ultralytics-opencv-headless 8.3.242__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +23 -0
- tests/conftest.py +59 -0
- tests/test_cli.py +131 -0
- tests/test_cuda.py +216 -0
- tests/test_engine.py +157 -0
- tests/test_exports.py +309 -0
- tests/test_integrations.py +151 -0
- tests/test_python.py +777 -0
- tests/test_solutions.py +371 -0
- ultralytics/__init__.py +48 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1026 -0
- ultralytics/cfg/datasets/Argoverse.yaml +78 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +447 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +102 -0
- ultralytics/cfg/datasets/VisDrone.yaml +87 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +64 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +52 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +21 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +130 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +21 -0
- ultralytics/cfg/trackers/bytetrack.yaml +12 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2801 -0
- ultralytics/data/base.py +435 -0
- ultralytics/data/build.py +437 -0
- ultralytics/data/converter.py +855 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +704 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +138 -0
- ultralytics/data/split_dota.py +344 -0
- ultralytics/data/utils.py +798 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1574 -0
- ultralytics/engine/model.py +1124 -0
- ultralytics/engine/predictor.py +508 -0
- ultralytics/engine/results.py +1522 -0
- ultralytics/engine/trainer.py +974 -0
- ultralytics/engine/tuner.py +448 -0
- ultralytics/engine/validator.py +384 -0
- ultralytics/hub/__init__.py +166 -0
- ultralytics/hub/auth.py +151 -0
- ultralytics/hub/google/__init__.py +174 -0
- ultralytics/hub/session.py +422 -0
- ultralytics/hub/utils.py +162 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +79 -0
- ultralytics/models/fastsam/predict.py +169 -0
- ultralytics/models/fastsam/utils.py +23 -0
- ultralytics/models/fastsam/val.py +38 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +98 -0
- ultralytics/models/nas/predict.py +56 -0
- ultralytics/models/nas/val.py +38 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +88 -0
- ultralytics/models/rtdetr/train.py +89 -0
- ultralytics/models/rtdetr/val.py +216 -0
- ultralytics/models/sam/__init__.py +25 -0
- ultralytics/models/sam/amg.py +275 -0
- ultralytics/models/sam/build.py +365 -0
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +169 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1067 -0
- ultralytics/models/sam/modules/decoders.py +495 -0
- ultralytics/models/sam/modules/encoders.py +794 -0
- ultralytics/models/sam/modules/memory_attention.py +298 -0
- ultralytics/models/sam/modules/sam.py +1160 -0
- ultralytics/models/sam/modules/tiny_encoder.py +979 -0
- ultralytics/models/sam/modules/transformer.py +344 -0
- ultralytics/models/sam/modules/utils.py +512 -0
- ultralytics/models/sam/predict.py +3940 -0
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +466 -0
- ultralytics/models/utils/ops.py +315 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +90 -0
- ultralytics/models/yolo/classify/train.py +202 -0
- ultralytics/models/yolo/classify/val.py +216 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +122 -0
- ultralytics/models/yolo/detect/train.py +227 -0
- ultralytics/models/yolo/detect/val.py +507 -0
- ultralytics/models/yolo/model.py +430 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +56 -0
- ultralytics/models/yolo/obb/train.py +79 -0
- ultralytics/models/yolo/obb/val.py +302 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +65 -0
- ultralytics/models/yolo/pose/train.py +110 -0
- ultralytics/models/yolo/pose/val.py +248 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +109 -0
- ultralytics/models/yolo/segment/train.py +69 -0
- ultralytics/models/yolo/segment/val.py +307 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +173 -0
- ultralytics/models/yolo/world/train_world.py +178 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +162 -0
- ultralytics/models/yolo/yoloe/train.py +287 -0
