ultralytics-opencv-headless 8.3.242__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +23 -0
- tests/conftest.py +59 -0
- tests/test_cli.py +131 -0
- tests/test_cuda.py +216 -0
- tests/test_engine.py +157 -0
- tests/test_exports.py +309 -0
- tests/test_integrations.py +151 -0
- tests/test_python.py +777 -0
- tests/test_solutions.py +371 -0
- ultralytics/__init__.py +48 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1026 -0
- ultralytics/cfg/datasets/Argoverse.yaml +78 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +447 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +102 -0
- ultralytics/cfg/datasets/VisDrone.yaml +87 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +64 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +52 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +21 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +130 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +21 -0
- ultralytics/cfg/trackers/bytetrack.yaml +12 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2801 -0
- ultralytics/data/base.py +435 -0
- ultralytics/data/build.py +437 -0
- ultralytics/data/converter.py +855 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +704 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +138 -0
- ultralytics/data/split_dota.py +344 -0
- ultralytics/data/utils.py +798 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1574 -0
- ultralytics/engine/model.py +1124 -0
- ultralytics/engine/predictor.py +508 -0
- ultralytics/engine/results.py +1522 -0
- ultralytics/engine/trainer.py +974 -0
- ultralytics/engine/tuner.py +448 -0
- ultralytics/engine/validator.py +384 -0
- ultralytics/hub/__init__.py +166 -0
- ultralytics/hub/auth.py +151 -0
- ultralytics/hub/google/__init__.py +174 -0
- ultralytics/hub/session.py +422 -0
- ultralytics/hub/utils.py +162 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +79 -0
- ultralytics/models/fastsam/predict.py +169 -0
- ultralytics/models/fastsam/utils.py +23 -0
- ultralytics/models/fastsam/val.py +38 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +98 -0
- ultralytics/models/nas/predict.py +56 -0
- ultralytics/models/nas/val.py +38 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +88 -0
- ultralytics/models/rtdetr/train.py +89 -0
- ultralytics/models/rtdetr/val.py +216 -0
- ultralytics/models/sam/__init__.py +25 -0
- ultralytics/models/sam/amg.py +275 -0
- ultralytics/models/sam/build.py +365 -0
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +169 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1067 -0
- ultralytics/models/sam/modules/decoders.py +495 -0
- ultralytics/models/sam/modules/encoders.py +794 -0
- ultralytics/models/sam/modules/memory_attention.py +298 -0
- ultralytics/models/sam/modules/sam.py +1160 -0
- ultralytics/models/sam/modules/tiny_encoder.py +979 -0
- ultralytics/models/sam/modules/transformer.py +344 -0
- ultralytics/models/sam/modules/utils.py +512 -0
- ultralytics/models/sam/predict.py +3940 -0
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +466 -0
- ultralytics/models/utils/ops.py +315 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +90 -0
- ultralytics/models/yolo/classify/train.py +202 -0
- ultralytics/models/yolo/classify/val.py +216 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +122 -0
- ultralytics/models/yolo/detect/train.py +227 -0
- ultralytics/models/yolo/detect/val.py +507 -0
- ultralytics/models/yolo/model.py +430 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +56 -0
- ultralytics/models/yolo/obb/train.py +79 -0
- ultralytics/models/yolo/obb/val.py +302 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +65 -0
- ultralytics/models/yolo/pose/train.py +110 -0
- ultralytics/models/yolo/pose/val.py +248 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +109 -0
- ultralytics/models/yolo/segment/train.py +69 -0
- ultralytics/models/yolo/segment/val.py +307 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +173 -0
- ultralytics/models/yolo/world/train_world.py +178 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +162 -0
- ultralytics/models/yolo/yoloe/train.py +287 -0
- ultralytics/models/yolo/yoloe/train_seg.py +122 -0
- ultralytics/models/yolo/yoloe/val.py +206 -0
- ultralytics/nn/__init__.py +27 -0
- ultralytics/nn/autobackend.py +958 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +54 -0
- ultralytics/nn/modules/block.py +1947 -0
- ultralytics/nn/modules/conv.py +669 -0
- ultralytics/nn/modules/head.py +1183 -0
- ultralytics/nn/modules/transformer.py +793 -0
- ultralytics/nn/modules/utils.py +159 -0
- ultralytics/nn/tasks.py +1768 -0
- ultralytics/nn/text_model.py +356 -0
- ultralytics/py.typed +1 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +108 -0
- ultralytics/solutions/analytics.py +264 -0
- ultralytics/solutions/config.py +107 -0
- ultralytics/solutions/distance_calculation.py +123 -0
- ultralytics/solutions/heatmap.py +125 -0
- ultralytics/solutions/instance_segmentation.py +86 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +190 -0
- ultralytics/solutions/object_cropper.py +87 -0
- ultralytics/solutions/parking_management.py +280 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +133 -0
- ultralytics/solutions/security_alarm.py +151 -0
