warp-lang 1.0.2__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/libwarp-clang.dylib +0 -0
  4. warp/bin/libwarp.dylib +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +234 -219
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -126
  39. warp/examples/core/example_marching_cubes.py +188 -174
  40. warp/examples/core/example_mesh.py +174 -155
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -170
  43. warp/examples/core/example_raycast.py +105 -90
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -387
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -389
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -246
  65. warp/examples/optim/example_cloth_throw.py +222 -209
  66. warp/examples/optim/example_diffray.py +566 -536
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
  70. warp/examples/optim/example_spring_cage.py +239 -231
  71. warp/examples/optim/example_trajectory.py +223 -199
  72. warp/examples/optim/example_walker.py +306 -293
  73. warp/examples/sim/example_cartpole.py +139 -129
  74. warp/examples/sim/example_cloth.py +196 -186
  75. warp/examples/sim/example_granular.py +124 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -186
  77. warp/examples/sim/example_jacobian_ik.py +236 -214
  78. warp/examples/sim/example_particle_chain.py +118 -105
  79. warp/examples/sim/example_quadruped.py +193 -180
  80. warp/examples/sim/example_rigid_chain.py +197 -187
  81. warp/examples/sim/example_rigid_contact.py +189 -177
  82. warp/examples/sim/example_rigid_force.py +127 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -122
  85. warp/examples/sim/example_soft_body.py +190 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.2.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
@@ -1,380 +1,378 @@
1
- from typing import Union, Any, Tuple, Optional
2
-
3
- import warp as wp
4
- import warp.types
5
-
6
- from warp.sparse import BsrMatrix, bsr_zeros, bsr_transposed, bsr_mv, bsr_get_diag
7
- from warp.optim.linear import preconditioner, LinearOperator, aslinearoperator
8
-
9
-
10
- def bsr_to_scipy(matrix: BsrMatrix) -> "scipy.sparse.bsr_array":
11
- try:
12
- from scipy.sparse import csr_array, bsr_array
13
- except ImportError:
14
- # WAR for older scipy
15
- from scipy.sparse import csr_matrix as csr_array, bsr_matrix as bsr_array
16
-
17
- if matrix.block_shape == (1, 1):
18
- return csr_array(
19
- (
20
- matrix.values.numpy().flatten()[: matrix.nnz],
21
- matrix.columns.numpy()[: matrix.nnz],
22
- matrix.offsets.numpy(),
23
- ),
24
- shape=matrix.shape,
25
- )
26
-
27
- return bsr_array(
28
- (
29
- matrix.values.numpy().reshape((matrix.values.shape[0], *matrix.block_shape))[: matrix.nnz],
30
- matrix.columns.numpy()[: matrix.nnz],
31
- matrix.offsets.numpy(),
32
- ),
33
- shape=matrix.shape,
34
- )
35
-
36
-
37
- def scipy_to_bsr(
38
- sp: Union["scipy.sparse.bsr_array", "scipy.sparse.csr_array"],
39
- device=None,
40
- dtype=None,
41
- ) -> BsrMatrix:
42
- try:
43
- from scipy.sparse import csr_array
44
- except ImportError:
45
- # WAR for older scipy
46
- from scipy.sparse import csr_matrix as csr_array
47
-
48
- if dtype is None:
49
- dtype = warp.types.np_dtype_to_warp_type[sp.dtype]
50
-
51
- sp.sort_indices()
52
-
53
- if isinstance(sp, csr_array):
54
- matrix = bsr_zeros(sp.shape[0], sp.shape[1], dtype, device=device)
55
- else:
56
- block_shape = sp.blocksize
57
- block_type = wp.types.matrix(shape=block_shape, dtype=dtype)
58
- matrix = bsr_zeros(
59
- sp.shape[0] // block_shape[0],
