warp-lang 1.0.2__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/libwarp-clang.dylib +0 -0
  4. warp/bin/libwarp.dylib +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +234 -219
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -126
  39. warp/examples/core/example_marching_cubes.py +188 -174
  40. warp/examples/core/example_mesh.py +174 -155
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -170
  43. warp/examples/core/example_raycast.py +105 -90
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -387
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -389
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -246
  65. warp/examples/optim/example_cloth_throw.py +222 -209
  66. warp/examples/optim/example_diffray.py +566 -536
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
  70. warp/examples/optim/example_spring_cage.py +239 -231
  71. warp/examples/optim/example_trajectory.py +223 -199
  72. warp/examples/optim/example_walker.py +306 -293
  73. warp/examples/sim/example_cartpole.py +139 -129
  74. warp/examples/sim/example_cloth.py +196 -186
  75. warp/examples/sim/example_granular.py +124 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -186
  77. warp/examples/sim/example_jacobian_ik.py +236 -214
  78. warp/examples/sim/example_particle_chain.py +118 -105
  79. warp/examples/sim/example_quadruped.py +193 -180
  80. warp/examples/sim/example_rigid_chain.py +197 -187
  81. warp/examples/sim/example_rigid_contact.py +189 -177
  82. warp/examples/sim/example_rigid_force.py +127 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -122
  85. warp/examples/sim/example_soft_body.py +190 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.2.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/tests/test_dlpack.py CHANGED
@@ -1,529 +1,530 @@
1
- # Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
2
- # NVIDIA CORPORATION and its licensors retain all intellectual property
3
- # and proprietary rights in and to this software, related documentation
4
- # and any modifications thereto. Any use, reproduction, disclosure or
5
- # distribution of this software and related documentation without an express
6
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
-
8
- import ctypes
9
- import os
10
- import unittest
11
-
12
- import numpy as np
13
-
14
- import warp as wp
15
- from warp.tests.unittest_utils import *
16
-
17
- N = 1024 * 1024
18
-
19
- wp.init()
20
-
21
-
22
- def _jax_version():
23
- try:
24
- import jax
25
- return jax.__version_info__
26
- except ImportError:
27
- return (0, 0, 0)
28
-
29
-
30
- @wp.kernel
31
- def inc(a: wp.array(dtype=float)):
32
- tid = wp.tid()
33
- a[tid] = a[tid] + 1.0
34
-
35
-
36
- def test_dlpack_warp_to_warp(test, device):
37
- a1 = wp.array(data=np.arange(N, dtype=np.float32), device=device)
38
-
39
- a2 = wp.from_dlpack(wp.to_dlpack(a1))
40
-
41
- test.assertEqual(a1.ptr, a2.ptr)
42
- test.assertEqual(a1.device, a2.device)
43
- test.assertEqual(a1.dtype, a2.dtype)
44
- test.assertEqual(a1.shape, a2.shape)
45
- test.assertEqual(a1.strides, a2.strides)
46
-
47
- assert_np_equal(a1.numpy(), a2.numpy())
48
-
49
- wp.launch(inc, dim=a2.size, inputs=[a2], device=device)
50
-
51
- assert_np_equal(a1.numpy(), a2.numpy())
52
-
53
-
54
- def test_dlpack_dtypes_and_shapes(test, device):
55
- # automatically determine scalar dtype
56
- def wrap_scalar_tensor_implicit(dtype):
57
- a1 = wp.zeros(N, dtype=dtype, device=device)
58
- a2 = wp.from_dlpack(wp.to_dlpack(a1))
59
-
60
- test.assertEqual(a1.ptr, a2.ptr)
61
- test.assertEqual(a1.device, a2.device)
62
- test.assertEqual(a1.dtype, a2.dtype)
63
- test.assertEqual(a1.shape, a2.shape)
64
- test.assertEqual(a1.strides, a2.strides)
65
-
66
- # explicitly specify scalar dtype
67
- def wrap_scalar_tensor_explicit(dtype, target_dtype):
68
- a1 = wp.zeros(N, dtype=dtype, device=device)
69
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=target_dtype)
70
-
71
- test.assertEqual(a1.ptr, a2.ptr)
72
- test.assertEqual(a1.device, a2.device)
73
- test.assertEqual(a1.dtype, dtype)
74
- test.assertEqual(a2.dtype, target_dtype)
75
- test.assertEqual(a1.shape, a2.shape)
76
- test.assertEqual(a1.strides, a2.strides)
77
-
78
- # convert vector arrays to scalar arrays
79
- def wrap_vector_to_scalar_tensor(vec_dtype):
80
- scalar_type = vec_dtype._wp_scalar_type_
81
- scalar_size = ctypes.sizeof(vec_dtype._type_)
82
-
83
- a1 = wp.zeros(N, dtype=vec_dtype, device=device)
84
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
85
-
86
- test.assertEqual(a1.ptr, a2.ptr)
87
- test.assertEqual(a1.device, a2.device)
88
- test.assertEqual(a2.ndim, a1.ndim + 1)
89
- test.assertEqual(a1.dtype, vec_dtype)
90
- test.assertEqual(a2.dtype, scalar_type)
91
- test.assertEqual(a2.shape, (*a1.shape, vec_dtype._length_))
92
- test.assertEqual(a2.strides, (*a1.strides, scalar_size))