- ultralytics/solutions/similarity_search.py +219 -0
- ultralytics/solutions/solutions.py +828 -0
- ultralytics/solutions/speed_estimation.py +114 -0
- ultralytics/solutions/streamlit_inference.py +260 -0
- ultralytics/solutions/templates/similarity-search.html +156 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +67 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +115 -0
- ultralytics/trackers/bot_sort.py +257 -0
- ultralytics/trackers/byte_tracker.py +469 -0
- ultralytics/trackers/track.py +116 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +339 -0
- ultralytics/trackers/utils/kalman_filter.py +482 -0
- ultralytics/trackers/utils/matching.py +154 -0
- ultralytics/utils/__init__.py +1450 -0
- ultralytics/utils/autobatch.py +118 -0
- ultralytics/utils/autodevice.py +205 -0
- ultralytics/utils/benchmarks.py +728 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +233 -0
- ultralytics/utils/callbacks/clearml.py +146 -0
- ultralytics/utils/callbacks/comet.py +625 -0
- ultralytics/utils/callbacks/dvc.py +197 -0
- ultralytics/utils/callbacks/hub.py +110 -0
- ultralytics/utils/callbacks/mlflow.py +134 -0
- ultralytics/utils/callbacks/neptune.py +126 -0
- ultralytics/utils/callbacks/platform.py +73 -0
- ultralytics/utils/callbacks/raytune.py +42 -0
- ultralytics/utils/callbacks/tensorboard.py +123 -0
- ultralytics/utils/callbacks/wb.py +188 -0
- ultralytics/utils/checks.py +998 -0
- ultralytics/utils/cpu.py +85 -0
- ultralytics/utils/dist.py +123 -0
- ultralytics/utils/downloads.py +529 -0
- ultralytics/utils/errors.py +35 -0
- ultralytics/utils/events.py +113 -0
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +315 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +219 -0
- ultralytics/utils/git.py +137 -0
- ultralytics/utils/instance.py +484 -0
- ultralytics/utils/logger.py +444 -0
- ultralytics/utils/loss.py +849 -0
- ultralytics/utils/metrics.py +1560 -0
- ultralytics/utils/nms.py +337 -0
- ultralytics/utils/ops.py +664 -0
- ultralytics/utils/patches.py +201 -0
- ultralytics/utils/plotting.py +1045 -0
- ultralytics/utils/tal.py +403 -0
- ultralytics/utils/torch_utils.py +984 -0
- ultralytics/utils/tqdm.py +440 -0
- ultralytics/utils/triton.py +112 -0
- ultralytics/utils/tuner.py +160 -0
- ultralytics_opencv_headless-8.3.242.dist-info/METADATA +374 -0
- ultralytics_opencv_headless-8.3.242.dist-info/RECORD +298 -0
- ultralytics_opencv_headless-8.3.242.dist-info/WHEEL +5 -0
- ultralytics_opencv_headless-8.3.242.dist-info/entry_points.txt +3 -0
- ultralytics_opencv_headless-8.3.242.dist-info/licenses/LICENSE +661 -0
- ultralytics_opencv_headless-8.3.242.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,469 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from typing import Any
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from ..utils import LOGGER
|
|
10
|
+
from ..utils.ops import xywh2ltwh
|
|
11
|
+
from .basetrack import BaseTrack, TrackState
|
|
12
|
+
from .utils import matching
|
|
13
|
+
from .utils.kalman_filter import KalmanFilterXYAH
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class STrack(BaseTrack):
|
|
17
|
+
"""Single object tracking representation that uses Kalman filtering for state estimation.
|
|
18
|
+
|
|
19
|
+
This class is responsible for storing all the information regarding individual tracklets and performs state updates
|
|
20
|
+
and predictions based on Kalman filter.
|
|
21
|
+
|
|
22
|
+
Attributes:
|
|
23
|
+
shared_kalman (KalmanFilterXYAH): Shared Kalman filter used across all STrack instances for prediction.
|
|
24
|
+
_tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box.
|
|
25
|
+
kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track.
|
|
26
|
+
mean (np.ndarray): Mean state estimate vector.
|
|
27
|
+
covariance (np.ndarray): Covariance of state estimate.
|
|
28
|
+
is_activated (bool): Boolean flag indicating if the track has been activated.
|
|
29
|
+
score (float): Confidence score of the track.
|
|
30
|
+
tracklet_len (int): Length of the tracklet.
|
|
31
|
+
cls (Any): Class label for the object.
|
|
32
|
+
idx (int): Index or identifier for the object.
|
|
33
|
+
frame_id (int): Current frame ID.
|
|
34
|
+
start_frame (int): Frame where the object was first detected.
|
|
35
|
+
angle (float | None): Optional angle information for oriented bounding boxes.
|
|
36
|
+
|
|
37
|
+
Methods:
|
|
38
|
+
predict: Predict the next state of the object using Kalman filter.
|
|
39
|
+
multi_predict: Predict the next states for multiple tracks.
|
|
40
|
+
multi_gmc: Update multiple track states using a homography matrix.
|
|
41
|
+
activate: Activate a new tracklet.
|
|
42
|
+
re_activate: Reactivate a previously lost tracklet.
|
|
43
|
+
update: Update the state of a matched track.
|
|
44
|
+
convert_coords: Convert bounding box to x-y-aspect-height format.
|
|
45
|
+
tlwh_to_xyah: Convert tlwh bounding box to xyah format.
|
|
46
|
+
|
|
47
|
+
Examples:
|
|
48
|
+
Initialize and activate a new track
|
|
49
|
+
>>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
|
|
50
|
+
>>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
shared_kalman = KalmanFilterXYAH()
|
|
54
|
+
|
|
55
|
+
def __init__(self, xywh: list[float], score: float, cls: Any):
|
|
56
|
+
"""Initialize a new STrack instance.