60
- sp.shape[1] // block_shape[1],
61
- block_type,
62
- device=device,
63
- )
64
-
65
- matrix.nnz = sp.nnz
66
- matrix.values = wp.array(sp.data.flatten(), dtype=matrix.values.dtype, device=device)
67
- matrix.columns = wp.array(sp.indices, dtype=matrix.columns.dtype, device=device)
68
- matrix.offsets = wp.array(sp.indptr, dtype=matrix.offsets.dtype, device=device)
69
-
70
- return matrix
71
-
72
-
73
- def get_linear_solver_func(method_name: str):
74
- from warp.optim.linear import cg, bicgstab, gmres
75
-
76
- if method_name == "bicgstab":
77
- return bicgstab
78
- if method_name == "gmres":
79
- return gmres
80
- return cg
81
-
82
-
83
- def bsr_cg(
84
- A: BsrMatrix,
85
- x: wp.array,
86
- b: wp.array,
87
- max_iters: int = 0,
88
- tol: float = 0.0001,
89
- check_every=10,
90
- use_diag_precond=True,
91
- mv_routine=None,
92
- quiet=False,
93
- method: str = "cg",
94
- ) -> Tuple[float, int]:
95
- """Solves the linear system A x = b using an iterative solver, optionally with diagonal preconditioning
96
-
97
- Args:
98
- A: system left-hand side
99
- x: result vector and initial guess
100
- b: system right-hand-side
101
- max_iters: maximum number of iterations to perform before aborting. If set to zero, equal to the system size.
102
- tol: relative tolerance under which to stop the solve
103
- check_every: number of iterations every which to evaluate the current residual norm to compare against tolerance
104
- use_diag_precond: Whether to use diagonal preconditioning
105
- mv_routine: Matrix-vector multiplication routine to use for multiplications with ``A``
106
- quiet: if True, do not print iteration residuals
107
- method: Iterative solver method to use, defaults to Conjugate Gradient
108
-
109
- Returns:
110
- Tuple (residual norm, iteration count)
111
-
112
- """
113
-
114
- from warp.optim.linear import preconditioner, LinearOperator
115
-
116
- if mv_routine is None:
117
- M = preconditioner(A, "diag") if use_diag_precond else None
118
- else:
119
- A = LinearOperator(A.shape, A.dtype, A.device, matvec=mv_routine)
120
- M = None
121
-
122
- func = get_linear_solver_func(method_name=method)
123
-
124
- def print_callback(i, err, tol):
125
- print(f"{func.__name__}: at iteration {i} error = \t {err} \t tol: {tol}")
126
-
127
- callback = None if quiet else print_callback
128
-
129
- end_iter, err, atol = func(
130
- A=A,
131
- b=b,
132
- x=x,
133
- maxiter=max_iters,
134
- tol=tol,
135
- check_every=check_every,
136
- M=M,
137
- callback=callback,
138
- )
139
-
140
- if not quiet:
141
- res_str = "OK" if err <= atol else "TRUNCATED"
142
- print(f"{func.__name__}: terminated after {end_iter} iterations with error = \t {err} ({res_str})")
143
-
144
- return err, end_iter
145
-
146
-
147
- class SaddleSystem(LinearOperator):
148
- """Builds a linear operator corresponding to the saddle-point linear system [A B^T; B 0]
149
-
150
- If use_diag_precond` is ``True``, builds the corresponding diagonal preconditioner `[diag(A); diag(B diag(A)^-1 B^T)]`
151
- """
152
-
153
- def __init__(
154
- self,
155
- A: BsrMatrix,
156
- B: BsrMatrix,
157
- Bt: Optional[BsrMatrix] = None,
158
- use_diag_precond: bool = True,
159
- ):
160
- from warp.optim.linear import preconditioner, LinearOperator, aslinearoperator
161
-
162
- if Bt is None:
163
- Bt = bsr_transposed(B)
164
-
165
- self._A = A
166
- self._B = B
167
- self._Bt = Bt
168
-
169
- self._u_dtype = wp.vec(length=A.block_shape[0], dtype=A.scalar_type)
170
