ultralytics-opencv-headless 8.3.242__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +23 -0
- tests/conftest.py +59 -0
- tests/test_cli.py +131 -0
- tests/test_cuda.py +216 -0
- tests/test_engine.py +157 -0
- tests/test_exports.py +309 -0
- tests/test_integrations.py +151 -0
- tests/test_python.py +777 -0
- tests/test_solutions.py +371 -0
- ultralytics/__init__.py +48 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1026 -0
- ultralytics/cfg/datasets/Argoverse.yaml +78 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +447 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +102 -0
- ultralytics/cfg/datasets/VisDrone.yaml +87 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +64 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +52 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +21 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +130 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +21 -0
- ultralytics/cfg/trackers/bytetrack.yaml +12 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2801 -0
- ultralytics/data/base.py +435 -0
- ultralytics/data/build.py +437 -0
- ultralytics/data/converter.py +855 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +704 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +138 -0
- ultralytics/data/split_dota.py +344 -0
- ultralytics/data/utils.py +798 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1574 -0
- ultralytics/engine/model.py +1124 -0
- ultralytics/engine/predictor.py +508 -0
- ultralytics/engine/results.py +1522 -0
- ultralytics/engine/trainer.py +974 -0
- ultralytics/engine/tuner.py +448 -0
- ultralytics/engine/validator.py +384 -0
- ultralytics/hub/__init__.py +166 -0
- ultralytics/hub/auth.py +151 -0
- ultralytics/hub/google/__init__.py +174 -0
- ultralytics/hub/session.py +422 -0
- ultralytics/hub/utils.py +162 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +79 -0
- ultralytics/models/fastsam/predict.py +169 -0
- ultralytics/models/fastsam/utils.py +23 -0
- ultralytics/models/fastsam/val.py +38 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +98 -0
- ultralytics/models/nas/predict.py +56 -0
- ultralytics/models/nas/val.py +38 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +88 -0
- ultralytics/models/rtdetr/train.py +89 -0
- ultralytics/models/rtdetr/val.py +216 -0
- ultralytics/models/sam/__init__.py +25 -0
- ultralytics/models/sam/amg.py +275 -0
- ultralytics/models/sam/build.py +365 -0
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +169 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1067 -0
- ultralytics/models/sam/modules/decoders.py +495 -0
- ultralytics/models/sam/modules/encoders.py +794 -0
- ultralytics/models/sam/modules/memory_attention.py +298 -0
- ultralytics/models/sam/modules/sam.py +1160 -0
- ultralytics/models/sam/modules/tiny_encoder.py +979 -0
- ultralytics/models/sam/modules/transformer.py +344 -0
- ultralytics/models/sam/modules/utils.py +512 -0
- ultralytics/models/sam/predict.py +3940 -0
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +466 -0
- ultralytics/models/utils/ops.py +315 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +90 -0
- ultralytics/models/yolo/classify/train.py +202 -0
- ultralytics/models/yolo/classify/val.py +216 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +122 -0
- ultralytics/models/yolo/detect/train.py +227 -0
- ultralytics/models/yolo/detect/val.py +507 -0
- ultralytics/models/yolo/model.py +430 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +56 -0
- ultralytics/models/yolo/obb/train.py +79 -0
- ultralytics/models/yolo/obb/val.py +302 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +65 -0
- ultralytics/models/yolo/pose/train.py +110 -0
- ultralytics/models/yolo/pose/val.py +248 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +109 -0
- ultralytics/models/yolo/segment/train.py +69 -0
- ultralytics/models/yolo/segment/val.py +307 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +173 -0
- ultralytics/models/yolo/world/train_world.py +178 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +162 -0
- ultralytics/models/yolo/yoloe/train.py +287 -0
- ultralytics/models/yolo/yoloe/train_seg.py +122 -0
- ultralytics/models/yolo/yoloe/val.py +206 -0
- ultralytics/nn/__init__.py +27 -0
- ultralytics/nn/autobackend.py +958 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +54 -0
- ultralytics/nn/modules/block.py +1947 -0
- ultralytics/nn/modules/conv.py +669 -0
- ultralytics/nn/modules/head.py +1183 -0
- ultralytics/nn/modules/transformer.py +793 -0
- ultralytics/nn/modules/utils.py +159 -0
- ultralytics/nn/tasks.py +1768 -0
- ultralytics/nn/text_model.py +356 -0
- ultralytics/py.typed +1 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +108 -0
- ultralytics/solutions/analytics.py +264 -0
- ultralytics/solutions/config.py +107 -0
- ultralytics/solutions/distance_calculation.py +123 -0
- ultralytics/solutions/heatmap.py +125 -0
- ultralytics/solutions/instance_segmentation.py +86 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +190 -0
- ultralytics/solutions/object_cropper.py +87 -0
- ultralytics/solutions/parking_management.py +280 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +133 -0
- ultralytics/solutions/security_alarm.py +151 -0
- ultralytics/solutions/similarity_search.py +219 -0
- ultralytics/solutions/solutions.py +828 -0
- ultralytics/solutions/speed_estimation.py +114 -0
- ultralytics/solutions/streamlit_inference.py +260 -0
- ultralytics/solutions/templates/similarity-search.html +156 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +67 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +115 -0
- ultralytics/trackers/bot_sort.py +257 -0
- ultralytics/trackers/byte_tracker.py +469 -0
- ultralytics/trackers/track.py +116 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +339 -0
- ultralytics/trackers/utils/kalman_filter.py +482 -0
- ultralytics/trackers/utils/matching.py +154 -0
- ultralytics/utils/__init__.py +1450 -0
- ultralytics/utils/autobatch.py +118 -0
- ultralytics/utils/autodevice.py +205 -0
- ultralytics/utils/benchmarks.py +728 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +233 -0
- ultralytics/utils/callbacks/clearml.py +146 -0
- ultralytics/utils/callbacks/comet.py +625 -0
- ultralytics/utils/callbacks/dvc.py +197 -0
- ultralytics/utils/callbacks/hub.py +110 -0
- ultralytics/utils/callbacks/mlflow.py +134 -0
- ultralytics/utils/callbacks/neptune.py +126 -0
- ultralytics/utils/callbacks/platform.py +73 -0
- ultralytics/utils/callbacks/raytune.py +42 -0
- ultralytics/utils/callbacks/tensorboard.py +123 -0
- ultralytics/utils/callbacks/wb.py +188 -0
- ultralytics/utils/checks.py +998 -0
- ultralytics/utils/cpu.py +85 -0
- ultralytics/utils/dist.py +123 -0
- ultralytics/utils/downloads.py +529 -0
- ultralytics/utils/errors.py +35 -0
- ultralytics/utils/events.py +113 -0
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +315 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +219 -0
- ultralytics/utils/git.py +137 -0
- ultralytics/utils/instance.py +484 -0
- ultralytics/utils/logger.py +444 -0
- ultralytics/utils/loss.py +849 -0
- ultralytics/utils/metrics.py +1560 -0
- ultralytics/utils/nms.py +337 -0
- ultralytics/utils/ops.py +664 -0
- ultralytics/utils/patches.py +201 -0
- ultralytics/utils/plotting.py +1045 -0
- ultralytics/utils/tal.py +403 -0
- ultralytics/utils/torch_utils.py +984 -0
- ultralytics/utils/tqdm.py +440 -0
- ultralytics/utils/triton.py +112 -0
- ultralytics/utils/tuner.py +160 -0
- ultralytics_opencv_headless-8.3.242.dist-info/METADATA +374 -0
- ultralytics_opencv_headless-8.3.242.dist-info/RECORD +298 -0
- ultralytics_opencv_headless-8.3.242.dist-info/WHEEL +5 -0
- ultralytics_opencv_headless-8.3.242.dist-info/entry_points.txt +3 -0
- ultralytics_opencv_headless-8.3.242.dist-info/licenses/LICENSE +661 -0
- ultralytics_opencv_headless-8.3.242.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1574 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
"""
|
|
3
|
+
Export a YOLO PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
|
|
4
|
+
|
|
5
|
+
Format | `format=argument` | Model
|
|
6
|
+
--- | --- | ---
|
|
7
|
+
PyTorch | - | yolo11n.pt
|
|
8
|
+
TorchScript | `torchscript` | yolo11n.torchscript
|
|
9
|
+
ONNX | `onnx` | yolo11n.onnx
|
|
10
|
+
OpenVINO | `openvino` | yolo11n_openvino_model/
|
|
11
|
+
TensorRT | `engine` | yolo11n.engine
|
|
12
|
+
CoreML | `coreml` | yolo11n.mlpackage
|
|
13
|
+
TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
|
|
14
|
+
TensorFlow GraphDef | `pb` | yolo11n.pb
|
|
15
|
+
TensorFlow Lite | `tflite` | yolo11n.tflite
|
|
16
|
+
TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
|
|
17
|
+
TensorFlow.js | `tfjs` | yolo11n_web_model/
|
|
18
|
+
PaddlePaddle | `paddle` | yolo11n_paddle_model/
|
|
19
|
+
MNN | `mnn` | yolo11n.mnn
|
|
20
|
+
NCNN | `ncnn` | yolo11n_ncnn_model/
|
|
21
|
+
IMX | `imx` | yolo11n_imx_model/
|
|
22
|
+
RKNN | `rknn` | yolo11n_rknn_model/
|
|
23
|
+
ExecuTorch | `executorch` | yolo11n_executorch_model/
|
|
24
|
+
Axelera | `axelera` | yolo11n_axelera_model/
|
|
25
|
+
|
|
26
|
+
Requirements:
|
|
27
|
+
$ pip install "ultralytics[export]"
|
|
28
|
+
|
|
29
|
+
Python:
|
|
30
|
+
from ultralytics import YOLO
|
|
31
|
+
model = YOLO('yolo11n.pt')
|
|
32
|
+
results = model.export(format='onnx')
|
|
33
|
+
|
|
34
|
+
CLI:
|
|
35
|
+
$ yolo mode=export model=yolo11n.pt format=onnx
|
|
36
|
+
|
|
37
|
+
Inference:
|
|
38
|
+
$ yolo predict model=yolo11n.pt # PyTorch
|
|
39
|
+
yolo11n.torchscript # TorchScript
|
|
40
|
+
yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
|
41
|
+
yolo11n_openvino_model # OpenVINO
|
|
42
|
+
yolo11n.engine # TensorRT
|
|
43
|
+
yolo11n.mlpackage # CoreML (macOS-only)
|
|
44
|
+
yolo11n_saved_model # TensorFlow SavedModel
|
|
45
|
+
yolo11n.pb # TensorFlow GraphDef
|
|
46
|
+
yolo11n.tflite # TensorFlow Lite
|
|
47
|
+
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
|
|
48
|
+
yolo11n_paddle_model # PaddlePaddle
|
|
49
|
+
yolo11n.mnn # MNN
|
|
50
|
+
yolo11n_ncnn_model # NCNN
|
|
51
|
+
yolo11n_imx_model # IMX
|
|
52
|
+
yolo11n_rknn_model # RKNN
|
|
53
|
+
yolo11n_executorch_model # ExecuTorch
|
|
54
|
+
yolo11n_axelera_model # Axelera
|
|
55
|
+
|
|
56
|
+
TensorFlow.js:
|
|
57
|
+
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
|
58
|
+
$ npm install
|
|
59
|
+
$ ln -s ../../yolo11n_web_model public/yolo11n_web_model
|
|
60
|
+
$ npm start
|
|
61
|
+
"""
|
|
62
|
+
|
|
63
|
+
import json
|
|
64
|
+
import os
|
|
65
|
+
import re
|
|
66
|
+
import shutil
|
|
67
|
+
import subprocess
|
|
68
|
+
import time
|
|
69
|
+
from copy import deepcopy
|
|
70
|
+
from datetime import datetime
|
|
71
|
+
from pathlib import Path
|
|
72
|
+
|
|
73
|
+
import numpy as np
|
|
74
|
+
import torch
|
|
75
|
+
|
|
76
|
+
from ultralytics import __version__
|
|
77
|
+
from ultralytics.cfg import TASK2DATA, get_cfg
|
|
78
|
+
from ultralytics.data import build_dataloader
|
|
79
|
+
from ultralytics.data.dataset import YOLODataset
|
|
80
|
+
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
|
81
|
+
from ultralytics.nn.autobackend import check_class_names, default_class_names
|
|
82
|
+
from ultralytics.nn.modules import C2f, Classify, Detect, RTDETRDecoder
|
|
83
|
+
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, WorldModel
|
|
84
|
+
from ultralytics.utils import (
|
|
85
|
+
ARM64,
|
|
86
|
+
DEFAULT_CFG,
|
|
87
|
+
IS_COLAB,
|
|
88
|
+
IS_DEBIAN_BOOKWORM,
|
|
89
|
+
IS_DEBIAN_TRIXIE,
|
|
90
|
+
IS_JETSON,
|
|
91
|
+
IS_RASPBERRYPI,
|
|
92
|
+
IS_UBUNTU,
|
|
93
|
+
LINUX,
|
|
94
|
+
LOGGER,
|
|
95
|
+
MACOS,
|
|
96
|
+
MACOS_VERSION,
|
|
97
|
+
RKNN_CHIPS,
|
|
98
|
+
SETTINGS,
|
|
99
|
+
TORCH_VERSION,
|
|
100
|
+
WINDOWS,
|
|
101
|
+
YAML,
|
|
102
|
+
callbacks,
|
|
103
|
+
colorstr,
|
|
104
|
+
get_default_args,
|
|
105
|
+
)
|
|
106
|
+
from ultralytics.utils.checks import (
|
|
107
|
+
IS_PYTHON_3_10,
|
|
108
|
+
IS_PYTHON_MINIMUM_3_9,
|
|
109
|
+
check_apt_requirements,
|
|
110
|
+
check_imgsz,
|
|
111
|
+
check_requirements,
|
|
112
|
+
check_version,
|
|
113
|
+
is_intel,
|
|
114
|
+
is_sudo_available,
|
|
115
|
+
)
|
|
116
|
+
from ultralytics.utils.export import (
|
|
117
|
+
keras2pb,
|
|
118
|
+
onnx2engine,
|
|
119
|
+
onnx2saved_model,
|
|
120
|
+
pb2tfjs,
|
|
121
|
+
tflite2edgetpu,
|
|
122
|
+
torch2imx,
|
|
123
|
+
torch2onnx,
|
|
124
|
+
)
|
|
125
|
+
from ultralytics.utils.files import file_size
|
|
126
|
+
from ultralytics.utils.metrics import batch_probiou
|
|
127
|
+
from ultralytics.utils.nms import TorchNMS
|
|
128
|
+
from ultralytics.utils.ops import Profile
|
|
129
|
+
from ultralytics.utils.patches import arange_patch
|
|
130
|
+
from ultralytics.utils.torch_utils import (
|
|
131
|
+
TORCH_1_10,
|
|
132
|
+
TORCH_1_11,
|
|
133
|
+
TORCH_1_13,
|
|
134
|
+
TORCH_2_1,
|
|
135
|
+
TORCH_2_4,
|
|
136
|
+
TORCH_2_9,
|
|
137
|
+
select_device,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def export_formats():
|
|
142
|
+
"""Return a dictionary of Ultralytics YOLO export formats."""
