ultralytics-opencv-headless 8.3.242__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +23 -0
- tests/conftest.py +59 -0
- tests/test_cli.py +131 -0
- tests/test_cuda.py +216 -0
- tests/test_engine.py +157 -0
- tests/test_exports.py +309 -0
- tests/test_integrations.py +151 -0
- tests/test_python.py +777 -0
- tests/test_solutions.py +371 -0
- ultralytics/__init__.py +48 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1026 -0
- ultralytics/cfg/datasets/Argoverse.yaml +78 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +447 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +102 -0
- ultralytics/cfg/datasets/VisDrone.yaml +87 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +64 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +52 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +21 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +130 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +21 -0
- ultralytics/cfg/trackers/bytetrack.yaml +12 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2801 -0
- ultralytics/data/base.py +435 -0
- ultralytics/data/build.py +437 -0
- ultralytics/data/converter.py +855 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +704 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +138 -0
- ultralytics/data/split_dota.py +344 -0
- ultralytics/data/utils.py +798 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1574 -0
- ultralytics/engine/model.py +1124 -0
- ultralytics/engine/predictor.py +508 -0
- ultralytics/engine/results.py +1522 -0
- ultralytics/engine/trainer.py +974 -0
- ultralytics/engine/tuner.py +448 -0
- ultralytics/engine/validator.py +384 -0
- ultralytics/hub/__init__.py +166 -0
- ultralytics/hub/auth.py +151 -0
- ultralytics/hub/google/__init__.py +174 -0
- ultralytics/hub/session.py +422 -0
- ultralytics/hub/utils.py +162 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +79 -0
- ultralytics/models/fastsam/predict.py +169 -0
- ultralytics/models/fastsam/utils.py +23 -0
- ultralytics/models/fastsam/val.py +38 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +98 -0
- ultralytics/models/nas/predict.py +56 -0
- ultralytics/models/nas/val.py +38 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +88 -0
- ultralytics/models/rtdetr/train.py +89 -0
- ultralytics/models/rtdetr/val.py +216 -0
- ultralytics/models/sam/__init__.py +25 -0
- ultralytics/models/sam/amg.py +275 -0
- ultralytics/models/sam/build.py +365 -0
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +169 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1067 -0
- ultralytics/models/sam/modules/decoders.py +495 -0
- ultralytics/models/sam/modules/encoders.py +794 -0
- ultralytics/models/sam/modules/memory_attention.py +298 -0
- ultralytics/models/sam/modules/sam.py +1160 -0
- ultralytics/models/sam/modules/tiny_encoder.py +979 -0
- ultralytics/models/sam/modules/transformer.py +344 -0
- ultralytics/models/sam/modules/utils.py +512 -0
- ultralytics/models/sam/predict.py +3940 -0
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +466 -0
- ultralytics/models/utils/ops.py +315 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +90 -0
- ultralytics/models/yolo/classify/train.py +202 -0
- ultralytics/models/yolo/classify/val.py +216 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +122 -0
- ultralytics/models/yolo/detect/train.py +227 -0
- ultralytics/models/yolo/detect/val.py +507 -0
- ultralytics/models/yolo/model.py +430 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +56 -0
- ultralytics/models/yolo/obb/train.py +79 -0
- ultralytics/models/yolo/obb/val.py +302 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +65 -0
- ultralytics/models/yolo/pose/train.py +110 -0
- ultralytics/models/yolo/pose/val.py +248 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +109 -0
- ultralytics/models/yolo/segment/train.py +69 -0
- ultralytics/models/yolo/segment/val.py +307 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +173 -0
- ultralytics/models/yolo/world/train_world.py +178 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +162 -0
- ultralytics/models/yolo/yoloe/train.py +287 -0
- ultralytics/models/yolo/yoloe/train_seg.py +122 -0
- ultralytics/models/yolo/yoloe/val.py +206 -0
- ultralytics/nn/__init__.py +27 -0
