.push_back (SSA(N));
|
813
|
+
|
814
|
+
}
|
815
|
+
|
816
|
+
int64_t weight (int i) {
|
817
|
+
return 1 << (i * nbit);
|
818
|
+
}
|
819
|
+
|
820
|
+
bool is_seen (int64_t i) {
|
821
|
+
return (seen[i >> 3] >> (i & 7)) & 1;
|
822
|
+
}
|
823
|
+
|
824
|
+
void mark_seen (int64_t i) {
|
825
|
+
if (use_seen)
|
826
|
+
seen [i >> 3] |= 1 << (i & 7);
|
827
|
+
}
|
828
|
+
|
829
|
+
void run (const T *x, int64_t ldx,
|
830
|
+
T * sums, int64_t * terms) {
|
831
|
+
heap_size = 0;
|
832
|
+
|
833
|
+
for (int m = 0; m < M; m++) {
|
834
|
+
ssx[m].init(x);
|
835
|
+
x += ldx;
|
836
|
+
}
|
837
|
+
|
838
|
+
{ // intial result: take min for all elements
|
839
|
+
T sum = 0;
|
840
|
+
terms[0] = 0;
|
841
|
+
mark_seen (0);
|
842
|
+
for (int m = 0; m < M; m++) {
|
843
|
+
sum += ssx[m].get_0();
|
844
|
+
}
|
845
|
+
sums[0] = sum;
|
846
|
+
for (int m = 0; m < M; m++) {
|
847
|
+
heap_push<HC> (++heap_size, bh_val, bh_ids,
|
848
|
+
sum + ssx[m].get_diff(1),
|
849
|
+
weight(m));
|
850
|
+
}
|
851
|
+
}
|
852
|
+
|
853
|
+
for (int k = 1; k < K; k++) {
|
854
|
+
// pop smallest value from heap
|
855
|
+
if (use_seen) {// skip already seen elements
|
856
|
+
while (is_seen (bh_ids[0])) {
|
857
|
+
assert (heap_size > 0);
|
858
|
+
heap_pop<HC> (heap_size--, bh_val, bh_ids);
|
859
|
+
}
|
860
|
+
}
|
861
|
+
assert (heap_size > 0);
|
862
|
+
|
863
|
+
T sum = sums[k] = bh_val[0];
|
864
|
+
int64_t ti = terms[k] = bh_ids[0];
|
865
|
+
|
866
|
+
if (use_seen) {
|
867
|
+
mark_seen (ti);
|
868
|
+
heap_pop<HC> (heap_size--, bh_val, bh_ids);
|
869
|
+
} else {
|
870
|
+
do {
|
871
|
+
heap_pop<HC> (heap_size--, bh_val, bh_ids);
|
872
|
+
} while (heap_size > 0 && bh_ids[0] == ti);
|
873
|
+
}
|
874
|
+
|
875
|
+
// enqueue followers
|
876
|
+
int64_t ii = ti;
|
877
|
+
for (int m = 0; m < M; m++) {
|
878
|
+
int64_t n = ii & ((1L << nbit) - 1);
|
879
|
+
ii >>= nbit;
|
880
|
+
if (n + 1 >= N) continue;
|
881
|
+
|
882
|
+
enqueue_follower (ti, m, n, sum);
|
883
|
+
}
|
884
|
+
}
|
885
|
+
|
886
|
+
/*
|
887
|
+
for (int k = 0; k < K; k++)
|
888
|
+
for (int l = k + 1; l < K; l++)
|
889
|
+
assert (terms[k] != terms[l]);
|
890
|
+
*/
|
891
|
+
|
892
|
+
// convert indices by applying permutation
|
893
|
+
for (int k = 0; k < K; k++) {
|
894
|
+
int64_t ii = terms[k];
|
895
|
+
if (use_seen) {
|
896
|
+
// clear seen for reuse at next loop
|
897
|
+
seen[ii >> 3] = 0;
|
898
|
+
}
|
899
|
+
int64_t ti = 0;
|
900
|
+
for (int m = 0; m < M; m++) {
|
901
|
+
int64_t n = ii & ((1L << nbit) - 1);
|
902
|
+
ti += int64_t(ssx[m].get_ord(n)) << (nbit * m);
|
903
|
+
ii >>= nbit;
|
904
|
+
}
|
905
|
+
terms[k] = ti;
|
906
|
+
}
|
907
|
+
}
|
908
|
+
|
909
|
+
|
910
|
+
void enqueue_follower (int64_t ti, int m, int n, T sum) {
