ultralytics-opencv-headless 8.3.242__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (298) hide show
  1. tests/__init__.py +23 -0
  2. tests/conftest.py +59 -0
  3. tests/test_cli.py +131 -0
  4. tests/test_cuda.py +216 -0
  5. tests/test_engine.py +157 -0
  6. tests/test_exports.py +309 -0
  7. tests/test_integrations.py +151 -0
  8. tests/test_python.py +777 -0
  9. tests/test_solutions.py +371 -0
  10. ultralytics/__init__.py +48 -0
  11. ultralytics/assets/bus.jpg +0 -0
  12. ultralytics/assets/zidane.jpg +0 -0
  13. ultralytics/cfg/__init__.py +1026 -0
  14. ultralytics/cfg/datasets/Argoverse.yaml +78 -0
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  16. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  17. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  18. ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
  19. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  20. ultralytics/cfg/datasets/Objects365.yaml +447 -0
  21. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  22. ultralytics/cfg/datasets/VOC.yaml +102 -0
  23. ultralytics/cfg/datasets/VisDrone.yaml +87 -0
  24. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  25. ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
  26. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  27. ultralytics/cfg/datasets/coco-pose.yaml +64 -0
  28. ultralytics/cfg/datasets/coco.yaml +118 -0
  29. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  30. ultralytics/cfg/datasets/coco128.yaml +101 -0
  31. ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
  32. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  33. ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
  34. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  35. ultralytics/cfg/datasets/coco8.yaml +101 -0
  36. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  37. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  38. ultralytics/cfg/datasets/dog-pose.yaml +52 -0
  39. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  40. ultralytics/cfg/datasets/dota8.yaml +35 -0
  41. ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
  42. ultralytics/cfg/datasets/kitti.yaml +27 -0
  43. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  44. ultralytics/cfg/datasets/medical-pills.yaml +21 -0
  45. ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
  46. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  47. ultralytics/cfg/datasets/signature.yaml +21 -0
  48. ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
  49. ultralytics/cfg/datasets/xView.yaml +155 -0
  50. ultralytics/cfg/default.yaml +130 -0
  51. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  52. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  53. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  54. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  55. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  56. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  57. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  58. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  59. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  60. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  61. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  62. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  63. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  64. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  65. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  66. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  68. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  69. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  70. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  71. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  74. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  75. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  76. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  77. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  78. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  79. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  80. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
  81. ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