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
xywh (list[float]): Bounding box in `(x, y, w, h, idx)` or `(x, y, w, h, angle, idx)` format, where (x, y)
|
|
60
|
+
is the center, (w, h) are width and height, and `idx` is the detection index.
|
|
61
|
+
score (float): Confidence score of the detection.
|
|
62
|
+
cls (Any): Class label for the detected object.
|
|
63
|
+
"""
|
|
64
|
+
super().__init__()
|
|
65
|
+
# xywh+idx or xywha+idx
|
|
66
|
+
assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}"
|
|
67
|
+
self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32)
|
|
68
|
+
self.kalman_filter = None
|
|
69
|
+
self.mean, self.covariance = None, None
|
|
70
|
+
self.is_activated = False
|
|
71
|
+
|
|
72
|
+
self.score = score
|
|
73
|
+
self.tracklet_len = 0
|
|
74
|
+
self.cls = cls
|
|
75
|
+
self.idx = xywh[-1]
|
|
76
|
+
self.angle = xywh[4] if len(xywh) == 6 else None
|
|
77
|
+
|
|
78
|
+
def predict(self):
|
|
79
|
+
"""Predict the next state (mean and covariance) of the object using the Kalman filter."""
|
|
80
|
+
mean_state = self.mean.copy()
|
|
81
|
+
if self.state != TrackState.Tracked:
|
|
82
|
+
mean_state[7] = 0
|
|
83
|
+
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
|
|
84
|
+
|
|
85
|
+
@staticmethod
|
|
86
|
+
def multi_predict(stracks: list[STrack]):
|
|
87
|
+
"""Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances."""
|
|
88
|
+
if len(stracks) <= 0:
|
|
89
|
+
return
|
|
90
|
+
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
|
91
|
+
multi_covariance = np.asarray([st.covariance for st in stracks])
|
|
92
|
+
for i, st in enumerate(stracks):
|
|
93
|
+
if st.state != TrackState.Tracked:
|
|
94
|
+
multi_mean[i][7] = 0
|
|
95
|
+
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
|
|
96
|
+
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
|
97
|
+
stracks[i].mean = mean
|
|
98
|
+
stracks[i].covariance = cov
|
|
99
|
+
|
|
100
|
+
@staticmethod
|
|
101
|
+
def multi_gmc(stracks: list[STrack], H: np.ndarray = np.eye(2, 3)):
|
|
102
|
+
"""Update state tracks positions and covariances using a homography matrix for multiple tracks."""
|
|
103
|
+
if stracks:
|
|
104
|
+
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
|
105
|
+
multi_covariance = np.asarray([st.covariance for st in stracks])
|
|
106
|
+
|
|
107
|
+
R = H[:2, :2]
|
|
108
|
+
R8x8 = np.kron(np.eye(4, dtype=float), R)
|
|
109
|
+
t = H[:2, 2]
|
|
110
|
+
|
|
111
|
+
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
|
112
|
+
mean = R8x8.dot(mean)
|
|
113
|
+
mean[:2] += t
|
|
114
|
+
cov = R8x8.dot(cov).dot(R8x8.transpose())
|
|
115
|
+
|
|
116
|
+
stracks[i].mean = mean
|
|
117
|
+
stracks[i].covariance = cov
|
|
118
|
+
|
|
119
|
+
def activate(self, kalman_filter: KalmanFilterXYAH, frame_id: int):
|
|
120
|
+
"""Activate a new tracklet using the provided Kalman filter and initialize its state and covariance."""
|
|
121
|
+
self.kalman_filter = kalman_filter
|
|
122
|
+
self.track_id = self.next_id()
|
|
123
|
+
self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
|
|
124
|
+
|
|
125
|
+
self.tracklet_len = 0
|
|
126
|
+
self.state = TrackState.Tracked
|
|
127
|
+
if frame_id == 1:
|
|
128
|
+
self.is_activated = True
|
|
129
|
+
self.frame_id = frame_id
|
|
130
|
+
self.start_frame = frame_id
|
|
131
|
+
|
|
132
|
+
def re_activate(self, new_track: STrack, frame_id: int, new_id: bool = False):
|
|
133
|
+
"""Reactivate a previously lost track using new detection data and update its state and attributes."""