|
911
|
+
T next_sum = sum + ssx[m].get_diff(n + 1);
|
912
|
+
int64_t next_ti = ti + weight(m);
|
913
|
+
heap_push<HC> (++heap_size, bh_val, bh_ids, next_sum, next_ti);
|
914
|
+
}
|
915
|
+
|
916
|
+
~MinSumK () {
|
917
|
+
delete [] bh_ids;
|
918
|
+
delete [] bh_val;
|
919
|
+
}
|
920
|
+
};
|
921
|
+
|
922
|
+
} // anonymous namespace
|
923
|
+
|
924
|
+
|
925
|
+
MultiIndexQuantizer::MultiIndexQuantizer (int d,
|
926
|
+
size_t M,
|
927
|
+
size_t nbits):
|
928
|
+
Index(d, METRIC_L2), pq(d, M, nbits)
|
929
|
+
{
|
930
|
+
is_trained = false;
|
931
|
+
pq.verbose = verbose;
|
932
|
+
}
|
933
|
+
|
934
|
+
|
935
|
+
|
936
|
+
void MultiIndexQuantizer::train(idx_t n, const float *x)
|
937
|
+
{
|
938
|
+
pq.verbose = verbose;
|
939
|
+
pq.train (n, x);
|
940
|
+
is_trained = true;
|
941
|
+
// count virtual elements in index
|
942
|
+
ntotal = 1;
|
943
|
+
for (int m = 0; m < pq.M; m++)
|
944
|
+
ntotal *= pq.ksub;
|
945
|
+
}
|
946
|
+
|
947
|
+
|
948
|
+
void MultiIndexQuantizer::search (idx_t n, const float *x, idx_t k,
|
949
|
+
float *distances, idx_t *labels) const {
|
950
|
+
if (n == 0) return;
|
951
|
+
|
952
|
+
// the allocation just below can be severe...
|
953
|
+
idx_t bs = 32768;
|
954
|
+
if (n > bs) {
|
955
|
+
for (idx_t i0 = 0; i0 < n; i0 += bs) {
|
956
|
+
idx_t i1 = std::min(i0 + bs, n);
|
957
|
+
if (verbose) {
|
958
|
+
printf("MultiIndexQuantizer::search: %ld:%ld / %ld\n",
|
959
|
+
i0, i1, n);
|
960
|
+
}
|
961
|
+
search (i1 - i0, x + i0 * d, k,
|
962
|
+
distances + i0 * k,
|
963
|
+
labels + i0 * k);
|
964
|
+
}
|
965
|
+
return;
|
966
|
+
}
|
967
|
+
|
968
|
+
float * dis_tables = new float [n * pq.ksub * pq.M];
|
969
|
+
ScopeDeleter<float> del (dis_tables);
|
970
|
+
|
971
|
+
pq.compute_distance_tables (n, x, dis_tables);
|
972
|
+
|
973
|
+
if (k == 1) {
|
974
|
+
// simple version that just finds the min in each table
|
975
|
+
|
976
|
+
#pragma omp parallel for
|
977
|
+
for (int i = 0; i < n; i++) {
|
978
|
+
const float * dis_table = dis_tables + i * pq.ksub * pq.M;
|
979
|
+
float dis = 0;
|
980
|
+
idx_t label = 0;
|
981
|
+
|
982
|
+
for (int s = 0; s < pq.M; s++) {
|
983
|
+
float vmin = HUGE_VALF;
|
984
|
+
idx_t lmin = -1;
|
985
|
+
|
986
|
+
for (idx_t j = 0; j < pq.ksub; j++) {
|
987
|
+
if (dis_table[j] < vmin) {
|
988
|
+
vmin = dis_table[j];
|
989
|
+
lmin = j;
|
990
|
+
}
|
991
|
+
}
|
992
|
+
dis += vmin;
|
993
|
+
label |= lmin << (s * pq.nbits);
|
994
|
+
dis_table += pq.ksub;
|
995
|
+
}
|
996
|
+
|
997
|
+
distances [i] = dis;
|
998
|
+
labels [i] = label;
|
999
|
+
}
|
1000
|
+
|
1001
|
+
|
1002
|
+
} else {
|
1003
|
+
|
1004
|
+
#pragma omp parallel if(n > 1)
|
1005
|
+
{
|
1006
|
+