- ultralytics/models/yolo/yoloe/train_seg.py +122 -0
- ultralytics/models/yolo/yoloe/val.py +206 -0
- ultralytics/nn/__init__.py +27 -0
- ultralytics/nn/autobackend.py +958 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +54 -0
- ultralytics/nn/modules/block.py +1947 -0
- ultralytics/nn/modules/conv.py +669 -0
- ultralytics/nn/modules/head.py +1183 -0
- ultralytics/nn/modules/transformer.py +793 -0
- ultralytics/nn/modules/utils.py +159 -0
- ultralytics/nn/tasks.py +1768 -0
- ultralytics/nn/text_model.py +356 -0
- ultralytics/py.typed +1 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +108 -0
- ultralytics/solutions/analytics.py +264 -0
- ultralytics/solutions/config.py +107 -0
- ultralytics/solutions/distance_calculation.py +123 -0
- ultralytics/solutions/heatmap.py +125 -0
- ultralytics/solutions/instance_segmentation.py +86 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +190 -0
- ultralytics/solutions/object_cropper.py +87 -0
- ultralytics/solutions/parking_management.py +280 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +133 -0
- ultralytics/solutions/security_alarm.py +151 -0
- ultralytics/solutions/similarity_search.py +219 -0
- ultralytics/solutions/solutions.py +828 -0
- ultralytics/solutions/speed_estimation.py +114 -0
- ultralytics/solutions/streamlit_inference.py +260 -0
- ultralytics/solutions/templates/similarity-search.html +156 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +67 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +115 -0
- ultralytics/trackers/bot_sort.py +257 -0
- ultralytics/trackers/byte_tracker.py +469 -0
- ultralytics/trackers/track.py +116 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +339 -0
- ultralytics/trackers/utils/kalman_filter.py +482 -0
- ultralytics/trackers/utils/matching.py +154 -0
- ultralytics/utils/__init__.py +1450 -0
- ultralytics/utils/autobatch.py +118 -0
- ultralytics/utils/autodevice.py +205 -0
- ultralytics/utils/benchmarks.py +728 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +233 -0
- ultralytics/utils/callbacks/clearml.py +146 -0
- ultralytics/utils/callbacks/comet.py +625 -0
- ultralytics/utils/callbacks/dvc.py +197 -0
- ultralytics/utils/callbacks/hub.py +110 -0
- ultralytics/utils/callbacks/mlflow.py +134 -0
- ultralytics/utils/callbacks/neptune.py +126 -0
- ultralytics/utils/callbacks/platform.py +73 -0
- ultralytics/utils/callbacks/raytune.py +42 -0
- ultralytics/utils/callbacks/tensorboard.py +123 -0
- ultralytics/utils/callbacks/wb.py +188 -0
- ultralytics/utils/checks.py +998 -0
- ultralytics/utils/cpu.py +85 -0
- ultralytics/utils/dist.py +123 -0
- ultralytics/utils/downloads.py +529 -0
- ultralytics/utils/errors.py +35 -0
- ultralytics/utils/events.py +113 -0
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +315 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +219 -0
- ultralytics/utils/git.py +137 -0
- ultralytics/utils/instance.py +484 -0
- ultralytics/utils/logger.py +444 -0
- ultralytics/utils/loss.py +849 -0
- ultralytics/utils/metrics.py +1560 -0
- ultralytics/utils/nms.py +337 -0
- ultralytics/utils/ops.py +664 -0
- ultralytics/utils/patches.py +201 -0
- ultralytics/utils/plotting.py +1045 -0
- ultralytics/utils/tal.py +403 -0
- ultralytics/utils/torch_utils.py +984 -0
- ultralytics/utils/tqdm.py +440 -0
- ultralytics/utils/triton.py +112 -0
- ultralytics/utils/tuner.py +160 -0
- ultralytics_opencv_headless-8.3.242.dist-info/METADATA +374 -0
- ultralytics_opencv_headless-8.3.242.dist-info/RECORD +298 -0
- ultralytics_opencv_headless-8.3.242.dist-info/WHEEL +5 -0
- ultralytics_opencv_headless-8.3.242.dist-info/entry_points.txt +3 -0
- ultralytics_opencv_headless-8.3.242.dist-info/licenses/LICENSE +661 -0
- ultralytics_opencv_headless-8.3.242.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# YOLOv10s object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov10
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
s: [0.33, 0.50, 1024]
|
|
12
|
+
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, repeats, module, args]
|
|
15
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
16
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