|
|
134
|
+
self.mean, self.covariance = self.kalman_filter.update(
|
|
135
|
+
self.mean, self.covariance, self.convert_coords(new_track.tlwh)
|
|
136
|
+
)
|
|
137
|
+
self.tracklet_len = 0
|
|
138
|
+
self.state = TrackState.Tracked
|
|
139
|
+
self.is_activated = True
|
|
140
|
+
self.frame_id = frame_id
|
|
141
|
+
if new_id:
|
|
142
|
+
self.track_id = self.next_id()
|
|
143
|
+
self.score = new_track.score
|
|
144
|
+
self.cls = new_track.cls
|
|
145
|
+
self.angle = new_track.angle
|
|
146
|
+
self.idx = new_track.idx
|
|
147
|
+
|
|
148
|
+
def update(self, new_track: STrack, frame_id: int):
|
|
149
|
+
"""Update the state of a matched track.
|
|
150
|
+
|
|
151
|
+
Args:
|
|
152
|
+
new_track (STrack): The new track containing updated information.
|
|
153
|
+
frame_id (int): The ID of the current frame.
|
|
154
|
+
|
|
155
|
+
Examples:
|
|
156
|
+
Update the state of a track with new detection information
|
|
157
|
+
>>> track = STrack([100, 200, 50, 80, 0.9, 1])
|
|
158
|
+
>>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
|
|
159
|
+
>>> track.update(new_track, 2)
|
|
160
|
+
"""
|
|
161
|
+
self.frame_id = frame_id
|
|
162
|
+
self.tracklet_len += 1
|
|
163
|
+
|
|
164
|
+
new_tlwh = new_track.tlwh
|
|
165
|
+
self.mean, self.covariance = self.kalman_filter.update(
|
|
166
|
+
self.mean, self.covariance, self.convert_coords(new_tlwh)
|
|
167
|
+
)
|
|
168
|
+
self.state = TrackState.Tracked
|
|
169
|
+
self.is_activated = True
|
|
170
|
+
|
|
171
|
+
self.score = new_track.score
|
|
172
|
+
self.cls = new_track.cls
|
|
173
|
+
self.angle = new_track.angle
|
|
174
|
+
self.idx = new_track.idx
|
|
175
|
+
|
|
176
|
+
def convert_coords(self, tlwh: np.ndarray) -> np.ndarray:
|
|
177
|
+
"""Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent."""
|
|
178
|
+
return self.tlwh_to_xyah(tlwh)
|
|
179
|
+
|
|
180
|
+
@property
|
|
181
|
+
def tlwh(self) -> np.ndarray:
|
|
182
|
+
"""Get the bounding box in top-left-width-height format from the current state estimate."""
|
|
183
|
+
if self.mean is None:
|
|
184
|
+
return self._tlwh.copy()
|
|
185
|
+
ret = self.mean[:4].copy()
|
|
186
|
+
ret[2] *= ret[3]
|
|
187
|
+
ret[:2] -= ret[2:] / 2
|
|
188
|
+
return ret
|
|
189
|
+
|
|
190
|
+
@property
|
|
191
|
+
def xyxy(self) -> np.ndarray:
|
|
192
|
+
"""Convert bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format."""
|
|
193
|
+
ret = self.tlwh.copy()
|
|
194
|
+
ret[2:] += ret[:2]
|
|
195
|
+
return ret
|
|
196
|
+
|
|
197
|
+
@staticmethod
|
|
198
|
+
def tlwh_to_xyah(tlwh: np.ndarray) -> np.ndarray:
|
|
199
|
+
"""Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format."""
|
|
200
|
+
ret = np.asarray(tlwh).copy()
|
|
201
|
+
ret[:2] += ret[2:] / 2
|
|
202
|
+
ret[2] /= ret[3]
|
|
203
|
+
return ret
|
|
204
|
+
|
|
205
|
+
@property
|
|
206
|
+
def xywh(self) -> np.ndarray:
|
|
207
|
+
"""Get the current position of the bounding box in (center x, center y, width, height) format."""
|
|
208
|
+
ret = np.asarray(self.tlwh).copy()
|
|
209
|
+
ret[:2] += ret[2:] / 2
|
|
210
|
+
return ret
|
|
211
|
+
|
|
212
|
+
@property
|
|
213
|
+
def xywha(self) -> np.ndarray:
|
|
214
|
+
"""Get position in (center x, center y, width, height, angle) format, warning if angle is missing."""
|
|
215
|
+
if self.angle is None:
|
|
216
|
+
LOGGER.warning("`angle` attr not found, returning `xywh` instead.")
|
|
217
|
+
return self.xywh
|
|
218
|
+
return np.concatenate([self.xywh, self.angle[None]])
|
|
219
|
+
|
|
220
|
+
@property
|
|
221
|
+
def result(self) -> list[float]:
|
|
222
|
+
"""Get the current tracking results in the appropriate bounding box format."""
|
|
223
|
+
coords = self.xyxy if self.angle is None else self.xywha
|
|
224
|
+
return [*coords.tolist(), self.track_id, self.score, self.cls, self.idx]
|
|
225
|
+
|
|
226
|
+
def __repr__(self) -> str:
|
|
227
|
+
"""Return a string representation of the STrack object including start frame, end frame, and track ID."""
