transformers 5.0.0rc2__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +11 -37
- transformers/activations.py +2 -2
- transformers/audio_utils.py +32 -32
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +26 -126
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +13 -10
- transformers/cli/transformers.py +2 -1
- transformers/configuration_utils.py +22 -92
- transformers/conversion_mapping.py +150 -26
- transformers/convert_slow_tokenizer.py +9 -12
- transformers/core_model_loading.py +217 -129
- transformers/data/processors/glue.py +0 -1
- transformers/data/processors/utils.py +0 -1
- transformers/data/processors/xnli.py +0 -1
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +10 -11
- transformers/distributed/configuration_utils.py +1 -2
- transformers/dynamic_module_utils.py +23 -23
- transformers/feature_extraction_sequence_utils.py +19 -23
- transformers/feature_extraction_utils.py +14 -14
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +2 -4
- transformers/generation/configuration_utils.py +54 -39
- transformers/generation/continuous_batching/__init__.py +0 -1
- transformers/generation/continuous_batching/cache.py +74 -44
- transformers/generation/continuous_batching/cache_manager.py +28 -28
- transformers/generation/continuous_batching/continuous_api.py +133 -414
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +77 -19
- transformers/generation/continuous_batching/scheduler.py +154 -104
- transformers/generation/logits_process.py +10 -133
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/streamers.py +0 -1
- transformers/generation/utils.py +91 -121
- transformers/generation/watermarking.py +2 -3
- transformers/hf_argparser.py +9 -13
- transformers/hyperparameter_search.py +1 -2
- transformers/image_processing_base.py +9 -9
- transformers/image_processing_utils.py +11 -15
- transformers/image_processing_utils_fast.py +70 -71
- transformers/image_transforms.py +73 -42
- transformers/image_utils.py +30 -37
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/awq.py +1 -3
- transformers/integrations/deepspeed.py +146 -4
- transformers/integrations/eetq.py +0 -1
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/fbgemm_fp8.py +1 -2
- transformers/integrations/finegrained_fp8.py +149 -13
- transformers/integrations/flash_attention.py +3 -8
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +4 -6
- transformers/integrations/ggml.py +0 -1
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/integration_utils.py +2 -3
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +52 -40
- transformers/integrations/peft.py +488 -176
- transformers/integrations/quark.py +2 -4
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/integrations/torchao.py +4 -6
- transformers/loss/loss_lw_detr.py +356 -0
- transformers/loss/loss_utils.py +2 -0
- transformers/masking_utils.py +199 -59
- transformers/model_debugging_utils.py +4 -5
- transformers/modelcard.py +14 -192
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +28 -29
- transformers/modeling_gguf_pytorch_utils.py +5 -5
- transformers/modeling_layers.py +21 -22
- transformers/modeling_outputs.py +242 -253
- transformers/modeling_rope_utils.py +32 -32
- transformers/modeling_utils.py +416 -438
- transformers/models/__init__.py +10 -0
- transformers/models/afmoe/configuration_afmoe.py +40 -33
- transformers/models/afmoe/modeling_afmoe.py +38 -41
- transformers/models/afmoe/modular_afmoe.py +23 -25
- transformers/models/aimv2/configuration_aimv2.py +2 -10
- transformers/models/aimv2/modeling_aimv2.py +46 -45
- transformers/models/aimv2/modular_aimv2.py +13 -19
- transformers/models/albert/configuration_albert.py +8 -2
- transformers/models/albert/modeling_albert.py +70 -72
- transformers/models/albert/tokenization_albert.py +1 -4
- transformers/models/align/configuration_align.py +8 -6
- transformers/models/align/modeling_align.py +83 -86
- transformers/models/align/processing_align.py +2 -30
- transformers/models/altclip/configuration_altclip.py +4 -7
- transformers/models/altclip/modeling_altclip.py +106 -103
- transformers/models/altclip/processing_altclip.py +2 -15
- transformers/models/apertus/__init__.py +0 -1
- transformers/models/apertus/configuration_apertus.py +23 -28
- transformers/models/apertus/modeling_apertus.py +35 -38
- transformers/models/apertus/modular_apertus.py +36 -40
- transformers/models/arcee/configuration_arcee.py +25 -30
- transformers/models/arcee/modeling_arcee.py +35 -38
- transformers/models/arcee/modular_arcee.py +20 -23
- transformers/models/aria/configuration_aria.py +31 -44
- transformers/models/aria/image_processing_aria.py +25 -27
- transformers/models/aria/modeling_aria.py +102 -102
- transformers/models/aria/modular_aria.py +111 -124
- transformers/models/aria/processing_aria.py +28 -35
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +9 -11
- transformers/models/audioflamingo3/__init__.py +0 -1
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +60 -52
- transformers/models/audioflamingo3/modular_audioflamingo3.py +52 -43
- transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
- transformers/models/auto/auto_factory.py +12 -11
- transformers/models/auto/configuration_auto.py +48 -5
- transformers/models/auto/feature_extraction_auto.py +5 -7
- transformers/models/auto/image_processing_auto.py +30 -39
- transformers/models/auto/modeling_auto.py +33 -199
- transformers/models/auto/processing_auto.py +11 -19
- transformers/models/auto/tokenization_auto.py +38 -37
- transformers/models/auto/video_processing_auto.py +7 -8
- transformers/models/autoformer/configuration_autoformer.py +4 -7
- transformers/models/autoformer/modeling_autoformer.py +100 -101
- transformers/models/aya_vision/configuration_aya_vision.py +4 -1