17
|
+
- [-1, 3, C2f, [128, True]]
|
|
18
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
19
|
+
- [-1, 6, C2f, [256, True]]
|
|
20
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
21
|
+
- [-1, 6, C2f, [512, True]]
|
|
22
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
23
|
+
- [-1, 3, C2fCIB, [1024, True, True]]
|
|
24
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
26
|
+
|
|
27
|
+
# YOLOv10.0n head
|
|
28
|
+
head:
|
|
29
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
31
|
+
- [-1, 3, C2f, [512]] # 13
|
|
32
|
+
|
|
33
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
34
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
35
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
36
|
+
|
|
37
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
38
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
39
|
+
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
|
|
40
|
+
|
|
41
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
42
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
43
|
+
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
|
|
44
|
+
|
|
45
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# YOLOv10x object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov10
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
x: [1.00, 1.25, 512]
|
|
12
|
+
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, repeats, module, args]
|
|
15
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
16
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
17
|
+
- [-1, 3, C2f, [128, True]]
|
|
18
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
19
|
+
- [-1, 6, C2f, [256, True]]
|
|
20
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
21
|
+
- [-1, 6, C2fCIB, [512, True]]
|
|
22
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
23
|
+
- [-1, 3, C2fCIB, [1024, True]]
|
|
24
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
26
|
+
|
|
27
|
+
# YOLOv10.0n head
|
|
28
|
+
head:
|
|
29
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
31
|
+
- [-1, 3, C2fCIB, [512, True]] # 13
|
|
32
|
+
|
|
33
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
34
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
35
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
36
|
+
|
|
37
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
38
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
39
|
+
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
|
40
|
+
|
|
41
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
42
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
43
|
+
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
|
44
|
+
|
|
45
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv3-SPP object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov3
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
depth_multiple: 1.0 # model depth multiple
|
|
10
|
+
width_multiple: 1.0 # layer channel multiple
|
|
11
|
+
|
|
12
|
+
# darknet53 backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
- [-1, 1, Conv, [32, 3, 1]] # 0
|
|
16
|
+
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
|
|
17
|
+
- [-1, 1, Bottleneck, [64]]
|
|
18
|
+
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
|
|
19
|
+
- [-1, 2, Bottleneck, [128]]
|
|
20
|
+
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
|
|
21
|
+
- [-1, 8, Bottleneck, [256]]
|
|
22
|
+
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
|
|
23
|
+
- [-1, 8, Bottleneck, [512]]
|
|
24
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
|
|
25
|
+
- [-1, 4, Bottleneck, [1024]] # 10
|
|
26
|
+
|
|
27
|
+
# YOLOv3-SPP head
|
|
28
|
+
head:
|
|
29
|
+
- [-1, 1, Bottleneck, [1024, False]]
|
|
30
|
+
- [-1, 1, SPP, [512, [5, 9, 13]]]
|
|
31
|
+
- [-1, 1, Conv, [1024, 3, 1]]
|
|
32
|
+
- [-1, 1, Conv, [512, 1, 1]]
|
|
33
|
+
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
|
|
34
|
+
|
|
35
|
+
- [-2, 1, Conv, [256, 1, 1]]
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
|
|
38
|
+
- [-1, 1, Bottleneck, [512, False]]
|
|
39
|
+
- [-1, 1, Bottleneck, [512, False]]
|
|
40
|
+
- [-1, 1, Conv, [256, 1, 1]]
|
|