|
|
143
|
+
x = [
|
|
144
|
+
["PyTorch", "-", ".pt", True, True, []],
|
|
145
|
+
["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize", "half", "nms", "dynamic"]],
|
|
146
|
+
["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify", "nms"]],
|
|
147
|
+
[
|
|
148
|
+
"OpenVINO",
|
|
149
|
+
"openvino",
|
|
150
|
+
"_openvino_model",
|
|
151
|
+
True,
|
|
152
|
+
False,
|
|
153
|
+
["batch", "dynamic", "half", "int8", "nms", "fraction"],
|
|
154
|
+
],
|
|
155
|
+
[
|
|
156
|
+
"TensorRT",
|
|
157
|
+
"engine",
|
|
158
|
+
".engine",
|
|
159
|
+
False,
|
|
160
|
+
True,
|
|
161
|
+
["batch", "dynamic", "half", "int8", "simplify", "nms", "fraction"],
|
|
162
|
+
],
|
|
163
|
+
["CoreML", "coreml", ".mlpackage", True, False, ["batch", "dynamic", "half", "int8", "nms"]],
|
|
164
|
+
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras", "nms"]],
|
|
165
|
+
["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
|
|
166
|
+
["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8", "nms", "fraction"]],
|
|
167
|
+
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
|
|
168
|
+
["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8", "nms"]],
|
|
169
|
+
["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
|
|
170
|
+
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
|
|
171
|
+
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
|
|
172
|
+
["IMX", "imx", "_imx_model", True, True, ["int8", "fraction", "nms"]],
|
|
173
|
+
["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
|
|
174
|
+
["ExecuTorch", "executorch", "_executorch_model", True, False, ["batch"]],
|
|
175
|
+
["Axelera", "axelera", "_axelera_model", False, False, ["batch", "int8", "fraction"]],
|
|
176
|
+
]
|
|
177
|
+
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
def best_onnx_opset(onnx, cuda=False) -> int:
|
|
181
|
+
"""Return max ONNX opset for this torch version with ONNX fallback."""
|
|
182
|
+
if TORCH_2_4: # _constants.ONNX_MAX_OPSET first defined in torch 1.13
|
|
183
|
+
opset = torch.onnx.utils._constants.ONNX_MAX_OPSET - 1 # use second-latest version for safety
|
|
184
|
+
if cuda:
|
|
185
|
+
opset -= 2 # fix CUDA ONNXRuntime NMS squeeze op errors
|
|
186
|
+
else:
|
|
187
|
+
version = ".".join(TORCH_VERSION.split(".")[:2])
|
|
188
|
+
opset = {
|
|
189
|
+
"1.8": 12,
|
|
190
|
+
"1.9": 12,
|
|
191
|
+
"1.10": 13,
|
|
192
|
+
"1.11": 14,
|
|
193
|
+
"1.12": 15,
|
|
194
|
+
"1.13": 17,
|
|
195
|
+
"2.0": 17, # reduced from 18 to fix ONNX errors
|
|
196
|
+
"2.1": 17, # reduced from 19
|
|
197
|
+
"2.2": 17, # reduced from 19
|
|
198
|
+
"2.3": 17, # reduced from 19
|
|
199
|
+
"2.4": 20,
|
|
200
|
+
"2.5": 20,
|
|
201
|
+
"2.6": 20,
|
|
202
|
+
"2.7": 20,
|
|
203
|
+
"2.8": 23,
|
|
204
|
+
}.get(version, 12)
|
|
205
|
+
return min(opset, onnx.defs.onnx_opset_version())
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
def validate_args(format, passed_args, valid_args):
|
|
209
|
+
"""Validate arguments based on the export format.
|
|
210
|
+
|
|
211
|
+
Args:
|
|
212
|
+
format (str): The export format.
|
|
213
|
+
passed_args (Namespace): The arguments used during export.
|
|
214
|
+
valid_args (list): List of valid arguments for the format.
|
|
215
|
+
|
|
216
|
+
Raises:
|
|
217
|
+
AssertionError: If an unsupported argument is used, or if the format lacks supported argument listings.
|
|
218
|
+
"""
|
|
219
|
+
export_args = ["half", "int8", "dynamic", "keras", "nms", "batch", "fraction"]
|
|
220
|
+
|
|
221
|
+
assert valid_args is not None, f"ERROR ❌️ valid arguments for '{format}' not listed."
|
|
222
|
+
custom = {"batch": 1, "data": None, "device": None} # exporter defaults
|
|
223
|
+
default_args = get_cfg(DEFAULT_CFG, custom)
|
|
224
|
+
for arg in export_args:
|
|
225
|
+
not_default = getattr(passed_args, arg, None) != getattr(default_args, arg, None)
|
|
226
|
+
if not_default:
|
|
227
|
+
assert arg in valid_args, f"ERROR ❌️ argument '{arg}' is not supported for format='{format}'"
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
def try_export(inner_func):
|
|
231
|
+
"""YOLO export decorator, i.e. @try_export."""
|
|
232
|
+
inner_args = get_default_args(inner_func)
|
|
233
|
+
|
|
234
|
+
def outer_func(*args, **kwargs):
|
|
235
|
+
"""Export a model."""
|
|
236
|
+
prefix = inner_args["prefix"]
|
|
237
|
+
dt = 0.0
|
|
238
|
+
try:
|
|
239
|
+
with Profile() as dt:
|
|
240
|
+
f = inner_func(*args, **kwargs) # exported file/dir or tuple of (file/dir, *)
|
|
241
|
+
path = f if isinstance(f, (str, Path)) else f[0]
|
|
242
|
+
mb = file_size(path)
|
|
243
|
+
assert mb > 0.0, "0.0 MB output model size"
|
|
244
|
+
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{path}' ({mb:.1f} MB)")
|
|
245
|
+
return f
|
|
246
|
+
except Exception as e:
|
|
247
|
+
LOGGER.error(f"{prefix} export failure {dt.t:.1f}s: {e}")
|
|
248
|
+
raise e
|
|
249
|
+
|
|
250
|
+
return outer_func
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
class Exporter:
|
|
254
|
+
"""A class for exporting YOLO models to various formats.
|
|
255
|
+
|
|
256
|
+
This class provides functionality to export YOLO models to different formats including ONNX, TensorRT, CoreML,
|
|
257
|
+
TensorFlow, and others. It handles format validation, device selection, model preparation, and the actual export
|
|
258
|
+
process for each supported format.
|
|
259
|
+
|
|
260
|
+
Attributes:
|
|
261
|
+
args (SimpleNamespace): Configuration arguments for the exporter.
|
|
262
|
+
callbacks (dict): Dictionary of callback functions for different export events.
|
|
263
|
+
im (torch.Tensor): Input tensor for model inference during export.
|
|
264
|
+
model (torch.nn.Module): The YOLO model to be exported.
|
|
265
|
+
file (Path): Path to the model file being exported.
|
|
266
|
+
output_shape (tuple): Shape of the model output tensor(s).
|
|
267
|
+
pretty_name (str): Formatted model name for display purposes.
|
|
268
|
+
metadata (dict): Model metadata including description, author, version, etc.
|
|
269
|
+
device (torch.device): Device on which the model is loaded.
|
|
270
|
+
imgsz (tuple): Input image size for the model.
|
|
271
|
+
|
|
272
|
+
Methods:
|
|
273
|
+
__call__: Main export method that handles the export process.
|
|
274
|
+
get_int8_calibration_dataloader: Build dataloader for INT8 calibration.
|
|
275
|
+
export_torchscript: Export model to TorchScript format.
|
|
276
|
+
export_onnx: Export model to ONNX format.
|
|
277
|
+
export_openvino: Export model to OpenVINO format.
|
|
278
|
+
export_paddle: Export model to PaddlePaddle format.
|
|
279
|
+
export_mnn: Export model to MNN format.
|
|
280
|
+
export_ncnn: Export model to NCNN format.
|
|
281
|
+
export_coreml: Export model to CoreML format.
|
|
282
|
+
export_engine: Export model to TensorRT format.
|
|
283
|
+
export_saved_model: Export model to TensorFlow SavedModel format.
|
|
284
|
+
export_pb: Export model to TensorFlow GraphDef format.
|
|
285
|
+
export_tflite: Export model to TensorFlow Lite format.
|
|
286
|
+
export_edgetpu: Export model to Edge TPU format.
|
|
287
|
+
export_tfjs: Export model to TensorFlow.js format.
|
|
288
|
+
export_rknn: Export model to RKNN format.
|
|
289
|
+
export_imx: Export model to IMX format.
|
|
290
|
+
|
|
291
|
+
Examples:
|
|
292
|
+
Export a YOLOv8 model to ONNX format
|
|
293
|
+
>>> from ultralytics.engine.exporter import Exporter
|
|
294
|
+
>>> exporter = Exporter()
|
|
295
|
+
>>> exporter(model="yolov8n.pt") # exports to yolov8n.onnx
|
|
296
|
+
|
|
297
|
+
Export with specific arguments
|
|
298
|
+
>>> args = {"format": "onnx", "dynamic": True, "half": True}
|
|
299
|
+
>>> exporter = Exporter(overrides=args)
|
|
300
|
+
>>> exporter(model="yolov8n.pt")
|
|
301
|
+
"""
|
|
302
|
+
|
|
303
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
304
|
+
"""Initialize the Exporter class.
|
|
305
|
+
|
|
306
|
+
Args:
|
|
307
|
+
cfg (str, optional): Path to a configuration file.
|
|
308
|
+
overrides (dict, optional): Configuration overrides.
|
|
309
|
+
_callbacks (dict, optional): Dictionary of callback functions.
|
|
310
|
+
"""
|
|
311
|
+
self.args = get_cfg(cfg, overrides)
|
|
312
|
+
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
|
313
|
+
callbacks.add_integration_callbacks(self)
|
|
314
|
+
|
|
315
|
+
def __call__(self, model=None) -> str:
|
|
316
|
+
"""Export a model and return the final exported path as a string.