- transformers/models/aya_vision/modeling_aya_vision.py +64 -99
- transformers/models/aya_vision/modular_aya_vision.py +46 -74
- transformers/models/aya_vision/processing_aya_vision.py +25 -53
- transformers/models/bamba/configuration_bamba.py +46 -39
- transformers/models/bamba/modeling_bamba.py +83 -119
- transformers/models/bamba/modular_bamba.py +70 -109
- transformers/models/bark/configuration_bark.py +6 -8
- transformers/models/bark/generation_configuration_bark.py +3 -5
- transformers/models/bark/modeling_bark.py +64 -65
- transformers/models/bark/processing_bark.py +19 -41
- transformers/models/bart/configuration_bart.py +9 -5
- transformers/models/bart/modeling_bart.py +124 -129
- transformers/models/barthez/tokenization_barthez.py +1 -4
- transformers/models/bartpho/tokenization_bartpho.py +6 -7
- transformers/models/beit/configuration_beit.py +2 -15
- transformers/models/beit/image_processing_beit.py +53 -56
- transformers/models/beit/image_processing_beit_fast.py +11 -12
- transformers/models/beit/modeling_beit.py +65 -62
- transformers/models/bert/configuration_bert.py +12 -2
- transformers/models/bert/modeling_bert.py +117 -152
- transformers/models/bert/tokenization_bert.py +2 -4
- transformers/models/bert/tokenization_bert_legacy.py +3 -5
- transformers/models/bert_generation/configuration_bert_generation.py +17 -2
- transformers/models/bert_generation/modeling_bert_generation.py +53 -55
- transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
- transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
- transformers/models/bertweet/tokenization_bertweet.py +1 -3
- transformers/models/big_bird/configuration_big_bird.py +12 -9
- transformers/models/big_bird/modeling_big_bird.py +107 -124
- transformers/models/big_bird/tokenization_big_bird.py +1 -4
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +118 -118
- transformers/models/biogpt/configuration_biogpt.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +73 -79
- transformers/models/biogpt/modular_biogpt.py +60 -66
- transformers/models/biogpt/tokenization_biogpt.py +3 -5
- transformers/models/bit/configuration_bit.py +2 -5
- transformers/models/bit/image_processing_bit.py +21 -24
- transformers/models/bit/image_processing_bit_fast.py +0 -1
- transformers/models/bit/modeling_bit.py +15 -16
- transformers/models/bitnet/configuration_bitnet.py +23 -28
- transformers/models/bitnet/modeling_bitnet.py +34 -38
- transformers/models/bitnet/modular_bitnet.py +7 -10
- transformers/models/blenderbot/configuration_blenderbot.py +8 -5
- transformers/models/blenderbot/modeling_blenderbot.py +68 -99
- transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -5
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +70 -72
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
- transformers/models/blip/configuration_blip.py +9 -10
- transformers/models/blip/image_processing_blip.py +17 -20
- transformers/models/blip/image_processing_blip_fast.py +0 -1
- transformers/models/blip/modeling_blip.py +115 -108
- transformers/models/blip/modeling_blip_text.py +63 -65
- transformers/models/blip/processing_blip.py +5 -36
- transformers/models/blip_2/configuration_blip_2.py +2 -2
- transformers/models/blip_2/modeling_blip_2.py +145 -121
- transformers/models/blip_2/processing_blip_2.py +8 -38
- transformers/models/bloom/configuration_bloom.py +5 -2
- transformers/models/bloom/modeling_bloom.py +60 -60
- transformers/models/blt/configuration_blt.py +94 -86
- transformers/models/blt/modeling_blt.py +93 -90
- transformers/models/blt/modular_blt.py +127 -69
- transformers/models/bridgetower/configuration_bridgetower.py +7 -2
- transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +13 -14
- transformers/models/bridgetower/modeling_bridgetower.py +136 -124
- transformers/models/bridgetower/processing_bridgetower.py +2 -16
- transformers/models/bros/configuration_bros.py +24 -18
- transformers/models/bros/modeling_bros.py +78 -80
- transformers/models/bros/processing_bros.py +2 -12
- transformers/models/byt5/tokenization_byt5.py +4 -6
- transformers/models/camembert/configuration_camembert.py +8 -2
- transformers/models/camembert/modeling_camembert.py +97 -99
- transformers/models/camembert/modular_camembert.py +51 -54
- transformers/models/camembert/tokenization_camembert.py +1 -4
- transformers/models/canine/configuration_canine.py +4 -2
- transformers/models/canine/modeling_canine.py +73 -75
- transformers/models/canine/tokenization_canine.py +0 -1
- transformers/models/chameleon/configuration_chameleon.py +29 -34
- transformers/models/chameleon/image_processing_chameleon.py +21 -24
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -6
- transformers/models/chameleon/modeling_chameleon.py +135 -92
- transformers/models/chameleon/processing_chameleon.py +16 -41
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -8
- transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +93 -95
- transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
- transformers/models/clap/configuration_clap.py +4 -9
- transformers/models/clap/feature_extraction_clap.py +9 -10
- transformers/models/clap/modeling_clap.py +109 -111
- transformers/models/clap/processing_clap.py +2 -15
- transformers/models/clip/configuration_clip.py +4 -2
- transformers/models/clip/image_processing_clip.py +21 -24
- transformers/models/clip/image_processing_clip_fast.py +9 -1
- transformers/models/clip/modeling_clip.py +70 -68
- transformers/models/clip/processing_clip.py +2 -14
- transformers/models/clip/tokenization_clip.py +2 -5
- transformers/models/clipseg/configuration_clipseg.py +4 -2
- transformers/models/clipseg/modeling_clipseg.py +113 -112
- transformers/models/clipseg/processing_clipseg.py +19 -42
- transformers/models/clvp/configuration_clvp.py +15 -5