41
|
+
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
|
|
42
|
+
|
|
43
|
+
- [-2, 1, Conv, [128, 1, 1]]
|
|
44
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
45
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
|
|
46
|
+
- [-1, 1, Bottleneck, [256, False]]
|
|
47
|
+
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
|
|
48
|
+
|
|
49
|
+
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov3
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
depth_multiple: 1.0 # model depth multiple
|
|
10
|
+
width_multiple: 1.0 # layer channel multiple
|
|
11
|
+
|
|
12
|
+
# YOLOv3-tiny backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
- [-1, 1, Conv, [16, 3, 1]] # 0
|
|
16
|
+
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 1-P1/2
|
|
17
|
+
- [-1, 1, Conv, [32, 3, 1]]
|
|
18
|
+
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 3-P2/4
|
|
19
|
+
- [-1, 1, Conv, [64, 3, 1]]
|
|
20
|
+
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 5-P3/8
|
|
21
|
+
- [-1, 1, Conv, [128, 3, 1]]
|
|
22
|
+
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 7-P4/16
|
|
23
|
+
- [-1, 1, Conv, [256, 3, 1]]
|
|
24
|
+
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 9-P5/32
|
|
25
|
+
- [-1, 1, Conv, [512, 3, 1]]
|
|
26
|
+
- [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]] # 11
|
|
27
|
+
- [-1, 1, nn.MaxPool2d, [2, 1, 0]] # 12
|
|
28
|
+
|
|
29
|
+
# YOLOv3-tiny head
|
|
30
|
+
head:
|
|
31
|
+
- [-1, 1, Conv, [1024, 3, 1]]
|
|
32
|
+
- [-1, 1, Conv, [256, 1, 1]]
|
|
33
|
+
- [-1, 1, Conv, [512, 3, 1]] # 15 (P5/32-large)
|
|
34
|
+
|
|
35
|
+
- [-2, 1, Conv, [128, 1, 1]]
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
|
|
38
|
+
- [-1, 1, Conv, [256, 3, 1]] # 19 (P4/16-medium)
|
|
39
|
+
|
|
40
|
+
- [[19, 15], 1, Detect, [nc]] # Detect(P4, P5)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv3 object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov3
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
depth_multiple: 1.0 # model depth multiple
|
|
10
|
+
width_multiple: 1.0 # layer channel multiple
|
|
11
|
+
|
|
12
|
+
# darknet53 backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
- [-1, 1, Conv, [32, 3, 1]] # 0
|
|
16
|
+
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
|
|
17
|
+
- [-1, 1, Bottleneck, [64]]
|
|
18
|
+
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
|
|
19
|
+
- [-1, 2, Bottleneck, [128]]
|
|
20
|
+
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
|
|
21
|
+
- [-1, 8, Bottleneck, [256]]
|
|
22
|
+
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
|
|
23
|
+
- [-1, 8, Bottleneck, [512]]
|
|
24
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
|
|
25
|
+
- [-1, 4, Bottleneck, [1024]] # 10
|
|
26
|
+
|
|
27
|
+
# YOLOv3 head
|
|
28
|
+
head:
|
|
29
|
+
- [-1, 1, Bottleneck, [1024, False]]
|
|
30
|
+
- [-1, 1, Conv, [512, 1, 1]]
|
|
31
|
+
- [-1, 1, Conv, [1024, 3, 1]]
|
|
32
|
+
- [-1, 1, Conv, [512, 1, 1]]
|
|
33
|
+
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
|
|
34
|
+
|
|
35
|
+
- [-2, 1, Conv, [256, 1, 1]]
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
|
|
38
|
+
- [-1, 1, Bottleneck, [512, False]]
|
|
39
|
+
- [-1, 1, Bottleneck, [512, False]]
|
|
40
|
+
- [-1, 1, Conv, [256, 1, 1]]
|
|
41
|
+
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
|
|
42
|
+
|
|
43
|
+
- [-2, 1, Conv, [128, 1, 1]]
|
|
44
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
45
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
|
|
46
|
+
- [-1, 1, Bottleneck, [256, False]]
|
|
47
|
+
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
|
|
48
|
+
|
|
49
|
+
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv5 object detection model with P3/8 - P6/64 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov5
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
n: [0.33, 0.25, 1024]
|
|
12
|
+
s: [0.33, 0.50, 1024]
|
|
13
|
+
m: [0.67, 0.75, 1024]
|
|
14
|
+
l: [1.00, 1.00, 1024]
|
|
15
|
+
x: [1.33, 1.25, 1024]
|
|
16
|
+
|
|
17
|
+
# YOLOv5 v6.0 backbone
|
|
18
|
+
backbone:
|
|
19
|
+
# [from, number, module, args]
|
|
20
|
+