- self._p_dtype = wp.vec(length=B.block_shape[0], dtype=B.scalar_type)
171
- self._p_byte_offset = A.nrow * wp.types.type_size_in_bytes(self._u_dtype)
172
-
173
- saddle_shape = (A.shape[0] + B.shape[0], A.shape[0] + B.shape[0])
174
-
175
- super().__init__(saddle_shape, dtype=A.scalar_type, device=A.device, matvec=self._saddle_mv)
176
-
177
- if use_diag_precond:
178
- self._preconditioner = self._diag_preconditioner()
179
- else:
180
- self._preconditioner = None
181
-
182
- def _diag_preconditioner(self):
183
- A = self._A
184
- B = self._B
185
-
186
- M_u = preconditioner(A, "diag")
187
-
188
- A_diag = bsr_get_diag(A)
189
-
190
- schur_block_shape = (B.block_shape[0], B.block_shape[0])
191
- schur_dtype = wp.mat(shape=schur_block_shape, dtype=B.scalar_type)
192
- schur_inv_diag = wp.empty(dtype=schur_dtype, shape=B.nrow, device=self.device)
193
- wp.launch(
194
- _compute_schur_inverse_diagonal,
195
- dim=B.nrow,
196
- device=A.device,
197
- inputs=[B.offsets, B.columns, B.values, A_diag, schur_inv_diag],
198
- )
199
-
200
- if schur_block_shape == (1, 1):
201
- # Downcast 1x1 mats to scalars
202
- schur_inv_diag = schur_inv_diag.view(dtype=B.scalar_type)
203
-
204
- M_p = aslinearoperator(schur_inv_diag)
205
-
206
- def precond_mv(x, y, z, alpha, beta):
207
- x_u = self.u_slice(x)
208
- x_p = self.p_slice(x)
209
- y_u = self.u_slice(y)
210
- y_p = self.p_slice(y)
211
- z_u = self.u_slice(z)
212
- z_p = self.p_slice(z)
213
-
214
- M_u.matvec(x_u, y_u, z_u, alpha=alpha, beta=beta)
215
- M_p.matvec(x_p, y_p, z_p, alpha=alpha, beta=beta)
216
-
217
- return LinearOperator(
218
- shape=self.shape,
219
- dtype=self.dtype,
220
- device=self.device,
221
- matvec=precond_mv,
222
- )
223
-
224
- @property
225
- def preconditioner(self):
226
- return self._preconditioner
227
-
228
- def u_slice(self, a: wp.array):
229
- return wp.array(
230
- ptr=a.ptr,
231
- dtype=self._u_dtype,
232
- shape=self._A.nrow,
233
- strides=None,
234
- device=a.device,
235
- pinned=a.pinned,
236
- copy=False,
237
- )
238
-
239
- def p_slice(self, a: wp.array):
240
- return wp.array(
241
- ptr=a.ptr + self._p_byte_offset,
242
- dtype=self._p_dtype,
243
- shape=self._B.nrow,
244
- strides=None,
245
- device=a.device,
246
- pinned=a.pinned,
247
- copy=False,
248
- )
249
-
250
- def _saddle_mv(self, x, y, z, alpha, beta):
251
- x_u = self.u_slice(x)
252
- x_p = self.p_slice(x)
253
- z_u = self.u_slice(z)
254
- z_p = self.p_slice(z)
255
-
256
- if y.ptr != z.ptr and beta != 0.0:
257
- wp.copy(src=y, dest=z)
258
-
259
- bsr_mv(self._A, x_u, z_u, alpha=alpha, beta=beta)
260
- bsr_mv(self._Bt, x_p, z_u, alpha=alpha, beta=1.0)
261
- bsr_mv(self._B, x_u, z_p, alpha=alpha, beta=beta)
262
-
263
-
264
- def bsr_solve_saddle(
265
- saddle_system: SaddleSystem,
266
- x_u: wp.array,
267
- x_p: wp.array,
268
- b_u: wp.array,
269
- b_p: wp.array,
270
- max_iters: int = 0,
271
- tol: float = 0.0001,
272
- check_every=10,
273
- quiet=False,
274
- method: str = "cg",
275
- ) -> Tuple[float, int]:
276
- """Solves the saddle-point linear system [A B^T; B 0] (x_u; x_p) = (b_u; b_p) using an iterative solver, optionally with diagonal preconditioning
277
-
278
- Args:
279
- saddle_system: Saddle point system
280
- x_u: primal part of the result vector and initial guess
281
- x_p: Lagrange multiplier part of the result vector and initial guess
282
- b_u: primal left-hand-side
283
- b_p: constraint left-hand-side
284
- max_iters: maximum number of iterations to perform before aborting. If set to zero, equal to the system size.
