warp-lang 1.0.2__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/libwarp-clang.dylib +0 -0
  4. warp/bin/libwarp.dylib +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +234 -219
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -126
  39. warp/examples/core/example_marching_cubes.py +188 -174
  40. warp/examples/core/example_mesh.py +174 -155
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -170
  43. warp/examples/core/example_raycast.py +105 -90
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -387
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -389
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -246
  65. warp/examples/optim/example_cloth_throw.py +222 -209
  66. warp/examples/optim/example_diffray.py +566 -536
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -169
  70. warp/examples/optim/example_spring_cage.py +239 -231
  71. warp/examples/optim/example_trajectory.py +223 -199
  72. warp/examples/optim/example_walker.py +306 -293
  73. warp/examples/sim/example_cartpole.py +139 -129
  74. warp/examples/sim/example_cloth.py +196 -186
  75. warp/examples/sim/example_granular.py +124 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -186
  77. warp/examples/sim/example_jacobian_ik.py +236 -214
  78. warp/examples/sim/example_particle_chain.py +118 -105
  79. warp/examples/sim/example_quadruped.py +193 -180
  80. warp/examples/sim/example_rigid_chain.py +197 -187
  81. warp/examples/sim/example_rigid_contact.py +189 -177
  82. warp/examples/sim/example_rigid_force.py +127 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -122
  85. warp/examples/sim/example_soft_body.py +190 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.2.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/torch.py CHANGED
@@ -1,295 +1,321 @@
1
- # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
- # NVIDIA CORPORATION and its licensors retain all intellectual property
3
- # and proprietary rights in and to this software, related documentation
4
- # and any modifications thereto. Any use, reproduction, disclosure or
5
- # distribution of this software and related documentation without an express
6
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
-
8
- import ctypes
9
- import numpy
10
- import warp
11
-
12
-
13
- # return the warp device corresponding to a torch device
14
- def device_from_torch(torch_device):
15
- """Return the Warp device corresponding to a Torch device."""
16
- return warp.get_device(str(torch_device))
17
-
18
-
19
- def device_to_torch(warp_device):
20
- """Return the Torch device corresponding to a Warp device."""
21
- device = warp.get_device(warp_device)
22
- if device.is_cpu or device.is_primary:
23
- return str(device)
24
- elif device.is_cuda and device.is_uva:
25
- # it's not a primary context, but torch can access the data ptr directly thanks to UVA
26
- return f"cuda:{device.ordinal}"
27
- raise RuntimeError(f"Warp device {device} is not compatible with torch")
28
-
29
-
30
- def dtype_to_torch(warp_dtype):
31
- """Return the Torch dtype corresponding to a Warp dtype."""
32
- # initialize lookup table on first call to defer torch import
33
- if dtype_to_torch.type_map is None:
34
- import torch
35
-
36
- dtype_to_torch.type_map = {
37
- warp.float16: torch.float16,
38
- warp.float32: torch.float32,
39
- warp.float64: torch.float64,
40
- warp.int8: torch.int8,
41
- warp.int16: torch.int16,
42
- warp.int32: torch.int32,
43
- warp.int64: torch.int64,
44
- warp.uint8: torch.uint8,
45
- # torch doesn't support unsigned ints bigger than 8 bits
46
- warp.uint16: torch.int16,
47
- warp.uint32: torch.int32,
48
- warp.uint64: torch.int64,
49
- warp.bool: torch.bool,
50
- }
51
-
52
- torch_dtype = dtype_to_torch.type_map.get(warp_dtype)
53
- if torch_dtype is not None:
54
- return torch_dtype
55
- else:
56
- raise TypeError(f"Cannot convert {warp_dtype} to a Torch type")
57
-
58
-
59
- def dtype_from_torch(torch_dtype):
60
- """Return the Warp dtype corresponding to a Torch dtype."""
61
- # initialize lookup table on first call to defer torch import
62
- if dtype_from_torch.type_map is None:
63
- import torch
64
-
65
- dtype_from_torch.type_map = {
66
- torch.float16: warp.float16,
67
- torch.float32: warp.float32,
68
- torch.float64: warp.float64,
69
- torch.int8: warp.int8,
70
- torch.int16: warp.int16,
71
- torch.int32: warp.int32,
72
- torch.int64: warp.int64,
73
- torch.uint8: warp.uint8,
74
- torch.bool: warp.bool,
75
- # currently unsupported by Warp
76
- # torch.bfloat16:
77
- # torch.complex64:
78
- # torch.complex128:
79
- }
80
-
81
- warp_dtype = dtype_from_torch.type_map.get(torch_dtype)
82
-
83
- if warp_dtype is not None:
84
- return warp_dtype
85
- else:
86
- raise TypeError(f"Cannot convert {torch_dtype} to a Warp type")
87
-
88
-
89
- def dtype_is_compatible(torch_dtype, warp_dtype):
90
- """Evaluates whether the given torch dtype is compatible with the given warp dtype."""