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
|
|
21
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
22
|
+
- [-1, 3, C3, [128]]
|
|
23
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
24
|
+
- [-1, 6, C3, [256]]
|
|
25
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
26
|
+
- [-1, 9, C3, [512]]
|
|
27
|
+
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
|
28
|
+
- [-1, 3, C3, [768]]
|
|
29
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
|
30
|
+
- [-1, 3, C3, [1024]]
|
|
31
|
+
- [-1, 1, SPPF, [1024, 5]] # 11
|
|
32
|
+
|
|
33
|
+
# YOLOv5 v6.0 head
|
|
34
|
+
head:
|
|
35
|
+
- [-1, 1, Conv, [768, 1, 1]]
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
|
38
|
+
- [-1, 3, C3, [768, False]] # 15
|
|
39
|
+
|
|
40
|
+
- [-1, 1, Conv, [512, 1, 1]]
|
|
41
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
42
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
43
|
+
- [-1, 3, C3, [512, False]] # 19
|
|
44
|
+
|
|
45
|
+
- [-1, 1, Conv, [256, 1, 1]]
|
|
46
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
47
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
48
|
+
- [-1, 3, C3, [256, False]] # 23 (P3/8-small)
|
|
49
|
+
|
|
50
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
51
|
+
- [[-1, 20], 1, Concat, [1]] # cat head P4
|
|
52
|
+
- [-1, 3, C3, [512, False]] # 26 (P4/16-medium)
|
|
53
|
+
|
|
54
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
55
|
+
- [[-1, 16], 1, Concat, [1]] # cat head P5
|
|
56
|
+
- [-1, 3, C3, [768, False]] # 29 (P5/32-large)
|
|
57
|
+
|
|
58
|
+
- [-1, 1, Conv, [768, 3, 2]]
|
|
59
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P6
|
|
60
|
+
- [-1, 3, C3, [1024, False]] # 32 (P6/64-xlarge)
|
|
61
|
+
|
|
62
|
+
- [[23, 26, 29, 32], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov5
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
n: [0.33, 0.25, 1024]
|
|
12
|
+
s: [0.33, 0.50, 1024]
|
|
13
|
+
m: [0.67, 0.75, 1024]
|
|
14
|
+
l: [1.00, 1.00, 1024]
|
|
15
|
+
x: [1.33, 1.25, 1024]
|
|
16
|
+
|
|
17
|
+
# YOLOv5 v6.0 backbone
|
|
18
|
+
backbone:
|
|
19
|
+
# [from, number, module, args]
|
|
20
|
+
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
|
|
21
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
22
|
+
- [-1, 3, C3, [128]]
|
|
23
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
24
|
+
- [-1, 6, C3, [256]]
|
|
25
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
26
|
+
- [-1, 9, C3, [512]]
|
|
27
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
28
|
+
- [-1, 3, C3, [1024]]
|
|
29
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
30
|
+
|
|
31
|
+
# YOLOv5 v6.0 head
|
|
32
|
+
head:
|
|
33
|
+
- [-1, 1, Conv, [512, 1, 1]]
|
|
34
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
35
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
36
|
+
- [-1, 3, C3, [512, False]] # 13
|
|
37
|
+
|
|
38
|
+
- [-1, 1, Conv, [256, 1, 1]]
|
|
39
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
40
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
41
|
+
- [-1, 3, C3, [256, False]] # 17 (P3/8-small)
|
|
42
|
+
|
|
43
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
44
|
+
- [[-1, 14], 1, Concat, [1]] # cat head P4
|
|
45
|
+
- [-1, 3, C3, [512, False]] # 20 (P4/16-medium)
|
|
46
|
+
|
|
47
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
48
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
49
|
+
- [-1, 3, C3, [1024, False]] # 23 (P5/32-large)
|
|
50
|
+
|
|
51
|
+
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Meituan YOLOv6 object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov6
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 80 # number of classes
|
|
9
|
+
activation: torch.nn.ReLU() # (optional) model default activation function
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
|
|
11
|
+
# [depth, width, max_channels]
|
|
12
|
+
n: [0.33, 0.25, 1024]
|
|
13
|
+
s: [0.33, 0.50, 1024]
|
|
14
|
+
m: [0.67, 0.75, 768]
|
|
15
|
+
l: [1.00, 1.00, 512]
|
|
16
|
+
x: [1.00, 1.25, 512]
|
|
17
|
+
|
|
18
|
+
# YOLOv6-3.0s backbone
|
|
19
|
+
backbone:
|
|
20
|
+
# [from, repeats, module, args]
|
|
21