285
- tol: relative tolerance under which to stop the solve
286
- check_every: number of iterations every which to evaluate the current residual norm to compare against tolerance
287
- quiet: if True, do not print iteration residuals
288
- method: Iterative solver method to use, defaults to BiCGSTAB
289
-
290
- Returns:
291
- Tuple (residual norm, iteration count)
292
-
293
- """
294
- x = wp.empty(dtype=saddle_system.scalar_type, shape=saddle_system.shape[0], device=saddle_system.device)
295
- b = wp.empty_like(x)
296
-
297
- wp.copy(src=x_u, dest=saddle_system.u_slice(x))
298
- wp.copy(src=x_p, dest=saddle_system.p_slice(x))
299
- wp.copy(src=b_u, dest=saddle_system.u_slice(b))
300
- wp.copy(src=b_p, dest=saddle_system.p_slice(b))
301
-
302
- func = get_linear_solver_func(method_name=method)
303
-
304
- def print_callback(i, err, tol):
305
- print(f"{func.__name__}: at iteration {i} error = \t {err} \t tol: {tol}")
306
-
307
- callback = None if quiet else print_callback
308
-
309
- end_iter, err, atol = func(
310
- A=saddle_system,
311
- b=b,
312
- x=x,
313
- maxiter=max_iters,
314
- tol=tol,
315
- check_every=check_every,
316
- M=saddle_system.preconditioner,
317
- callback=callback,
318
- )
319
-
320
- if not quiet:
321
- res_str = "OK" if err <= atol else "TRUNCATED"
322
- print(f"{func.__name__}: terminated after {end_iter} iterations with absolute error = \t {err} ({res_str})")
323
-
324
- wp.copy(dest=x_u, src=saddle_system.u_slice(x))
325
- wp.copy(dest=x_p, src=saddle_system.p_slice(x))
326
-
327
- return err, end_iter
328
-
329
-
330
- @wp.kernel
331
- def _compute_schur_inverse_diagonal(
332
- B_offsets: wp.array(dtype=int),
333
- B_indices: wp.array(dtype=int),
334
- B_values: wp.array(dtype=Any),
335
- A_diag: wp.array(dtype=Any),
336
- P_diag: wp.array(dtype=Any),
337
- ):
338
- row = wp.tid()
339
-
340
- zero = P_diag.dtype(P_diag.dtype.dtype(0.0))
341
-
342
- schur = zero
343
-
344
- beg = B_offsets[row]
345
- end = B_offsets[row + 1]
346
-
347
- for b in range(beg, end):
348
- B = B_values[b]
349
- col = B_indices[b]
350
- Ai = wp.inverse(A_diag[col])
351
- S = B * Ai * wp.transpose(B)
352
- schur += S
353
-
354
- schur_diag = wp.get_diag(schur)
355
- id_diag = type(schur_diag)(schur_diag.dtype(1.0))
356
-
357
- inv_diag = wp.select(schur == zero, wp.cw_div(id_diag, schur_diag), id_diag)
358
- P_diag[row] = wp.diag(inv_diag)
359
-
360
-
361
- def invert_diagonal_bsr_mass_matrix(A: BsrMatrix):
362
- """Inverts each block of a block-diagonal mass matrix"""
363
-
364
- scale = A.scalar_type(A.block_shape[0])
365
- values = A.values
366
- if not wp.types.type_is_matrix(values.dtype):
367
- values = values.view(dtype=wp.mat(shape=(1, 1), dtype=A.scalar_type))
368
-
369
- wp.launch(
370
- kernel=_block_diagonal_mass_invert,
371
- dim=A.nrow,
372
- inputs=[values, scale],
373
- device=values.device,
374
- )
375
-
376
-
377
- @wp.kernel
378
- def _block_diagonal_mass_invert(values: wp.array(dtype=Any), scale: Any):
379
- i = wp.tid()
380
- values[i] = scale * values[i] / wp.ddot(values[i], values[i])
1