- ultralytics/nn/autobackend.py +958 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +54 -0
- ultralytics/nn/modules/block.py +1947 -0
- ultralytics/nn/modules/conv.py +669 -0
- ultralytics/nn/modules/head.py +1183 -0
- ultralytics/nn/modules/transformer.py +793 -0
- ultralytics/nn/modules/utils.py +159 -0
- ultralytics/nn/tasks.py +1768 -0
- ultralytics/nn/text_model.py +356 -0
- ultralytics/py.typed +1 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +108 -0
- ultralytics/solutions/analytics.py +264 -0
- ultralytics/solutions/config.py +107 -0
- ultralytics/solutions/distance_calculation.py +123 -0
- ultralytics/solutions/heatmap.py +125 -0
- ultralytics/solutions/instance_segmentation.py +86 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +190 -0
- ultralytics/solutions/object_cropper.py +87 -0
- ultralytics/solutions/parking_management.py +280 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +133 -0
- ultralytics/solutions/security_alarm.py +151 -0
- ultralytics/solutions/similarity_search.py +219 -0
- ultralytics/solutions/solutions.py +828 -0
- ultralytics/solutions/speed_estimation.py +114 -0
- ultralytics/solutions/streamlit_inference.py +260 -0
- ultralytics/solutions/templates/similarity-search.html +156 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +67 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +115 -0
- ultralytics/trackers/bot_sort.py +257 -0
- ultralytics/trackers/byte_tracker.py +469 -0
- ultralytics/trackers/track.py +116 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +339 -0
- ultralytics/trackers/utils/kalman_filter.py +482 -0
- ultralytics/trackers/utils/matching.py +154 -0
- ultralytics/utils/__init__.py +1450 -0
- ultralytics/utils/autobatch.py +118 -0
- ultralytics/utils/autodevice.py +205 -0
- ultralytics/utils/benchmarks.py +728 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +233 -0
- ultralytics/utils/callbacks/clearml.py +146 -0
- ultralytics/utils/callbacks/comet.py +625 -0
- ultralytics/utils/callbacks/dvc.py +197 -0
- ultralytics/utils/callbacks/hub.py +110 -0
- ultralytics/utils/callbacks/mlflow.py +134 -0
- ultralytics/utils/callbacks/neptune.py +126 -0
- ultralytics/utils/callbacks/platform.py +73 -0
- ultralytics/utils/callbacks/raytune.py +42 -0
- ultralytics/utils/callbacks/tensorboard.py +123 -0
- ultralytics/utils/callbacks/wb.py +188 -0
- ultralytics/utils/checks.py +998 -0
- ultralytics/utils/cpu.py +85 -0
- ultralytics/utils/dist.py +123 -0
- ultralytics/utils/downloads.py +529 -0
- ultralytics/utils/errors.py +35 -0
- ultralytics/utils/events.py +113 -0
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +315 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +219 -0
- ultralytics/utils/git.py +137 -0
- ultralytics/utils/instance.py +484 -0
- ultralytics/utils/logger.py +444 -0
- ultralytics/utils/loss.py +849 -0
- ultralytics/utils/metrics.py +1560 -0
- ultralytics/utils/nms.py +337 -0
- ultralytics/utils/ops.py +664 -0
- ultralytics/utils/patches.py +201 -0
- ultralytics/utils/plotting.py +1045 -0
- ultralytics/utils/tal.py +403 -0
- ultralytics/utils/torch_utils.py +984 -0
- ultralytics/utils/tqdm.py +440 -0
- ultralytics/utils/triton.py +112 -0
- ultralytics/utils/tuner.py +160 -0
- ultralytics_opencv_headless-8.3.242.dist-info/METADATA +374 -0
- ultralytics_opencv_headless-8.3.242.dist-info/RECORD +298 -0
- ultralytics_opencv_headless-8.3.242.dist-info/WHEEL +5 -0
- ultralytics_opencv_headless-8.3.242.dist-info/entry_points.txt +3 -0
- ultralytics_opencv_headless-8.3.242.dist-info/licenses/LICENSE +661 -0
- ultralytics_opencv_headless-8.3.242.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import copy
|
|
6
|
+
|
|
7
|
+
import cv2
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
from ultralytics.utils import LOGGER
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class GMC:
|
|
14
|
+
"""Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
|
|
15
|
+
|
|
16
|
+
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
|
|
17
|
+
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
|
|
18
|
+
|
|
19
|
+
Attributes:
|
|
20
|
+
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
|
21
|
+
downscale (int): Factor by which to downscale the frames for processing.