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
22
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
23
|
+
- [-1, 6, Conv, [128, 3, 1]]
|
|
24
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
25
|
+
- [-1, 12, Conv, [256, 3, 1]]
|
|
26
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
27
|
+
- [-1, 18, Conv, [512, 3, 1]]
|
|
28
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
29
|
+
- [-1, 6, Conv, [1024, 3, 1]]
|
|
30
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
31
|
+
|
|
32
|
+
# YOLOv6-3.0s head
|
|
33
|
+
head:
|
|
34
|
+
- [-1, 1, Conv, [256, 1, 1]]
|
|
35
|
+
- [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
|
|
36
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
37
|
+
- [-1, 1, Conv, [256, 3, 1]]
|
|
38
|
+
- [-1, 9, Conv, [256, 3, 1]] # 14
|
|
39
|
+
|
|
40
|
+
- [-1, 1, Conv, [128, 1, 1]]
|
|
41
|
+
- [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
|
|
42
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
43
|
+
- [-1, 1, Conv, [128, 3, 1]]
|
|
44
|
+
- [-1, 9, Conv, [128, 3, 1]] # 19
|
|
45
|
+
|
|
46
|
+
- [-1, 1, Conv, [128, 3, 2]]
|
|
47
|
+
- [[-1, 15], 1, Concat, [1]] # cat head P4
|
|
48
|
+
- [-1, 1, Conv, [256, 3, 1]]
|
|
49
|
+
- [-1, 9, Conv, [256, 3, 1]] # 23
|
|
50
|
+
|
|
51
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
52
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
53
|
+
- [-1, 1, Conv, [512, 3, 1]]
|
|
54
|
+
- [-1, 9, Conv, [512, 3, 1]] # 27
|
|
55
|
+
|
|
56
|
+
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOE-v8-seg instance segmentation model with P3/8 - P5/32 outputs
|
|
4
|
+
# Task docs: https://docs.ultralytics.com/tasks/segment
|
|
5
|
+
|
|
6
|
+
# Parameters
|
|
7
|
+
nc: 80 # number of classes
|
|
8
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-v8n-seg.yaml' will call yoloe-v8-seg.yaml with scale 'n'
|
|
9
|
+
# [depth, width, max_channels]
|
|
10
|
+
n: [0.33, 0.25, 1024] # YOLOE-v8n-seg summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
|
|
11
|
+
s: [0.33, 0.50, 1024] # YOLOE-v8s-seg summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
|
|
12
|
+
m: [0.67, 0.75, 768] # YOLOE-v8m-seg summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
|
|
13
|
+
l: [1.00, 1.00, 512] # YOLOE-v8l-seg summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
|
|
14
|
+
x: [1.00, 1.25, 512] # YOLOE-v8x-seg summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
|
|
15
|
+
|
|
16
|
+
# YOLOv8.0n backbone
|
|
17
|
+
backbone:
|
|
18
|
+
# [from, repeats, module, args]
|
|
19
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
20
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
21
|
+
- [-1, 3, C2f, [128, True]]
|
|
22
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
23
|
+
- [-1, 6, C2f, [256, True]]
|
|
24
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
25
|
+
- [-1, 6, C2f, [512, True]]
|
|
26
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
27
|
+
- [-1, 3, C2f, [1024, True]]
|
|
28
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
29
|
+
|
|
30
|
+
# YOLOv8.0n head
|
|
31
|
+
head:
|
|
32
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
33
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
34
|
+
- [-1, 3, C2f, [512]] # 12
|
|
35
|
+
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
38
|
+
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
|
39
|
+
|
|
40
|
+
- [15, 1, Conv, [256, 3, 2]]
|
|
41
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
|
42
|
+
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
|
43
|
+
|
|
44
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
45
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
|
46
|
+
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
|
47
|
+
|
|
48
|
+
- [[15, 18, 21], 1, YOLOESegment, [nc, 32, 256, 512, True]] # Segment(P3, P4, P5)
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOE-v8 object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
5
|
+
|
|
6
|
+
# Parameters
|
|
7
|
+
nc: 80 # number of classes
|
|
8
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-v8n.yaml' will call yoloe-v8.yaml with scale 'n'
|
|
9
|