|
|
317
|
+
|
|
318
|
+
Returns:
|
|
319
|
+
(str): Path to the exported file or directory (the last export artifact).
|
|
320
|
+
"""
|
|
321
|
+
t = time.time()
|
|
322
|
+
fmt = self.args.format.lower() # to lowercase
|
|
323
|
+
if fmt in {"tensorrt", "trt"}: # 'engine' aliases
|
|
324
|
+
fmt = "engine"
|
|
325
|
+
if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
|
|
326
|
+
fmt = "coreml"
|
|
327
|
+
fmts_dict = export_formats()
|
|
328
|
+
fmts = tuple(fmts_dict["Argument"][1:]) # available export formats
|
|
329
|
+
if fmt not in fmts:
|
|
330
|
+
import difflib
|
|
331
|
+
|
|
332
|
+
# Get the closest match if format is invalid
|
|
333
|
+
matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
|
|
334
|
+
if not matches:
|
|
335
|
+
msg = "Model is already in PyTorch format." if fmt == "pt" else f"Invalid export format='{fmt}'."
|
|
336
|
+
raise ValueError(f"{msg} Valid formats are {fmts}")
|
|
337
|
+
LOGGER.warning(f"Invalid export format='{fmt}', updating to format='{matches[0]}'")
|
|
338
|
+
fmt = matches[0]
|
|
339
|
+
flags = [x == fmt for x in fmts]
|
|
340
|
+
if sum(flags) != 1:
|
|
341
|
+
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
|
|
342
|
+
(
|
|
343
|
+
jit,
|
|
344
|
+
onnx,
|
|
345
|
+
xml,
|
|
346
|
+
engine,
|
|
347
|
+
coreml,
|
|
348
|
+
saved_model,
|
|
349
|
+
pb,
|
|
350
|
+
tflite,
|
|
351
|
+
edgetpu,
|
|
352
|
+
tfjs,
|
|
353
|
+
paddle,
|
|
354
|
+
mnn,
|
|
355
|
+
ncnn,
|
|
356
|
+
imx,
|
|
357
|
+
rknn,
|
|
358
|
+
executorch,
|
|
359
|
+
axelera,
|
|
360
|
+
) = flags # export booleans
|
|
361
|
+
|
|
362
|
+
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
|
|
363
|
+
|
|
364
|
+
# Device
|
|
365
|
+
dla = None
|
|
366
|
+
if engine and self.args.device is None:
|
|
367
|
+
LOGGER.warning("TensorRT requires GPU export, automatically assigning device=0")
|
|
368
|
+
self.args.device = "0"
|
|
369
|
+
if engine and "dla" in str(self.args.device): # convert int/list to str first
|
|
370
|
+
device_str = str(self.args.device)
|
|
371
|
+
dla = device_str.rsplit(":", 1)[-1]
|
|
372
|
+
self.args.device = "0" # update device to "0"
|
|
373
|
+
assert dla in {"0", "1"}, f"Expected device 'dla:0' or 'dla:1', but got {device_str}."
|
|
374
|
+
if imx and self.args.device is None and torch.cuda.is_available():
|
|
375
|
+
LOGGER.warning("Exporting on CPU while CUDA is available, setting device=0 for faster export on GPU.")
|
|
376
|
+
self.args.device = "0" # update device to "0"
|
|
377
|
+
self.device = select_device("cpu" if self.args.device is None else self.args.device)
|
|
378
|
+
|
|
379
|
+
# Argument compatibility checks
|
|
380
|
+
fmt_keys = fmts_dict["Arguments"][flags.index(True) + 1]
|
|
381
|
+
validate_args(fmt, self.args, fmt_keys)
|
|
382
|
+
if axelera:
|
|
383
|
+
if not IS_PYTHON_3_10:
|
|
384
|
+
raise SystemError("Axelera export only supported on Python 3.10.")
|
|
385
|
+
if not self.args.int8:
|
|
386
|
+
LOGGER.warning("Setting int8=True for Axelera mixed-precision export.")
|
|
387
|
+
self.args.int8 = True
|
|
388
|
+
if model.task not in {"detect"}:
|
|
389
|
+
raise ValueError("Axelera export only supported for detection models.")
|
|
390
|
+
if not self.args.data:
|
|
391
|
+
self.args.data = "coco128.yaml" # Axelera default to coco128.yaml
|
|
392
|
+
if imx:
|
|
393
|
+
if not self.args.int8:
|
|
394
|
+
LOGGER.warning("IMX export requires int8=True, setting int8=True.")
|
|
395
|
+
self.args.int8 = True
|
|
396
|
+
if not self.args.nms and model.task in {"detect", "pose", "segment"}:
|
|
397
|
+
LOGGER.warning("IMX export requires nms=True, setting nms=True.")
|
|
398
|
+
self.args.nms = True
|
|
399
|
+
if model.task not in {"detect", "pose", "classify", "segment"}:
|
|
400
|
+
raise ValueError(
|
|
401
|
+
"IMX export only supported for detection, pose estimation, classification, and segmentation models."
|
|
402
|
+
)
|
|
403
|
+
if not hasattr(model, "names"):
|
|
404
|
+
model.names = default_class_names()
|
|
405
|
+
model.names = check_class_names(model.names)
|
|
406
|
+
if self.args.half and self.args.int8:
|
|
407
|
+
LOGGER.warning("half=True and int8=True are mutually exclusive, setting half=False.")
|
|
408
|
+
self.args.half = False
|
|
409
|
+
if self.args.half and jit and self.device.type == "cpu":
|
|
410
|
+
LOGGER.warning(
|
|
411
|
+
"half=True only compatible with GPU export for TorchScript, i.e. use device=0, setting half=False."
|
|
412
|
+
)
|
|
413
|
+
self.args.half = False
|
|
414
|
+
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
|
|
415
|
+
if self.args.optimize:
|
|
416
|
+
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
|
|
417
|
+
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
|
|
418
|
+
if rknn:
|
|
419
|
+
if not self.args.name:
|
|
420
|
+
LOGGER.warning(
|
|
421
|
+
"Rockchip RKNN export requires a missing 'name' arg for processor type. "
|
|
422
|
+
"Using default name='rk3588'."
|
|
423
|
+
)
|
|
424
|
+
self.args.name = "rk3588"
|
|
425
|
+
self.args.name = self.args.name.lower()
|
|
426
|
+
assert self.args.name in RKNN_CHIPS, (
|
|
427
|
+
f"Invalid processor name '{self.args.name}' for Rockchip RKNN export. Valid names are {RKNN_CHIPS}."
|
|
428
|
+
)
|
|
429
|
+
if self.args.nms:
|
|
430
|
+
assert not isinstance(model, ClassificationModel), "'nms=True' is not valid for classification models."
|
|
431
|
+
assert not tflite or not ARM64 or not LINUX, "TFLite export with NMS unsupported on ARM64 Linux"
|
|
432
|
+
assert not is_tf_format or TORCH_1_13, "TensorFlow exports with NMS require torch>=1.13"
|
|
433
|
+
assert not onnx or TORCH_1_13, "ONNX export with NMS requires torch>=1.13"
|
|
434
|
+
if getattr(model, "end2end", False) or isinstance(model.model[-1], RTDETRDecoder):
|
|
435
|
+
LOGGER.warning("'nms=True' is not available for end2end models. Forcing 'nms=False'.")
|
|
436
|
+
self.args.nms = False
|
|
437
|
+
self.args.conf = self.args.conf or 0.25 # set conf default value for nms export
|
|
438
|
+
if (engine or coreml or self.args.nms) and self.args.dynamic and self.args.batch == 1:
|
|
439
|
+
LOGGER.warning(
|
|
440
|
+
f"'dynamic=True' model with '{'nms=True' if self.args.nms else f'format={self.args.format}'}' requires max batch size, i.e. 'batch=16'"
|
|
441
|
+
)
|
|
442
|
+
if edgetpu:
|
|
443
|
+
if not LINUX or ARM64:
|
|
444
|
+
raise SystemError(
|
|
445
|
+
"Edge TPU export only supported on non-aarch64 Linux. See https://coral.ai/docs/edgetpu/compiler"
|
|
446
|
+
)
|
|
447
|
+
elif self.args.batch != 1: # see github.com/ultralytics/ultralytics/pull/13420
|
|
448
|
+
LOGGER.warning("Edge TPU export requires batch size 1, setting batch=1.")
|
|
449
|
+
self.args.batch = 1
|
|
450
|
+
if isinstance(model, WorldModel):
|
|
451
|
+
LOGGER.warning(
|
|
452
|
+
"YOLOWorld (original version) export is not supported to any format. "
|
|
453
|
+
"YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to "
|
|
454
|
+
"(torchscript, onnx, openvino, engine, coreml) formats. "
|
|
455
|
+
"See https://docs.ultralytics.com/models/yolo-world for details."
|
|
456
|
+
)
|
|
457
|
+
model.clip_model = None # openvino int8 export error: https://github.com/ultralytics/ultralytics/pull/18445
|
|
458
|
+
if self.args.int8 and not self.args.data:
|
|
459
|
+
self.args.data = DEFAULT_CFG.data or TASK2DATA[getattr(model, "task", "detect")] # assign default data
|
|
460
|
+
LOGGER.warning(
|
|
461
|
+
f"INT8 export requires a missing 'data' arg for calibration. Using default 'data={self.args.data}'."
|
|
462
|
+
)
|
|
463
|
+
if tfjs and (ARM64 and LINUX):
|
|
464
|
+
raise SystemError("TF.js exports are not currently supported on ARM64 Linux")
|
|
465
|
+
# Recommend OpenVINO if export and Intel CPU
|
|
466
|
+
if SETTINGS.get("openvino_msg"):
|
|
467
|
+
if is_intel():
|
|
468
|
+
LOGGER.info(
|
|
469
|
+
"💡 ProTip: Export to OpenVINO format for best performance on Intel hardware."