91
- # initialize lookup table on first call to defer torch import
92
- if dtype_is_compatible.compatible_sets is None:
93
- import torch
94
-
95
- dtype_is_compatible.compatible_sets = {
96
- torch.float64: {warp.float64},
97
- torch.float32: {warp.float32},
98
- torch.float16: {warp.float16},
99
- # allow aliasing integer tensors as signed or unsigned integer arrays
100
- torch.int64: {warp.int64, warp.uint64},
101
- torch.int32: {warp.int32, warp.uint32},
102
- torch.int16: {warp.int16, warp.uint16},
103
- torch.int8: {warp.int8, warp.uint8},
104
- torch.uint8: {warp.uint8, warp.int8},
105
- torch.bool: {warp.bool, warp.uint8, warp.int8},
106
- # currently unsupported by Warp
107
- # torch.bfloat16:
108
- # torch.complex64:
109
- # torch.complex128:
110
- }
111
-
112
- compatible_set = dtype_is_compatible.compatible_sets.get(torch_dtype)
113
-
114
- if compatible_set is not None:
115
- if warp_dtype in compatible_set:
116
- return True
117
- # check if it's a vector or matrix type
118
- if hasattr(warp_dtype, "_wp_scalar_type_"):
119
- return warp_dtype._wp_scalar_type_ in compatible_set
120
-
121
- return False
122
-
123
-
124
- # lookup tables initialized when needed
125
- dtype_from_torch.type_map = None
126
- dtype_to_torch.type_map = None
127
- dtype_is_compatible.compatible_sets = None
128
-
129
-
130
- # wrap a torch tensor to a wp array, data is not copied
131
- def from_torch(t, dtype=None, requires_grad=None, grad=None):
132
- """Convert a Torch tensor to a Warp array without copying the data.
133
-
134
- Args:
135
- t (torch.Tensor): The torch tensor to wrap.
136
- dtype (warp.dtype, optional): The target data type of the resulting Warp array. Defaults to the tensor value type mapped to a Warp array value type.
137
- requires_grad (bool, optional): Whether the resulting array should wrap the tensor's gradient, if it exists (the grad tensor will be allocated otherwise). Defaults to the tensor's `requires_grad` value.
138
-
139
- Returns:
140
- warp.array: The wrapped array.
141
- """
142
- if dtype is None:
143
- dtype = dtype_from_torch(t.dtype)
144
- elif not dtype_is_compatible(t.dtype, dtype):
145
- raise RuntimeError(f"Cannot convert Torch type {t.dtype} to Warp type {dtype}")
146
-
147
- # get size of underlying data type to compute strides
148
- ctype_size = ctypes.sizeof(dtype._type_)
149
-
150
- shape = tuple(t.shape)
151
- strides = tuple(s * ctype_size for s in t.stride())
152
- device = device_from_torch(t.device)
153
-
154
- # if target is a vector or matrix type
155
- # then check if trailing dimensions match
156
- # the target type and update the shape
157
- if hasattr(dtype, "_shape_"):
158
- dtype_shape = dtype._shape_
159
- dtype_dims = len(dtype._shape_)
160
- if dtype_dims > len(shape) or dtype_shape != shape[-dtype_dims:]:
161
- raise RuntimeError(
162
- f"Could not convert Torch tensor with shape {shape} to Warp array with dtype={dtype}, ensure that source inner shape is {dtype_shape}"
163
- )
164
-
165
- # ensure the inner strides are contiguous
166
- stride = ctype_size
167
- for i in range(dtype_dims):
168
- if strides[-i - 1] != stride:
169
- raise RuntimeError(
170
- f"Could not convert Torch tensor with shape {shape} to Warp array with dtype={dtype}, because the source inner strides are not contiguous"
171
- )
172
- stride *= dtype_shape[-i - 1]
173
-
174
- shape = tuple(shape[:-dtype_dims]) or (1,)
175
- strides = tuple(strides[:-dtype_dims]) or (ctype_size,)
176
-
177
- requires_grad = t.requires_grad if requires_grad is None else requires_grad
178
- if grad is not None:
179
- if not isinstance(grad, warp.array):
180
- import torch
181
-
182
- if isinstance(grad, torch.Tensor):
183
- grad = from_torch(grad, dtype=dtype)
184
- else:
185
- raise ValueError(f"Invalid gradient type: {type(grad)}")
186
- elif requires_grad:
187
- # wrap the tensor gradient, allocate if necessary
188
- if t.grad is None:
189
- # allocate a zero-filled gradient if it doesn't exist
190