+
# [depth, width, max_channels]
|
|
10
|
+
n: [0.33, 0.25, 1024] # YOLOE-v8n summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPs
|
|
11
|
+
s: [0.33, 0.50, 1024] # YOLOE-v8s summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPs
|
|
12
|
+
m: [0.67, 0.75, 768] # YOLOE-v8m summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPs
|
|
13
|
+
l: [1.00, 1.00, 512] # YOLOE-v8l summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPs
|
|
14
|
+
x: [1.00, 1.25, 512] # YOLOE-v8x summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPs
|
|
15
|
+
|
|
16
|
+
# YOLOv8.0n backbone
|
|
17
|
+
backbone:
|
|
18
|
+
# [from, repeats, module, args]
|
|
19
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
20
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
21
|
+
- [-1, 3, C2f, [128, True]]
|
|
22
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
23
|
+
- [-1, 6, C2f, [256, True]]
|
|
24
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
25
|
+
- [-1, 6, C2f, [512, True]]
|
|
26
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
27
|
+
- [-1, 3, C2f, [1024, True]]
|
|
28
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
29
|
+
|
|
30
|
+
# YOLOv8.0n head
|
|
31
|
+
head:
|
|
32
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
33
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
34
|
+
- [-1, 3, C2f, [512]] # 12
|
|
35
|
+
|
|
36
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
37
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
38
|
+
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
|
39
|
+
|
|
40
|
+
- [15, 1, Conv, [256, 3, 2]]
|
|
41
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
|
42
|
+
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
|
43
|
+
|
|
44
|
+
- [-1, 1, Conv, [512, 3, 2]]
|
|
45
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
|
46
|
+
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
|
47
|
+
|
|
48
|
+
- [[15, 18, 21], 1, YOLOEDetect, [nc, 512, True]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv8-cls image classification model with ResNet101 backbone
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/classify
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 1000 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet101.yaml' will call yolov8-cls-resnet101.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
n: [0.33, 0.25, 1024]
|
|
12
|
+
s: [0.33, 0.50, 1024]
|
|
13
|
+
m: [0.67, 0.75, 1024]
|
|
14
|
+
l: [1.00, 1.00, 1024]
|
|
15
|
+
x: [1.00, 1.25, 1024]
|
|
16
|
+
|
|
17
|
+
# YOLOv8.0n backbone
|
|
18
|
+
backbone:
|
|
19
|
+
# [from, repeats, module, args]
|
|
20
|
+
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
|
|
21
|
+
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
|
|
22
|
+
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
|
|
23
|
+
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3-P4/16
|
|
24
|
+
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
|
|
25
|
+
|
|
26
|
+
# YOLOv8.0n head
|
|
27
|
+
head:
|
|
28
|
+
- [-1, 1, Classify, [nc]] # Classify
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv8-cls image classification model with ResNet50 backbone
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/classify
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 1000 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet50.yaml' will call yolov8-cls-resnet50.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
n: [0.33, 0.25, 1024]
|
|
12
|
+
s: [0.33, 0.50, 1024]
|
|
13
|
+
m: [0.67, 0.75, 1024]
|
|
14
|
+
l: [1.00, 1.00, 1024]
|
|
15
|
+
x: [1.00, 1.25, 1024]
|
|
16
|
+
|
|
17
|
+
# YOLOv8.0n backbone
|
|
18
|
+
backbone:
|
|
19
|
+
# [from, repeats, module, args]
|
|
20
|
+
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
|
|
21
|
+
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
|
|
22
|
+
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
|
|
23
|
+
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3-P4/16
|
|
24
|
+
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
|
|
25
|
+
|
|
26
|
+
# YOLOv8.0n head
|
|
27
|
+
head:
|
|
28
|
+
- [-1, 1, Classify, [nc]] # Classify