  82. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  83. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  84. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  85. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  86. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  87. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  88. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  89. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  90. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  91. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  92. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  93. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  94. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  95. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  96. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  97. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  98. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  99. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  100. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  101. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  102. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  103. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  105. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  106. ultralytics/cfg/trackers/botsort.yaml +21 -0
  107. ultralytics/cfg/trackers/bytetrack.yaml +12 -0
  108. ultralytics/data/__init__.py +26 -0
  109. ultralytics/data/annotator.py +66 -0
  110. ultralytics/data/augment.py +2801 -0
  111. ultralytics/data/base.py +435 -0
  112. ultralytics/data/build.py +437 -0
  113. ultralytics/data/converter.py +855 -0
  114. ultralytics/data/dataset.py +834 -0
  115. ultralytics/data/loaders.py +704 -0
  116. ultralytics/data/scripts/download_weights.sh +18 -0
  117. ultralytics/data/scripts/get_coco.sh +61 -0
  118. ultralytics/data/scripts/get_coco128.sh +18 -0
  119. ultralytics/data/scripts/get_imagenet.sh +52 -0
  120. ultralytics/data/split.py +138 -0
  121. ultralytics/data/split_dota.py +344 -0
  122. ultralytics/data/utils.py +798 -0
  123. ultralytics/engine/__init__.py +1 -0
  124. ultralytics/engine/exporter.py +1574 -0
  125. ultralytics/engine/model.py +1124 -0
  126. ultralytics/engine/predictor.py +508 -0
  127. ultralytics/engine/results.py +1522 -0
  128. ultralytics/engine/trainer.py +974 -0
  129. ultralytics/engine/tuner.py +448 -0
  130. ultralytics/engine/validator.py +384 -0
  131. ultralytics/hub/__init__.py +166 -0
  132. ultralytics/hub/auth.py +151 -0
  133. ultralytics/hub/google/__init__.py +174 -0
  134. ultralytics/hub/session.py +422 -0
  135. ultralytics/hub/utils.py +162 -0
  136. ultralytics/models/__init__.py +9 -0
  137. ultralytics/models/fastsam/__init__.py +7 -0
  138. ultralytics/models/fastsam/model.py +79 -0
  139. ultralytics/models/fastsam/predict.py +169 -0
  140. ultralytics/models/fastsam/utils.py +23 -0
  141. ultralytics/models/fastsam/val.py +38 -0
  142. ultralytics/models/nas/__init__.py +7 -0
  143. ultralytics/models/nas/model.py +98 -0
  144. ultralytics/models/nas/predict.py +56 -0
  145. ultralytics/models/nas/val.py +38 -0
  146. ultralytics/models/rtdetr/__init__.py +7 -0
  147. ultralytics/models/rtdetr/model.py +63 -0
  148. ultralytics/models/rtdetr/predict.py +88 -0
  149. ultralytics/models/rtdetr/train.py +89 -0
  150. ultralytics/models/rtdetr/val.py +216 -0
  151. ultralytics/models/sam/__init__.py +25 -0
  152. ultralytics/models/sam/amg.py +275 -0
  153. ultralytics/models/sam/build.py +365 -0
  154. ultralytics/models/sam/build_sam3.py +377 -0
  155. ultralytics/models/sam/model.py +169 -0
  156. ultralytics/models/sam/modules/__init__.py +1 -0
  157. ultralytics/models/sam/modules/blocks.py +1067 -0
  158. ultralytics/models/sam/modules/decoders.py +495 -0
  159. ultralytics/models/sam/modules/encoders.py +794 -0
  160. ultralytics/models/sam/modules/memory_attention.py +298 -0
  161. ultralytics/models/sam/modules/sam.py +1160 -0
  162. ultralytics/models/sam/modules/tiny_encoder.py +979 -0
  163. ultralytics/models/sam/modules/transformer.py +344 -0
  164. ultralytics/models/sam/modules/utils.py +512 -0
  165. ultralytics/models/sam/predict.py +3940 -0
  166. ultralytics/models/sam/sam3/__init__.py +3 -0
  167. ultralytics/models/sam/sam3/decoder.py +546 -0
  168. ultralytics/models/sam/sam3/encoder.py +529 -0
  169. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  170. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  171. ultralytics/models/sam/sam3/model_misc.py +199 -0
  172. ultralytics/models/sam/sam3/necks.py +129 -0
  173. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  174. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  175. ultralytics/models/sam/sam3/vitdet.py +547 -0
  176. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  177. ultralytics/models/utils/__init__.py +1 -0
  178. ultralytics/models/utils/loss.py +466 -0
  179. ultralytics/models/utils/ops.py +315 -0
  180. ultralytics/models/yolo/__init__.py +7 -0
  181. ultralytics/models/yolo/classify/__init__.py +7 -0
  182. ultralytics/models/yolo/classify/predict.py +90 -0
  183. ultralytics/models/yolo/classify/train.py +202 -0