- # Note: we use Warp to allocate the shared gradient with compatible strides
191
- grad = warp.zeros(dtype=dtype, shape=shape, strides=strides, device=device)
192
- t.grad = to_torch(grad, requires_grad=False)
193
- else:
194
- # TODO: this will fail if the strides are incompatible
195
- grad = from_torch(t.grad, dtype=dtype)
196
-
197
- a = warp.array(
198
- ptr=t.data_ptr(),
199
- dtype=dtype,
200
- shape=shape,
201
- strides=strides,
202
- device=device,
203
- copy=False,
204
- grad=grad,
205
- requires_grad=requires_grad,
206
- )
207
-
208
- # save a reference to the source tensor, otherwise it will be deallocated
209
- a._tensor = t
210
- return a
211
-
212
-
213
- def to_torch(a, requires_grad=None):
214
- """
215
- Convert a Warp array to a Torch tensor without copying the data.
216
-
217
- Args:
218
- a (warp.array): The Warp array to convert.
219
- requires_grad (bool, optional): Whether the resulting tensor should convert the array's gradient, if it exists, to a grad tensor. Defaults to the array's `requires_grad` value.
220
-
221
- Returns:
222
- torch.Tensor: The converted tensor.
223
- """
224
- import torch
225
-
226
- if requires_grad is None:
227
- requires_grad = a.requires_grad
228
-
229
- # Torch does not support structured arrays
230
- if isinstance(a.dtype, warp.codegen.Struct):
231
- raise RuntimeError("Cannot convert structured Warp arrays to Torch.")
232
-
233
- if a.device.is_cpu:
234
- # Torch has an issue wrapping CPU objects
235
- # that support the __array_interface__ protocol
236
- # in this case we need to workaround by going
237
- # to an ndarray first, see https://pearu.github.io/array_interface_pytorch.html
238
- t = torch.as_tensor(numpy.asarray(a))
239
- t.requires_grad = requires_grad
240
- if requires_grad and a.requires_grad:
241
- t.grad = torch.as_tensor(numpy.asarray(a.grad))
242
- return t
243
-
244
- elif a.device.is_cuda:
245
- # Torch does support the __cuda_array_interface__
246
- # correctly, but we must be sure to maintain a reference
247
- # to the owning object to prevent memory allocs going out of scope
248
- t = torch.as_tensor(a, device=device_to_torch(a.device))
249
- t.requires_grad = requires_grad
250
- if requires_grad and a.requires_grad:
251
- t.grad = torch.as_tensor(a.grad, device=device_to_torch(a.device))
252
- return t
253
-
254
- else:
255
- raise RuntimeError("Unsupported device")
256
-
257
-
258
- def stream_from_torch(stream_or_device=None):
259
- """Convert from a Torch CUDA stream to a Warp CUDA stream."""
260
- import torch
261
-
262
- if isinstance(stream_or_device, torch.cuda.Stream):
263
- stream = stream_or_device
264
- else:
265
- # assume arg is a torch device
266
- stream = torch.cuda.current_stream(stream_or_device)
267
-
268
- device = device_from_torch(stream.device)
269
-
270
- warp_stream = warp.Stream(device, cuda_stream=stream.cuda_stream)
271
-
272
- # save a reference to the source stream, otherwise it may be destroyed
273
- warp_stream._torch_stream = stream
274
-
275
- return warp_stream
276
-
277
-
278
- def stream_to_torch(stream_or_device=None):
279
- """Convert from a Warp CUDA stream to a Torch CUDA stream."""
280
- import torch
281
-
282
- if isinstance(stream_or_device, warp.Stream):
283
- stream = stream_or_device
284
- else:
285
- # assume arg is a warp device
286
- stream = warp.get_device(stream_or_device).stream
287
-
288
- device = device_to_torch(stream.device)
289
-
290
- torch_stream = torch.cuda.ExternalStream(stream.cuda_stream, device=device)
291
-
292
- # save a reference to the source stream, otherwise it may be destroyed
293
- torch_stream._warp_stream = stream
294
-
295
- return torch_stream
1
+ # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ import ctypes
9
+
10
+ import numpy
11
+
12
+ import warp
13
+
14
+
15
+ # return the warp device corresponding to a torch device
16
+ def device_from_torch(torch_device) -> warp.context.Device:
17
+ """Return the Warp device corresponding to a Torch device."""