93
-
94
- # convert scalar arrays to vector arrays
95
- def wrap_scalar_to_vector_tensor(vec_dtype):
96
- scalar_type = vec_dtype._wp_scalar_type_
97
- scalar_size = ctypes.sizeof(vec_dtype._type_)
98
-
99
- a1 = wp.zeros((N, vec_dtype._length_), dtype=scalar_type, device=device)
100
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=vec_dtype)
101
-
102
- test.assertEqual(a1.ptr, a2.ptr)
103
- test.assertEqual(a1.device, a2.device)
104
- test.assertEqual(a2.ndim, a1.ndim - 1)
105
- test.assertEqual(a1.dtype, scalar_type)
106
- test.assertEqual(a2.dtype, vec_dtype)
107
- test.assertEqual(a1.shape, (*a2.shape, vec_dtype._length_))
108
- test.assertEqual(a1.strides, (*a2.strides, scalar_size))
109
-
110
- # convert matrix arrays to scalar arrays
111
- def wrap_matrix_to_scalar_tensor(mat_dtype):
112
- scalar_type = mat_dtype._wp_scalar_type_
113
- scalar_size = ctypes.sizeof(mat_dtype._type_)
114
-
115
- a1 = wp.zeros(N, dtype=mat_dtype, device=device)
116
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
117
-
118
- test.assertEqual(a1.ptr, a2.ptr)
119
- test.assertEqual(a1.device, a2.device)
120
- test.assertEqual(a2.ndim, a1.ndim + 2)
121
- test.assertEqual(a1.dtype, mat_dtype)
122
- test.assertEqual(a2.dtype, scalar_type)
123
- test.assertEqual(a2.shape, (*a1.shape, *mat_dtype._shape_))
124
- test.assertEqual(a2.strides, (*a1.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
125
-
126
- # convert scalar arrays to matrix arrays
127
- def wrap_scalar_to_matrix_tensor(mat_dtype):
128
- scalar_type = mat_dtype._wp_scalar_type_
129
- scalar_size = ctypes.sizeof(mat_dtype._type_)
130
-
131
- a1 = wp.zeros((N, *mat_dtype._shape_), dtype=scalar_type, device=device)
132
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=mat_dtype)
133
-
134
- test.assertEqual(a1.ptr, a2.ptr)
135
- test.assertEqual(a1.device, a2.device)
136
- test.assertEqual(a2.ndim, a1.ndim - 2)
137
- test.assertEqual(a1.dtype, scalar_type)
138
- test.assertEqual(a2.dtype, mat_dtype)
139
- test.assertEqual(a1.shape, (*a2.shape, *mat_dtype._shape_))
140
- test.assertEqual(a1.strides, (*a2.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
141
-
142
- for t in wp.types.scalar_types:
143
- wrap_scalar_tensor_implicit(t)
144
-
145
- for t in wp.types.scalar_types:
146
- wrap_scalar_tensor_explicit(t, t)
147
-
148
- # test signed/unsigned conversions
149
- wrap_scalar_tensor_explicit(wp.int8, wp.uint8)
150
- wrap_scalar_tensor_explicit(wp.uint8, wp.int8)
151
- wrap_scalar_tensor_explicit(wp.int16, wp.uint16)
152
- wrap_scalar_tensor_explicit(wp.uint16, wp.int16)
153
- wrap_scalar_tensor_explicit(wp.int32, wp.uint32)
154
- wrap_scalar_tensor_explicit(wp.uint32, wp.int32)
155
- wrap_scalar_tensor_explicit(wp.int64, wp.uint64)
156
- wrap_scalar_tensor_explicit(wp.uint64, wp.int64)
157
-
158
- vec_types = []
159
- for t in wp.types.scalar_types:
160
- for vec_len in [2, 3, 4, 5]:
161
- vec_types.append(wp.types.vector(vec_len, t))
162
-
163
- vec_types.append(wp.quath)
164
- vec_types.append(wp.quatf)
165
- vec_types.append(wp.quatd)
166
- vec_types.append(wp.transformh)
167
- vec_types.append(wp.transformf)
168
- vec_types.append(wp.transformd)
169
- vec_types.append(wp.spatial_vectorh)
170
- vec_types.append(wp.spatial_vectorf)
171
- vec_types.append(wp.spatial_vectord)
172
-
173
- for vec_type in vec_types:
174
- wrap_vector_to_scalar_tensor(vec_type)
175
- wrap_scalar_to_vector_tensor(vec_type)
176
-
177
- mat_shapes = [(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 4), (4, 3)]
178
- mat_types = []
179
- for t in wp.types.scalar_types:
180
- for mat_shape in mat_shapes:
181
- mat_types.append(wp.types.matrix(mat_shape, t))
182
-
183
- mat_types.append(wp.spatial_matrixh)
184
- mat_types.append(wp.spatial_matrixf)
185
- mat_types.append(wp.spatial_matrixd)
186
-
187
- for mat_type in mat_types:
188
- wrap_matrix_to_scalar_tensor(mat_type)
189
- wrap_scalar_to_matrix_tensor(mat_type)
190
-
191
-
192
- def test_dlpack_warp_to_torch(test, device):
193
- import torch.utils.dlpack
194
-
195
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
196
-
197
- t = torch.utils.dlpack.from_dlpack(wp.to_dlpack(a))
198
-
199
- item_size = wp.types.type_size_in_bytes(a.dtype)
200
-
201
- test.assertEqual(a.ptr, t.data_ptr())
202
- test.assertEqual(a.device, wp.device_from_torch(t.device))
203
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
204
- test.assertEqual(a.shape, tuple(t.shape))
205
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
206
-
207
- assert_np_equal(a.numpy(), t.cpu().numpy())
208
-
209
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
210
-
211
- assert_np_equal(a.numpy(), t.cpu().numpy())
212
-
213
- t += 1
214
-
215
- assert_np_equal(a.numpy(), t.cpu().numpy())
216
-
217
-
218
- def test_dlpack_warp_to_torch_v2(test, device):