+ from typing import Any, Optional, Tuple, Union
2
+
3
+ import warp as wp
4
+ import warp.types
5
+ from warp.optim.linear import LinearOperator, aslinearoperator, preconditioner
6
+ from warp.sparse import BsrMatrix, bsr_get_diag, bsr_mv, bsr_transposed, bsr_zeros
7
+
8
+
9
+ def bsr_to_scipy(matrix: BsrMatrix) -> "scipy.sparse.bsr_array": # noqa: F821
10
+ try:
11
+ from scipy.sparse import bsr_array, csr_array
12
+ except ImportError:
13
+ # WAR for older scipy
14
+ from scipy.sparse import bsr_matrix as bsr_array
15
+ from scipy.sparse import csr_matrix as csr_array
16
+
17
+ if matrix.block_shape == (1, 1):
18
+ return csr_array(
19
+ (
20
+ matrix.values.numpy().flatten()[: matrix.nnz],
21
+ matrix.columns.numpy()[: matrix.nnz],
22
+ matrix.offsets.numpy(),
23
+ ),
24
+ shape=matrix.shape,
25
+ )
26
+
27
+ return bsr_array(
28
+ (
29
+ matrix.values.numpy().reshape((matrix.values.shape[0], *matrix.block_shape))[: matrix.nnz],
30
+ matrix.columns.numpy()[: matrix.nnz],
31
+ matrix.offsets.numpy(),
32
+ ),
33
+ shape=matrix.shape,
34
+ )
35
+
36
+
37
+ def scipy_to_bsr(
38
+ sp: Union["scipy.sparse.bsr_array", "scipy.sparse.csr_array"], # noqa: F821
39
+ device=None,
40
+ dtype=None,
41
+ ) -> BsrMatrix:
42
+ try:
43
+ from scipy.sparse import csr_array
44
+ except ImportError:
45
+ # WAR for older scipy
46
+ from scipy.sparse import csr_matrix as csr_array
47
+
48
+ if dtype is None:
49
+ dtype = warp.types.np_dtype_to_warp_type[sp.dtype]
50
+
51
+ sp.sort_indices()
52
+
53
+ if isinstance(sp, csr_array):
54
+ matrix = bsr_zeros(sp.shape[0], sp.shape[1], dtype, device=device)
55
+ else:
56
+ block_shape = sp.blocksize
57
+ block_type = wp.types.matrix(shape=block_shape, dtype=dtype)
58
+ matrix = bsr_zeros(
59
+ sp.shape[0] // block_shape[0],
60
+ sp.shape[1] // block_shape[1],
61
+ block_type,
62
+ device=device,
63
+ )
64
+
65
+ matrix.nnz = sp.nnz
66
+ matrix.values = wp.array(sp.data.flatten(), dtype=matrix.values.dtype, device=device)
67
+ matrix.columns = wp.array(sp.indices, dtype=matrix.columns.dtype, device=device)
68
+ matrix.offsets = wp.array(sp.indptr, dtype=matrix.offsets.dtype, device=device)
69
+
70
+ return matrix
71
+
72
+
73
+ def get_linear_solver_func(method_name: str):
74
+ from warp.optim.linear import bicgstab, cg, cr, gmres
75
+
76
+ if method_name == "bicgstab":
77
+ return bicgstab
78
+ if method_name == "gmres":
79
+ return gmres
80
+ if method_name == "cr":
81
+ return cr
82
+ return cg
83
+
84
+
85
+ def bsr_cg(
86
+ A: BsrMatrix,
87
+ x: wp.array,
88
+ b: wp.array,
89
+ max_iters: int = 0,
90
+ tol: float = 0.0001,
91
+ check_every=10,
92
+ use_diag_precond=True,
93
+ mv_routine=None,
94
+ quiet=False,
95
+ method: str = "cg",
96
+ ) -> Tuple[float, int]:
97
+ """Solves the linear system A x = b using an iterative solver, optionally with diagonal preconditioning
98
+
99
+ Args:
100
+ A: system left-hand side
101
+ x: result vector and initial guess
102
+ b: system right-hand-side
103
+ max_iters: maximum number of iterations to perform before aborting. If set to zero, equal to the system size.