MinSumK <float, SemiSortedArray<float>, false>
|
1007
|
+
msk(k, pq.M, pq.nbits, pq.ksub);
|
1008
|
+
#pragma omp for
|
1009
|
+
for (int i = 0; i < n; i++) {
|
1010
|
+
msk.run (dis_tables + i * pq.ksub * pq.M, pq.ksub,
|
1011
|
+
distances + i * k, labels + i * k);
|
1012
|
+
|
1013
|
+
}
|
1014
|
+
}
|
1015
|
+
}
|
1016
|
+
|
1017
|
+
}
|
1018
|
+
|
1019
|
+
|
1020
|
+
void MultiIndexQuantizer::reconstruct (idx_t key, float * recons) const
|
1021
|
+
{
|
1022
|
+
|
1023
|
+
int64_t jj = key;
|
1024
|
+
for (int m = 0; m < pq.M; m++) {
|
1025
|
+
int64_t n = jj & ((1L << pq.nbits) - 1);
|
1026
|
+
jj >>= pq.nbits;
|
1027
|
+
memcpy(recons, pq.get_centroids(m, n), sizeof(recons[0]) * pq.dsub);
|
1028
|
+
recons += pq.dsub;
|
1029
|
+
}
|
1030
|
+
}
|
1031
|
+
|
1032
|
+
void MultiIndexQuantizer::add(idx_t /*n*/, const float* /*x*/) {
|
1033
|
+
FAISS_THROW_MSG(
|
1034
|
+
"This index has virtual elements, "
|
1035
|
+
"it does not support add");
|
1036
|
+
}
|
1037
|
+
|
1038
|
+
void MultiIndexQuantizer::reset ()
|
1039
|
+
{
|
1040
|
+
FAISS_THROW_MSG ( "This index has virtual elements, "
|
1041
|
+
"it does not support reset");
|
1042
|
+
}
|
1043
|
+
|
1044
|
+
|
1045
|
+
|
1046
|
+
|
1047
|
+
|
1048
|
+
|
1049
|
+
|
1050
|
+
|
1051
|
+
|
1052
|
+
|
1053
|
+
/*****************************************
|
1054
|
+
* MultiIndexQuantizer2
|
1055
|
+
******************************************/
|
1056
|
+
|
1057
|
+
|
1058
|
+
|
1059
|
+
MultiIndexQuantizer2::MultiIndexQuantizer2 (
|
1060
|
+
int d, size_t M, size_t nbits,
|
1061
|
+
Index **indexes):
|
1062
|
+
MultiIndexQuantizer (d, M, nbits)
|
1063
|
+
{
|
1064
|
+
assign_indexes.resize (M);
|
1065
|
+
for (int i = 0; i < M; i++) {
|
1066
|
+
FAISS_THROW_IF_NOT_MSG(
|
1067
|
+
indexes[i]->d == pq.dsub,
|
1068
|
+
"Provided sub-index has incorrect size");
|
1069
|
+
assign_indexes[i] = indexes[i];
|
1070
|
+
}
|
1071
|
+
own_fields = false;
|
1072
|
+
}
|
1073
|
+
|
1074
|
+
MultiIndexQuantizer2::MultiIndexQuantizer2 (
|
1075
|
+
int d, size_t nbits,
|
1076
|
+
Index *assign_index_0,
|
1077
|
+
Index *assign_index_1):
|
1078
|
+
MultiIndexQuantizer (d, 2, nbits)
|
1079
|
+
{
|
1080
|
+
FAISS_THROW_IF_NOT_MSG(
|
1081
|
+
assign_index_0->d == pq.dsub &&
|
1082
|
+
assign_index_1->d == pq.dsub,
|
1083
|
+
"Provided sub-index has incorrect size");
|
1084
|
+
assign_indexes.resize (2);
|
1085
|
+
assign_indexes [0] = assign_index_0;
|
1086
|
+
assign_indexes [1] = assign_index_1;
|
1087
|
+
own_fields = false;
|
1088
|
+
}
|
1089
|
+
|
1090
|
+
void MultiIndexQuantizer2::train(idx_t n, const float* x)
|
1091
|
+
{
|
1092
|
+
MultiIndexQuantizer::train(n, x);
|
1093
|
+
// add centroids to sub-indexes
|
1094
|
+
for (int i = 0; i < pq.M; i++) {
|
1095