219
- # same as original test, but uses newer __dlpack__() method
220
-
221
- import torch.utils.dlpack
222
-
223
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
224
-
225
- # pass the array directly
226
- t = torch.utils.dlpack.from_dlpack(a)
227
-
228
- item_size = wp.types.type_size_in_bytes(a.dtype)
229
-
230
- test.assertEqual(a.ptr, t.data_ptr())
231
- test.assertEqual(a.device, wp.device_from_torch(t.device))
232
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
233
- test.assertEqual(a.shape, tuple(t.shape))
234
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
235
-
236
- assert_np_equal(a.numpy(), t.cpu().numpy())
237
-
238
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
239
-
240
- assert_np_equal(a.numpy(), t.cpu().numpy())
241
-
242
- t += 1
243
-
244
- assert_np_equal(a.numpy(), t.cpu().numpy())
245
-
246
-
247
- def test_dlpack_torch_to_warp(test, device):
248
- import torch
249
- import torch.utils.dlpack
250
-
251
- t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
252
-
253
- a = wp.from_dlpack(torch.utils.dlpack.to_dlpack(t))
254
-
255
- item_size = wp.types.type_size_in_bytes(a.dtype)
256
-
257
- test.assertEqual(a.ptr, t.data_ptr())
258
- test.assertEqual(a.device, wp.device_from_torch(t.device))
259
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
260
- test.assertEqual(a.shape, tuple(t.shape))
261
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
262
-
263
- assert_np_equal(a.numpy(), t.cpu().numpy())
264
-
265
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
266
-
267
- assert_np_equal(a.numpy(), t.cpu().numpy())
268
-
269
- t += 1
270
-
271
- assert_np_equal(a.numpy(), t.cpu().numpy())
272
-
273
-
274
- def test_dlpack_torch_to_warp_v2(test, device):
275
- # same as original test, but uses newer __dlpack__() method
276
-
277
- import torch
278
-
279
- t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
280
-
281
- # pass tensor directly
282
- a = wp.from_dlpack(t)
283
-
284
- item_size = wp.types.type_size_in_bytes(a.dtype)
285
-
286
- test.assertEqual(a.ptr, t.data_ptr())
287
- test.assertEqual(a.device, wp.device_from_torch(t.device))
288
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
289
- test.assertEqual(a.shape, tuple(t.shape))
290
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
291
-
292
- assert_np_equal(a.numpy(), t.cpu().numpy())
293
-
294
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
295
-
296
- assert_np_equal(a.numpy(), t.cpu().numpy())
297
-
298
- t += 1
299
-
300
- assert_np_equal(a.numpy(), t.cpu().numpy())
301
-
302
-
303
- def test_dlpack_warp_to_jax(test, device):
304
- import jax
305
- import jax.dlpack
306
-
307
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
308
-
309
- # use generic dlpack conversion
310
- j1 = jax.dlpack.from_dlpack(wp.to_dlpack(a))
311
-
312
- # use jax wrapper
313
- j2 = wp.to_jax(a)
314
-
315
- test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
316
- test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
317
- test.assertEqual(a.device, wp.device_from_jax(j1.device()))
318
- test.assertEqual(a.device, wp.device_from_jax(j2.device()))
319
- test.assertEqual(a.shape, j1.shape)
320
- test.assertEqual(a.shape, j2.shape)
321
-
322
- assert_np_equal(a.numpy(), np.asarray(j1))
323
- assert_np_equal(a.numpy(), np.asarray(j2))
324
-
325
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
326
- wp.synchronize_device(device)
327
-
328
- # HACK? Run a no-op operation so that Jax flags the arrays as dirty
329
- # and gets the latest values, which were modified by Warp.
330
- j1 += 0
331
- j2 += 0
332
-
333
- assert_np_equal(a.numpy(), np.asarray(j1))
334
- assert_np_equal(a.numpy(), np.asarray(j2))
335
-
336
-
337
- @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
338
- def test_dlpack_warp_to_jax_v2(test, device):
339
- # same as original test, but uses newer __dlpack__() method
340
-
341
- import jax
342
- import jax.dlpack
343
-
344
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
345
-
346
- # pass warp array directly
347
- j1 = jax.dlpack.from_dlpack(a)
348
-
349
- # use jax wrapper
350
- j2 = wp.to_jax(a)
351
-
352
- test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
353
- test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
354
- test.assertEqual(a.device, wp.device_from_jax(j1.device()))
355
- test.assertEqual(a.device, wp.device_from_jax(j2.device()))
356
- test.assertEqual(a.shape, j1.shape)
357
- test.assertEqual(a.shape, j2.shape)
358
-
359
- assert_np_equal(a.numpy(), np.asarray(j1))
360
- assert_np_equal(a.numpy(), np.asarray(j2))
361
-
362
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
363
- wp.synchronize_device(device)
364
-
365
- # HACK? Run a no-op operation so that Jax flags the arrays as dirty
366
- # and gets the latest values, which were modified by Warp.