|
|
22
|
+
prevFrame (np.ndarray): Previous frame for tracking.
|
|
23
|
+
prevKeyPoints (list): Keypoints from the previous frame.
|
|
24
|
+
prevDescriptors (np.ndarray): Descriptors from the previous frame.
|
|
25
|
+
initializedFirstFrame (bool): Flag indicating if the first frame has been processed.
|
|
26
|
+
|
|
27
|
+
Methods:
|
|
28
|
+
apply: Apply the chosen method to a raw frame and optionally use provided detections.
|
|
29
|
+
apply_ecc: Apply the ECC algorithm to a raw frame.
|
|
30
|
+
apply_features: Apply feature-based methods like ORB or SIFT to a raw frame.
|
|
31
|
+
apply_sparseoptflow: Apply the Sparse Optical Flow method to a raw frame.
|
|
32
|
+
reset_params: Reset the internal parameters of the GMC object.
|
|
33
|
+
|
|
34
|
+
Examples:
|
|
35
|
+
Create a GMC object and apply it to a frame
|
|
36
|
+
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
|
|
37
|
+
>>> frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
|
38
|
+
>>> warp = gmc.apply(frame)
|
|
39
|
+
>>> print(warp.shape)
|
|
40
|
+
(2, 3)
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
|
|
44
|
+
"""Initialize a Generalized Motion Compensation (GMC) object with tracking method and downscale factor.
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
|
48
|
+
downscale (int): Downscale factor for processing frames.
|
|
49
|
+
"""
|
|
50
|
+
super().__init__()
|
|
51
|
+
|
|
52
|
+
self.method = method
|
|
53
|
+
self.downscale = max(1, downscale)
|
|
54
|
+
|
|
55
|
+
if self.method == "orb":
|
|
56
|
+
self.detector = cv2.FastFeatureDetector_create(20)
|
|
57
|
+
self.extractor = cv2.ORB_create()
|
|
58
|
+
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
|
|
59
|
+
|
|
60
|
+
elif self.method == "sift":
|
|
61
|
+
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
|
62
|
+
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
|
63
|
+
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
|
|
64
|
+
|
|
65
|
+
elif self.method == "ecc":
|
|
66
|
+
number_of_iterations = 5000
|
|
67
|
+
termination_eps = 1e-6
|
|
68
|
+
self.warp_mode = cv2.MOTION_EUCLIDEAN
|
|
69
|
+
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
|
|
70
|
+
|
|
71
|
+
elif self.method == "sparseOptFlow":
|
|
72
|
+
self.feature_params = dict(
|
|
73
|
+
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
elif self.method in {"none", "None", None}:
|
|
77
|
+
self.method = None
|
|
78
|
+
else:
|
|
79
|
+
raise ValueError(f"Unknown GMC method: {method}")
|
|
80
|
+
|
|
81
|
+
self.prevFrame = None
|
|
82
|
+
self.prevKeyPoints = None
|
|
83
|
+
self.prevDescriptors = None
|
|
84
|
+
self.initializedFirstFrame = False
|
|
85
|
+
|
|
86
|
+
def apply(self, raw_frame: np.ndarray, detections: list | None = None) -> np.ndarray:
|
|
87
|
+
"""Estimate a 2×3 motion compensation warp for a frame.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
|
91
|
+
detections (list, optional): List of detections to be used in the processing.