|
+
assign_indexes[i]->add(pq.ksub, pq.get_centroids(i, 0));
|
1096
|
+
}
|
1097
|
+
}
|
1098
|
+
|
1099
|
+
|
1100
|
+
void MultiIndexQuantizer2::search(
|
1101
|
+
idx_t n, const float* x, idx_t K,
|
1102
|
+
float* distances, idx_t* labels) const
|
1103
|
+
{
|
1104
|
+
|
1105
|
+
if (n == 0) return;
|
1106
|
+
|
1107
|
+
int k2 = std::min(K, int64_t(pq.ksub));
|
1108
|
+
|
1109
|
+
int64_t M = pq.M;
|
1110
|
+
int64_t dsub = pq.dsub, ksub = pq.ksub;
|
1111
|
+
|
1112
|
+
// size (M, n, k2)
|
1113
|
+
std::vector<idx_t> sub_ids(n * M * k2);
|
1114
|
+
std::vector<float> sub_dis(n * M * k2);
|
1115
|
+
std::vector<float> xsub(n * dsub);
|
1116
|
+
|
1117
|
+
for (int m = 0; m < M; m++) {
|
1118
|
+
float *xdest = xsub.data();
|
1119
|
+
const float *xsrc = x + m * dsub;
|
1120
|
+
for (int j = 0; j < n; j++) {
|
1121
|
+
memcpy(xdest, xsrc, dsub * sizeof(xdest[0]));
|
1122
|
+
xsrc += d;
|
1123
|
+
xdest += dsub;
|
1124
|
+
}
|
1125
|
+
|
1126
|
+
assign_indexes[m]->search(
|
1127
|
+
n, xsub.data(), k2,
|
1128
|
+
&sub_dis[k2 * n * m],
|
1129
|
+
&sub_ids[k2 * n * m]);
|
1130
|
+
}
|
1131
|
+
|
1132
|
+
if (K == 1) {
|
1133
|
+
// simple version that just finds the min in each table
|
1134
|
+
assert (k2 == 1);
|
1135
|
+
|
1136
|
+
for (int i = 0; i < n; i++) {
|
1137
|
+
float dis = 0;
|
1138
|
+
idx_t label = 0;
|
1139
|
+
|
1140
|
+
for (int m = 0; m < M; m++) {
|
1141
|
+
float vmin = sub_dis[i + m * n];
|
1142
|
+
idx_t lmin = sub_ids[i + m * n];
|
1143
|
+
dis += vmin;
|
1144
|
+
label |= lmin << (m * pq.nbits);
|
1145
|
+
}
|
1146
|
+
distances [i] = dis;
|
1147
|
+
labels [i] = label;
|
1148
|
+
}
|
1149
|
+
|
1150
|
+
} else {
|
1151
|
+
|
1152
|
+
#pragma omp parallel if(n > 1)
|
1153
|
+
{
|
1154
|
+
MinSumK <float, PreSortedArray<float>, false>
|
1155
|
+
msk(K, pq.M, pq.nbits, k2);
|
1156
|
+
#pragma omp for
|
1157
|
+
for (int i = 0; i < n; i++) {
|
1158
|
+
idx_t *li = labels + i * K;
|
1159
|
+
msk.run (&sub_dis[i * k2], k2 * n,
|
1160
|
+
distances + i * K, li);
|
1161
|
+
|
1162
|
+
// remap ids
|
1163
|
+
|
1164
|
+
const idx_t *idmap0 = sub_ids.data() + i * k2;
|
1165
|
+
int64_t ld_idmap = k2 * n;
|
1166
|
+
int64_t mask1 = ksub - 1L;
|
1167
|
+
|
1168
|
+
for (int k = 0; k < K; k++) {
|
1169
|
+
const idx_t *idmap = idmap0;
|
1170
|
+
int64_t vin = li[k];
|
1171
|
+
int64_t vout = 0;
|
1172
|
+
int bs = 0;
|
1173
|
+
for (int m = 0; m < M; m++) {
|
1174
|
+
int64_t s = vin & mask1;
|
1175
|
+
vin >>= pq.nbits;
|
1176
|
+
vout |= idmap[s] << bs;
|
1177
|
+
bs += pq.nbits;
|
1178
|
+
idmap += ld_idmap;
|
1179
|
+
}
|
1180
|
+
li[k] = vout;
|
1181
|
+
}
|
1182
|
+
}
|
1183
|
+
}
|
1184
|
+
}
|
1185
|
+
}
|
1186
|
+
|
1187
|
+
|
1188
|
+
} // namespace faiss
|