18
+ return warp.get_device(str(torch_device))
19
+
20
+
21
+ def device_to_torch(warp_device: warp.context.Devicelike) -> str:
22
+ """Return the Torch device string corresponding to a Warp device.
23
+
24
+ Args:
25
+ warp_device: An identifier that can be resolved to a :class:`warp.context.Device`.
26
+
27
+ Raises:
28
+ RuntimeError: The Warp device is not compatible with PyTorch.
29
+ """
30
+ device = warp.get_device(warp_device)
31
+ if device.is_cpu or device.is_primary:
32
+ return str(device)
33
+ elif device.is_cuda and device.is_uva:
34
+ # it's not a primary context, but torch can access the data ptr directly thanks to UVA
35
+ return f"cuda:{device.ordinal}"
36
+ raise RuntimeError(f"Warp device {device} is not compatible with torch")
37
+
38
+
39
+ def dtype_to_torch(warp_dtype):
40
+ """Return the Torch dtype corresponding to a Warp dtype.
41
+
42
+ Args:
43
+ warp_dtype: A Warp data type that has a corresponding ``torch.dtype``.
44
+ ``warp.uint16``, ``warp.uint32``, and ``warp.uint64`` are mapped
45
+ to the signed integer ``torch.dtype`` of the same width.
46
+ Raises:
47
+ TypeError: Unable to find a corresponding PyTorch data type.
48
+ """
49
+ # initialize lookup table on first call to defer torch import
50
+ if dtype_to_torch.type_map is None:
51
+ import torch
52
+
53
+ dtype_to_torch.type_map = {
54
+ warp.float16: torch.float16,
55
+ warp.float32: torch.float32,
56
+ warp.float64: torch.float64,
57
+ warp.int8: torch.int8,
58
+ warp.int16: torch.int16,
59
+ warp.int32: torch.int32,
60
+ warp.int64: torch.int64,
61
+ warp.uint8: torch.uint8,
62
+ # torch doesn't support unsigned ints bigger than 8 bits
63
+ warp.uint16: torch.int16,
64
+ warp.uint32: torch.int32,
65
+ warp.uint64: torch.int64,
66
+ warp.bool: torch.bool,
67
+ }
68
+
69
+ torch_dtype = dtype_to_torch.type_map.get(warp_dtype)
70
+ if torch_dtype is not None:
71
+ return torch_dtype
72
+ else:
73
+ raise TypeError(f"Cannot convert {warp_dtype} to a Torch type")
74
+
75
+
76
+ def dtype_from_torch(torch_dtype):
77
+ """Return the Warp dtype corresponding to a Torch dtype.
78
+
79
+ Args:
80
+ torch_dtype: A ``torch.dtype`` that has a corresponding Warp data type.
81
+ Currently ``torch.bfloat16``, ``torch.complex64``, and
82
+ ``torch.complex128`` are not supported.
83
+
84
+ Raises:
85
+ TypeError: Unable to find a corresponding Warp data type.
86
+ """
87
+ # initialize lookup table on first call to defer torch import
88
+ if dtype_from_torch.type_map is None:
89
+ import torch
90
+
91
+ dtype_from_torch.type_map = {
92
+ torch.float16: warp.float16,
93
+ torch.float32: warp.float32,
94
+ torch.float64: warp.float64,
95
+ torch.int8: warp.int8,
96
+ torch.int16: warp.int16,
97
+ torch.int32: warp.int32,
98
+ torch.int64: warp.int64,
99
+ torch.uint8: warp.uint8,
100
+ torch.bool: warp.bool,
101
+ # currently unsupported by Warp
102
+ # torch.bfloat16:
103
+ # torch.complex64:
104
+ # torch.complex128:
105
+ }
106
+
107
+ warp_dtype = dtype_from_torch.type_map.get(torch_dtype)
108
+
109
+ if warp_dtype is not None:
110
+ return warp_dtype
111
+ else:
112
+ raise TypeError(f"Cannot convert {torch_dtype} to a Warp type")
113
+
114
+
115
+ def dtype_is_compatible(torch_dtype, warp_dtype) -> bool:
116
+ """Evaluates whether the given torch dtype is compatible with the given Warp dtype."""