|
|
92
|
+
|
|
93
|
+
Returns:
|
|
94
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
|
95
|
+
|
|
96
|
+
Examples:
|
|
97
|
+
>>> gmc = GMC(method="sparseOptFlow")
|
|
98
|
+
>>> raw_frame = np.random.rand(480, 640, 3)
|
|
99
|
+
>>> transformation_matrix = gmc.apply(raw_frame)
|
|
100
|
+
>>> print(transformation_matrix.shape)
|
|
101
|
+
(2, 3)
|
|
102
|
+
"""
|
|
103
|
+
if self.method in {"orb", "sift"}:
|
|
104
|
+
return self.apply_features(raw_frame, detections)
|
|
105
|
+
elif self.method == "ecc":
|
|
106
|
+
return self.apply_ecc(raw_frame)
|
|
107
|
+
elif self.method == "sparseOptFlow":
|
|
108
|
+
return self.apply_sparseoptflow(raw_frame)
|
|
109
|
+
else:
|
|
110
|
+
return np.eye(2, 3)
|
|
111
|
+
|
|
112
|
+
def apply_ecc(self, raw_frame: np.ndarray) -> np.ndarray:
|
|
113
|
+
"""Apply the ECC (Enhanced Correlation Coefficient) algorithm to a raw frame for motion compensation.
|
|
114
|
+
|
|
115
|
+
Args:
|
|
116
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
|
120
|
+
|
|
121
|
+
Examples:
|
|
122
|
+
>>> gmc = GMC(method="ecc")
|
|
123
|
+
>>> processed_frame = gmc.apply_ecc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
|
|
124
|
+
>>> print(processed_frame)
|
|
125
|
+
[[1. 0. 0.]
|
|
126
|
+
[0. 1. 0.]]
|
|
127
|
+
"""
|
|
128
|
+
height, width, c = raw_frame.shape
|
|
129
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
|
|
130
|
+
H = np.eye(2, 3, dtype=np.float32)
|
|
131
|
+
|
|
132
|
+
# Downscale image for computational efficiency
|
|
133
|
+
if self.downscale > 1.0:
|
|
134
|
+
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
|
135
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
136
|
+
|
|
137
|
+
# Handle first frame initialization
|
|
138
|
+
if not self.initializedFirstFrame:
|
|
139
|
+
self.prevFrame = frame.copy()
|
|
140
|
+
self.initializedFirstFrame = True
|
|
141
|
+
return H
|
|
142
|
+
|
|
143
|
+
# Run the ECC algorithm to find transformation matrix
|
|
144
|
+
try:
|
|
145
|
+
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
|
|
146
|
+
except Exception as e:
|
|
147
|
+
LOGGER.warning(f"findTransformECC failed; using identity warp. {e}")
|
|
148
|
+
|
|
149
|
+
return H
|
|
150
|
+
|
|
151
|
+
def apply_features(self, raw_frame: np.ndarray, detections: list | None = None) -> np.ndarray:
|
|
152
|
+
"""Apply feature-based methods like ORB or SIFT to a raw frame.
|
|
153
|
+
|
|
154
|
+
Args:
|
|
155
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
|
156
|
+
detections (list, optional): List of detections to be used in the processing.