104
+ tol: relative tolerance under which to stop the solve
105
+ check_every: number of iterations every which to evaluate the current residual norm to compare against tolerance
106
+ use_diag_precond: Whether to use diagonal preconditioning
107
+ mv_routine: Matrix-vector multiplication routine to use for multiplications with ``A``
108
+ quiet: if True, do not print iteration residuals
109
+ method: Iterative solver method to use, defaults to Conjugate Gradient
110
+
111
+ Returns:
112
+ Tuple (residual norm, iteration count)
113
+
114
+ """
115
+
116
+ if mv_routine is None:
117
+ M = preconditioner(A, "diag") if use_diag_precond else None
118
+ else:
119
+ A = LinearOperator(A.shape, A.dtype, A.device, matvec=mv_routine)
120
+ M = None
121
+
122
+ func = get_linear_solver_func(method_name=method)
123
+
124
+ def print_callback(i, err, tol):
125
+ print(f"{func.__name__}: at iteration {i} error = \t {err} \t tol: {tol}")
126
+
127
+ callback = None if quiet else print_callback
128
+
129
+ end_iter, err, atol = func(
130
+ A=A,
131
+ b=b,
132
+ x=x,
133
+ maxiter=max_iters,
134
+ tol=tol,
135
+ check_every=check_every,
136
+ M=M,
137
+ callback=callback,
138
+ )
139
+
140
+ if not quiet:
141
+ res_str = "OK" if err <= atol else "TRUNCATED"
142
+ print(f"{func.__name__}: terminated after {end_iter} iterations with error = \t {err} ({res_str})")
143
+
144
+ return err, end_iter
145
+
146
+
147
+ class SaddleSystem(LinearOperator):
148
+ """Builds a linear operator corresponding to the saddle-point linear system [A B^T; B 0]
149
+
150
+ If use_diag_precond` is ``True``, builds the corresponding diagonal preconditioner `[diag(A); diag(B diag(A)^-1 B^T)]`
151
+ """
152
+
153
+ def __init__(
154
+ self,
155
+ A: BsrMatrix,
156
+ B: BsrMatrix,
157
+ Bt: Optional[BsrMatrix] = None,
158
+ use_diag_precond: bool = True,
159
+ ):
160
+ if Bt is None:
161
+ Bt = bsr_transposed(B)
162
+
163
+ self._A = A
164
+ self._B = B
165
+ self._Bt = Bt
166
+
167
+ self._u_dtype = wp.vec(length=A.block_shape[0], dtype=A.scalar_type)
168
+ self._p_dtype = wp.vec(length=B.block_shape[0], dtype=B.scalar_type)
169
+ self._p_byte_offset = A.nrow * wp.types.type_size_in_bytes(self._u_dtype)
170
+
171
+ saddle_shape = (A.shape[0] + B.shape[0], A.shape[0] + B.shape[0])
172
+
173
+ super().__init__(saddle_shape, dtype=A.scalar_type, device=A.device, matvec=self._saddle_mv)
174
+
175
+ if use_diag_precond:
176
+ self._preconditioner = self._diag_preconditioner()
177
+ else:
178
+ self._preconditioner = None
179
+
180
+ def _diag_preconditioner(self):
181
+ A = self._A
182
+ B = self._B
183
+
184
+ M_u = preconditioner(A, "diag")
185
+
186
+ A_diag = bsr_get_diag(A)
187
+
188
+ schur_block_shape = (B.block_shape[0], B.block_shape[0])
189
+ schur_dtype = wp.mat(shape=schur_block_shape, dtype=B.scalar_type)