|
|
470
|
+
" Learn more at https://docs.ultralytics.com/integrations/openvino/"
|
|
471
|
+
)
|
|
472
|
+
SETTINGS["openvino_msg"] = False
|
|
473
|
+
|
|
474
|
+
# Input
|
|
475
|
+
im = torch.zeros(self.args.batch, model.yaml.get("channels", 3), *self.imgsz).to(self.device)
|
|
476
|
+
file = Path(
|
|
477
|
+
getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "")
|
|
478
|
+
)
|
|
479
|
+
if file.suffix in {".yaml", ".yml"}:
|
|
480
|
+
file = Path(file.name)
|
|
481
|
+
|
|
482
|
+
# Update model
|
|
483
|
+
model = deepcopy(model).to(self.device)
|
|
484
|
+
for p in model.parameters():
|
|
485
|
+
p.requires_grad = False
|
|
486
|
+
model.eval()
|
|
487
|
+
model.float()
|
|
488
|
+
model = model.fuse()
|
|
489
|
+
|
|
490
|
+
if imx:
|
|
491
|
+
from ultralytics.utils.export.imx import FXModel
|
|
492
|
+
|
|
493
|
+
model = FXModel(model, self.imgsz)
|
|
494
|
+
if tflite or edgetpu:
|
|
495
|
+
from ultralytics.utils.export.tensorflow import tf_wrapper
|
|
496
|
+
|
|
497
|
+
model = tf_wrapper(model)
|
|
498
|
+
for m in model.modules():
|
|
499
|
+
if isinstance(m, Classify):
|
|
500
|
+
m.export = True
|
|
501
|
+
if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB
|
|
502
|
+
m.dynamic = self.args.dynamic
|
|
503
|
+
m.export = True
|
|
504
|
+
m.format = self.args.format
|
|
505
|
+
m.max_det = self.args.max_det
|
|
506
|
+
m.xyxy = self.args.nms and not coreml
|
|
507
|
+
if hasattr(model, "pe") and hasattr(m, "fuse"): # for YOLOE models
|
|
508
|
+
m.fuse(model.pe.to(self.device))
|
|
509
|
+
elif isinstance(m, C2f) and not is_tf_format:
|
|
510
|
+
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
|
|
511
|
+
m.forward = m.forward_split
|
|
512
|
+
|
|
513
|
+
y = None
|
|
514
|
+
for _ in range(2): # dry runs
|
|
515
|
+
y = NMSModel(model, self.args)(im) if self.args.nms and not coreml and not imx else model(im)
|
|
516
|
+
if self.args.half and (onnx or jit) and self.device.type != "cpu":
|
|
517
|
+
im, model = im.half(), model.half() # to FP16
|
|
518
|
+
|
|
519
|
+
# Assign
|
|
520
|
+
self.im = im
|
|
521
|
+
self.model = model
|
|
522
|
+
self.file = file
|
|
523
|
+
self.output_shape = (
|
|
524
|
+
tuple(y.shape)
|
|
525
|
+
if isinstance(y, torch.Tensor)
|
|
526
|
+
else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
|
|
527
|
+
)
|
|
528
|
+
self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO")
|
|
529
|
+
data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else ""
|
|
530
|
+
description = f"Ultralytics {self.pretty_name} model {f'trained on {data}' if data else ''}"
|
|
531
|
+
self.metadata = {
|
|
532
|
+
"description": description,
|
|
533
|
+
"author": "Ultralytics",
|
|
534
|
+
"date": datetime.now().isoformat(),
|
|
535
|
+
"version": __version__,
|
|
536
|
+
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
537
|
+
"docs": "https://docs.ultralytics.com",
|
|
538
|
+
"stride": int(max(model.stride)),
|
|
539
|
+
"task": model.task,
|
|
540
|
+
"batch": self.args.batch,
|
|
541
|
+
"imgsz": self.imgsz,
|
|
542
|
+
"names": model.names,
|
|
543
|
+
"args": {k: v for k, v in self.args if k in fmt_keys},
|
|
544
|
+
"channels": model.yaml.get("channels", 3),
|
|
545
|
+
} # model metadata
|
|
546
|
+
if dla is not None:
|
|
547
|
+
self.metadata["dla"] = dla # make sure `AutoBackend` uses correct dla device if it has one
|
|
548
|
+
if model.task == "pose":
|
|
549
|
+
self.metadata["kpt_shape"] = model.model[-1].kpt_shape
|
|
550
|
+
if hasattr(model, "kpt_names"):
|
|
551
|
+
self.metadata["kpt_names"] = model.kpt_names
|
|
552
|
+
|
|
553
|
+
LOGGER.info(
|
|
554
|
+
f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
|
|
555
|
+
f"output shape(s) {self.output_shape} ({file_size(file):.1f} MB)"
|
|
556
|
+
)
|
|
557
|
+
self.run_callbacks("on_export_start")
|
|
558
|
+
# Exports
|
|
559
|
+
f = [""] * len(fmts) # exported filenames
|
|
560
|
+
if jit: # TorchScript
|
|
561
|
+
f[0] = self.export_torchscript()
|
|
562
|
+
if engine: # TensorRT required before ONNX
|
|
563
|
+
f[1] = self.export_engine(dla=dla)
|
|
564
|
+
if onnx: # ONNX
|
|
565
|
+
f[2] = self.export_onnx()
|
|
566
|
+
if xml: # OpenVINO
|
|
567
|
+
f[3] = self.export_openvino()
|
|
568
|
+
if coreml: # CoreML
|
|
569
|
+
f[4] = self.export_coreml()
|
|
570
|
+
if is_tf_format: # TensorFlow formats
|
|
571
|
+
self.args.int8 |= edgetpu
|
|
572
|
+
f[5], keras_model = self.export_saved_model()
|
|
573
|
+
if pb or tfjs: # pb prerequisite to tfjs
|
|
574
|
+
f[6] = self.export_pb(keras_model=keras_model)
|
|
575
|
+
if tflite:
|
|
576
|
+
f[7] = self.export_tflite()
|
|
577
|
+
if edgetpu:
|
|
578
|
+
f[8] = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
|
|
579
|
+
if tfjs:
|
|
580
|
+
f[9] = self.export_tfjs()
|
|
581
|
+
if paddle: # PaddlePaddle
|
|
582
|
+
f[10] = self.export_paddle()
|
|
583
|
+
if mnn: # MNN
|
|
584
|
+
f[11] = self.export_mnn()
|
|
585
|
+
if ncnn: # NCNN
|
|
586
|
+
f[12] = self.export_ncnn()
|
|
587
|
+
if imx:
|
|
588
|
+
f[13] = self.export_imx()
|
|
589
|
+
if rknn:
|
|
590
|
+
f[14] = self.export_rknn()
|
|
591
|
+
if executorch:
|
|
592
|
+
f[15] = self.export_executorch()
|
|
593
|
+
if axelera:
|
|
594
|
+
f[16] = self.export_axelera()
|
|
595
|
+
|
|
596
|
+
# Finish
|
|
597
|
+
f = [str(x) for x in f if x] # filter out '' and None
|
|
598
|
+
if any(f):
|
|
599
|
+
f = str(Path(f[-1]))
|
|
600
|
+
square = self.imgsz[0] == self.imgsz[1]
|
|
601
|
+
s = (
|
|
602
|
+
""
|
|
603
|
+
if square
|
|
604
|
+
else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not "
|
|
605
|
+
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
|
|
606
|
+
)
|
|
607
|
+
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
|
|
608
|
+
predict_data = f"data={data}" if model.task == "segment" and pb else ""
|
|
609
|
+
q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization
|
|
610
|
+
LOGGER.info(
|
|
611
|
+
f"\nExport complete ({time.time() - t:.1f}s)"
|
|
612
|
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
|
613
|
+
f"\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}"
|
|
614
|
+
f"\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}"
|
|
615
|
+
f"\nVisualize: https://netron.app"
|
|
616
|
+
)
|
|
617
|
+
|
|
618
|
+
self.run_callbacks("on_export_end")
|
|
619
|
+
return f # path to final export artifact
|
|
620
|
+
|
|
621
|
+
def get_int8_calibration_dataloader(self, prefix=""):
|
|
622
|
+
"""Build and return a dataloader for calibration of INT8 models."""
|
|
623
|
+
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
|
|
624
|
+
data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data)
|
|
625
|
+
dataset = YOLODataset(
|
|
626
|
+
data[self.args.split or "val"],
|
|
627
|
+
data=data,
|
|
628
|
+
fraction=self.args.fraction,
|
|
629
|
+
task=self.model.task,
|
|
630
|
+
imgsz=self.imgsz[0],
|
|
631
|
+
augment=False,
|
|
632
|
+
batch_size=self.args.batch,
|
|
633
|
+
)
|
|
634
|
+
n = len(dataset)
|
|
635
|
+
if n < self.args.batch:
|
|
636
|
+
raise ValueError(
|
|
637
|
+
f"The calibration dataset ({n} images) must have at least as many images as the batch size "
|
|
638
|
+
f"('batch={self.args.batch}')."
|
|
639
|
+
)
|
|
640
|
+
elif self.args.format == "axelera" and n < 100:
|
|
641
|
+
LOGGER.warning(f"{prefix} >100 images required for Axelera calibration, found {n} images.")
|
|
642
|
+
elif self.args.format != "axelera" and n < 300:
|
|
643
|
+
LOGGER.warning(f"{prefix} >300 images recommended for INT8 calibration, found {n} images.")
|
|
644
|
+
return build_dataloader(dataset, batch=self.args.batch, workers=0, drop_last=True) # required for batch loading
|
|
645
|
+
|
|
646
|
+
@try_export
|
|
647
|
+
def export_torchscript(self, prefix=colorstr("TorchScript:")):
|
|
648
|
+
"""Export YOLO model to TorchScript format."""
|
|
649
|
+
LOGGER.info(f"\n{prefix} starting export with torch {TORCH_VERSION}...")
|
|
650
|
+
f = self.file.with_suffix(".torchscript")
|
|
651
|
+
|
|
652
|
+
ts = torch.jit.trace(NMSModel(self.model, self.args) if self.args.nms else self.model, self.im, strict=False)
|
|
653
|
+
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
|
|
654
|
+
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
|
655
|
+
LOGGER.info(f"{prefix} optimizing for mobile...")
|
|
656
|
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
657
|
+
|
|
658
|
+
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
|
659
|
+
else:
|
|
660
|
+
ts.save(str(f), _extra_files=extra_files)
|
|
661
|
+
return f
|
|
662
|
+
|
|
663
|
+
@try_export
|
|
664
|
+
def export_onnx(self, prefix=colorstr("ONNX:")):
|
|
665
|
+
"""Export YOLO model to ONNX format."""
|
|
666
|
+
requirements = ["onnx>=1.12.0,<2.0.0"]
|
|
667
|
+
if self.args.simplify:
|
|
668
|
+
requirements += ["onnxslim>=0.1.71", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
|
|
669
|
+
check_requirements(requirements)
|
|
670
|
+
import onnx
|
|
671
|
+
|
|
672
|
+
opset = self.args.opset or best_onnx_opset(onnx, cuda="cuda" in self.device.type)
|
|
673
|
+
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset}...")
|
|
674
|
+
if self.args.nms:
|
|
675
|
+
assert TORCH_1_13, f"'nms=True' ONNX export requires torch>=1.13 (found torch=={TORCH_VERSION})"
|
|
676
|
+
|
|
677
|
+
f = str(self.file.with_suffix(".onnx"))
|
|
678
|
+
output_names = ["output0", "output1"] if self.model.task == "segment" else ["output0"]
|
|
679
|
+
dynamic = self.args.dynamic
|
|
680
|
+
if dynamic:
|
|
681
|
+
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
|
|
682
|
+
if isinstance(self.model, SegmentationModel):
|
|
683
|
+
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
|
|
684
|
+
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
|
|
685
|
+
elif isinstance(self.model, DetectionModel):
|
|
686
|
+
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
|
|
687
|
+
if self.args.nms: # only batch size is dynamic with NMS
|
|
688
|
+
dynamic["output0"].pop(2)
|
|
689
|
+
if self.args.nms and self.model.task == "obb":
|
|
690
|
+
self.args.opset = opset # for NMSModel
|
|
691
|
+
|
|
692
|
+
with arange_patch(self.args):
|
|
693
|
+
torch2onnx(
|
|
694
|
+
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
|
695
|
+
self.im,
|
|
696
|
+
f,
|
|
697
|
+
opset=opset,
|
|
698
|
+
input_names=["images"],
|
|
699
|
+
output_names=output_names,
|
|
700
|
+
dynamic=dynamic or None,
|
|
701
|
+
)
|
|
702
|
+
|
|
703
|
+
# Checks
|
|
704
|
+
model_onnx = onnx.load(f) # load onnx model
|
|
705
|
+
|
|
706
|
+
# Simplify
|
|
707
|
+
if self.args.simplify:
|
|
708
|
+
try:
|
|
709
|
+
import onnxslim
|
|
710
|
+
|
|
711
|
+
LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
|
|
712
|
+
model_onnx = onnxslim.slim(model_onnx)
|
|
713
|
+
|
|
714
|
+
except Exception as e:
|
|
715
|
+
LOGGER.warning(f"{prefix} simplifier failure: {e}")
|
|
716
|
+
|
|
717
|
+
# Metadata
|
|
718
|
+
for k, v in self.metadata.items():
|
|
719
|
+
meta = model_onnx.metadata_props.add()
|
|
720
|
+
meta.key, meta.value = k, str(v)
|
|
721
|
+
|
|
722
|
+
# IR version
|
|
723
|
+
if getattr(model_onnx, "ir_version", 0) > 10:
|
|
724
|
+
LOGGER.info(f"{prefix} limiting IR version {model_onnx.ir_version} to 10 for ONNXRuntime compatibility...")
|
|
725
|
+
model_onnx.ir_version = 10
|
|
726
|
+
|
|
727
|
+
# FP16 conversion for CPU export (GPU exports are already FP16 from model.half() during tracing)
|
|
728
|
+
if self.args.half and self.args.format == "onnx" and self.device.type == "cpu":
|
|
729
|
+
try:
|
|
730
|
+
from onnxruntime.transformers import float16
|
|
731
|
+
|
|
732
|
+
LOGGER.info(f"{prefix} converting to FP16...")
|
|
733
|
+
model_onnx = float16.convert_float_to_float16(model_onnx, keep_io_types=True)
|
|
734
|
+
except Exception as e:
|
|
735
|
+
LOGGER.warning(f"{prefix} FP16 conversion failure: {e}")
|
|
736
|
+
|
|
737
|
+
onnx.save(model_onnx, f)
|
|
738
|
+
return f
|
|
739
|
+
|
|
740
|
+
@try_export
|
|
741
|
+
def export_openvino(self, prefix=colorstr("OpenVINO:")):
|
|
742
|
+
"""Export YOLO model to OpenVINO format."""
|
|
743
|
+
# OpenVINO <= 2025.1.0 error on macOS 15.4+: https://github.com/openvinotoolkit/openvino/issues/30023"
|
|
744
|
+
check_requirements("openvino>=2025.2.0" if MACOS and MACOS_VERSION >= "15.4" else "openvino>=2024.0.0")
|
|
745
|
+
import openvino as ov
|
|
746
|
+
|
|
747
|
+
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
|
748
|
+
assert TORCH_2_1, f"OpenVINO export requires torch>=2.1 but torch=={TORCH_VERSION} is installed"
|
|
749
|
+
ov_model = ov.convert_model(
|
|
750
|
+
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
|
751
|
+
input=None if self.args.dynamic else [self.im.shape],
|
|
752
|
+
example_input=self.im,
|
|
753
|
+
)
|
|
754
|
+
|
|
755
|
+
def serialize(ov_model, file):
|
|
756
|
+
"""Set RT info, serialize, and save metadata YAML."""