- transformers/models/clvp/feature_extraction_clvp.py +7 -10
- transformers/models/clvp/modeling_clvp.py +138 -145
- transformers/models/clvp/number_normalizer.py +1 -2
- transformers/models/clvp/processing_clvp.py +3 -20
- transformers/models/clvp/tokenization_clvp.py +0 -1
- transformers/models/code_llama/tokenization_code_llama.py +3 -6
- transformers/models/codegen/configuration_codegen.py +4 -4
- transformers/models/codegen/modeling_codegen.py +50 -49
- transformers/models/codegen/tokenization_codegen.py +5 -6
- transformers/models/cohere/configuration_cohere.py +25 -30
- transformers/models/cohere/modeling_cohere.py +39 -42
- transformers/models/cohere/modular_cohere.py +27 -31
- transformers/models/cohere/tokenization_cohere.py +5 -6
- transformers/models/cohere2/configuration_cohere2.py +27 -32
- transformers/models/cohere2/modeling_cohere2.py +38 -41
- transformers/models/cohere2/modular_cohere2.py +48 -52
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +9 -10
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +52 -55
- transformers/models/cohere2_vision/modular_cohere2_vision.py +41 -43
- transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
- transformers/models/colpali/configuration_colpali.py +0 -1
- transformers/models/colpali/modeling_colpali.py +14 -16
- transformers/models/colpali/modular_colpali.py +11 -51
- transformers/models/colpali/processing_colpali.py +14 -52
- transformers/models/colqwen2/modeling_colqwen2.py +27 -28
- transformers/models/colqwen2/modular_colqwen2.py +36 -74
- transformers/models/colqwen2/processing_colqwen2.py +16 -52
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -47
- transformers/models/conditional_detr/image_processing_conditional_detr.py +67 -70
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +50 -36
- transformers/models/conditional_detr/modeling_conditional_detr.py +851 -1001
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -5
- transformers/models/convbert/configuration_convbert.py +11 -8
- transformers/models/convbert/modeling_convbert.py +85 -87
- transformers/models/convbert/tokenization_convbert.py +0 -1
- transformers/models/convnext/configuration_convnext.py +2 -5
- transformers/models/convnext/image_processing_convnext.py +18 -21
- transformers/models/convnext/image_processing_convnext_fast.py +7 -8
- transformers/models/convnext/modeling_convnext.py +12 -14
- transformers/models/convnextv2/configuration_convnextv2.py +2 -5
- transformers/models/convnextv2/modeling_convnextv2.py +12 -14
- transformers/models/cpm/tokenization_cpm.py +6 -7
- transformers/models/cpm/tokenization_cpm_fast.py +3 -5
- transformers/models/cpmant/configuration_cpmant.py +4 -1
- transformers/models/cpmant/modeling_cpmant.py +38 -40
- transformers/models/cpmant/tokenization_cpmant.py +1 -3
- transformers/models/csm/configuration_csm.py +58 -66
- transformers/models/csm/generation_csm.py +13 -14
- transformers/models/csm/modeling_csm.py +81 -84
- transformers/models/csm/modular_csm.py +56 -58
- transformers/models/csm/processing_csm.py +25 -68
- transformers/models/ctrl/configuration_ctrl.py +16 -1
- transformers/models/ctrl/modeling_ctrl.py +51 -66
- transformers/models/ctrl/tokenization_ctrl.py +0 -1
- transformers/models/cvt/configuration_cvt.py +0 -1
- transformers/models/cvt/modeling_cvt.py +13 -15
- transformers/models/cwm/__init__.py +0 -1
- transformers/models/cwm/configuration_cwm.py +8 -12
- transformers/models/cwm/modeling_cwm.py +36 -38
- transformers/models/cwm/modular_cwm.py +10 -12
- transformers/models/d_fine/configuration_d_fine.py +10 -57
- transformers/models/d_fine/modeling_d_fine.py +786 -927
- transformers/models/d_fine/modular_d_fine.py +339 -417
- transformers/models/dab_detr/configuration_dab_detr.py +22 -49
- transformers/models/dab_detr/modeling_dab_detr.py +79 -77
- transformers/models/dac/configuration_dac.py +0 -1
- transformers/models/dac/feature_extraction_dac.py +6 -9
- transformers/models/dac/modeling_dac.py +22 -24
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -2
- transformers/models/data2vec/configuration_data2vec_text.py +11 -3
- transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
- transformers/models/data2vec/modeling_data2vec_audio.py +55 -59
- transformers/models/data2vec/modeling_data2vec_text.py +97 -99
- transformers/models/data2vec/modeling_data2vec_vision.py +45 -44
- transformers/models/data2vec/modular_data2vec_audio.py +6 -1
- transformers/models/data2vec/modular_data2vec_text.py +51 -54
- transformers/models/dbrx/configuration_dbrx.py +29 -22
- transformers/models/dbrx/modeling_dbrx.py +45 -48
- transformers/models/dbrx/modular_dbrx.py +37 -39
- transformers/models/deberta/configuration_deberta.py +6 -1
- transformers/models/deberta/modeling_deberta.py +57 -60
- transformers/models/deberta/tokenization_deberta.py +2 -5
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -1
- transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
- transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -2
- transformers/models/decision_transformer/modeling_decision_transformer.py +51 -53
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +41 -47
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -41
- transformers/models/deepseek_v2/modular_deepseek_v2.py +48 -52
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +42 -48
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +38 -40
- transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -10
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +6 -3
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +27 -28
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +12 -11
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -43
- transformers/models/deepseek_vl/modular_deepseek_vl.py +15 -43
- transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +7 -5
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +37 -37
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +22 -22
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +100 -56
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +141 -109
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -46
- transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +42 -28
- transformers/models/deformable_detr/modeling_deformable_detr.py +454 -652
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -5
- transformers/models/deit/configuration_deit.py +0 -1
- transformers/models/deit/image_processing_deit.py +18 -21
- transformers/models/deit/image_processing_deit_fast.py +0 -1
- transformers/models/deit/modeling_deit.py +27 -25
- transformers/models/depth_anything/configuration_depth_anything.py +12 -43
- transformers/models/depth_anything/modeling_depth_anything.py +10 -11
- transformers/models/depth_pro/configuration_depth_pro.py +0 -1
- transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +8 -9
- transformers/models/depth_pro/modeling_depth_pro.py +29 -27
- transformers/models/detr/configuration_detr.py +18 -50
- transformers/models/detr/image_processing_detr.py +64 -66
- transformers/models/detr/image_processing_detr_fast.py +33 -34
- transformers/models/detr/modeling_detr.py +748 -789
- transformers/models/dia/configuration_dia.py +9 -15
- transformers/models/dia/feature_extraction_dia.py +6 -9
- transformers/models/dia/generation_dia.py +48 -53
- transformers/models/dia/modeling_dia.py +68 -71
- transformers/models/dia/modular_dia.py +56 -58
- transformers/models/dia/processing_dia.py +39 -29
- transformers/models/dia/tokenization_dia.py +3 -6
- transformers/models/diffllama/configuration_diffllama.py +25 -30
- transformers/models/diffllama/modeling_diffllama.py +45 -53
- transformers/models/diffllama/modular_diffllama.py +18 -25
- transformers/models/dinat/configuration_dinat.py +2 -5
- transformers/models/dinat/modeling_dinat.py +47 -48
- transformers/models/dinov2/configuration_dinov2.py +2 -5
- transformers/models/dinov2/modeling_dinov2.py +20 -21
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +3 -5
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +21 -21
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +11 -14
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +6 -11
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +5 -9
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +7 -12
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +7 -8
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +19 -22
- transformers/models/dinov3_vit/modular_dinov3_vit.py +16 -19
- transformers/models/distilbert/configuration_distilbert.py +8 -2
- transformers/models/distilbert/modeling_distilbert.py +47 -49
- transformers/models/distilbert/tokenization_distilbert.py +0 -1
- transformers/models/doge/__init__.py +0 -1
- transformers/models/doge/configuration_doge.py +42 -35
- transformers/models/doge/modeling_doge.py +46 -49
- transformers/models/doge/modular_doge.py +77 -68
- transformers/models/donut/configuration_donut_swin.py +0 -1
- transformers/models/donut/image_processing_donut.py +26 -29
- transformers/models/donut/image_processing_donut_fast.py +9 -14
- transformers/models/donut/modeling_donut_swin.py +44 -46
- transformers/models/donut/processing_donut.py +5 -26
- transformers/models/dots1/configuration_dots1.py +43 -36
- transformers/models/dots1/modeling_dots1.py +35 -38
- transformers/models/dots1/modular_dots1.py +0 -1
- transformers/models/dpr/configuration_dpr.py +19 -2
- transformers/models/dpr/modeling_dpr.py +37 -39
- transformers/models/dpr/tokenization_dpr.py +7 -9
- transformers/models/dpr/tokenization_dpr_fast.py +7 -9
- transformers/models/dpt/configuration_dpt.py +23 -66
- transformers/models/dpt/image_processing_dpt.py +65 -66
- transformers/models/dpt/image_processing_dpt_fast.py +18 -19
- transformers/models/dpt/modeling_dpt.py +38 -36
- transformers/models/dpt/modular_dpt.py +14 -15
- transformers/models/edgetam/configuration_edgetam.py +1 -2
- transformers/models/edgetam/modeling_edgetam.py +87 -89
- transformers/models/edgetam/modular_edgetam.py +7 -13
- transformers/models/edgetam_video/__init__.py +0 -1
- transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +126 -128
- transformers/models/edgetam_video/modular_edgetam_video.py +25 -27
- transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
- transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +8 -7
- transformers/models/efficientloftr/modeling_efficientloftr.py +46 -38
- transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
- transformers/models/efficientnet/configuration_efficientnet.py +0 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +16 -17
- transformers/models/efficientnet/modeling_efficientnet.py +12 -14
- transformers/models/electra/configuration_electra.py +13 -3
- transformers/models/electra/modeling_electra.py +107 -109
- transformers/models/emu3/configuration_emu3.py +17 -17
- transformers/models/emu3/image_processing_emu3.py +44 -39
- transformers/models/emu3/modeling_emu3.py +143 -109
- transformers/models/emu3/modular_emu3.py +109 -73
- transformers/models/emu3/processing_emu3.py +18 -43
- transformers/models/encodec/configuration_encodec.py +2 -4
- transformers/models/encodec/feature_extraction_encodec.py +10 -13
- transformers/models/encodec/modeling_encodec.py +25 -29
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -2
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +37 -43
- transformers/models/eomt/configuration_eomt.py +12 -14
- transformers/models/eomt/image_processing_eomt.py +53 -55
- transformers/models/eomt/image_processing_eomt_fast.py +18 -19