190
+ schur_inv_diag = wp.empty(dtype=schur_dtype, shape=B.nrow, device=self.device)
191
+ wp.launch(
192
+ _compute_schur_inverse_diagonal,
193
+ dim=B.nrow,
194
+ device=A.device,
195
+ inputs=[B.offsets, B.columns, B.values, A_diag, schur_inv_diag],
196
+ )
197
+
198
+ if schur_block_shape == (1, 1):
199
+ # Downcast 1x1 mats to scalars
200
+ schur_inv_diag = schur_inv_diag.view(dtype=B.scalar_type)
201
+
202
+ M_p = aslinearoperator(schur_inv_diag)
203
+
204
+ def precond_mv(x, y, z, alpha, beta):
205
+ x_u = self.u_slice(x)
206
+ x_p = self.p_slice(x)
207
+ y_u = self.u_slice(y)
208
+ y_p = self.p_slice(y)
209
+ z_u = self.u_slice(z)
210
+ z_p = self.p_slice(z)
211
+
212
+ M_u.matvec(x_u, y_u, z_u, alpha=alpha, beta=beta)
213
+ M_p.matvec(x_p, y_p, z_p, alpha=alpha, beta=beta)
214
+
215
+ return LinearOperator(
216
+ shape=self.shape,
217
+ dtype=self.dtype,
218
+ device=self.device,
219
+ matvec=precond_mv,
220
+ )
221
+
222
+ @property
223
+ def preconditioner(self):
224
+ return self._preconditioner
225
+
226
+ def u_slice(self, a: wp.array):
227
+ return wp.array(
228
+ ptr=a.ptr,
229
+ dtype=self._u_dtype,
230
+ shape=self._A.nrow,
231
+ strides=None,
232
+ device=a.device,
233
+ pinned=a.pinned,
234
+ copy=False,
235
+ )
236
+
237
+ def p_slice(self, a: wp.array):
238
+ return wp.array(
239
+ ptr=a.ptr + self._p_byte_offset,
240
+ dtype=self._p_dtype,
241
+ shape=self._B.nrow,
242
+ strides=None,
243
+ device=a.device,
244
+ pinned=a.pinned,
245
+ copy=False,
246
+ )
247
+
248
+ def _saddle_mv(self, x, y, z, alpha, beta):
249
+ x_u = self.u_slice(x)
250
+ x_p = self.p_slice(x)
251
+ z_u = self.u_slice(z)
252
+ z_p = self.p_slice(z)
253
+
254
+ if y.ptr != z.ptr and beta != 0.0:
255
+ wp.copy(src=y, dest=z)
256
+
257
+ bsr_mv(self._A, x_u, z_u, alpha=alpha, beta=beta)
258
+ bsr_mv(self._Bt, x_p, z_u, alpha=alpha, beta=1.0)
259
+ bsr_mv(self._B, x_u, z_p, alpha=alpha, beta=beta)
260
+
261
+
262
+ def bsr_solve_saddle(
263
+ saddle_system: SaddleSystem,
264
+ x_u: wp.array,
265
+ x_p: wp.array,
266
+ b_u: wp.array,
267
+ b_p: wp.array,
268
+ max_iters: int = 0,
269
+ tol: float = 0.0001,
270
+ check_every=10,
271
+ quiet=False,
272
+ method: str = "cg",
273
+ ) -> Tuple[float, int]:
274
+ """Solves the saddle-point linear system [A B^T; B 0] (x_u; x_p) = (b_u; b_p) using an iterative solver, optionally with diagonal preconditioning
275
+
276
+ Args:
277
+ saddle_system: Saddle point system
278
+ x_u: primal part of the result vector and initial guess
279
+ x_p: Lagrange multiplier part of the result vector and initial guess
280
+ b_u: primal left-hand-side
281
+ b_p: constraint left-hand-side
282
+ max_iters: maximum number of iterations to perform before aborting. If set to zero, equal to the system size.