|
|
228
|
+
return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})"
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
class BYTETracker:
|
|
232
|
+
"""BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
|
|
233
|
+
|
|
234
|
+
This class encapsulates the functionality for initializing, updating, and managing the tracks for detected objects
|
|
235
|
+
in a video sequence. It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman
|
|
236
|
+
filtering for predicting the new object locations, and performs data association.
|
|
237
|
+
|
|
238
|
+
Attributes:
|
|
239
|
+
tracked_stracks (list[STrack]): List of successfully activated tracks.
|
|
240
|
+
lost_stracks (list[STrack]): List of lost tracks.
|
|
241
|
+
removed_stracks (list[STrack]): List of removed tracks.
|
|
242
|
+
frame_id (int): The current frame ID.
|
|
243
|
+
args (Namespace): Command-line arguments.
|
|
244
|
+
max_time_lost (int): The maximum frames for a track to be considered as 'lost'.
|
|
245
|
+
kalman_filter (KalmanFilterXYAH): Kalman Filter object.
|
|
246
|
+
|
|
247
|
+
Methods:
|
|
248
|
+
update: Update object tracker with new detections.
|
|
249
|
+
get_kalmanfilter: Return a Kalman filter object for tracking bounding boxes.
|
|
250
|
+
init_track: Initialize object tracking with detections.
|
|
251
|
+
get_dists: Calculate the distance between tracks and detections.
|
|
252
|
+
multi_predict: Predict the location of tracks.
|
|
253
|
+
reset_id: Reset the ID counter of STrack.
|
|
254
|
+
reset: Reset the tracker by clearing all tracks.
|
|
255
|
+
joint_stracks: Combine two lists of stracks.
|
|
256
|
+
sub_stracks: Filter out the stracks present in the second list from the first list.
|
|
257
|
+
remove_duplicate_stracks: Remove duplicate stracks based on IoU.
|
|
258
|
+
|
|
259
|
+
Examples:
|
|
260
|
+
Initialize BYTETracker and update with detection results
|
|
261
|
+
>>> tracker = BYTETracker(args, frame_rate=30)
|
|
262
|
+
>>> results = yolo_model.detect(image)
|
|
263
|
+
>>> tracked_objects = tracker.update(results)
|
|
264
|
+
"""
|
|
265
|
+
|
|
266
|
+
def __init__(self, args, frame_rate: int = 30):
|
|
267
|
+
"""Initialize a BYTETracker instance for object tracking.
|
|
268
|
+
|
|
269
|
+
Args:
|
|
270
|
+
args (Namespace): Command-line arguments containing tracking parameters.
|
|
271
|
+
frame_rate (int): Frame rate of the video sequence.
|
|
272
|
+
"""
|
|
273
|
+
self.tracked_stracks = [] # type: list[STrack]
|
|
274
|
+
self.lost_stracks = [] # type: list[STrack]
|
|
275
|
+
self.removed_stracks = [] # type: list[STrack]
|
|
276
|
+
|
|
277
|
+
self.frame_id = 0
|
|
278
|
+
self.args = args
|
|
279
|
+
self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
|
|
280
|
+
self.kalman_filter = self.get_kalmanfilter()
|
|
281
|
+
self.reset_id()
|
|
282
|
+
|
|
283
|
+
def update(self, results, img: np.ndarray | None = None, feats: np.ndarray | None = None) -> np.ndarray:
|
|
284
|
+
"""Update the tracker with new detections and return the current list of tracked objects."""