117
+ # initialize lookup table on first call to defer torch import
118
+ if dtype_is_compatible.compatible_sets is None:
119
+ import torch
120
+
121
+ dtype_is_compatible.compatible_sets = {
122
+ torch.float64: {warp.float64},
123
+ torch.float32: {warp.float32},
124
+ torch.float16: {warp.float16},
125
+ # allow aliasing integer tensors as signed or unsigned integer arrays
126
+ torch.int64: {warp.int64, warp.uint64},
127
+ torch.int32: {warp.int32, warp.uint32},
128
+ torch.int16: {warp.int16, warp.uint16},
129
+ torch.int8: {warp.int8, warp.uint8},
130
+ torch.uint8: {warp.uint8, warp.int8},
131
+ torch.bool: {warp.bool, warp.uint8, warp.int8},
132
+ # currently unsupported by Warp
133
+ # torch.bfloat16:
134
+ # torch.complex64:
135
+ # torch.complex128:
136
+ }
137
+
138
+ compatible_set = dtype_is_compatible.compatible_sets.get(torch_dtype)
139
+
140
+ if compatible_set is not None:
141
+ if warp_dtype in compatible_set:
142
+ return True
143
+ # check if it's a vector or matrix type
144
+ if hasattr(warp_dtype, "_wp_scalar_type_"):
145
+ return warp_dtype._wp_scalar_type_ in compatible_set
146
+
147
+ return False
148
+
149
+
150
+ # lookup tables initialized when needed
151
+ dtype_from_torch.type_map = None
152
+ dtype_to_torch.type_map = None
153
+ dtype_is_compatible.compatible_sets = None
154
+
155
+
156
+ # wrap a torch tensor to a wp array, data is not copied
157
+ def from_torch(t, dtype=None, requires_grad=None, grad=None):
158
+ """Convert a Torch tensor to a Warp array without copying the data.
159
+
160
+ Args:
161
+ t (torch.Tensor): The torch tensor to wrap.
162
+ dtype (warp.dtype, optional): The target data type of the resulting Warp array. Defaults to the tensor value type mapped to a Warp array value type.
163
+ requires_grad (bool, optional): Whether the resulting array should wrap the tensor's gradient, if it exists (the grad tensor will be allocated otherwise). Defaults to the tensor's `requires_grad` value.
164
+
165
+ Returns:
166
+ warp.array: The wrapped array.
167
+ """
168
+ if dtype is None:
169
+ dtype = dtype_from_torch(t.dtype)
170
+ elif not dtype_is_compatible(t.dtype, dtype):
171
+ raise RuntimeError(f"Cannot convert Torch type {t.dtype} to Warp type {dtype}")
172
+
173
+ # get size of underlying data type to compute strides
174
+ ctype_size = ctypes.sizeof(dtype._type_)
175
+
176
+ shape = tuple(t.shape)
177
+ strides = tuple(s * ctype_size for s in t.stride())
178
+ device = device_from_torch(t.device)
179
+
180
+ # if target is a vector or matrix type
181
+ # then check if trailing dimensions match
182
+ # the target type and update the shape
183
+ if hasattr(dtype, "_shape_"):
184
+ dtype_shape = dtype._shape_
185
+ dtype_dims = len(dtype._shape_)
186
+ if dtype_dims > len(shape) or dtype_shape != shape[-dtype_dims:]:
187
+ raise RuntimeError(
188
+ f"Could not convert Torch tensor with shape {shape} to Warp array with dtype={dtype}, ensure that source inner shape is {dtype_shape}"
189
+ )
190
+
191
+ # ensure the inner strides are contiguous
192
+ stride = ctype_size
193
+ for i in range(dtype_dims):
194
+ if strides[-i - 1] != stride:
195
+ raise RuntimeError(
196
+ f"Could not convert Torch tensor with shape {shape} to Warp array with dtype={dtype}, because the source inner strides are not contiguous"
197
+ )
198
+ stride *= dtype_shape[-i - 1]
199
+
200
+ shape = tuple(shape[:-dtype_dims]) or (1,)
201
+ strides = tuple(strides[:-dtype_dims]) or (ctype_size,)
202
+
203
+ requires_grad = t.requires_grad if requires_grad is None else requires_grad
204
+ if grad is not None:
205
+ if not isinstance(grad, warp.array):
206
+ import torch
207
+
208
+ if isinstance(grad, torch.Tensor):
209
+ grad = from_torch(grad, dtype=dtype)
210
+ else:
211
+ raise ValueError(f"Invalid gradient type: {type(grad)}")
212
+ elif requires_grad:
213
+ # wrap the tensor gradient, allocate if necessary
214
+ if t.grad is None:
215
+ # allocate a zero-filled gradient if it doesn't exist
216
+ # Note: we use Warp to allocate the shared gradient with compatible strides
217
+ grad = warp.zeros(dtype=dtype, shape=shape, strides=strides, device=device)
218
+ t.grad = to_torch(grad, requires_grad=False)
219
+ else:
220
+ # TODO: this will fail if the strides are incompatible
221
+ grad = from_torch(t.grad, dtype=dtype)
222
+
223
+ a = warp.array(
224
+ ptr=t.data_ptr(),
225
+ dtype=dtype,
226
+ shape=shape,
227
+ strides=strides,
228
+ device=device,
229
+ copy=False,
230
+ grad=grad,
231
+ requires_grad=requires_grad,
232
+ )
233
+
234
+ # save a reference to the source tensor, otherwise it will be deallocated
235
+ a._tensor = t
236
+ return a
237
+
238
+
239
+ def to_torch(a, requires_grad=None):
240
+ """
241
+ Convert a Warp array to a Torch tensor without copying the data.