- transformers/models/eomt/modeling_eomt.py +19 -21
- transformers/models/eomt/modular_eomt.py +28 -30
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -3
- transformers/models/ernie/modeling_ernie.py +127 -162
- transformers/models/ernie/modular_ernie.py +91 -103
- transformers/models/ernie4_5/configuration_ernie4_5.py +23 -27
- transformers/models/ernie4_5/modeling_ernie4_5.py +35 -37
- transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +34 -39
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +40 -42
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -7
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +305 -267
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +163 -142
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
- transformers/models/esm/configuration_esm.py +11 -15
- transformers/models/esm/modeling_esm.py +35 -37
- transformers/models/esm/modeling_esmfold.py +43 -50
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +1 -2
- transformers/models/esm/openfold_utils/protein.py +15 -16
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +2 -4
- transformers/models/evolla/configuration_evolla.py +50 -40
- transformers/models/evolla/modeling_evolla.py +69 -68
- transformers/models/evolla/modular_evolla.py +50 -48
- transformers/models/evolla/processing_evolla.py +23 -35
- transformers/models/exaone4/configuration_exaone4.py +27 -27
- transformers/models/exaone4/modeling_exaone4.py +36 -39
- transformers/models/exaone4/modular_exaone4.py +51 -50
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +31 -26
- transformers/models/falcon/modeling_falcon.py +76 -84
- transformers/models/falcon_h1/configuration_falcon_h1.py +57 -51
- transformers/models/falcon_h1/modeling_falcon_h1.py +74 -109
- transformers/models/falcon_h1/modular_falcon_h1.py +68 -100
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +64 -73
- transformers/models/falcon_mamba/modular_falcon_mamba.py +14 -13
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +70 -97
- transformers/models/fast_vlm/modular_fast_vlm.py +148 -38
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -6
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
- transformers/models/flaubert/configuration_flaubert.py +10 -5
- transformers/models/flaubert/modeling_flaubert.py +125 -129
- transformers/models/flaubert/tokenization_flaubert.py +3 -5
- transformers/models/flava/configuration_flava.py +9 -9
- transformers/models/flava/image_processing_flava.py +66 -67
- transformers/models/flava/image_processing_flava_fast.py +46 -47
- transformers/models/flava/modeling_flava.py +144 -135
- transformers/models/flava/processing_flava.py +2 -12
- transformers/models/flex_olmo/__init__.py +0 -1
- transformers/models/flex_olmo/configuration_flex_olmo.py +34 -39
- transformers/models/flex_olmo/modeling_flex_olmo.py +41 -43
- transformers/models/flex_olmo/modular_flex_olmo.py +46 -51
- transformers/models/florence2/configuration_florence2.py +4 -1
- transformers/models/florence2/modeling_florence2.py +96 -72
- transformers/models/florence2/modular_florence2.py +100 -107
- transformers/models/florence2/processing_florence2.py +18 -47
- transformers/models/fnet/configuration_fnet.py +6 -2
- transformers/models/fnet/modeling_fnet.py +69 -80
- transformers/models/fnet/tokenization_fnet.py +0 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -5
- transformers/models/focalnet/modeling_focalnet.py +49 -48
- transformers/models/fsmt/configuration_fsmt.py +12 -17
- transformers/models/fsmt/modeling_fsmt.py +47 -48
- transformers/models/fsmt/tokenization_fsmt.py +3 -5
- transformers/models/funnel/configuration_funnel.py +8 -1
- transformers/models/funnel/modeling_funnel.py +91 -93
- transformers/models/funnel/tokenization_funnel.py +2 -5
- transformers/models/fuyu/configuration_fuyu.py +28 -34
- transformers/models/fuyu/image_processing_fuyu.py +29 -31
- transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
- transformers/models/fuyu/modeling_fuyu.py +50 -52
- transformers/models/fuyu/processing_fuyu.py +9 -36
- transformers/models/gemma/configuration_gemma.py +25 -30
- transformers/models/gemma/modeling_gemma.py +36 -38
- transformers/models/gemma/modular_gemma.py +33 -36
- transformers/models/gemma/tokenization_gemma.py +3 -6
- transformers/models/gemma2/configuration_gemma2.py +30 -35
- transformers/models/gemma2/modeling_gemma2.py +38 -41
- transformers/models/gemma2/modular_gemma2.py +63 -67
- transformers/models/gemma3/configuration_gemma3.py +53 -48
- transformers/models/gemma3/image_processing_gemma3.py +29 -31
- transformers/models/gemma3/image_processing_gemma3_fast.py +11 -12
- transformers/models/gemma3/modeling_gemma3.py +123 -122
- transformers/models/gemma3/modular_gemma3.py +128 -125
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +42 -30
- transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
- transformers/models/gemma3n/modeling_gemma3n.py +166 -147
- transformers/models/gemma3n/modular_gemma3n.py +176 -148
- transformers/models/gemma3n/processing_gemma3n.py +12 -26
- transformers/models/git/configuration_git.py +5 -8
- transformers/models/git/modeling_git.py +115 -127
- transformers/models/git/processing_git.py +2 -14
- transformers/models/glm/configuration_glm.py +26 -30
- transformers/models/glm/modeling_glm.py +36 -39
- transformers/models/glm/modular_glm.py +4 -7
- transformers/models/glm4/configuration_glm4.py +26 -30
- transformers/models/glm4/modeling_glm4.py +39 -41
- transformers/models/glm4/modular_glm4.py +8 -10
- transformers/models/glm46v/configuration_glm46v.py +4 -1
- transformers/models/glm46v/image_processing_glm46v.py +40 -38
- transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
- transformers/models/glm46v/modeling_glm46v.py +138 -93
- transformers/models/glm46v/modular_glm46v.py +5 -3