|
|
157
|
+
|
|
158
|
+
Returns:
|
|
159
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
|
160
|
+
|
|
161
|
+
Examples:
|
|
162
|
+
>>> gmc = GMC(method="orb")
|
|
163
|
+
>>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
|
164
|
+
>>> transformation_matrix = gmc.apply_features(raw_frame)
|
|
165
|
+
>>> print(transformation_matrix.shape)
|
|
166
|
+
(2, 3)
|
|
167
|
+
"""
|
|
168
|
+
height, width, c = raw_frame.shape
|
|
169
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
|
|
170
|
+
H = np.eye(2, 3)
|
|
171
|
+
|
|
172
|
+
# Downscale image for computational efficiency
|
|
173
|
+
if self.downscale > 1.0:
|
|
174
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
175
|
+
width = width // self.downscale
|
|
176
|
+
height = height // self.downscale
|
|
177
|
+
|
|
178
|
+
# Create mask for keypoint detection, excluding border regions
|
|
179
|
+
mask = np.zeros_like(frame)
|
|
180
|
+
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
|
|
181
|
+
|
|
182
|
+
# Exclude detection regions from mask to avoid tracking detected objects
|
|
183
|
+
if detections is not None:
|
|
184
|
+
for det in detections:
|
|
185
|
+
tlbr = (det[:4] / self.downscale).astype(np.int_)
|
|
186
|
+
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
|
|
187
|
+
|
|
188
|
+
# Find keypoints and compute descriptors
|
|
189
|
+
keypoints = self.detector.detect(frame, mask)
|
|
190
|
+
keypoints, descriptors = self.extractor.compute(frame, keypoints)
|
|
191
|
+
|
|
192
|
+
# Handle first frame initialization
|
|
193
|
+
if not self.initializedFirstFrame:
|
|
194
|
+
self.prevFrame = frame.copy()
|
|
195
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
196
|
+
self.prevDescriptors = copy.copy(descriptors)
|
|
197
|
+
self.initializedFirstFrame = True
|
|
198
|
+
return H
|
|
199
|
+
|
|
200
|
+
# Match descriptors between previous and current frame
|
|
201
|
+
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
|
|
202
|
+
|
|
203
|
+
# Filter matches based on spatial distance constraints
|
|
204
|
+
matches = []
|
|
205
|
+
spatialDistances = []
|
|
206
|
+
maxSpatialDistance = 0.25 * np.array([width, height])
|
|
207
|
+
|
|
208
|
+
# Handle empty matches case
|
|
209
|
+
if len(knnMatches) == 0:
|
|
210
|
+
self.prevFrame = frame.copy()
|
|
211
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
212
|
+
self.prevDescriptors = copy.copy(descriptors)
|
|
213
|
+
return H
|
|
214
|
+
|
|
215
|
+
# Apply Lowe's ratio test and spatial distance filtering
|
|
216
|
+
for m, n in knnMatches:
|
|
217
|
+
if m.distance < 0.9 * n.distance:
|
|
218
|
+
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
|
|
219
|
+
currKeyPointLocation = keypoints[m.trainIdx].pt
|
|
220
|
+
|
|
221
|
+
spatialDistance = (
|
|
222
|
+
prevKeyPointLocation[0] - currKeyPointLocation[0],
|
|
223
|
+
prevKeyPointLocation[1] - currKeyPointLocation[1],
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
|
|
227
|
+
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
|
|
228
|
+
):
|
|
229
|
+
spatialDistances.append(spatialDistance)
|
|
230
|
+
matches.append(m)
|
|
231
|
+
|
|
232
|
+
# Filter outliers using statistical analysis
|
|
233
|
+
meanSpatialDistances = np.mean(spatialDistances, 0)
|
|
234
|
+
stdSpatialDistances = np.std(spatialDistances, 0)
|
|
235
|
+
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
|
|
236
|
+
|
|
237
|
+
# Extract good matches and corresponding points
|
|
238
|
+
goodMatches = []
|
|
239
|
+
prevPoints = []
|
|
240
|
+
currPoints = []
|
|
241
|
+
for i in range(len(matches)):
|
|
242
|
+
if inliers[i, 0] and inliers[i, 1]:
|
|
243
|
+
goodMatches.append(matches[i])
|
|
244
|
+
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
|
|
245
|
+
currPoints.append(keypoints[matches[i].trainIdx].pt)
|
|
246
|
+
|
|
247
|
+
prevPoints = np.array(prevPoints)
|
|
248
|
+
currPoints = np.array(currPoints)
|
|
249
|
+
|
|
250
|
+
# Estimate transformation matrix using RANSAC
|
|
251
|
+
if prevPoints.shape[0] > 4:
|
|
252
|
+
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
|
253
|
+
|
|
254
|
+
# Scale translation components back to original resolution
|
|
255
|
+
if self.downscale > 1.0:
|
|
256
|
+
H[0, 2] *= self.downscale
|
|
257
|
+
H[1, 2] *= self.downscale
|
|
258
|
+
else:
|
|
259
|
+
LOGGER.warning("not enough matching points")
|
|
260
|
+
|
|
261
|
+
# Store current frame data for next iteration
|
|
262
|
+
self.prevFrame = frame.copy()
|
|
263
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
264
|
+
self.prevDescriptors = copy.copy(descriptors)
|
|
265
|
+
|
|
266
|
+
return H
|
|
267
|
+
|
|
268
|
+
def apply_sparseoptflow(self, raw_frame: np.ndarray) -> np.ndarray:
|
|
269
|
+
"""Apply Sparse Optical Flow method to a raw frame.