367
- j1 += 0
368
- j2 += 0
369
-
370
- assert_np_equal(a.numpy(), np.asarray(j1))
371
- assert_np_equal(a.numpy(), np.asarray(j2))
372
-
373
-
374
- def test_dlpack_jax_to_warp(test, device):
375
- import jax
376
- import jax.dlpack
377
-
378
- with jax.default_device(wp.device_to_jax(device)):
379
- j = jax.numpy.arange(N, dtype=jax.numpy.float32)
380
-
381
- # use generic dlpack conversion
382
- a1 = wp.from_dlpack(jax.dlpack.to_dlpack(j))
383
-
384
- # use jax wrapper
385
- a2 = wp.from_jax(j)
386
-
387
- test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
388
- test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
389
- test.assertEqual(a1.device, wp.device_from_jax(j.device()))
390
- test.assertEqual(a2.device, wp.device_from_jax(j.device()))
391
- test.assertEqual(a1.shape, j.shape)
392
- test.assertEqual(a2.shape, j.shape)
393
-
394
- assert_np_equal(a1.numpy(), np.asarray(j))
395
- assert_np_equal(a2.numpy(), np.asarray(j))
396
-
397
- wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
398
- wp.synchronize_device(device)
399
-
400
- # HACK? Run a no-op operation so that Jax flags the array as dirty
401
- # and gets the latest values, which were modified by Warp.
402
- j += 0
403
-
404
- assert_np_equal(a1.numpy(), np.asarray(j))
405
- assert_np_equal(a2.numpy(), np.asarray(j))
406
-
407
-
408
- @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
409
- def test_dlpack_jax_to_warp_v2(test, device):
410
- # same as original test, but uses newer __dlpack__() method
411
-
412
- import jax
413
-
414
- with jax.default_device(wp.device_to_jax(device)):
415
- j = jax.numpy.arange(N, dtype=jax.numpy.float32)
416
-
417
- # pass jax array directly
418
- a1 = wp.from_dlpack(j)
419
-
420
- # use jax wrapper
421
- a2 = wp.from_jax(j)
422
-
423
- test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
424
- test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
425
- test.assertEqual(a1.device, wp.device_from_jax(j.device()))
426
- test.assertEqual(a2.device, wp.device_from_jax(j.device()))
427
- test.assertEqual(a1.shape, j.shape)
428
- test.assertEqual(a2.shape, j.shape)
429
-
430
- assert_np_equal(a1.numpy(), np.asarray(j))
431
- assert_np_equal(a2.numpy(), np.asarray(j))
432
-
433
- wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
434
- wp.synchronize_device(device)
435
-
436
- # HACK? Run a no-op operation so that Jax flags the array as dirty
437
- # and gets the latest values, which were modified by Warp.
438
- j += 0
439
-
440
- assert_np_equal(a1.numpy(), np.asarray(j))
441
- assert_np_equal(a2.numpy(), np.asarray(j))
442
-
443
-
444
- class TestDLPack(unittest.TestCase):
445
- pass
446
-
447
-
448
- devices = get_test_devices()
449
-
450
- add_function_test(TestDLPack, "test_dlpack_warp_to_warp", test_dlpack_warp_to_warp, devices=devices)
451
- add_function_test(TestDLPack, "test_dlpack_dtypes_and_shapes", test_dlpack_dtypes_and_shapes, devices=devices)
452
-
453
- # torch interop via dlpack
454
- try:
455
- import torch
456
- import torch.utils.dlpack
457
-
458
- # check which Warp devices work with Torch
459
- # CUDA devices may fail if Torch was not compiled with CUDA support
460
- test_devices = get_test_devices()
461
- torch_compatible_devices = []
462
- for d in test_devices:
463
- try:
464
- t = torch.arange(10, device=wp.device_to_torch(d))
465
- t += 1
466
- torch_compatible_devices.append(d)
467
- except Exception as e:
468
- print(f"Skipping Torch DLPack tests on device '{d}' due to exception: {e}")
469
-
470
- if torch_compatible_devices:
471
- add_function_test(
472
- TestDLPack, "test_dlpack_warp_to_torch", test_dlpack_warp_to_torch, devices=torch_compatible_devices
473
- )
474
- add_function_test(
475
- TestDLPack, "test_dlpack_warp_to_torch_v2", test_dlpack_warp_to_torch_v2, devices=torch_compatible_devices
476
- )
477
- add_function_test(
478
- TestDLPack, "test_dlpack_torch_to_warp", test_dlpack_torch_to_warp, devices=torch_compatible_devices
479
- )
480
- add_function_test(
481
- TestDLPack, "test_dlpack_torch_to_warp_v2", test_dlpack_torch_to_warp_v2, devices=torch_compatible_devices
482
- )
483
-
484
- except Exception as e:
485
- print(f"Skipping Torch DLPack tests due to exception: {e}")
486
-
487
- # jax interop via dlpack
488
- try:
489
- # prevent Jax from gobbling up GPU memory
490
- os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
491
- os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
492
-
493
- import jax
494
- import jax.dlpack
495
-
496
- # check which Warp devices work with Jax
497
- # CUDA devices may fail if Jax cannot find a CUDA Toolkit
498
- test_devices = get_test_devices()
499
- jax_compatible_devices = []
500
- for d in test_devices:
501
- try:
502
- with jax.default_device(wp.device_to_jax(d)):
503
- j = jax.numpy.arange(10, dtype=jax.numpy.float32)