|
|
757
|
+
ov_model.set_rt_info("YOLO", ["model_info", "model_type"])
|
|
758
|
+
ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
|
|
759
|
+
ov_model.set_rt_info(114, ["model_info", "pad_value"])
|
|
760
|
+
ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
|
|
761
|
+
ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"])
|
|
762
|
+
ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"])
|
|
763
|
+
if self.model.task != "classify":
|
|
764
|
+
ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])
|
|
765
|
+
|
|
766
|
+
ov.save_model(ov_model, file, compress_to_fp16=self.args.half)
|
|
767
|
+
YAML.save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
768
|
+
|
|
769
|
+
if self.args.int8:
|
|
770
|
+
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
|
|
771
|
+
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
|
|
772
|
+
# INT8 requires nncf, nncf requires packaging>=23.2 https://github.com/openvinotoolkit/nncf/issues/3463
|
|
773
|
+
check_requirements("packaging>=23.2") # must be installed first to build nncf wheel
|
|
774
|
+
check_requirements("nncf>=2.14.0")
|
|
775
|
+
import nncf
|
|
776
|
+
|
|
777
|
+
# Generate calibration data for integer quantization
|
|
778
|
+
ignored_scope = None
|
|
779
|
+
if isinstance(self.model.model[-1], Detect):
|
|
780
|
+
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect, YOLOEDetect
|
|
781
|
+
head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
|
|
782
|
+
ignored_scope = nncf.IgnoredScope( # ignore operations
|
|
783
|
+
patterns=[
|
|
784
|
+
f".*{head_module_name}/.*/Add",
|
|
785
|
+
f".*{head_module_name}/.*/Sub*",
|
|
786
|
+
f".*{head_module_name}/.*/Mul*",
|
|
787
|
+
f".*{head_module_name}/.*/Div*",
|
|
788
|
+
f".*{head_module_name}\\.dfl.*",
|
|
789
|
+
],
|
|
790
|
+
types=["Sigmoid"],
|
|
791
|
+
)
|
|
792
|
+
|
|
793
|
+
quantized_ov_model = nncf.quantize(
|
|
794
|
+
model=ov_model,
|
|
795
|
+
calibration_dataset=nncf.Dataset(self.get_int8_calibration_dataloader(prefix), self._transform_fn),
|
|
796
|
+
preset=nncf.QuantizationPreset.MIXED,
|
|
797
|
+
ignored_scope=ignored_scope,
|
|
798
|
+
)
|
|
799
|
+
serialize(quantized_ov_model, fq_ov)
|
|
800
|
+
return fq
|
|
801
|
+
|
|
802
|
+
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
|
|
803
|
+
f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
|
|
804
|
+
|
|
805
|
+
serialize(ov_model, f_ov)
|
|
806
|
+
return f
|
|
807
|
+
|
|
808
|
+
@try_export
|
|
809
|
+
def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
|
|
810
|
+
"""Export YOLO model to PaddlePaddle format."""
|
|
811
|
+
assert not IS_JETSON, "Jetson Paddle exports not supported yet"
|
|
812
|
+
check_requirements(
|
|
813
|
+
(
|
|
814
|
+
"paddlepaddle-gpu"
|
|
815
|
+
if torch.cuda.is_available()
|
|
816
|
+
else "paddlepaddle==3.0.0" # pin 3.0.0 for ARM64
|
|
817
|
+
if ARM64
|
|
818
|
+
else "paddlepaddle>=3.0.0",
|
|
819
|
+
"x2paddle",
|
|
820
|
+
)
|
|
821
|
+
)
|
|
822
|
+
import x2paddle
|
|
823
|
+
from x2paddle.convert import pytorch2paddle
|
|
824
|
+
|
|
825
|
+
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
|
|
826
|
+
f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}")
|
|
827
|
+
|
|
828
|
+
pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export
|
|
829
|
+
YAML.save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
830
|
+
return f
|
|
831
|
+
|
|
832
|
+
@try_export
|
|
833
|
+
def export_mnn(self, prefix=colorstr("MNN:")):
|
|
834
|
+
"""Export YOLO model to MNN format using MNN https://github.com/alibaba/MNN."""
|
|
835
|
+
assert TORCH_1_10, "MNN export requires torch>=1.10.0 to avoid segmentation faults"
|
|
836
|
+
f_onnx = self.export_onnx() # get onnx model first
|
|
837
|
+
|
|
838
|
+
check_requirements("MNN>=2.9.6")
|
|
839
|
+
import MNN
|
|
840
|
+
from MNN.tools import mnnconvert
|
|
841
|
+
|
|
842
|
+
# Setup and checks
|
|
843
|
+
LOGGER.info(f"\n{prefix} starting export with MNN {MNN.version()}...")
|
|
844
|
+
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
|
|
845
|
+
f = str(self.file.with_suffix(".mnn")) # MNN model file
|
|
846
|
+
args = ["", "-f", "ONNX", "--modelFile", f_onnx, "--MNNModel", f, "--bizCode", json.dumps(self.metadata)]
|
|
847
|
+
if self.args.int8:
|
|
848
|
+
args.extend(("--weightQuantBits", "8"))
|
|
849
|
+
if self.args.half:
|
|
850
|
+
args.append("--fp16")
|
|
851
|
+
mnnconvert.convert(args)
|
|
852
|
+
# remove scratch file for model convert optimize
|
|
853
|
+
convert_scratch = Path(self.file.parent / ".__convert_external_data.bin")
|
|
854
|
+
if convert_scratch.exists():
|
|
855
|
+
convert_scratch.unlink()
|
|
856
|
+
return f
|
|
857
|
+
|
|
858
|
+
@try_export
|
|
859
|
+
def export_ncnn(self, prefix=colorstr("NCNN:")):
|
|
860
|
+
"""Export YOLO model to NCNN format using PNNX https://github.com/pnnx/pnnx."""
|
|
861
|
+
check_requirements("ncnn", cmds="--no-deps") # no deps to avoid installing opencv-python
|
|
862
|
+
check_requirements("pnnx")
|
|
863
|
+
import ncnn
|
|
864
|
+
import pnnx
|
|
865
|
+
|
|
866
|
+
LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__} and PNNX {pnnx.__version__}...")
|
|
867
|
+
f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}"))
|
|
868
|
+
|
|
869
|
+
ncnn_args = dict(
|
|
870
|
+
ncnnparam=(f / "model.ncnn.param").as_posix(),
|
|
871
|
+
ncnnbin=(f / "model.ncnn.bin").as_posix(),
|
|
872
|
+
ncnnpy=(f / "model_ncnn.py").as_posix(),
|
|
873
|
+
)
|
|
874
|
+
|
|
875
|
+
pnnx_args = dict(
|
|
876
|
+
ptpath=(f / "model.pt").as_posix(),
|
|
877
|
+
pnnxparam=(f / "model.pnnx.param").as_posix(),
|
|
878
|
+
pnnxbin=(f / "model.pnnx.bin").as_posix(),
|
|
879
|
+
pnnxpy=(f / "model_pnnx.py").as_posix(),
|
|
880
|
+
pnnxonnx=(f / "model.pnnx.onnx").as_posix(),
|
|
881
|
+
)
|
|
882
|
+
|
|
883
|
+
f.mkdir(exist_ok=True) # make ncnn_model directory
|
|
884
|
+
pnnx.export(self.model, inputs=self.im, **ncnn_args, **pnnx_args, fp16=self.args.half, device=self.device.type)
|
|
885
|
+
|
|
886
|
+
for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_args.values()):
|
|
887
|
+
Path(f_debug).unlink(missing_ok=True)
|
|
888
|
+
|
|
889
|
+
YAML.save(f / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
890
|
+
return str(f)
|
|
891
|
+
|
|
892
|
+
@try_export
|
|
893
|
+
def export_coreml(self, prefix=colorstr("CoreML:")):
|
|
894
|
+
"""Export YOLO model to CoreML format."""
|
|
895
|
+
mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
|
|
896
|
+
check_requirements(
|
|
897
|
+
["coremltools>=9.0", "numpy>=1.14.5,<=2.3.5"]
|
|
898
|
+
) # latest numpy 2.4.0rc1 breaks coremltools exports
|
|
899
|
+
import coremltools as ct
|
|
900
|
+
|
|
901
|
+
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
|
|
902
|
+
assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
|
|
903
|
+
assert TORCH_1_11, "CoreML export requires torch>=1.11"
|
|
904
|
+
if self.args.batch > 1:
|
|
905
|
+
assert self.args.dynamic, (
|
|
906
|
+
"batch sizes > 1 are not supported without 'dynamic=True' for CoreML export. Please retry at 'dynamic=True'."
|
|
907
|
+
)
|
|
908
|
+
if self.args.dynamic:
|
|
909
|
+
assert not self.args.nms, (
|
|
910
|
+
"'nms=True' cannot be used together with 'dynamic=True' for CoreML export. Please disable one of them."
|
|
911
|
+
)
|
|
912
|
+
assert self.model.task != "classify", "'dynamic=True' is not supported for CoreML classification models."
|
|
913
|
+
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
|
|
914
|
+
if f.is_dir():
|
|
915
|
+
shutil.rmtree(f)
|
|
916
|
+
|
|
917
|
+
classifier_config = None
|
|
918
|
+
if self.model.task == "classify":
|
|
919
|
+
classifier_config = ct.ClassifierConfig(list(self.model.names.values()))
|
|
920
|
+
model = self.model
|
|
921
|
+
elif self.model.task == "detect":
|
|
922
|
+
model = IOSDetectModel(self.model, self.im, mlprogram=not mlmodel) if self.args.nms else self.model
|
|
923
|
+
else:
|
|
924
|
+
if self.args.nms:
|
|
925
|
+
LOGGER.warning(f"{prefix} 'nms=True' is only available for Detect models like 'yolo11n.pt'.")
|
|
926
|
+
# TODO CoreML Segment and Pose model pipelining
|
|
927
|
+
model = self.model
|
|
928
|
+
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
|
|
929
|
+
|
|
930
|
+
if self.args.dynamic:
|
|
931
|
+
input_shape = ct.Shape(
|
|
932
|
+
shape=(
|
|
933
|
+
ct.RangeDim(lower_bound=1, upper_bound=self.args.batch, default=1),
|
|
934
|
+
self.im.shape[1],
|
|
935
|
+
ct.RangeDim(lower_bound=32, upper_bound=self.imgsz[0] * 2, default=self.imgsz[0]),
|
|
936
|
+
ct.RangeDim(lower_bound=32, upper_bound=self.imgsz[1] * 2, default=self.imgsz[1]),
|
|
937
|
+
)
|
|
938
|
+
)
|
|
939
|
+
inputs = [ct.TensorType("image", shape=input_shape)]
|
|
940
|
+
else:
|
|
941
|
+
inputs = [ct.ImageType("image", shape=self.im.shape, scale=1 / 255, bias=[0.0, 0.0, 0.0])]
|
|
942
|
+
|
|
943
|
+
# Based on apple's documentation it is better to leave out the minimum_deployment target and let that get set
|
|
944
|
+
# Internally based on the model conversion and output type.
|
|
945
|
+
# Setting minimum_deployment_target >= iOS16 will require setting compute_precision=ct.precision.FLOAT32.
|
|
946
|
+
# iOS16 adds in better support for FP16, but none of the CoreML NMS specifications handle FP16 as input.
|
|
947
|
+
ct_model = ct.convert(
|
|
948
|
+
ts,
|
|
949
|
+
inputs=inputs,
|
|
950
|
+
classifier_config=classifier_config,
|
|
951
|
+
convert_to="neuralnetwork" if mlmodel else "mlprogram",
|
|
952
|
+
)
|
|
953
|
+
bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
|
|
954
|
+
if bits < 32:
|
|
955
|
+
if "kmeans" in mode:
|
|
956
|
+
check_requirements("scikit-learn") # scikit-learn package required for k-means quantization
|
|
957
|
+
if mlmodel:
|
|
958
|
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
|
959
|
+
elif bits == 8: # mlprogram already quantized to FP16
|
|
960
|
+
import coremltools.optimize.coreml as cto
|
|
961
|
+
|
|
962
|
+
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
|
|
963
|
+
config = cto.OptimizationConfig(global_config=op_config)
|
|
964
|
+
ct_model = cto.palettize_weights(ct_model, config=config)
|
|
965
|
+
if self.args.nms and self.model.task == "detect":
|
|
966
|
+
ct_model = self._pipeline_coreml(ct_model, weights_dir=None if mlmodel else ct_model.weights_dir)
|
|
967
|
+
|
|
968
|
+
m = self.metadata # metadata dict
|
|
969
|
+
ct_model.short_description = m.pop("description")
|
|
970
|
+
ct_model.author = m.pop("author")
|
|
971
|
+
ct_model.license = m.pop("license")
|
|
972
|
+
ct_model.version = m.pop("version")
|
|
973
|
+
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
|
|
974
|
+
if self.model.task == "classify":
|
|
975
|
+
ct_model.user_defined_metadata.update({"com.apple.coreml.model.preview.type": "imageClassifier"})
|
|
976
|
+
|
|
977
|
+
try:
|
|
978
|
+
ct_model.save(str(f)) # save *.mlpackage
|
|
979
|
+
except Exception as e:
|
|
980
|
+
LOGGER.warning(
|
|
981
|
+
f"{prefix} CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. "
|
|
982
|
+
f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928."