|
|
285
|
+
self.frame_id += 1
|
|
286
|
+
activated_stracks = []
|
|
287
|
+
refind_stracks = []
|
|
288
|
+
lost_stracks = []
|
|
289
|
+
removed_stracks = []
|
|
290
|
+
|
|
291
|
+
scores = results.conf
|
|
292
|
+
remain_inds = scores >= self.args.track_high_thresh
|
|
293
|
+
inds_low = scores > self.args.track_low_thresh
|
|
294
|
+
inds_high = scores < self.args.track_high_thresh
|
|
295
|
+
|
|
296
|
+
inds_second = inds_low & inds_high
|
|
297
|
+
results_second = results[inds_second]
|
|
298
|
+
results = results[remain_inds]
|
|
299
|
+
feats_keep = feats_second = img
|
|
300
|
+
if feats is not None and len(feats):
|
|
301
|
+
feats_keep = feats[remain_inds]
|
|
302
|
+
feats_second = feats[inds_second]
|
|
303
|
+
|
|
304
|
+
detections = self.init_track(results, feats_keep)
|
|
305
|
+
# Add newly detected tracklets to tracked_stracks
|
|
306
|
+
unconfirmed = []
|
|
307
|
+
tracked_stracks = [] # type: list[STrack]
|
|
308
|
+
for track in self.tracked_stracks:
|
|
309
|
+
if not track.is_activated:
|
|
310
|
+
unconfirmed.append(track)
|
|
311
|
+
else:
|
|
312
|
+
tracked_stracks.append(track)
|
|
313
|
+
# Step 2: First association, with high score detection boxes
|
|
314
|
+
strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
|
|
315
|
+
# Predict the current location with KF
|
|
316
|
+
self.multi_predict(strack_pool)
|
|
317
|
+
if hasattr(self, "gmc") and img is not None:
|
|
318
|
+
# use try-except here to bypass errors from gmc module
|
|
319
|
+
try:
|
|
320
|
+
warp = self.gmc.apply(img, results.xyxy)
|
|
321
|
+
except Exception:
|
|
322
|
+
warp = np.eye(2, 3)
|
|
323
|
+
STrack.multi_gmc(strack_pool, warp)
|
|
324
|
+
STrack.multi_gmc(unconfirmed, warp)
|
|
325
|
+
|
|
326
|
+
dists = self.get_dists(strack_pool, detections)
|
|
327
|
+
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
|
|
328
|
+
|
|
329
|
+
for itracked, idet in matches:
|
|
330
|
+
track = strack_pool[itracked]
|
|
331
|
+
det = detections[idet]
|
|
332
|
+
if track.state == TrackState.Tracked:
|
|
333
|
+
track.update(det, self.frame_id)
|
|
334
|
+
activated_stracks.append(track)
|
|
335
|
+
else:
|
|
336
|
+
track.re_activate(det, self.frame_id, new_id=False)
|
|
337
|
+
refind_stracks.append(track)
|
|
338
|
+
# Step 3: Second association, with low score detection boxes association the untrack to the low score detections
|
|
339
|
+
detections_second = self.init_track(results_second, feats_second)
|
|
340
|
+
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
|
|
341
|
+
# TODO: consider fusing scores or appearance features for second association.
|
|
342
|
+
dists = matching.iou_distance(r_tracked_stracks, detections_second)
|
|
343
|
+
matches, u_track, _u_detection_second = matching.linear_assignment(dists, thresh=0.5)
|
|
344
|
+
for itracked, idet in matches:
|
|
345
|
+
track = r_tracked_stracks[itracked]
|
|
346
|
+
det = detections_second[idet]
|
|
347
|
+
if track.state == TrackState.Tracked:
|
|
348
|
+
track.update(det, self.frame_id)
|
|
349
|
+
activated_stracks.append(track)
|
|
350
|
+
else:
|
|
351
|
+
track.re_activate(det, self.frame_id, new_id=False)
|
|
352
|
+
refind_stracks.append(track)
|
|
353
|
+
|
|
354
|
+
for it in u_track:
|
|
355
|
+
track = r_tracked_stracks[it]
|
|
356
|
+
if track.state != TrackState.Lost:
|
|
357
|
+
track.mark_lost()
|
|
358
|
+
lost_stracks.append(track)
|
|
359
|
+
# Deal with unconfirmed tracks, usually tracks with only one beginning frame
|
|
360
|
+
detections = [detections[i] for i in u_detection]
|
|
361
|
+
dists = self.get_dists(unconfirmed, detections)
|
|
362
|
+
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
|
|
363
|
+
for itracked, idet in matches:
|
|
364
|
+
unconfirmed[itracked].update(detections[idet], self.frame_id)
|
|
365
|
+
activated_stracks.append(unconfirmed[itracked])
|
|
366
|
+
for it in u_unconfirmed:
|
|
367
|
+
track = unconfirmed[it]
|
|
368
|
+
track.mark_removed()
|
|
369
|
+
removed_stracks.append(track)
|
|
370
|
+
# Step 4: Init new stracks
|
|
371
|
+
for inew in u_detection:
|
|
372
|
+
track = detections[inew]
|
|
373
|
+
if track.score < self.args.new_track_thresh:
|
|
374
|
+
continue
|
|
375
|
+
track.activate(self.kalman_filter, self.frame_id)
|
|
376
|
+
activated_stracks.append(track)
|
|
377
|
+
# Step 5: Update state
|
|
378
|
+
for track in self.lost_stracks:
|
|
379
|
+
if self.frame_id - track.end_frame > self.max_time_lost:
|
|
380
|
+
track.mark_removed()
|
|
381
|
+
removed_stracks.append(track)
|
|
382
|
+
|
|
383
|
+
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
|
|
384
|
+
self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
|
|
385
|
+
self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
|
|
386
|
+
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
|
|
387
|
+
self.lost_stracks.extend(lost_stracks)
|
|
388
|
+
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
|
|
389
|
+
self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
|
|
390
|
+
self.removed_stracks.extend(removed_stracks)
|
|
391
|
+
if len(self.removed_stracks) > 1000:
|
|
392
|
+
self.removed_stracks = self.removed_stracks[-1000:] # clip removed stracks to 1000 maximum
|
|
393
|
+
|
|
394
|
+
return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32)
|
|
395
|
+
|
|
396
|
+
def get_kalmanfilter(self) -> KalmanFilterXYAH:
|
|
397
|
+
"""Return a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH."""