504
- j += 1
505
- jax_compatible_devices.append(d)
506
- except Exception as e:
507
- print(f"Skipping Jax DLPack tests on device '{d}' due to exception: {e}")
508
-
509
- if jax_compatible_devices:
510
- add_function_test(
511
- TestDLPack, "test_dlpack_warp_to_jax", test_dlpack_warp_to_jax, devices=jax_compatible_devices
512
- )
513
- add_function_test(
514
- TestDLPack, "test_dlpack_warp_to_jax_v2", test_dlpack_warp_to_jax_v2, devices=jax_compatible_devices
515
- )
516
- add_function_test(
517
- TestDLPack, "test_dlpack_jax_to_warp", test_dlpack_jax_to_warp, devices=jax_compatible_devices
518
- )
519
- add_function_test(
520
- TestDLPack, "test_dlpack_jax_to_warp_v2", test_dlpack_jax_to_warp_v2, devices=jax_compatible_devices
521
- )
522
-
523
- except Exception as e:
524
- print(f"Skipping Jax DLPack tests due to exception: {e}")
525
-
526
-
527
- if __name__ == "__main__":
528
- wp.build.clear_kernel_cache()
529
- unittest.main(verbosity=2)
1
+ # Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ import ctypes
9
+ import os
10
+ import unittest
11
+
12
+ import numpy as np
13
+
14
+ import warp as wp
15
+ from warp.tests.unittest_utils import *
16
+
17
+ N = 1024 * 1024
18
+
19
+ wp.init()
20
+
21
+
22
+ def _jax_version():
23
+ try:
24
+ import jax
25
+
26
+ return jax.__version_info__
27
+ except ImportError:
28
+ return (0, 0, 0)
29
+
30
+
31
+ @wp.kernel
32
+ def inc(a: wp.array(dtype=float)):
33
+ tid = wp.tid()
34
+ a[tid] = a[tid] + 1.0
35
+
36
+
37
+ def test_dlpack_warp_to_warp(test, device):
38
+ a1 = wp.array(data=np.arange(N, dtype=np.float32), device=device)
39
+
40
+ a2 = wp.from_dlpack(wp.to_dlpack(a1))
41
+
42
+ test.assertEqual(a1.ptr, a2.ptr)
43
+ test.assertEqual(a1.device, a2.device)
44
+ test.assertEqual(a1.dtype, a2.dtype)
45
+ test.assertEqual(a1.shape, a2.shape)
46
+ test.assertEqual(a1.strides, a2.strides)
47
+
48
+ assert_np_equal(a1.numpy(), a2.numpy())
49
+
50
+ wp.launch(inc, dim=a2.size, inputs=[a2], device=device)
51
+
52
+ assert_np_equal(a1.numpy(), a2.numpy())
53
+
54
+
55
+ def test_dlpack_dtypes_and_shapes(test, device):
56
+ # automatically determine scalar dtype
57
+ def wrap_scalar_tensor_implicit(dtype):
58
+ a1 = wp.zeros(N, dtype=dtype, device=device)
59
+ a2 = wp.from_dlpack(wp.to_dlpack(a1))
60
+
61
+ test.assertEqual(a1.ptr, a2.ptr)
62
+ test.assertEqual(a1.device, a2.device)
63
+ test.assertEqual(a1.dtype, a2.dtype)
64
+ test.assertEqual(a1.shape, a2.shape)
65
+ test.assertEqual(a1.strides, a2.strides)
66
+
67
+ # explicitly specify scalar dtype
68
+ def wrap_scalar_tensor_explicit(dtype, target_dtype):
69
+ a1 = wp.zeros(N, dtype=dtype, device=device)
70
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=target_dtype)
71
+
72
+ test.assertEqual(a1.ptr, a2.ptr)
73
+ test.assertEqual(a1.device, a2.device)
74
+ test.assertEqual(a1.dtype, dtype)
75
+ test.assertEqual(a2.dtype, target_dtype)
76
+ test.assertEqual(a1.shape, a2.shape)
77
+ test.assertEqual(a1.strides, a2.strides)
78
+
79
+ # convert vector arrays to scalar arrays
80
+ def wrap_vector_to_scalar_tensor(vec_dtype):
81
+ scalar_type = vec_dtype._wp_scalar_type_
82
+ scalar_size = ctypes.sizeof(vec_dtype._type_)
83
+
84
+ a1 = wp.zeros(N, dtype=vec_dtype, device=device)
85
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
86
+
87
+ test.assertEqual(a1.ptr, a2.ptr)
88
+ test.assertEqual(a1.device, a2.device)
89
+ test.assertEqual(a2.ndim, a1.ndim + 1)
90
+ test.assertEqual(a1.dtype, vec_dtype)
91
+ test.assertEqual(a2.dtype, scalar_type)
92
+ test.assertEqual(a2.shape, (*a1.shape, vec_dtype._length_))
93
+ test.assertEqual(a2.strides, (*a1.strides, scalar_size))
94
+
95
+ # convert scalar arrays to vector arrays
96
+ def wrap_scalar_to_vector_tensor(vec_dtype):
97
+ scalar_type = vec_dtype._wp_scalar_type_
98
+ scalar_size = ctypes.sizeof(vec_dtype._type_)
99
+
100
+ a1 = wp.zeros((N, vec_dtype._length_), dtype=scalar_type, device=device)
101
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=vec_dtype)
102
+
103
+ test.assertEqual(a1.ptr, a2.ptr)
104
+ test.assertEqual(a1.device, a2.device)
105
+ test.assertEqual(a2.ndim, a1.ndim - 1)
106
+ test.assertEqual(a1.dtype, scalar_type)
107
+ test.assertEqual(a2.dtype, vec_dtype)
108
+ test.assertEqual(a1.shape, (*a2.shape, vec_dtype._length_))
109
+ test.assertEqual(a1.strides, (*a2.strides, scalar_size))
110
+
111
+ # convert matrix arrays to scalar arrays
112
+ def wrap_matrix_to_scalar_tensor(mat_dtype):
113
+ scalar_type = mat_dtype._wp_scalar_type_
114
+ scalar_size = ctypes.sizeof(mat_dtype._type_)
115
+
116
+ a1 = wp.zeros(N, dtype=mat_dtype, device=device)
117
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
118
+
119
+ test.assertEqual(a1.ptr, a2.ptr)
120
+ test.assertEqual(a1.device, a2.device)
121
+ test.assertEqual(a2.ndim, a1.ndim + 2)
122