- transformers/models/glm46v/processing_glm46v.py +7 -41
- transformers/models/glm46v/video_processing_glm46v.py +9 -11
- transformers/models/glm4_moe/configuration_glm4_moe.py +42 -35
- transformers/models/glm4_moe/modeling_glm4_moe.py +36 -39
- transformers/models/glm4_moe/modular_glm4_moe.py +43 -36
- transformers/models/glm4_moe_lite/__init__.py +28 -0
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +233 -0
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +302 -0
- transformers/models/glm4v/configuration_glm4v.py +25 -24
- transformers/models/glm4v/image_processing_glm4v.py +39 -38
- transformers/models/glm4v/image_processing_glm4v_fast.py +8 -9
- transformers/models/glm4v/modeling_glm4v.py +249 -210
- transformers/models/glm4v/modular_glm4v.py +211 -230
- transformers/models/glm4v/processing_glm4v.py +7 -41
- transformers/models/glm4v/video_processing_glm4v.py +9 -11
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +136 -127
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +348 -356
- transformers/models/glm4v_moe/modular_glm4v_moe.py +76 -174
- transformers/models/glm_image/__init__.py +31 -0
- transformers/models/glm_image/configuration_glm_image.py +358 -0
- transformers/models/glm_image/image_processing_glm_image.py +503 -0
- transformers/models/glm_image/image_processing_glm_image_fast.py +294 -0
- transformers/models/glm_image/modeling_glm_image.py +1691 -0
- transformers/models/glm_image/modular_glm_image.py +1640 -0
- transformers/models/glm_image/processing_glm_image.py +265 -0
- transformers/models/glm_ocr/__init__.py +28 -0
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/__init__.py +0 -1
- transformers/models/glmasr/configuration_glmasr.py +0 -1
- transformers/models/glmasr/modeling_glmasr.py +51 -46
- transformers/models/glmasr/modular_glmasr.py +39 -29
- transformers/models/glmasr/processing_glmasr.py +7 -8
- transformers/models/glpn/configuration_glpn.py +0 -1
- transformers/models/glpn/image_processing_glpn.py +11 -12
- transformers/models/glpn/image_processing_glpn_fast.py +11 -12
- transformers/models/glpn/modeling_glpn.py +14 -14
- transformers/models/got_ocr2/configuration_got_ocr2.py +10 -13
- transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +9 -10
- transformers/models/got_ocr2/modeling_got_ocr2.py +69 -77
- transformers/models/got_ocr2/modular_got_ocr2.py +60 -52
- transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
- transformers/models/gpt2/configuration_gpt2.py +13 -2
- transformers/models/gpt2/modeling_gpt2.py +111 -113
- transformers/models/gpt2/tokenization_gpt2.py +6 -9
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -2
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +78 -84
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -2
- transformers/models/gpt_neo/modeling_gpt_neo.py +66 -71
- transformers/models/gpt_neox/configuration_gpt_neox.py +27 -25
- transformers/models/gpt_neox/modeling_gpt_neox.py +74 -76
- transformers/models/gpt_neox/modular_gpt_neox.py +68 -70
- transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +24 -19
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +43 -46
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
- transformers/models/gpt_oss/configuration_gpt_oss.py +31 -30
- transformers/models/gpt_oss/modeling_gpt_oss.py +80 -114
- transformers/models/gpt_oss/modular_gpt_oss.py +62 -97
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +4 -5
- transformers/models/gptj/modeling_gptj.py +85 -88
- transformers/models/granite/configuration_granite.py +28 -33
- transformers/models/granite/modeling_granite.py +43 -45
- transformers/models/granite/modular_granite.py +29 -31
- transformers/models/granite_speech/configuration_granite_speech.py +0 -1
- transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
- transformers/models/granite_speech/modeling_granite_speech.py +84 -60
- transformers/models/granite_speech/processing_granite_speech.py +11 -4
- transformers/models/granitemoe/configuration_granitemoe.py +31 -36
- transformers/models/granitemoe/modeling_granitemoe.py +39 -41
- transformers/models/granitemoe/modular_granitemoe.py +21 -23
- transformers/models/granitemoehybrid/__init__.py +0 -1
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +55 -48
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +82 -118
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +57 -65
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +33 -37
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +52 -56
- transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -46
- transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +28 -29
- transformers/models/grounding_dino/modeling_grounding_dino.py +161 -181
- transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
- transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
- transformers/models/groupvit/configuration_groupvit.py +4 -2
- transformers/models/groupvit/modeling_groupvit.py +98 -92
- transformers/models/helium/configuration_helium.py +25 -29
- transformers/models/helium/modeling_helium.py +37 -40
- transformers/models/helium/modular_helium.py +3 -7
- transformers/models/herbert/tokenization_herbert.py +4 -6
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -5
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +12 -14
- transformers/models/hgnet_v2/modular_hgnet_v2.py +13 -17
- transformers/models/hiera/configuration_hiera.py +2 -5
- transformers/models/hiera/modeling_hiera.py +71 -70
- transformers/models/hubert/configuration_hubert.py +4 -2
- transformers/models/hubert/modeling_hubert.py +42 -41
- transformers/models/hubert/modular_hubert.py +8 -11
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +26 -31
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +58 -37