  184. ultralytics/models/yolo/classify/val.py +216 -0
  185. ultralytics/models/yolo/detect/__init__.py +7 -0
  186. ultralytics/models/yolo/detect/predict.py +122 -0
  187. ultralytics/models/yolo/detect/train.py +227 -0
  188. ultralytics/models/yolo/detect/val.py +507 -0
  189. ultralytics/models/yolo/model.py +430 -0
  190. ultralytics/models/yolo/obb/__init__.py +7 -0
  191. ultralytics/models/yolo/obb/predict.py +56 -0
  192. ultralytics/models/yolo/obb/train.py +79 -0
  193. ultralytics/models/yolo/obb/val.py +302 -0
  194. ultralytics/models/yolo/pose/__init__.py +7 -0
  195. ultralytics/models/yolo/pose/predict.py +65 -0
  196. ultralytics/models/yolo/pose/train.py +110 -0
  197. ultralytics/models/yolo/pose/val.py +248 -0
  198. ultralytics/models/yolo/segment/__init__.py +7 -0
  199. ultralytics/models/yolo/segment/predict.py +109 -0
  200. ultralytics/models/yolo/segment/train.py +69 -0
  201. ultralytics/models/yolo/segment/val.py +307 -0
  202. ultralytics/models/yolo/world/__init__.py +5 -0
  203. ultralytics/models/yolo/world/train.py +173 -0
  204. ultralytics/models/yolo/world/train_world.py +178 -0
  205. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  206. ultralytics/models/yolo/yoloe/predict.py +162 -0
  207. ultralytics/models/yolo/yoloe/train.py +287 -0
  208. ultralytics/models/yolo/yoloe/train_seg.py +122 -0
  209. ultralytics/models/yolo/yoloe/val.py +206 -0
  210. ultralytics/nn/__init__.py +27 -0
  211. ultralytics/nn/autobackend.py +958 -0
  212. ultralytics/nn/modules/__init__.py +182 -0
  213. ultralytics/nn/modules/activation.py +54 -0
  214. ultralytics/nn/modules/block.py +1947 -0
  215. ultralytics/nn/modules/conv.py +669 -0
  216. ultralytics/nn/modules/head.py +1183 -0
  217. ultralytics/nn/modules/transformer.py +793 -0
  218. ultralytics/nn/modules/utils.py +159 -0
  219. ultralytics/nn/tasks.py +1768 -0
  220. ultralytics/nn/text_model.py +356 -0
  221. ultralytics/py.typed +1 -0
  222. ultralytics/solutions/__init__.py +41 -0
  223. ultralytics/solutions/ai_gym.py +108 -0
  224. ultralytics/solutions/analytics.py +264 -0
  225. ultralytics/solutions/config.py +107 -0
  226. ultralytics/solutions/distance_calculation.py +123 -0
  227. ultralytics/solutions/heatmap.py +125 -0
  228. ultralytics/solutions/instance_segmentation.py +86 -0
  229. ultralytics/solutions/object_blurrer.py +89 -0
  230. ultralytics/solutions/object_counter.py +190 -0
  231. ultralytics/solutions/object_cropper.py +87 -0
  232. ultralytics/solutions/parking_management.py +280 -0
  233. ultralytics/solutions/queue_management.py +93 -0
  234. ultralytics/solutions/region_counter.py +133 -0
  235. ultralytics/solutions/security_alarm.py +151 -0
  236. ultralytics/solutions/similarity_search.py +219 -0
  237. ultralytics/solutions/solutions.py +828 -0
  238. ultralytics/solutions/speed_estimation.py +114 -0
  239. ultralytics/solutions/streamlit_inference.py +260 -0
  240. ultralytics/solutions/templates/similarity-search.html +156 -0
  241. ultralytics/solutions/trackzone.py +88 -0
  242. ultralytics/solutions/vision_eye.py +67 -0
  243. ultralytics/trackers/__init__.py +7 -0
  244. ultralytics/trackers/basetrack.py +115 -0
  245. ultralytics/trackers/bot_sort.py +257 -0
  246. ultralytics/trackers/byte_tracker.py +469 -0
  247. ultralytics/trackers/track.py +116 -0
  248. ultralytics/trackers/utils/__init__.py +1 -0
  249. ultralytics/trackers/utils/gmc.py +339 -0
  250. ultralytics/trackers/utils/kalman_filter.py +482 -0
  251. ultralytics/trackers/utils/matching.py +154 -0
  252. ultralytics/utils/__init__.py +1450 -0
  253. ultralytics/utils/autobatch.py +118 -0
  254. ultralytics/utils/autodevice.py +205 -0
  255. ultralytics/utils/benchmarks.py +728 -0
  256. ultralytics/utils/callbacks/__init__.py +5 -0
  257. ultralytics/utils/callbacks/base.py +233 -0
  258. ultralytics/utils/callbacks/clearml.py +146 -0
  259. ultralytics/utils/callbacks/comet.py +625 -0
  260. ultralytics/utils/callbacks/dvc.py +197 -0
  261. ultralytics/utils/callbacks/hub.py +110 -0
  262. ultralytics/utils/callbacks/mlflow.py +134 -0
  263. ultralytics/utils/callbacks/neptune.py +126 -0
  264. ultralytics/utils/callbacks/platform.py +73 -0
  265. ultralytics/utils/callbacks/raytune.py +42 -0
  266. ultralytics/utils/callbacks/tensorboard.py +123 -0
  267. ultralytics/utils/callbacks/wb.py +188 -0
  268. ultralytics/utils/checks.py +998 -0
  269. ultralytics/utils/cpu.py +85 -0
  270. ultralytics/utils/dist.py +123 -0
  271. ultralytics/utils/downloads.py +529 -0
  272. ultralytics/utils/errors.py +35 -0
  273. ultralytics/utils/events.py +113 -0
  274. ultralytics/utils/export/__init__.py +7 -0
  275. ultralytics/utils/export/engine.py +237 -0