|
|
398
|
+
return KalmanFilterXYAH()
|
|
399
|
+
|
|
400
|
+
def init_track(self, results, img: np.ndarray | None = None) -> list[STrack]:
|
|
401
|
+
"""Initialize object tracking with given detections, scores, and class labels using the STrack algorithm."""
|
|
402
|
+
if len(results) == 0:
|
|
403
|
+
return []
|
|
404
|
+
bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
|
|
405
|
+
bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
|
|
406
|
+
return [STrack(xywh, s, c) for (xywh, s, c) in zip(bboxes, results.conf, results.cls)]
|
|
407
|
+
|
|
408
|
+
def get_dists(self, tracks: list[STrack], detections: list[STrack]) -> np.ndarray:
|
|
409
|
+
"""Calculate the distance between tracks and detections using IoU and optionally fuse scores."""
|
|
410
|
+
dists = matching.iou_distance(tracks, detections)
|
|
411
|
+
if self.args.fuse_score:
|
|
412
|
+
dists = matching.fuse_score(dists, detections)
|
|
413
|
+
return dists
|
|
414
|
+
|
|
415
|
+
def multi_predict(self, tracks: list[STrack]):
|
|
416
|
+
"""Predict the next states for multiple tracks using Kalman filter."""
|
|
417
|
+
STrack.multi_predict(tracks)
|
|
418
|
+
|
|
419
|
+
@staticmethod
|
|
420
|
+
def reset_id():
|
|
421
|
+
"""Reset the ID counter for STrack instances to ensure unique track IDs across tracking sessions."""
|
|
422
|
+
STrack.reset_id()
|
|
423
|
+
|
|
424
|
+
def reset(self):
|
|
425
|
+
"""Reset the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter."""
|
|
426
|
+
self.tracked_stracks = [] # type: list[STrack]
|
|
427
|
+
self.lost_stracks = [] # type: list[STrack]
|
|
428
|
+
self.removed_stracks = [] # type: list[STrack]
|
|
429
|
+
self.frame_id = 0
|
|
430
|
+
self.kalman_filter = self.get_kalmanfilter()
|
|
431
|
+
self.reset_id()
|
|
432
|
+
|
|
433
|
+
@staticmethod
|
|
434
|
+
def joint_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]:
|
|
435
|
+
"""Combine two lists of STrack objects into a single list, ensuring no duplicates based on track IDs."""
|
|
436
|
+
exists = {}
|
|
437
|
+
res = []
|
|
438
|
+
for t in tlista:
|
|
439
|
+
exists[t.track_id] = 1
|
|
440
|
+
res.append(t)
|
|
441
|
+
for t in tlistb:
|
|
442
|
+
tid = t.track_id
|
|
443
|
+
if not exists.get(tid, 0):
|
|
444
|
+
exists[tid] = 1
|
|
445
|
+
res.append(t)
|
|
446
|
+
return res
|
|
447
|
+
|
|
448
|
+
@staticmethod
|
|
449
|
+
def sub_stracks(tlista: list[STrack], tlistb: list[STrack]) -> list[STrack]:
|
|
450
|
+
"""Filter out the stracks present in the second list from the first list."""
|
|
451
|
+
track_ids_b = {t.track_id for t in tlistb}
|
|
452
|
+
return [t for t in tlista if t.track_id not in track_ids_b]
|
|
453
|
+
|
|
454
|
+
@staticmethod
|
|
455
|
+
def remove_duplicate_stracks(stracksa: list[STrack], stracksb: list[STrack]) -> tuple[list[STrack], list[STrack]]:
|
|
456
|
+
"""Remove duplicate stracks from two lists based on Intersection over Union (IoU) distance."""
|
|
457
|
+
pdist = matching.iou_distance(stracksa, stracksb)
|
|
458
|
+
pairs = np.where(pdist < 0.15)
|
|
459
|
+
dupa, dupb = [], []
|
|
460
|
+
for p, q in zip(*pairs):
|
|
461
|
+
timep = stracksa[p].frame_id - stracksa[p].start_frame
|
|
462
|
+
timeq = stracksb[q].frame_id - stracksb[q].start_frame
|
|
463
|
+
if timep > timeq:
|
|
464
|
+
dupb.append(q)
|
|
465
|
+
else:
|
|
466
|
+
dupa.append(p)
|
|
467
|
+
resa = [t for i, t in enumerate(stracksa) if i not in dupa]
|
|
468
|
+
resb = [t for i, t in enumerate(stracksb) if i not in dupb]
|
|
469
|
+
return resa, resb
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from functools import partial
|
|
4
|
+
from pathlib import Path
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from ultralytics.utils import YAML, IterableSimpleNamespace
|
|
9
|
+
from ultralytics.utils.checks import check_yaml
|
|
10
|
+
|
|
11
|
+
from .bot_sort import BOTSORT
|
|
12
|
+
from .byte_tracker import BYTETracker
|
|
13
|
+
|
|
14
|
+
# A mapping of tracker types to corresponding tracker classes
|
|
15
|
+
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def on_predict_start(predictor: object, persist: bool = False) -> None:
|
|
19
|
+
"""Initialize trackers for object tracking during prediction.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
predictor (ultralytics.engine.predictor.BasePredictor): The predictor object to initialize trackers for.