283
+ tol: relative tolerance under which to stop the solve
284
+ check_every: number of iterations every which to evaluate the current residual norm to compare against tolerance
285
+ quiet: if True, do not print iteration residuals
286
+ method: Iterative solver method to use, defaults to BiCGSTAB
287
+
288
+ Returns:
289
+ Tuple (residual norm, iteration count)
290
+
291
+ """
292
+ x = wp.empty(dtype=saddle_system.scalar_type, shape=saddle_system.shape[0], device=saddle_system.device)
293
+ b = wp.empty_like(x)
294
+
295
+ wp.copy(src=x_u, dest=saddle_system.u_slice(x))
296
+ wp.copy(src=x_p, dest=saddle_system.p_slice(x))
297
+ wp.copy(src=b_u, dest=saddle_system.u_slice(b))
298
+ wp.copy(src=b_p, dest=saddle_system.p_slice(b))
299
+
300
+ func = get_linear_solver_func(method_name=method)
301
+
302
+ def print_callback(i, err, tol):
303
+ print(f"{func.__name__}: at iteration {i} error = \t {err} \t tol: {tol}")
304
+
305
+ callback = None if quiet else print_callback
306
+
307
+ end_iter, err, atol = func(
308
+ A=saddle_system,
309
+ b=b,
310
+ x=x,
311
+ maxiter=max_iters,
312
+ tol=tol,
313
+ check_every=check_every,
314
+ M=saddle_system.preconditioner,
315
+ callback=callback,
316
+ )
317
+
318
+ if not quiet:
319
+ res_str = "OK" if err <= atol else "TRUNCATED"
320
+ print(f"{func.__name__}: terminated after {end_iter} iterations with absolute error = \t {err} ({res_str})")
321
+
322
+ wp.copy(dest=x_u, src=saddle_system.u_slice(x))
323
+ wp.copy(dest=x_p, src=saddle_system.p_slice(x))
324
+
325
+ return err, end_iter
326
+
327
+
328
+ @wp.kernel
329
+ def _compute_schur_inverse_diagonal(
330
+ B_offsets: wp.array(dtype=int),
331
+ B_indices: wp.array(dtype=int),
332
+ B_values: wp.array(dtype=Any),
333
+ A_diag: wp.array(dtype=Any),
334
+ P_diag: wp.array(dtype=Any),
335
+ ):
336
+ row = wp.tid()
337
+
338
+ zero = P_diag.dtype(P_diag.dtype.dtype(0.0))
339
+
340
+ schur = zero
341
+
342
+ beg = B_offsets[row]
343
+ end = B_offsets[row + 1]
344
+
345
+ for b in range(beg, end):
346
+ B = B_values[b]
347
+ col = B_indices[b]
348
+ Ai = wp.inverse(A_diag[col])
349
+ S = B * Ai * wp.transpose(B)
350
+ schur += S
351
+
352
+ schur_diag = wp.get_diag(schur)
353
+ id_diag = type(schur_diag)(schur_diag.dtype(1.0))
354
+
355
+ inv_diag = wp.select(schur == zero, wp.cw_div(id_diag, schur_diag), id_diag)
356
+ P_diag[row] = wp.diag(inv_diag)
357
+
358
+
359
+ def invert_diagonal_bsr_mass_matrix(A: BsrMatrix):
360
+ """Inverts each block of a block-diagonal mass matrix"""
361
+
362
+ scale = A.scalar_type(A.block_shape[0])
363
+ values = A.values
364
+ if not wp.types.type_is_matrix(values.dtype):
365
+ values = values.view(dtype=wp.mat(shape=(1, 1), dtype=A.scalar_type))
366
+
367
+ wp.launch(
368
+ kernel=_block_diagonal_mass_invert,
369
+ dim=A.nrow,
370
+ inputs=[values, scale],
371
+ device=values.device,
372
+ )
373
+
374
+
375
+ @wp.kernel
376
+ def _block_diagonal_mass_invert(values: wp.array(dtype=Any), scale: Any):
377
+ i = wp.tid()
378
+ values[i] = scale * values[i] / wp.ddot(values[i], values[i])