  276. ultralytics/utils/export/imx.py +315 -0
  277. ultralytics/utils/export/tensorflow.py +231 -0
  278. ultralytics/utils/files.py +219 -0
  279. ultralytics/utils/git.py +137 -0
  280. ultralytics/utils/instance.py +484 -0
  281. ultralytics/utils/logger.py +444 -0
  282. ultralytics/utils/loss.py +849 -0
  283. ultralytics/utils/metrics.py +1560 -0
  284. ultralytics/utils/nms.py +337 -0
  285. ultralytics/utils/ops.py +664 -0
  286. ultralytics/utils/patches.py +201 -0
  287. ultralytics/utils/plotting.py +1045 -0
  288. ultralytics/utils/tal.py +403 -0
  289. ultralytics/utils/torch_utils.py +984 -0
  290. ultralytics/utils/tqdm.py +440 -0
  291. ultralytics/utils/triton.py +112 -0
  292. ultralytics/utils/tuner.py +160 -0
  293. ultralytics_opencv_headless-8.3.242.dist-info/METADATA +374 -0
  294. ultralytics_opencv_headless-8.3.242.dist-info/RECORD +298 -0
  295. ultralytics_opencv_headless-8.3.242.dist-info/WHEEL +5 -0
  296. ultralytics_opencv_headless-8.3.242.dist-info/entry_points.txt +3 -0
  297. ultralytics_opencv_headless-8.3.242.dist-info/licenses/LICENSE +661 -0
  298. ultralytics_opencv_headless-8.3.242.dist-info/top_level.txt +1 -0
@@ -0,0 +1,47 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
5
+ # Example usage: yolo train data=coco8-pose.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco8-pose ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: coco8-pose # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+ test: # test images (optional)
16
+
17
+ # Keypoints
18
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
+ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
+
21
+ # Classes
22
+ names:
23
+ 0: person
24
+
25
+ # Keypoint names per class
26
+ kpt_names:
27
+ 0:
28
+ - nose
29
+ - left_eye
30
+ - right_eye
31
+ - left_ear
32
+ - right_ear
33
+ - left_shoulder
34
+ - right_shoulder
35
+ - left_elbow
36
+ - right_elbow
37
+ - left_wrist
38
+ - right_wrist
39
+ - left_hip
40
+ - right_hip
41
+ - left_knee
42
+ - right_knee
43
+ - left_ankle
44
+ - right_ankle
45
+
46
+ # Download script/URL (optional)
47
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
@@ -0,0 +1,101 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
5
+ # Example usage: yolo train data=coco8-seg.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco8-seg ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: coco8-seg # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
@@ -0,0 +1,101 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
5
+ # Example usage: yolo train data=coco8.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco8 ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: coco8 # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
@@ -0,0 +1,32 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Construction-PPE dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/construction-ppe/
5
+ # Example usage: yolo train data=construction-ppe.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── construction-ppe ← downloads here (178.4 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: construction-ppe # dataset root dir
13
+ train: images/train # train images (relative to 'path') 1132 images
14
+ val: images/val # val images (relative to 'path') 143 images
15
+ test: images/test # test images (relative to 'path') 141 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: helmet
20
+ 1: gloves
21
+ 2: vest
22
+ 3: boots
23
+ 4: goggles
24
+ 5: none
25
+ 6: Person
26
+ 7: no_helmet
27
+ 8: no_goggle
28
+ 9: no_gloves
29
+ 10: no_boots
30
+
31
+ # Download script/URL (optional)
32
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/construction-ppe.zip
@@ -0,0 +1,22 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Crack-seg dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
5
+ # Example usage: yolo train data=crack-seg.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── crack-seg ← downloads here (91.6 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: crack-seg # dataset root dir
13
+ train: images/train # train images (relative to 'path') 3717 images
14
+ val: images/val # val images (relative to 'path') 112 images
15
+ test: images/test # test images (relative to 'path') 200 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: crack
20
+
21
+ # Download script/URL (optional)
22
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/crack-seg.zip
@@ -0,0 +1,52 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
5
+ # Example usage: yolo train data=dog-pose.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── dog-pose ← downloads here (337 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: dog-pose # dataset root dir
13
+ train: images/train # train images (relative to 'path') 6773 images
14