+ test.assertEqual(a1.dtype, mat_dtype)
123
+ test.assertEqual(a2.dtype, scalar_type)
124
+ test.assertEqual(a2.shape, (*a1.shape, *mat_dtype._shape_))
125
+ test.assertEqual(a2.strides, (*a1.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
126
+
127
+ # convert scalar arrays to matrix arrays
128
+ def wrap_scalar_to_matrix_tensor(mat_dtype):
129
+ scalar_type = mat_dtype._wp_scalar_type_
130
+ scalar_size = ctypes.sizeof(mat_dtype._type_)
131
+
132
+ a1 = wp.zeros((N, *mat_dtype._shape_), dtype=scalar_type, device=device)
133
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=mat_dtype)
134
+
135
+ test.assertEqual(a1.ptr, a2.ptr)
136
+ test.assertEqual(a1.device, a2.device)
137
+ test.assertEqual(a2.ndim, a1.ndim - 2)
138
+ test.assertEqual(a1.dtype, scalar_type)
139
+ test.assertEqual(a2.dtype, mat_dtype)
140
+ test.assertEqual(a1.shape, (*a2.shape, *mat_dtype._shape_))
141
+ test.assertEqual(a1.strides, (*a2.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
142
+
143
+ for t in wp.types.scalar_types:
144
+ wrap_scalar_tensor_implicit(t)
145
+
146
+ for t in wp.types.scalar_types:
147
+ wrap_scalar_tensor_explicit(t, t)
148
+
149
+ # test signed/unsigned conversions
150
+ wrap_scalar_tensor_explicit(wp.int8, wp.uint8)
151
+ wrap_scalar_tensor_explicit(wp.uint8, wp.int8)
152
+ wrap_scalar_tensor_explicit(wp.int16, wp.uint16)
153
+ wrap_scalar_tensor_explicit(wp.uint16, wp.int16)
154
+ wrap_scalar_tensor_explicit(wp.int32, wp.uint32)
155
+ wrap_scalar_tensor_explicit(wp.uint32, wp.int32)
156
+ wrap_scalar_tensor_explicit(wp.int64, wp.uint64)
157
+ wrap_scalar_tensor_explicit(wp.uint64, wp.int64)
158
+
159
+ vec_types = []
160
+ for t in wp.types.scalar_types:
161
+ for vec_len in [2, 3, 4, 5]:
162
+ vec_types.append(wp.types.vector(vec_len, t))
163
+
164
+ vec_types.append(wp.quath)
165
+ vec_types.append(wp.quatf)
166
+ vec_types.append(wp.quatd)
167
+ vec_types.append(wp.transformh)
168
+ vec_types.append(wp.transformf)
169
+ vec_types.append(wp.transformd)
170
+ vec_types.append(wp.spatial_vectorh)
171
+ vec_types.append(wp.spatial_vectorf)
172
+ vec_types.append(wp.spatial_vectord)
173
+
174
+ for vec_type in vec_types:
175
+ wrap_vector_to_scalar_tensor(vec_type)
176
+ wrap_scalar_to_vector_tensor(vec_type)
177
+
178
+ mat_shapes = [(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 4), (4, 3)]
179
+ mat_types = []
180
+ for t in wp.types.scalar_types:
181
+ for mat_shape in mat_shapes:
182
+ mat_types.append(wp.types.matrix(mat_shape, t))
183
+
184
+ mat_types.append(wp.spatial_matrixh)
185
+ mat_types.append(wp.spatial_matrixf)
186
+ mat_types.append(wp.spatial_matrixd)
187
+
188
+ for mat_type in mat_types:
189
+ wrap_matrix_to_scalar_tensor(mat_type)
190
+ wrap_scalar_to_matrix_tensor(mat_type)
191
+
192
+
193
+ def test_dlpack_warp_to_torch(test, device):
194
+ import torch.utils.dlpack
195
+
196
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
197
+
198
+ t = torch.utils.dlpack.from_dlpack(wp.to_dlpack(a))
199
+
200
+ item_size = wp.types.type_size_in_bytes(a.dtype)
201
+
202
+ test.assertEqual(a.ptr, t.data_ptr())
203
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
204
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
205
+ test.assertEqual(a.shape, tuple(t.shape))
206
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
207
+
208
+ assert_np_equal(a.numpy(), t.cpu().numpy())
209
+
210
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
211
+
212
+ assert_np_equal(a.numpy(), t.cpu().numpy())
213
+
214
+ t += 1
215
+
216
+ assert_np_equal(a.numpy(), t.cpu().numpy())
217
+
218
+
219
+ def test_dlpack_warp_to_torch_v2(test, device):
220
+ # same as original test, but uses newer __dlpack__() method
221
+
222
+ import torch.utils.dlpack
223
+
224
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
225
+
226
+ # pass the array directly
227
+ t = torch.utils.dlpack.from_dlpack(a)
228
+
229
+ item_size = wp.types.type_size_in_bytes(a.dtype)
230
+
231
+ test.assertEqual(a.ptr, t.data_ptr())
232
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
233
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
234
+ test.assertEqual(a.shape, tuple(t.shape))
235
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
236
+
237
+ assert_np_equal(a.numpy(), t.cpu().numpy())
238
+
239
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
240
+
241
+ assert_np_equal(a.numpy(), t.cpu().numpy())
242
+
243
+ t += 1
244
+
245
+ assert_np_equal(a.numpy(), t.cpu().numpy())
246
+
247
+
248
+ def test_dlpack_torch_to_warp(test, device):
249
+ import torch
250
+ import torch.utils.dlpack
251
+
252
+ t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
253
+
254
+ a = wp.from_dlpack(torch.utils.dlpack.to_dlpack(t))
255
+
256
+ item_size = wp.types.type_size_in_bytes(a.dtype)
257
+
258
+ test.assertEqual(a.ptr, t.data_ptr())