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +31 -11
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +31 -36
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +54 -44
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +27 -15
- transformers/models/ibert/configuration_ibert.py +4 -2
- transformers/models/ibert/modeling_ibert.py +60 -62
- transformers/models/ibert/quant_modules.py +0 -1
- transformers/models/idefics/configuration_idefics.py +5 -8
- transformers/models/idefics/image_processing_idefics.py +13 -15
- transformers/models/idefics/modeling_idefics.py +63 -65
- transformers/models/idefics/perceiver.py +1 -3
- transformers/models/idefics/processing_idefics.py +32 -48
- transformers/models/idefics/vision.py +27 -28
- transformers/models/idefics2/configuration_idefics2.py +1 -3
- transformers/models/idefics2/image_processing_idefics2.py +31 -32
- transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
- transformers/models/idefics2/modeling_idefics2.py +126 -106
- transformers/models/idefics2/processing_idefics2.py +10 -68
- transformers/models/idefics3/configuration_idefics3.py +1 -4
- transformers/models/idefics3/image_processing_idefics3.py +42 -43
- transformers/models/idefics3/image_processing_idefics3_fast.py +40 -15
- transformers/models/idefics3/modeling_idefics3.py +113 -92
- transformers/models/idefics3/processing_idefics3.py +15 -69
- transformers/models/ijepa/configuration_ijepa.py +0 -1
- transformers/models/ijepa/modeling_ijepa.py +13 -14
- transformers/models/ijepa/modular_ijepa.py +5 -7
- transformers/models/imagegpt/configuration_imagegpt.py +9 -2
- transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +10 -11
- transformers/models/imagegpt/modeling_imagegpt.py +65 -62
- transformers/models/informer/configuration_informer.py +6 -9
- transformers/models/informer/modeling_informer.py +87 -89
- transformers/models/informer/modular_informer.py +13 -16
- transformers/models/instructblip/configuration_instructblip.py +2 -2
- transformers/models/instructblip/modeling_instructblip.py +104 -79
- transformers/models/instructblip/processing_instructblip.py +10 -36
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +108 -105
- transformers/models/instructblipvideo/modular_instructblipvideo.py +73 -64
- transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +6 -7
- transformers/models/internvl/configuration_internvl.py +5 -1
- transformers/models/internvl/modeling_internvl.py +76 -98
- transformers/models/internvl/modular_internvl.py +45 -59
- transformers/models/internvl/processing_internvl.py +12 -45
- transformers/models/internvl/video_processing_internvl.py +10 -11
- transformers/models/jais2/configuration_jais2.py +25 -29
- transformers/models/jais2/modeling_jais2.py +36 -38
- transformers/models/jais2/modular_jais2.py +20 -22
- transformers/models/jamba/configuration_jamba.py +5 -8
- transformers/models/jamba/modeling_jamba.py +47 -50
- transformers/models/jamba/modular_jamba.py +40 -41
- transformers/models/janus/configuration_janus.py +0 -1
- transformers/models/janus/image_processing_janus.py +37 -39
- transformers/models/janus/image_processing_janus_fast.py +20 -21
- transformers/models/janus/modeling_janus.py +103 -188
- transformers/models/janus/modular_janus.py +122 -83
- transformers/models/janus/processing_janus.py +17 -43
- transformers/models/jetmoe/configuration_jetmoe.py +26 -27
- transformers/models/jetmoe/modeling_jetmoe.py +42 -45
- transformers/models/jetmoe/modular_jetmoe.py +33 -36
- transformers/models/kosmos2/configuration_kosmos2.py +10 -9
- transformers/models/kosmos2/modeling_kosmos2.py +199 -178
- transformers/models/kosmos2/processing_kosmos2.py +40 -55
- transformers/models/kosmos2_5/__init__.py +0 -1
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -9
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +162 -172
- transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +31 -28
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +103 -106
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +20 -22
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
- transformers/models/lasr/configuration_lasr.py +3 -7
- transformers/models/lasr/feature_extraction_lasr.py +10 -12
- transformers/models/lasr/modeling_lasr.py +21 -24
- transformers/models/lasr/modular_lasr.py +11 -13
- transformers/models/lasr/processing_lasr.py +12 -6
- transformers/models/lasr/tokenization_lasr.py +2 -4
- transformers/models/layoutlm/configuration_layoutlm.py +14 -2
- transformers/models/layoutlm/modeling_layoutlm.py +70 -72
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -17
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +7 -8
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
- transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -19
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +9 -10
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
- transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -17
- transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
- transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
- transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
- transformers/models/led/configuration_led.py +8 -12
- transformers/models/led/modeling_led.py +113 -267
- transformers/models/levit/configuration_levit.py +0 -1
- transformers/models/levit/image_processing_levit.py +19 -21
- transformers/models/levit/image_processing_levit_fast.py +4 -5
- transformers/models/levit/modeling_levit.py +17 -19
- transformers/models/lfm2/configuration_lfm2.py +27 -30
- transformers/models/lfm2/modeling_lfm2.py +46 -48
- transformers/models/lfm2/modular_lfm2.py +32 -32
- transformers/models/lfm2_moe/__init__.py +0 -1
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +6 -9