+ val: images/val # val images (relative to 'path') 1703 images
15
+
16
+ # Keypoints
17
+ kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+
19
+ # Classes
20
+ names:
21
+ 0: dog
22
+
23
+ # Keypoint names per class
24
+ kpt_names:
25
+ 0:
26
+ - front_left_paw
27
+ - front_left_knee
28
+ - front_left_elbow
29
+ - rear_left_paw
30
+ - rear_left_knee
31
+ - rear_left_elbow
32
+ - front_right_paw
33
+ - front_right_knee
34
+ - front_right_elbow
35
+ - rear_right_paw
36
+ - rear_right_knee
37
+ - rear_right_elbow
38
+ - tail_start
39
+ - tail_end
40
+ - left_ear_base
41
+ - right_ear_base
42
+ - nose
43
+ - chin
44
+ - left_ear_tip
45
+ - right_ear_tip
46
+ - left_eye
47
+ - right_eye
48
+ - withers
49
+ - throat
50
+
51
+ # Download script/URL (optional)
52
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
@@ -0,0 +1,38 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # DOTA8-Multispectral dataset (DOTA8 interpolated across 10 channels in the visual spectrum) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
5
+ # Example usage: yolo train model=yolov8n-obb.pt data=dota8-multispectral.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── dota8-multispectral ← downloads here (37.3 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: dota8-multispectral # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+
16
+ # Number of multispectral image channels
17
+ channels: 10
18
+
19
+ # Classes for DOTA 1.0
20
+ names:
21
+ 0: plane
22
+ 1: ship
23
+ 2: storage tank
24
+ 3: baseball diamond
25
+ 4: tennis court
26
+ 5: basketball court
27
+ 6: ground track field
28
+ 7: harbor
29
+ 8: bridge
30
+ 9: large vehicle
31
+ 10: small vehicle
32
+ 11: helicopter
33
+ 12: roundabout
34
+ 13: soccer ball field
35
+ 14: swimming pool
36
+
37
+ # Download script/URL (optional)
38
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8-multispectral.zip
@@ -0,0 +1,35 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # DOTA8 dataset (8 images from the DOTAv1 split) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
5
+ # Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── dota8 ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: dota8 # dataset root dir
13
+ train: images/train # train images (relative to 'path') 4 images
14
+ val: images/val # val images (relative to 'path') 4 images
15
+
16
+ # Classes for DOTA 1.0
17
+ names:
18
+ 0: plane
19
+ 1: ship
20
+ 2: storage tank
21
+ 3: baseball diamond
22
+ 4: tennis court
23
+ 5: basketball court
24
+ 6: ground track field
25
+ 7: harbor
26
+ 8: bridge
27
+ 9: large vehicle
28
+ 10: small vehicle
29
+ 11: helicopter
30
+ 12: roundabout
31
+ 13: soccer ball field
32
+ 14: swimming pool
33
+
34
+ # Download script/URL (optional)
35
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
@@ -0,0 +1,50 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Hand Keypoints dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
5
+ # Example usage: yolo train data=hand-keypoints.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── hand-keypoints ← downloads here (369 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: hand-keypoints # dataset root dir
13
+ train: images/train # train images (relative to 'path') 18776 images
14
+ val: images/val # val images (relative to 'path') 7992 images
15
+
16
+ # Keypoints
17
+ kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+ flip_idx: [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
19
+
20
+ # Classes
21
+ names:
22
+ 0: hand
23
+
24
+ # Keypoint names per class
25
+ kpt_names:
26
+ 0:
27
+ - wrist
28
+ - thumb_cmc
29
+ - thumb_mcp
30
+ - thumb_ip
31
+ - thumb_tip
32
+ - index_mcp
33
+ - index_pip
34
+ - index_dip
35
+ - index_tip
36
+ - middle_mcp
37
+ - middle_pip
38
+ - middle_dip
39
+ - middle_tip
40
+ - ring_mcp
41
+ - ring_pip
42
+ - ring_dip
43
+ - ring_tip
44
+ - pinky_mcp
45
+ - pinky_pip
46
+ - pinky_dip
47
+ - pinky_tip
48
+
49
+ # Download script/URL (optional)
50
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip
@@ -0,0 +1,27 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # KITTI dataset by Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/kitti/
5
+ # Example usage: yolo train data=kitti.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── kitti ← downloads here (390.5 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: kitti # dataset root dir
13
+ train: images/train # train images (relative to 'path') 5985 images
14
+ val: images/val # val images (relative to 'path') 1496 images
15
+
16
+ names:
17
+ 0: car
18
+ 1: van
19
+ 2: truck
20
+ 3: pedestrian
21
+ 4: person_sitting
22
+ 5: cyclist
23
+ 6: tram
24
+ 7: misc
25
+
26
+ # Download script/URL (optional)
27
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/kitti.zip