|
|
270
|
+
|
|
271
|
+
Args:
|
|
272
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
|
273
|
+
|
|
274
|
+
Returns:
|
|
275
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
|
276
|
+
|
|
277
|
+
Examples:
|
|
278
|
+
>>> gmc = GMC()
|
|
279
|
+
>>> result = gmc.apply_sparseoptflow(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
|
|
280
|
+
>>> print(result)
|
|
281
|
+
[[1. 0. 0.]
|
|
282
|
+
[0. 1. 0.]]
|
|
283
|
+
"""
|
|
284
|
+
height, width, c = raw_frame.shape
|
|
285
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
|
|
286
|
+
H = np.eye(2, 3)
|
|
287
|
+
|
|
288
|
+
# Downscale image for computational efficiency
|
|
289
|
+
if self.downscale > 1.0:
|
|
290
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
291
|
+
|
|
292
|
+
# Find good features to track
|
|
293
|
+
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
|
|
294
|
+
|
|
295
|
+
# Handle first frame initialization
|
|
296
|
+
if not self.initializedFirstFrame or self.prevKeyPoints is None:
|
|
297
|
+
self.prevFrame = frame.copy()
|
|
298
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
299
|
+
self.initializedFirstFrame = True
|
|
300
|
+
return H
|
|
301
|
+
|
|
302
|
+
# Calculate optical flow using Lucas-Kanade method
|
|
303
|
+
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
|
|
304
|
+
|
|
305
|
+
# Extract successfully tracked points
|
|
306
|
+
prevPoints = []
|
|
307
|
+
currPoints = []
|
|
308
|
+
|
|
309
|
+
for i in range(len(status)):
|
|
310
|
+
if status[i]:
|
|
311
|
+
prevPoints.append(self.prevKeyPoints[i])
|
|
312
|
+
currPoints.append(matchedKeypoints[i])
|
|
313
|
+
|
|
314
|
+
prevPoints = np.array(prevPoints)
|
|
315
|
+
currPoints = np.array(currPoints)
|
|
316
|
+
|
|
317
|
+
# Estimate transformation matrix using RANSAC
|
|
318
|
+
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == currPoints.shape[0]):
|
|
319
|
+
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
|
320
|
+
|
|
321
|
+
# Scale translation components back to original resolution
|
|
322
|
+
if self.downscale > 1.0:
|
|
323
|
+
H[0, 2] *= self.downscale
|
|
324
|
+
H[1, 2] *= self.downscale
|
|
325
|
+
else:
|
|
326
|
+
LOGGER.warning("not enough matching points")
|
|
327
|
+
|
|
328
|
+
# Store current frame data for next iteration
|
|
329
|
+
self.prevFrame = frame.copy()
|
|
330
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
331
|
+
|
|
332
|
+
return H
|
|
333
|
+
|
|
334
|
+
def reset_params(self) -> None:
|
|
335
|
+
"""Reset the internal parameters including previous frame, keypoints, and descriptors."""
|
|
336
|
+
self.prevFrame = None
|
|
337
|
+
self.prevKeyPoints = None
|
|
338
|
+
self.prevDescriptors = None
|
|
339
|
+
self.initializedFirstFrame = False
|