|
|
983
|
+
)
|
|
984
|
+
f = f.with_suffix(".mlmodel")
|
|
985
|
+
ct_model.save(str(f))
|
|
986
|
+
return f
|
|
987
|
+
|
|
988
|
+
@try_export
|
|
989
|
+
def export_engine(self, dla=None, prefix=colorstr("TensorRT:")):
|
|
990
|
+
"""Export YOLO model to TensorRT format https://developer.nvidia.com/tensorrt."""
|
|
991
|
+
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
|
|
992
|
+
f_onnx = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
|
|
993
|
+
|
|
994
|
+
try:
|
|
995
|
+
import tensorrt as trt
|
|
996
|
+
except ImportError:
|
|
997
|
+
if LINUX:
|
|
998
|
+
cuda_version = torch.version.cuda.split(".")[0]
|
|
999
|
+
check_requirements(f"tensorrt-cu{cuda_version}>7.0.0,!=10.1.0")
|
|
1000
|
+
import tensorrt as trt
|
|
1001
|
+
check_version(trt.__version__, ">=7.0.0", hard=True)
|
|
1002
|
+
check_version(trt.__version__, "!=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")
|
|
1003
|
+
|
|
1004
|
+
# Setup and checks
|
|
1005
|
+
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
|
|
1006
|
+
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
|
|
1007
|
+
f = self.file.with_suffix(".engine") # TensorRT engine file
|
|
1008
|
+
onnx2engine(
|
|
1009
|
+
f_onnx,
|
|
1010
|
+
f,
|
|
1011
|
+
self.args.workspace,
|
|
1012
|
+
self.args.half,
|
|
1013
|
+
self.args.int8,
|
|
1014
|
+
self.args.dynamic,
|
|
1015
|
+
self.im.shape,
|
|
1016
|
+
dla=dla,
|
|
1017
|
+
dataset=self.get_int8_calibration_dataloader(prefix) if self.args.int8 else None,
|
|
1018
|
+
metadata=self.metadata,
|
|
1019
|
+
verbose=self.args.verbose,
|
|
1020
|
+
prefix=prefix,
|
|
1021
|
+
)
|
|
1022
|
+
|
|
1023
|
+
return f
|
|
1024
|
+
|
|
1025
|
+
@try_export
|
|
1026
|
+
def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
|
|
1027
|
+
"""Export YOLO model to TensorFlow SavedModel format."""
|
|
1028
|
+
cuda = torch.cuda.is_available()
|
|
1029
|
+
try:
|
|
1030
|
+
import tensorflow as tf
|
|
1031
|
+
except ImportError:
|
|
1032
|
+
check_requirements("tensorflow>=2.0.0,<=2.19.0")
|
|
1033
|
+
import tensorflow as tf
|
|
1034
|
+
check_requirements(
|
|
1035
|
+
(
|
|
1036
|
+
"tf_keras<=2.19.0", # required by 'onnx2tf' package
|
|
1037
|
+
"sng4onnx>=1.0.1", # required by 'onnx2tf' package
|
|
1038
|
+
"onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package
|
|
1039
|
+
"ai-edge-litert>=1.2.0" + (",<1.4.0" if MACOS else ""), # required by 'onnx2tf' package
|
|
1040
|
+
"onnx>=1.12.0,<2.0.0",
|
|
1041
|
+
"onnx2tf>=1.26.3",
|
|
1042
|
+
"onnxslim>=0.1.71",
|
|
1043
|
+
"onnxruntime-gpu" if cuda else "onnxruntime",
|
|
1044
|
+
"protobuf>=5",
|
|
1045
|
+
),
|
|
1046
|
+
cmds="--extra-index-url https://pypi.ngc.nvidia.com", # onnx_graphsurgeon only on NVIDIA
|
|
1047
|
+
)
|
|
1048
|
+
|
|
1049
|
+
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
1050
|
+
check_version(
|
|
1051
|
+
tf.__version__,
|
|
1052
|
+
">=2.0.0",
|
|
1053
|
+
name="tensorflow",
|
|
1054
|
+
verbose=True,
|
|
1055
|
+
msg="https://github.com/ultralytics/ultralytics/issues/5161",
|
|
1056
|
+
)
|
|
1057
|
+
f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
|
|
1058
|
+
if f.is_dir():
|
|
1059
|
+
shutil.rmtree(f) # delete output folder
|
|
1060
|
+
|
|
1061
|
+
# Export to TF
|
|
1062
|
+
images = None
|
|
1063
|
+
if self.args.int8 and self.args.data:
|
|
1064
|
+
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
|
|
1065
|
+
images = (
|
|
1066
|
+
torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz)
|
|
1067
|
+
.permute(0, 2, 3, 1)
|
|
1068
|
+
.numpy()
|
|
1069
|
+
.astype(np.float32)
|
|
1070
|
+
)
|
|
1071
|
+
|
|
1072
|
+
# Export to ONNX
|
|
1073
|
+
if isinstance(self.model.model[-1], RTDETRDecoder):
|
|
1074
|
+
self.args.opset = self.args.opset or 19
|
|
1075
|
+
assert 16 <= self.args.opset <= 19, "RTDETR export requires opset>=16;<=19"
|
|
1076
|
+
self.args.simplify = True
|
|
1077
|
+
f_onnx = self.export_onnx() # ensure ONNX is available
|
|
1078
|
+
keras_model = onnx2saved_model(
|
|
1079
|
+
f_onnx,
|
|
1080
|
+
f,
|
|
1081
|
+
int8=self.args.int8,
|
|
1082
|
+
images=images,
|
|
1083
|
+
disable_group_convolution=self.args.format in {"tfjs", "edgetpu"},
|
|
1084
|
+
prefix=prefix,
|
|
1085
|
+
)
|
|
1086
|
+
YAML.save(f / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
1087
|
+
# Add TFLite metadata
|
|
1088
|
+
for file in f.rglob("*.tflite"):
|
|
1089
|
+
file.unlink() if "quant_with_int16_act.tflite" in str(file) else self._add_tflite_metadata(file)
|
|
1090
|
+
|
|
1091
|
+
return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
|
|
1092
|
+
|
|
1093
|
+
@try_export
|
|
1094
|
+
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
|
|
1095
|
+
"""Export YOLO model to TensorFlow GraphDef *.pb format https://github.com/leimao/Frozen-Graph-TensorFlow."""
|
|
1096
|
+
f = self.file.with_suffix(".pb")
|
|
1097
|
+
keras2pb(keras_model, f, prefix)
|
|
1098
|
+
return f
|
|
1099
|
+
|
|
1100
|
+
@try_export
|
|
1101
|
+
def export_tflite(self, prefix=colorstr("TensorFlow Lite:")):
|
|
1102
|
+
"""Export YOLO model to TensorFlow Lite format."""
|
|
1103
|
+
# BUG https://github.com/ultralytics/ultralytics/issues/13436
|
|
1104
|
+
import tensorflow as tf
|
|
1105
|
+
|
|
1106
|
+
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
1107
|
+
saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
|
|
1108
|
+
if self.args.int8:
|
|
1109
|
+
f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out
|
|
1110
|
+
elif self.args.half:
|
|
1111
|
+
f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out
|
|
1112
|
+
else:
|
|
1113
|
+
f = saved_model / f"{self.file.stem}_float32.tflite"
|
|
1114
|
+
return str(f)
|
|
1115
|
+
|
|
1116
|
+
@try_export
|
|
1117
|
+
def export_axelera(self, prefix=colorstr("Axelera:")):
|
|
1118
|
+
"""YOLO Axelera export."""
|
|
1119
|
+
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
|
1120
|
+
try:
|
|
1121
|
+
from axelera import compiler
|
|
1122
|
+
except ImportError:
|
|
1123
|
+
check_apt_requirements(
|
|
1124
|
+
["libllvm14", "libgirepository1.0-dev", "pkg-config", "libcairo2-dev", "build-essential", "cmake"]
|
|
1125
|
+
)
|
|
1126
|
+
|
|
1127
|
+
check_requirements(
|
|
1128
|
+
"axelera-voyager-sdk==1.5.2",
|
|
1129
|
+
cmds="--extra-index-url https://software.axelera.ai/artifactory/axelera-runtime-pypi "
|
|
1130
|
+
"--extra-index-url https://software.axelera.ai/artifactory/axelera-dev-pypi",
|
|
1131
|
+
)
|
|
1132
|
+
|
|
1133
|
+
from axelera import compiler
|
|
1134
|
+
from axelera.compiler import CompilerConfig
|
|
1135
|
+
|
|
1136
|
+
self.args.opset = 17 # hardcode opset for Axelera
|
|
1137
|
+
onnx_path = self.export_onnx()
|
|
1138
|
+
model_name = Path(onnx_path).stem
|
|
1139
|
+
export_path = Path(f"{model_name}_axelera_model")
|
|
1140
|
+
export_path.mkdir(exist_ok=True)
|
|
1141
|
+
|
|
1142
|
+
if "C2PSA" in self.model.__str__(): # YOLO11
|
|
1143
|
+
config = CompilerConfig(
|
|
1144
|
+
quantization_scheme="per_tensor_min_max",
|
|
1145
|
+
ignore_weight_buffers=False,
|
|
1146
|
+
resources_used=0.25,
|
|
1147
|
+
aipu_cores_used=1,
|
|
1148
|
+
multicore_mode="batch",
|
|
1149
|
+
output_axm_format=True,
|
|
1150
|
+
model_name=model_name,
|
|
1151
|
+
)
|
|
1152
|
+
else: # YOLOv8
|
|
1153
|
+
config = CompilerConfig(
|
|
1154
|
+
tiling_depth=6,
|
|
1155
|
+
split_buffer_promotion=True,
|
|
1156
|
+
resources_used=0.25,
|
|
1157
|
+
aipu_cores_used=1,
|
|
1158
|
+
multicore_mode="batch",
|
|
1159
|
+
output_axm_format=True,
|
|
1160
|
+
model_name=model_name,
|
|
1161
|
+
)
|
|
1162
|
+
|
|
1163
|
+
qmodel = compiler.quantize(
|
|
1164
|
+
model=onnx_path,
|
|
1165
|
+
calibration_dataset=self.get_int8_calibration_dataloader(prefix),
|
|
1166
|
+
config=config,
|
|
1167
|
+
transform_fn=self._transform_fn,
|
|
1168
|
+
)
|
|
1169
|
+
|
|
1170
|
+
compiler.compile(model=qmodel, config=config, output_dir=export_path)
|
|
1171
|
+
|
|
1172
|
+
axm_name = f"{model_name}.axm"
|
|
1173
|
+
axm_src = Path(axm_name)
|
|
1174
|
+
axm_dst = export_path / axm_name
|
|
1175
|
+
|
|
1176
|
+
if axm_src.exists():
|
|
1177
|
+
axm_src.replace(axm_dst)
|
|
1178
|
+
|
|
1179
|
+
YAML.save(export_path / "metadata.yaml", self.metadata)
|
|
1180
|
+
|
|
1181
|
+
return export_path
|
|
1182
|
+
|
|
1183
|
+
@try_export
|
|
1184
|
+
def export_executorch(self, prefix=colorstr("ExecuTorch:")):
|
|
1185
|
+
"""Exports a model to ExecuTorch (.pte) format into a dedicated directory and saves the required metadata,
|
|
1186
|
+
following Ultralytics conventions.
|
|
1187
|
+
"""
|
|
1188
|
+
LOGGER.info(f"\n{prefix} starting export with ExecuTorch...")