259
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
260
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
261
+ test.assertEqual(a.shape, tuple(t.shape))
262
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
263
+
264
+ assert_np_equal(a.numpy(), t.cpu().numpy())
265
+
266
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
267
+
268
+ assert_np_equal(a.numpy(), t.cpu().numpy())
269
+
270
+ t += 1
271
+
272
+ assert_np_equal(a.numpy(), t.cpu().numpy())
273
+
274
+
275
+ def test_dlpack_torch_to_warp_v2(test, device):
276
+ # same as original test, but uses newer __dlpack__() method
277
+
278
+ import torch
279
+
280
+ t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
281
+
282
+ # pass tensor directly
283
+ a = wp.from_dlpack(t)
284
+
285
+ item_size = wp.types.type_size_in_bytes(a.dtype)
286
+
287
+ test.assertEqual(a.ptr, t.data_ptr())
288
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
289
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
290
+ test.assertEqual(a.shape, tuple(t.shape))
291
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
292
+
293
+ assert_np_equal(a.numpy(), t.cpu().numpy())
294
+
295
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
296
+
297
+ assert_np_equal(a.numpy(), t.cpu().numpy())
298
+
299
+ t += 1
300
+
301
+ assert_np_equal(a.numpy(), t.cpu().numpy())
302
+
303
+
304
+ def test_dlpack_warp_to_jax(test, device):
305
+ import jax
306
+ import jax.dlpack
307
+
308
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
309
+
310
+ # use generic dlpack conversion
311
+ j1 = jax.dlpack.from_dlpack(wp.to_dlpack(a))
312
+
313
+ # use jax wrapper
314
+ j2 = wp.to_jax(a)
315
+
316
+ test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
317
+ test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
318
+ test.assertEqual(a.device, wp.device_from_jax(j1.device()))
319
+ test.assertEqual(a.device, wp.device_from_jax(j2.device()))
320
+ test.assertEqual(a.shape, j1.shape)
321
+ test.assertEqual(a.shape, j2.shape)
322
+
323
+ assert_np_equal(a.numpy(), np.asarray(j1))
324
+ assert_np_equal(a.numpy(), np.asarray(j2))
325
+
326
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
327
+ wp.synchronize_device(device)
328
+
329
+ # HACK? Run a no-op operation so that Jax flags the arrays as dirty
330
+ # and gets the latest values, which were modified by Warp.
331
+ j1 += 0
332
+ j2 += 0
333
+
334
+ assert_np_equal(a.numpy(), np.asarray(j1))
335
+ assert_np_equal(a.numpy(), np.asarray(j2))
336
+
337
+
338
+ @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
339
+ def test_dlpack_warp_to_jax_v2(test, device):
340
+ # same as original test, but uses newer __dlpack__() method
341
+
342
+ import jax
343
+ import jax.dlpack
344
+
345
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
346
+
347
+ # pass warp array directly
348
+ j1 = jax.dlpack.from_dlpack(a)
349
+
350
+ # use jax wrapper
351
+ j2 = wp.to_jax(a)
352
+
353
+ test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
354
+ test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
355
+ test.assertEqual(a.device, wp.device_from_jax(j1.device()))
356
+ test.assertEqual(a.device, wp.device_from_jax(j2.device()))
357
+ test.assertEqual(a.shape, j1.shape)
358
+ test.assertEqual(a.shape, j2.shape)
359
+
360
+ assert_np_equal(a.numpy(), np.asarray(j1))
361
+ assert_np_equal(a.numpy(), np.asarray(j2))
362
+
363
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
364
+ wp.synchronize_device(device)
365
+
366
+ # HACK? Run a no-op operation so that Jax flags the arrays as dirty
367
+ # and gets the latest values, which were modified by Warp.
368
+ j1 += 0
369
+ j2 += 0
370
+
371
+ assert_np_equal(a.numpy(), np.asarray(j1))
372
+ assert_np_equal(a.numpy(), np.asarray(j2))
373
+
374
+
375
+ def test_dlpack_jax_to_warp(test, device):
376
+ import jax
377
+ import jax.dlpack
378
+
379
+ with jax.default_device(wp.device_to_jax(device)):
380
+ j = jax.numpy.arange(N, dtype=jax.numpy.float32)
381
+
382
+ # use generic dlpack conversion
383
+ a1 = wp.from_dlpack(jax.dlpack.to_dlpack(j))
384
+
385
+ # use jax wrapper
386
+ a2 = wp.from_jax(j)
387
+
388
+ test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
389
+ test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
390
+ test.assertEqual(a1.device, wp.device_from_jax(j.device()))
391
+ test.assertEqual(a2.device, wp.device_from_jax(j.device()))
392
+ test.assertEqual(a1.shape, j.shape)
393
+ test.assertEqual(a2.shape, j.shape)
394
+
395
+ assert_np_equal(a1.numpy(), np.asarray(j))
396
+ assert_np_equal(a2.numpy(), np.asarray(j))
397
+
398
+ wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
399
+ wp.synchronize_device(device)
400
+
401
+ # HACK? Run a no-op operation so that Jax flags the array as dirty
402
+ # and gets the latest values, which were modified by Warp.