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv8-cls image classification model with YOLO backbone
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/classify
|
|
6
|
+
|
|
7
|
+
# Parameters
|
|
8
|
+
nc: 1000 # number of classes
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
|
10
|
+
# [depth, width, max_channels]
|
|
11
|
+
n: [0.33, 0.25, 1024]
|
|
12
|
+
s: [0.33, 0.50, 1024]
|
|
13
|
+
m: [0.67, 0.75, 1024]
|
|
14
|
+
l: [1.00, 1.00, 1024]
|
|
15
|
+
x: [1.00, 1.25, 1024]
|
|
16
|
+
|
|
17
|
+
# YOLOv8.0n backbone
|
|
18
|
+
backbone:
|
|
19
|
+
# [from, repeats, module, args]
|
|
20
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
21
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
22
|
+
- [-1, 3, C2f, [128, True]]
|
|
23
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
24
|
+
- [-1, 6, C2f, [256, True]]
|
|
25
|
+
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
26
|
+
- [-1, 6, C2f, [512, True]]
|
|
27
|
+
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
28
|
+
- [-1, 3, C2f, [1024, True]]
|
|
29
|
+
|
|
30
|
+
# YOLOv8.0n head
|
|
31
|
+
head:
|
|
32
|
+
- [-1, 1, Classify, [nc]] # Classify
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Ultralytics YOLOv8-ghost object detection model with P2/4 - P5/32 outputs
|
|
4
|
+
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
|
+
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
|
|
7
|
+
|
|
8
|
+
# Parameters
|
|
9
|
+
nc: 80 # number of classes
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p2.yaml' will call yolov8-ghost-p2.yaml with scale 'n'
|
|
11
|
+
# [depth, width, max_channels]
|
|
12
|
+
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 290 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
|
|
13
|
+
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 290 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
|
|
14
|
+
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p2 summary: 434 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
|
|
15
|
+
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p2 summary: 578 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
|
|
16
|
+
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p2 summary: 578 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
|
|
17
|
+
|
|
18
|
+
# YOLOv8.0-ghost backbone
|
|
19
|
+
backbone:
|
|
20
|
+
# [from, repeats, module, args]
|
|
21
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
22
|
+
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
|
23
|
+
- [-1, 3, C3Ghost, [128, True]]
|
|
24
|
+
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
|
25
|
+
- [-1, 6, C3Ghost, [256, True]]
|
|
26
|
+
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
|
27
|
+
- [-1, 6, C3Ghost, [512, True]]
|
|
28
|
+
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
|
|
29
|
+
- [-1, 3, C3Ghost, [1024, True]]
|
|
30
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
31
|
+
|
|
32
|
+
# YOLOv8.0-ghost-p2 head
|
|
33
|
+
head:
|
|
34
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
35
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
36
|
+
- [-1, 3, C3Ghost, [512]] # 12
|
|
37
|
+
|
|
38
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
39
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
40
|
+
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
|
|
41
|
+
|
|
42
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
43
|
+
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
|
44
|
+
- [-1, 3, C3Ghost, [128]] # 18 (P2/4-xsmall)
|
|
45
|
+
|
|
46
|
+
- [-1, 1, GhostConv, [128, 3, 2]]
|
|
47
|
+
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
|
48
|
+
- [-1, 3, C3Ghost, [256]] # 21 (P3/8-small)
|
|
49
|
+
|
|
50
|
+
- [-1, 1, GhostConv, [256, 3, 2]]
|
|
51
|
+
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
|
52
|
+
- [-1, 3, C3Ghost, [512]] # 24 (P4/16-medium)
|
|
53
|
+
|
|
54
|
+
- [-1, 1, GhostConv, [512, 3, 2]]
|
|
55
|
+
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
|
56
|
+
- [-1, 3, C3Ghost, [1024]] # 27 (P5/32-large)
|
|
57
|
+
|
|
58
|
+
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|