|
|
1189
|
+
assert TORCH_2_9, f"ExecuTorch export requires torch>=2.9.0 but torch=={TORCH_VERSION} is installed"
|
|
1190
|
+
# TorchAO release compatibility table bug https://github.com/pytorch/ao/issues/2919
|
|
1191
|
+
# Setuptools bug: https://github.com/pypa/setuptools/issues/4483
|
|
1192
|
+
check_requirements("setuptools<71.0.0") # Setuptools bug: https://github.com/pypa/setuptools/issues/4483
|
|
1193
|
+
check_requirements(("executorch==1.0.1", "flatbuffers"))
|
|
1194
|
+
# Pin numpy to avoid coremltools errors with numpy>=2.4.0, must be separate
|
|
1195
|
+
check_requirements("numpy<=2.3.5")
|
|
1196
|
+
|
|
1197
|
+
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
|
|
1198
|
+
from executorch.exir import to_edge_transform_and_lower
|
|
1199
|
+
|
|
1200
|
+
file_directory = Path(str(self.file).replace(self.file.suffix, "_executorch_model"))
|
|
1201
|
+
file_directory.mkdir(parents=True, exist_ok=True)
|
|
1202
|
+
|
|
1203
|
+
file_pte = file_directory / self.file.with_suffix(".pte").name
|
|
1204
|
+
sample_inputs = (self.im,)
|
|
1205
|
+
|
|
1206
|
+
et_program = to_edge_transform_and_lower(
|
|
1207
|
+
torch.export.export(self.model, sample_inputs), partitioner=[XnnpackPartitioner()]
|
|
1208
|
+
).to_executorch()
|
|
1209
|
+
|
|
1210
|
+
with open(file_pte, "wb") as file:
|
|
1211
|
+
file.write(et_program.buffer)
|
|
1212
|
+
|
|
1213
|
+
YAML.save(file_directory / "metadata.yaml", self.metadata)
|
|
1214
|
+
|
|
1215
|
+
return str(file_directory)
|
|
1216
|
+
|
|
1217
|
+
@try_export
|
|
1218
|
+
def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
|
|
1219
|
+
"""Export YOLO model to Edge TPU format https://coral.ai/docs/edgetpu/models-intro/."""
|
|
1220
|
+
cmd = "edgetpu_compiler --version"
|
|
1221
|
+
help_url = "https://coral.ai/docs/edgetpu/compiler/"
|
|
1222
|
+
assert LINUX, f"export only supported on Linux. See {help_url}"
|
|
1223
|
+
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
|
|
1224
|
+
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
|
|
1225
|
+
sudo = "sudo " if is_sudo_available() else ""
|
|
1226
|
+
for c in (
|
|
1227
|
+
f"{sudo}mkdir -p /etc/apt/keyrings",
|
|
1228
|
+
f"curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg | {sudo}gpg --dearmor -o /etc/apt/keyrings/google.gpg",
|
|
1229
|
+
f'echo "deb [signed-by=/etc/apt/keyrings/google.gpg] https://packages.cloud.google.com/apt coral-edgetpu-stable main" | {sudo}tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
|
1230
|
+
):
|
|
1231
|
+
subprocess.run(c, shell=True, check=True)
|
|
1232
|
+
check_apt_requirements(["edgetpu-compiler"])
|
|
1233
|
+
|
|
1234
|
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
|
|
1235
|
+
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
|
|
1236
|
+
tflite2edgetpu(tflite_file=tflite_model, output_dir=tflite_model.parent, prefix=prefix)
|
|
1237
|
+
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
|
|
1238
|
+
self._add_tflite_metadata(f)
|
|
1239
|
+
return f
|
|
1240
|
+
|
|
1241
|
+
@try_export
|
|
1242
|
+
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
|
|
1243
|
+
"""Export YOLO model to TensorFlow.js format."""
|
|
1244
|
+
check_requirements("tensorflowjs")
|
|
1245
|
+
|
|
1246
|
+
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
|
|
1247
|
+
f_pb = str(self.file.with_suffix(".pb")) # *.pb path
|
|
1248
|
+
pb2tfjs(pb_file=f_pb, output_dir=f, half=self.args.half, int8=self.args.int8, prefix=prefix)
|
|
1249
|
+
# Add metadata
|
|
1250
|
+
YAML.save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
1251
|
+
return f
|
|
1252
|
+
|
|
1253
|
+
@try_export
|
|
1254
|
+
def export_rknn(self, prefix=colorstr("RKNN:")):
|
|
1255
|
+
"""Export YOLO model to RKNN format."""
|
|
1256
|
+
LOGGER.info(f"\n{prefix} starting export with rknn-toolkit2...")
|
|
1257
|
+
|
|
1258
|
+
check_requirements("rknn-toolkit2")
|
|
1259
|
+
if IS_COLAB:
|
|
1260
|
+
# Prevent 'exit' from closing the notebook https://github.com/airockchip/rknn-toolkit2/issues/259
|
|
1261
|
+
import builtins
|
|
1262
|
+
|
|
1263
|
+
builtins.exit = lambda: None
|
|
1264
|
+
|
|
1265
|
+
from rknn.api import RKNN
|
|
1266
|
+
|
|
1267
|
+
f = self.export_onnx()
|
|
1268
|
+
export_path = Path(f"{Path(f).stem}_rknn_model")
|
|
1269
|
+
export_path.mkdir(exist_ok=True)
|
|
1270
|
+
|
|
1271
|
+
rknn = RKNN(verbose=False)
|
|
1272
|
+
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=self.args.name)
|
|
1273
|
+
rknn.load_onnx(model=f)
|
|
1274
|
+
rknn.build(do_quantization=False) # TODO: Add quantization support
|
|
1275
|
+
f = f.replace(".onnx", f"-{self.args.name}.rknn")
|
|
1276
|
+
rknn.export_rknn(f"{export_path / f}")
|
|
1277
|
+
YAML.save(export_path / "metadata.yaml", self.metadata)
|
|
1278
|
+
return export_path
|
|
1279
|
+
|
|
1280
|
+
@try_export
|
|
1281
|
+
def export_imx(self, prefix=colorstr("IMX:")):
|
|
1282
|
+
"""Export YOLO model to IMX format."""
|
|
1283
|
+
assert LINUX, (
|
|
1284
|
+
"Export only supported on Linux."
|
|
1285
|
+
"See https://developer.aitrios.sony-semicon.com/en/docs/raspberry-pi-ai-camera/imx500-converter?version=3.17.3&progLang="
|
|
1286
|
+
)
|
|
1287
|
+
assert not ARM64, "IMX export is not supported on ARM64 architectures."
|
|
1288
|
+
assert IS_PYTHON_MINIMUM_3_9, "IMX export is only supported on Python 3.9 or above."
|
|
1289
|
+
|
|
1290
|
+
if getattr(self.model, "end2end", False):
|
|
1291
|
+
raise ValueError("IMX export is not supported for end2end models.")
|
|
1292
|
+
check_requirements(
|
|
1293
|
+
(
|
|
1294
|
+
"model-compression-toolkit>=2.4.1",
|
|
1295
|
+
"edge-mdt-cl<1.1.0",
|
|
1296
|
+
"edge-mdt-tpc>=1.2.0",
|
|
1297
|
+
"pydantic<=2.11.7",
|
|
1298
|
+
)
|
|
1299
|
+
)
|
|
1300
|
+
|
|
1301
|
+
check_requirements("imx500-converter[pt]>=3.17.3")
|
|
1302
|
+
|
|
1303
|
+
# Install Java>=17
|
|
1304
|
+
try:
|
|
1305
|
+
java_output = subprocess.run(["java", "--version"], check=True, capture_output=True).stdout.decode()
|
|
1306
|
+
version_match = re.search(r"(?:openjdk|java) (\d+)", java_output)
|
|
1307
|
+
java_version = int(version_match.group(1)) if version_match else 0
|
|
1308
|
+
assert java_version >= 17, "Java version too old"
|
|
1309
|
+
except (FileNotFoundError, subprocess.CalledProcessError, AssertionError):
|
|
1310
|
+
if IS_UBUNTU or IS_DEBIAN_TRIXIE:
|
|
1311
|
+
LOGGER.info(f"\n{prefix} installing Java 21 for Ubuntu...")
|
|
1312
|
+
check_apt_requirements(["openjdk-21-jre"])
|
|
1313
|
+
elif IS_RASPBERRYPI or IS_DEBIAN_BOOKWORM:
|
|
1314
|
+
LOGGER.info(f"\n{prefix} installing Java 17 for Raspberry Pi or Debian ...")
|
|
1315
|
+
check_apt_requirements(["openjdk-17-jre"])
|
|
1316
|
+
|
|
1317
|
+
return torch2imx(
|
|
1318
|
+
self.model,
|
|
1319
|
+
self.file,
|
|
1320
|
+
self.args.conf,
|
|
1321
|
+
self.args.iou,
|
|
1322
|
+
self.args.max_det,
|
|
1323
|
+
metadata=self.metadata,
|
|
1324
|
+
dataset=self.get_int8_calibration_dataloader(prefix),
|
|
1325
|
+
prefix=prefix,
|
|
1326
|
+
)
|
|
1327
|
+
|
|
1328
|
+
def _add_tflite_metadata(self, file):
|
|
1329
|
+
"""Add metadata to *.tflite models per https://ai.google.dev/edge/litert/models/metadata."""
|
|
1330
|
+
import zipfile
|
|
1331
|
+
|
|
1332
|
+
with zipfile.ZipFile(file, "a", zipfile.ZIP_DEFLATED) as zf:
|
|
1333
|
+
zf.writestr("metadata.json", json.dumps(self.metadata, indent=2))
|
|
1334
|
+
|
|
1335
|
+
def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
|
|
1336
|
+
"""Create CoreML pipeline with NMS for YOLO detection models."""