242
+
243
+ Args:
244
+ a (warp.array): The Warp array to convert.
245
+ requires_grad (bool, optional): Whether the resulting tensor should convert the array's gradient, if it exists, to a grad tensor. Defaults to the array's `requires_grad` value.
246
+
247
+ Returns:
248
+ torch.Tensor: The converted tensor.
249
+ """
250
+ import torch
251
+
252
+ if requires_grad is None:
253
+ requires_grad = a.requires_grad
254
+
255
+ # Torch does not support structured arrays
256
+ if isinstance(a.dtype, warp.codegen.Struct):
257
+ raise RuntimeError("Cannot convert structured Warp arrays to Torch.")
258
+
259
+ if a.device.is_cpu:
260
+ # Torch has an issue wrapping CPU objects
261
+ # that support the __array_interface__ protocol
262
+ # in this case we need to workaround by going
263
+ # to an ndarray first, see https://pearu.github.io/array_interface_pytorch.html
264
+ t = torch.as_tensor(numpy.asarray(a))
265
+ t.requires_grad = requires_grad
266
+ if requires_grad and a.requires_grad:
267
+ t.grad = torch.as_tensor(numpy.asarray(a.grad))
268
+ return t
269
+
270
+ elif a.device.is_cuda:
271
+ # Torch does support the __cuda_array_interface__
272
+ # correctly, but we must be sure to maintain a reference
273
+ # to the owning object to prevent memory allocs going out of scope
274
+ t = torch.as_tensor(a, device=device_to_torch(a.device))
275
+ t.requires_grad = requires_grad
276
+ if requires_grad and a.requires_grad:
277
+ t.grad = torch.as_tensor(a.grad, device=device_to_torch(a.device))
278
+ return t
279
+
280
+ else:
281
+ raise RuntimeError("Unsupported device")
282
+
283
+
284
+ def stream_from_torch(stream_or_device=None):
285
+ """Convert from a Torch CUDA stream to a Warp CUDA stream."""
286
+ import torch
287
+
288
+ if isinstance(stream_or_device, torch.cuda.Stream):
289
+ stream = stream_or_device
290
+ else:
291
+ # assume arg is a torch device
292
+ stream = torch.cuda.current_stream(stream_or_device)
293
+
294
+ device = device_from_torch(stream.device)
295
+
296
+ warp_stream = warp.Stream(device, cuda_stream=stream.cuda_stream)
297
+
298
+ # save a reference to the source stream, otherwise it may be destroyed
299
+ warp_stream._torch_stream = stream
300
+
301
+ return warp_stream
302
+
303
+
304
+ def stream_to_torch(stream_or_device=None):
305
+ """Convert from a Warp CUDA stream to a Torch CUDA stream."""
306
+ import torch
307
+
308
+ if isinstance(stream_or_device, warp.Stream):
309
+ stream = stream_or_device
310
+ else:
311
+ # assume arg is a warp device
312
+ stream = warp.get_device(stream_or_device).stream
313
+
314
+ device = device_to_torch(stream.device)
315
+
316
+ torch_stream = torch.cuda.ExternalStream(stream.cuda_stream, device=device)
317
+
318
+ # save a reference to the source stream, otherwise it may be destroyed
319
+ torch_stream._warp_stream = stream
320
+
321
+ return torch_stream