403
+ j += 0
404
+
405
+ assert_np_equal(a1.numpy(), np.asarray(j))
406
+ assert_np_equal(a2.numpy(), np.asarray(j))
407
+
408
+
409
+ @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
410
+ def test_dlpack_jax_to_warp_v2(test, device):
411
+ # same as original test, but uses newer __dlpack__() method
412
+
413
+ import jax
414
+
415
+ with jax.default_device(wp.device_to_jax(device)):
416
+ j = jax.numpy.arange(N, dtype=jax.numpy.float32)
417
+
418
+ # pass jax array directly
419
+ a1 = wp.from_dlpack(j)
420
+
421
+ # use jax wrapper
422
+ a2 = wp.from_jax(j)
423
+
424
+ test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
425
+ test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
426
+ test.assertEqual(a1.device, wp.device_from_jax(j.device()))
427
+ test.assertEqual(a2.device, wp.device_from_jax(j.device()))
428
+ test.assertEqual(a1.shape, j.shape)
429
+ test.assertEqual(a2.shape, j.shape)
430
+
431
+ assert_np_equal(a1.numpy(), np.asarray(j))
432
+ assert_np_equal(a2.numpy(), np.asarray(j))
433
+
434
+ wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
435
+ wp.synchronize_device(device)
436
+
437
+ # HACK? Run a no-op operation so that Jax flags the array as dirty
438
+ # and gets the latest values, which were modified by Warp.
439
+ j += 0
440
+
441
+ assert_np_equal(a1.numpy(), np.asarray(j))
442
+ assert_np_equal(a2.numpy(), np.asarray(j))
443
+
444
+
445
+ class TestDLPack(unittest.TestCase):
446
+ pass
447
+
448
+
449
+ devices = get_test_devices()
450
+
451
+ add_function_test(TestDLPack, "test_dlpack_warp_to_warp", test_dlpack_warp_to_warp, devices=devices)
452
+ add_function_test(TestDLPack, "test_dlpack_dtypes_and_shapes", test_dlpack_dtypes_and_shapes, devices=devices)
453
+
454
+ # torch interop via dlpack
455
+ try:
456
+ import torch
457
+ import torch.utils.dlpack
458
+
459
+ # check which Warp devices work with Torch
460
+ # CUDA devices may fail if Torch was not compiled with CUDA support
461
+ test_devices = get_test_devices()
462
+ torch_compatible_devices = []
463
+ for d in test_devices:
464
+ try:
465
+ t = torch.arange(10, device=wp.device_to_torch(d))
466
+ t += 1
467
+ torch_compatible_devices.append(d)
468
+ except Exception as e:
469
+ print(f"Skipping Torch DLPack tests on device '{d}' due to exception: {e}")
470
+
471
+ if torch_compatible_devices:
472
+ add_function_test(
473
+ TestDLPack, "test_dlpack_warp_to_torch", test_dlpack_warp_to_torch, devices=torch_compatible_devices
474
+ )
475
+ add_function_test(
476
+ TestDLPack, "test_dlpack_warp_to_torch_v2", test_dlpack_warp_to_torch_v2, devices=torch_compatible_devices
477
+ )
478
+ add_function_test(
479
+ TestDLPack, "test_dlpack_torch_to_warp", test_dlpack_torch_to_warp, devices=torch_compatible_devices
480
+ )
481
+ add_function_test(
482
+ TestDLPack, "test_dlpack_torch_to_warp_v2", test_dlpack_torch_to_warp_v2, devices=torch_compatible_devices
483
+ )
484
+
485
+ except Exception as e:
486
+ print(f"Skipping Torch DLPack tests due to exception: {e}")
487
+
488
+ # jax interop via dlpack
489
+ try:
490
+ # prevent Jax from gobbling up GPU memory
491
+ os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
492
+ os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
493
+
494
+ import jax
495
+ import jax.dlpack
496
+
497
+ # check which Warp devices work with Jax
498
+ # CUDA devices may fail if Jax cannot find a CUDA Toolkit
499
+ test_devices = get_test_devices()
500
+ jax_compatible_devices = []
501
+ for d in test_devices:
502
+ try:
503
+ with jax.default_device(wp.device_to_jax(d)):
504
+ j = jax.numpy.arange(10, dtype=jax.numpy.float32)
505
+ j += 1
506
+ jax_compatible_devices.append(d)
507
+ except Exception as e:
508
+ print(f"Skipping Jax DLPack tests on device '{d}' due to exception: {e}")
509
+
510
+ if jax_compatible_devices:
511
+ add_function_test(
512
+ TestDLPack, "test_dlpack_warp_to_jax", test_dlpack_warp_to_jax, devices=jax_compatible_devices
513
+ )
514
+ add_function_test(
515
+ TestDLPack, "test_dlpack_warp_to_jax_v2", test_dlpack_warp_to_jax_v2, devices=jax_compatible_devices
516
+ )
517
+ add_function_test(
518
+ TestDLPack, "test_dlpack_jax_to_warp", test_dlpack_jax_to_warp, devices=jax_compatible_devices
519
+ )
520
+ add_function_test(
521
+ TestDLPack, "test_dlpack_jax_to_warp_v2", test_dlpack_jax_to_warp_v2, devices=jax_compatible_devices
522
+ )
523
+
524
+ except Exception as e:
525
+ print(f"Skipping Jax DLPack tests due to exception: {e}")
526
+
527
+
528
+ if __name__ == "__main__":
529
+ wp.build.clear_kernel_cache()
530
+ unittest.main(verbosity=2)