|
|
1337
|
+
import coremltools as ct
|
|
1338
|
+
|
|
1339
|
+
LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
|
|
1340
|
+
|
|
1341
|
+
# Output shapes
|
|
1342
|
+
spec = model.get_spec()
|
|
1343
|
+
outs = list(iter(spec.description.output))
|
|
1344
|
+
if self.args.format == "mlmodel": # mlmodel doesn't infer shapes automatically
|
|
1345
|
+
outs[0].type.multiArrayType.shape[:] = self.output_shape[2], self.output_shape[1] - 4
|
|
1346
|
+
outs[1].type.multiArrayType.shape[:] = self.output_shape[2], 4
|
|
1347
|
+
|
|
1348
|
+
# Checks
|
|
1349
|
+
names = self.metadata["names"]
|
|
1350
|
+
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
|
|
1351
|
+
nc = outs[0].type.multiArrayType.shape[-1]
|
|
1352
|
+
if len(names) != nc: # Hack fix for MLProgram NMS bug https://github.com/ultralytics/ultralytics/issues/22309
|
|
1353
|
+
names = {**names, **{i: str(i) for i in range(len(names), nc)}}
|
|
1354
|
+
|
|
1355
|
+
# Model from spec
|
|
1356
|
+
model = ct.models.MLModel(spec, weights_dir=weights_dir)
|
|
1357
|
+
|
|
1358
|
+
# Create NMS protobuf
|
|
1359
|
+
nms_spec = ct.proto.Model_pb2.Model()
|
|
1360
|
+
nms_spec.specificationVersion = spec.specificationVersion
|
|
1361
|
+
for i in range(len(outs)):
|
|
1362
|
+
decoder_output = model._spec.description.output[i].SerializeToString()
|
|
1363
|
+
nms_spec.description.input.add()
|
|
1364
|
+
nms_spec.description.input[i].ParseFromString(decoder_output)
|
|
1365
|
+
nms_spec.description.output.add()
|
|
1366
|
+
nms_spec.description.output[i].ParseFromString(decoder_output)
|
|
1367
|
+
|
|
1368
|
+
output_names = ["confidence", "coordinates"]
|
|
1369
|
+
for i, name in enumerate(output_names):
|
|
1370
|
+
nms_spec.description.output[i].name = name
|
|
1371
|
+
|
|
1372
|
+
for i, out in enumerate(outs):
|
|
1373
|
+
ma_type = nms_spec.description.output[i].type.multiArrayType
|
|
1374
|
+
ma_type.shapeRange.sizeRanges.add()
|
|
1375
|
+
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
|
|
1376
|
+
ma_type.shapeRange.sizeRanges[0].upperBound = -1
|
|
1377
|
+
ma_type.shapeRange.sizeRanges.add()
|
|
1378
|
+
ma_type.shapeRange.sizeRanges[1].lowerBound = out.type.multiArrayType.shape[-1]
|
|
1379
|
+
ma_type.shapeRange.sizeRanges[1].upperBound = out.type.multiArrayType.shape[-1]
|
|
1380
|
+
del ma_type.shape[:]
|
|
1381
|
+
|
|
1382
|
+
nms = nms_spec.nonMaximumSuppression
|
|
1383
|
+
nms.confidenceInputFeatureName = outs[0].name # 1x507x80
|
|
1384
|
+
nms.coordinatesInputFeatureName = outs[1].name # 1x507x4
|
|
1385
|
+
nms.confidenceOutputFeatureName = output_names[0]
|
|
1386
|
+
nms.coordinatesOutputFeatureName = output_names[1]
|
|
1387
|
+
nms.iouThresholdInputFeatureName = "iouThreshold"
|
|
1388
|
+
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
|
|
1389
|
+
nms.iouThreshold = self.args.iou
|
|
1390
|
+
nms.confidenceThreshold = self.args.conf
|
|
1391
|
+
nms.pickTop.perClass = True
|
|
1392
|
+
nms.stringClassLabels.vector.extend(names.values())
|
|
1393
|
+
nms_model = ct.models.MLModel(nms_spec)
|
|
1394
|
+
|
|
1395
|
+
# Pipeline models together
|
|
1396
|
+
pipeline = ct.models.pipeline.Pipeline(
|
|
1397
|
+
input_features=[
|
|
1398
|
+
("image", ct.models.datatypes.Array(3, ny, nx)),
|
|
1399
|
+
("iouThreshold", ct.models.datatypes.Double()),
|
|
1400
|
+
("confidenceThreshold", ct.models.datatypes.Double()),
|
|
1401
|
+
],
|
|
1402
|
+
output_features=output_names,
|
|
1403
|
+
)
|
|
1404
|
+
pipeline.add_model(model)
|
|
1405
|
+
pipeline.add_model(nms_model)
|
|
1406
|
+
|
|
1407
|
+
# Correct datatypes
|
|
1408
|
+
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
|
|
1409
|
+
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
|
1410
|
+
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
|
1411
|
+
|
|
1412
|
+
# Update metadata
|
|
1413
|
+
pipeline.spec.specificationVersion = spec.specificationVersion
|
|
1414
|
+
pipeline.spec.description.metadata.userDefined.update(
|
|
1415
|
+
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
|
|
1416
|
+
)
|
|
1417
|
+
|
|
1418
|
+
# Save the model
|
|
1419
|
+
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
|
|
1420
|
+
model.input_description["image"] = "Input image"
|
|
1421
|
+
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
|
|
1422
|
+
model.input_description["confidenceThreshold"] = (
|
|
1423
|
+
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
|
|
1424
|
+
)
|
|
1425
|
+
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
|
|
1426
|
+
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
|
|
1427
|
+
LOGGER.info(f"{prefix} pipeline success")
|
|
1428
|
+
return model
|
|
1429
|
+
|
|
1430
|
+
@staticmethod
|
|
1431
|
+
def _transform_fn(data_item) -> np.ndarray:
|
|
1432
|
+
"""The transformation function for Axelera/OpenVINO quantization preprocessing."""
|
|
1433
|
+
data_item: torch.Tensor = data_item["img"] if isinstance(data_item, dict) else data_item
|
|
1434
|
+
assert data_item.dtype == torch.uint8, "Input image must be uint8 for the quantization preprocessing"
|
|
1435
|
+
im = data_item.numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0
|
|
1436
|
+
return im[None] if im.ndim == 3 else im
|
|
1437
|
+
|
|
1438
|
+
def add_callback(self, event: str, callback):
|
|
1439
|
+
"""Append the given callback to the specified event."""
|
|
1440
|
+
self.callbacks[event].append(callback)
|
|
1441
|
+
|
|
1442
|
+
def run_callbacks(self, event: str):
|
|
1443
|
+
"""Execute all callbacks for a given event."""
|
|
1444
|
+
for callback in self.callbacks.get(event, []):
|
|
1445
|
+
callback(self)
|
|
1446
|
+
|
|
1447
|
+
|
|
1448
|
+
class IOSDetectModel(torch.nn.Module):
|
|
1449
|
+
"""Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
|
|
1450
|
+
|
|
1451
|
+
def __init__(self, model, im, mlprogram=True):
|
|
1452
|
+
"""Initialize the IOSDetectModel class with a YOLO model and example image.
|
|
1453
|
+
|
|
1454
|
+
Args:
|
|
1455
|
+
model (torch.nn.Module): The YOLO model to wrap.
|
|
1456
|
+
im (torch.Tensor): Example input tensor with shape (B, C, H, W).
|
|
1457
|
+
mlprogram (bool): Whether exporting to MLProgram format to fix NMS bug.
|
|
1458
|
+
"""
|
|
1459
|
+
super().__init__()
|
|
1460
|
+
_, _, h, w = im.shape # batch, channel, height, width
|
|
1461
|
+
self.model = model
|
|
1462
|
+
self.nc = len(model.names) # number of classes
|
|
1463
|
+
self.mlprogram = mlprogram
|
|
1464
|
+
if w == h:
|
|
1465
|
+
self.normalize = 1.0 / w # scalar
|
|
1466
|
+
else:
|
|
1467
|
+
self.normalize = torch.tensor(
|
|
1468
|
+
[1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h], # broadcast (slower, smaller)
|
|
1469
|
+
device=next(model.parameters()).device,
|
|
1470
|
+
)
|
|
1471
|
+
|
|
1472
|
+
def forward(self, x):
|
|
1473
|
+
"""Normalize predictions of object detection model with input size-dependent factors."""
|
|
1474
|
+
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
|
|
1475
|
+
if self.mlprogram and self.nc % 80 != 0: # NMS bug https://github.com/ultralytics/ultralytics/issues/22309
|
|
1476
|
+
pad_length = int(((self.nc + 79) // 80) * 80) - self.nc # pad class length to multiple of 80
|
|
1477
|
+
cls = torch.nn.functional.pad(cls, (0, pad_length, 0, 0), "constant", 0)
|
|
1478
|
+
|
|
1479
|
+
return cls, xywh * self.normalize
|
|
1480
|
+
|
|
1481
|
+
|
|
1482
|
+
class NMSModel(torch.nn.Module):
|
|
1483
|
+
"""Model wrapper with embedded NMS for Detect, Segment, Pose and OBB."""
|
|
1484
|
+
|
|
1485
|
+
def __init__(self, model, args):
|
|
1486
|
+
"""Initialize the NMSModel.
|
|
1487
|
+
|
|
1488
|
+
Args:
|
|
1489
|
+
model (torch.nn.Module): The model to wrap with NMS postprocessing.
|
|
1490
|
+
args (Namespace): The export arguments.
|
|
1491
|
+
"""
|
|
1492
|
+
super().__init__()
|
|
1493
|
+
self.model = model
|
|
1494
|
+
self.args = args
|
|
1495
|
+
self.obb = model.task == "obb"
|
|
1496
|
+
self.is_tf = self.args.format in frozenset({"saved_model", "tflite", "tfjs"})
|
|
1497
|
+
|
|
1498
|
+
def forward(self, x):
|
|
1499
|
+
"""Perform inference with NMS post-processing. Supports Detect, Segment, OBB and Pose.
|
|
1500
|
+
|
|
1501
|
+
Args:
|
|
1502
|
+
x (torch.Tensor): The preprocessed tensor with shape (N, 3, H, W).
|
|
1503
|
+
|
|
1504
|
+
Returns:
|
|
1505
|
+
(torch.Tensor): List of detections, each an (N, max_det, 4 + 2 + extra_shape) Tensor where N is the number
|
|
1506
|
+
of detections after NMS.
|
|
1507
|
+
"""
|
|
1508
|
+
from functools import partial
|
|
1509
|
+
|
|
1510
|
+
from torchvision.ops import nms
|
|
1511
|
+
|
|
1512
|
+
preds = self.model(x)
|
|
1513
|
+
pred = preds[0] if isinstance(preds, tuple) else preds
|
|
1514
|
+
kwargs = dict(device=pred.device, dtype=pred.dtype)
|
|
1515
|
+
bs = pred.shape[0]
|
|
1516
|
+
pred = pred.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
|
|
1517
|
+
extra_shape = pred.shape[-1] - (4 + len(self.model.names)) # extras from Segment, OBB, Pose
|
|
1518
|
+
if self.args.dynamic and self.args.batch > 1: # batch size needs to always be same due to loop unroll
|
|
1519
|
+
pad = torch.zeros(torch.max(torch.tensor(self.args.batch - bs), torch.tensor(0)), *pred.shape[1:], **kwargs)
|
|
1520
|
+
pred = torch.cat((pred, pad))
|
|
1521
|
+
boxes, scores, extras = pred.split([4, len(self.model.names), extra_shape], dim=2)
|
|
1522
|
+
scores, classes = scores.max(dim=-1)
|
|
1523
|
+
self.args.max_det = min(pred.shape[1], self.args.max_det) # in case num_anchors < max_det
|
|
1524
|
+
# (N, max_det, 4 coords + 1 class score + 1 class label + extra_shape).
|
|
1525
|
+
out = torch.zeros(pred.shape[0], self.args.max_det, boxes.shape[-1] + 2 + extra_shape, **kwargs)
|
|
1526
|
+
for i in range(bs):
|
|
1527
|
+
box, cls, score, extra = boxes[i], classes[i], scores[i], extras[i]
|
|
1528
|
+
mask = score > self.args.conf
|
|
1529
|
+
if self.is_tf or (self.args.format == "onnx" and self.obb):
|
|
1530
|
+
# TFLite GatherND error if mask is empty
|
|
1531
|
+
score *= mask
|
|
1532
|
+
# Explicit length otherwise reshape error, hardcoded to `self.args.max_det * 5`
|
|
1533
|
+
mask = score.topk(min(self.args.max_det * 5, score.shape[0])).indices
|
|
1534
|
+
box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
|
|
1535
|
+
nmsbox = box.clone()
|
|
1536
|
+
# `8` is the minimum value experimented to get correct NMS results for obb
|
|
1537
|
+
multiplier = 8 if self.obb else 1 / max(len(self.model.names), 1)
|
|
1538
|
+
# Normalize boxes for NMS since large values for class offset causes issue with int8 quantization
|
|
1539
|
+
if self.args.format == "tflite": # TFLite is already normalized
|
|
1540
|
+
nmsbox *= multiplier
|
|
1541
|
+
else:
|
|
1542
|
+
nmsbox = multiplier * (nmsbox / torch.tensor(x.shape[2:], **kwargs).max())
|
|
1543
|
+
if not self.args.agnostic_nms: # class-wise NMS
|
|
1544
|
+
end = 2 if self.obb else 4
|
|
1545
|
+
# fully explicit expansion otherwise reshape error
|
|
1546
|
+
cls_offset = cls.view(cls.shape[0], 1).expand(cls.shape[0], end)
|
|
1547
|
+
offbox = nmsbox[:, :end] + cls_offset * multiplier
|
|
1548
|
+
nmsbox = torch.cat((offbox, nmsbox[:, end:]), dim=-1)
|
|
1549
|
+
nms_fn = (
|
|
1550
|
+
partial(
|
|
1551
|
+
TorchNMS.fast_nms,
|
|
1552
|
+
use_triu=not (
|
|
1553
|
+
self.is_tf
|
|
1554
|
+
or (self.args.opset or 14) < 14
|
|
1555
|
+
or (self.args.format == "openvino" and self.args.int8) # OpenVINO int8 error with triu
|
|
1556
|
+
),
|
|
1557
|
+
iou_func=batch_probiou,
|
|
1558
|
+
exit_early=False,
|
|
1559
|
+
)
|
|
1560
|
+
if self.obb
|
|
1561
|
+
else nms
|
|
1562
|
+
)
|
|
1563
|
+
keep = nms_fn(
|
|
1564
|
+
torch.cat([nmsbox, extra], dim=-1) if self.obb else nmsbox,
|
|
1565
|
+
score,
|
|
1566
|
+
self.args.iou,
|
|
1567
|
+
)[: self.args.max_det]
|
|
1568
|
+
dets = torch.cat(
|
|
1569
|
+
[box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1
|
|
1570
|
+
)
|
|
1571
|
+
# Zero-pad to max_det size to avoid reshape error
|
|
1572
|
+
pad = (0, 0, 0, self.args.max_det - dets.shape[0])
|
|
1573
|
+
out[i] = torch.nn.functional.pad(dets, pad)
|
|
1574
|
+
return (out[:bs], preds[1]) if self.model.task == "segment" else out[:bs]
|