|
|
23
|
+
persist (bool, optional): Whether to persist the trackers if they already exist.
|
|
24
|
+
|
|
25
|
+
Examples:
|
|
26
|
+
Initialize trackers for a predictor object
|
|
27
|
+
>>> predictor = SomePredictorClass()
|
|
28
|
+
>>> on_predict_start(predictor, persist=True)
|
|
29
|
+
"""
|
|
30
|
+
if predictor.args.task == "classify":
|
|
31
|
+
raise ValueError("❌ Classification doesn't support 'mode=track'")
|
|
32
|
+
|
|
33
|
+
if hasattr(predictor, "trackers") and persist:
|
|
34
|
+
return
|
|
35
|
+
|
|
36
|
+
tracker = check_yaml(predictor.args.tracker)
|
|
37
|
+
cfg = IterableSimpleNamespace(**YAML.load(tracker))
|
|
38
|
+
|
|
39
|
+
if cfg.tracker_type not in {"bytetrack", "botsort"}:
|
|
40
|
+
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
|
|
41
|
+
|
|
42
|
+
predictor._feats = None # reset in case used earlier
|
|
43
|
+
if hasattr(predictor, "_hook"):
|
|
44
|
+
predictor._hook.remove()
|
|
45
|
+
if cfg.tracker_type == "botsort" and cfg.with_reid and cfg.model == "auto":
|
|
46
|
+
from ultralytics.nn.modules.head import Detect
|
|
47
|
+
|
|
48
|
+
if not (
|
|
49
|
+
isinstance(predictor.model.model, torch.nn.Module)
|
|
50
|
+
and isinstance(predictor.model.model.model[-1], Detect)
|
|
51
|
+
and not predictor.model.model.model[-1].end2end
|
|
52
|
+
):
|
|
53
|
+
cfg.model = "yolo11n-cls.pt"
|
|
54
|
+
else:
|
|
55
|
+
# Register hook to extract input of Detect layer
|
|
56
|
+
def pre_hook(module, input):
|
|
57
|
+
predictor._feats = list(input[0]) # unroll to new list to avoid mutation in forward
|
|
58
|
+
|
|
59
|
+
predictor._hook = predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
|
|
60
|
+
|
|
61
|
+
trackers = []
|
|
62
|
+
for _ in range(predictor.dataset.bs):
|
|
63
|
+
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
|
64
|
+
trackers.append(tracker)
|
|
65
|
+
if predictor.dataset.mode != "stream": # only need one tracker for other modes
|
|
66
|
+
break
|
|
67
|
+
predictor.trackers = trackers
|
|
68
|
+
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
|
|
72
|
+
"""Postprocess detected boxes and update with object tracking.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
predictor (object): The predictor object containing the predictions.
|
|
76
|
+
persist (bool, optional): Whether to persist the trackers if they already exist.
|
|
77
|
+
|
|
78
|
+
Examples:
|
|
79
|
+
Postprocess predictions and update with tracking
|
|
80
|
+
>>> predictor = YourPredictorClass()
|
|
81
|
+
>>> on_predict_postprocess_end(predictor, persist=True)
|
|
82
|
+
"""
|
|
83
|
+
is_obb = predictor.args.task == "obb"
|
|
84
|
+
is_stream = predictor.dataset.mode == "stream"
|
|
85
|
+
for i, result in enumerate(predictor.results):
|
|
86
|
+
tracker = predictor.trackers[i if is_stream else 0]
|
|
87
|
+
vid_path = predictor.save_dir / Path(result.path).name
|
|
88
|
+
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
|
|
89
|
+
tracker.reset()
|
|
90
|
+
predictor.vid_path[i if is_stream else 0] = vid_path
|
|
91
|
+
|
|
92
|
+
det = (result.obb if is_obb else result.boxes).cpu().numpy()
|
|
93
|
+
tracks = tracker.update(det, result.orig_img, getattr(result, "feats", None))
|
|
94
|
+
if len(tracks) == 0:
|
|
95
|
+
continue
|
|
96
|
+
idx = tracks[:, -1].astype(int)
|
|
97
|
+
predictor.results[i] = result[idx]
|
|
98
|
+
|
|
99
|
+
update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])}
|
|
100
|
+
predictor.results[i].update(**update_args)
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def register_tracker(model: object, persist: bool) -> None:
|
|
104
|
+
"""Register tracking callbacks to the model for object tracking during prediction.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
model (object): The model object to register tracking callbacks for.
|
|
108
|
+
persist (bool): Whether to persist the trackers if they already exist.
|
|
109
|
+
|
|
110
|
+
Examples:
|
|
111
|
+
Register tracking callbacks to a YOLO model
|
|
112
|
+
>>> model = YOLOModel()
|
|
113
|
+
>>> register_tracker(model, persist=True)
|
|
114
|
+
"""
|
|
115
|
+
model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
|
|
116
|
+
model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|