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +48 -49
- transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +43 -20
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +73 -61
- transformers/models/lfm2_vl/modular_lfm2_vl.py +66 -54
- transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
- transformers/models/lightglue/image_processing_lightglue.py +16 -15
- transformers/models/lightglue/image_processing_lightglue_fast.py +8 -7
- transformers/models/lightglue/modeling_lightglue.py +31 -33
- transformers/models/lightglue/modular_lightglue.py +31 -31
- transformers/models/lighton_ocr/__init__.py +28 -0
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +463 -0
- transformers/models/lighton_ocr/modular_lighton_ocr.py +404 -0
- transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
- transformers/models/lilt/configuration_lilt.py +6 -2
- transformers/models/lilt/modeling_lilt.py +53 -55
- transformers/models/llama/configuration_llama.py +26 -31
- transformers/models/llama/modeling_llama.py +35 -38
- transformers/models/llama/tokenization_llama.py +2 -4
- transformers/models/llama4/configuration_llama4.py +87 -69
- transformers/models/llama4/image_processing_llama4_fast.py +11 -12
- transformers/models/llama4/modeling_llama4.py +116 -115
- transformers/models/llama4/processing_llama4.py +33 -57
- transformers/models/llava/configuration_llava.py +10 -1
- transformers/models/llava/image_processing_llava.py +25 -28
- transformers/models/llava/image_processing_llava_fast.py +9 -10
- transformers/models/llava/modeling_llava.py +73 -102
- transformers/models/llava/processing_llava.py +18 -51
- transformers/models/llava_next/configuration_llava_next.py +2 -2
- transformers/models/llava_next/image_processing_llava_next.py +43 -45
- transformers/models/llava_next/image_processing_llava_next_fast.py +11 -12
- transformers/models/llava_next/modeling_llava_next.py +103 -104
- transformers/models/llava_next/processing_llava_next.py +18 -47
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -7
- transformers/models/llava_next_video/modeling_llava_next_video.py +168 -155
- transformers/models/llava_next_video/modular_llava_next_video.py +154 -147
- transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
- transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -7
- transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +14 -14
- transformers/models/llava_onevision/modeling_llava_onevision.py +170 -166
- transformers/models/llava_onevision/modular_llava_onevision.py +156 -152
- transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
- transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
- transformers/models/longcat_flash/__init__.py +0 -1
- transformers/models/longcat_flash/configuration_longcat_flash.py +39 -45
- transformers/models/longcat_flash/modeling_longcat_flash.py +37 -38
- transformers/models/longcat_flash/modular_longcat_flash.py +23 -24
- transformers/models/longformer/configuration_longformer.py +5 -5
- transformers/models/longformer/modeling_longformer.py +99 -101
- transformers/models/longt5/configuration_longt5.py +9 -7
- transformers/models/longt5/modeling_longt5.py +45 -45
- transformers/models/luke/configuration_luke.py +8 -2
- transformers/models/luke/modeling_luke.py +179 -181
- transformers/models/luke/tokenization_luke.py +99 -105
- transformers/{pipelines/deprecated → models/lw_detr}/__init__.py +14 -3
- transformers/models/lw_detr/configuration_lw_detr.py +362 -0
- transformers/models/lw_detr/modeling_lw_detr.py +1697 -0
- transformers/models/lw_detr/modular_lw_detr.py +1609 -0
- transformers/models/lxmert/configuration_lxmert.py +16 -1
- transformers/models/lxmert/modeling_lxmert.py +63 -74
- transformers/models/m2m_100/configuration_m2m_100.py +7 -9
- transformers/models/m2m_100/modeling_m2m_100.py +72 -74
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +5 -3
- transformers/models/mamba/modeling_mamba.py +61 -70
- transformers/models/mamba2/configuration_mamba2.py +5 -8
- transformers/models/mamba2/modeling_mamba2.py +66 -79
- transformers/models/marian/configuration_marian.py +10 -5
- transformers/models/marian/modeling_marian.py +88 -90
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +4 -7
- transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
- transformers/models/markuplm/modeling_markuplm.py +63 -65
- transformers/models/markuplm/processing_markuplm.py +31 -38
- transformers/models/markuplm/tokenization_markuplm.py +67 -77
- transformers/models/mask2former/configuration_mask2former.py +14 -52
- transformers/models/mask2former/image_processing_mask2former.py +84 -85
- transformers/models/mask2former/image_processing_mask2former_fast.py +36 -36
- transformers/models/mask2former/modeling_mask2former.py +108 -104
- transformers/models/mask2former/modular_mask2former.py +6 -8
- transformers/models/maskformer/configuration_maskformer.py +17 -51
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -5
- transformers/models/maskformer/image_processing_maskformer.py +84 -85
- transformers/models/maskformer/image_processing_maskformer_fast.py +35 -36
- transformers/models/maskformer/modeling_maskformer.py +71 -67
- transformers/models/maskformer/modeling_maskformer_swin.py +20 -23
- transformers/models/mbart/configuration_mbart.py +9 -5
- transformers/models/mbart/modeling_mbart.py +120 -119
- transformers/models/mbart/tokenization_mbart.py +2 -4
- transformers/models/mbart50/tokenization_mbart50.py +3 -5
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -3
- transformers/models/megatron_bert/modeling_megatron_bert.py +139 -165
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +94 -87
- transformers/models/metaclip_2/modular_metaclip_2.py +59 -45
- transformers/models/mgp_str/configuration_mgp_str.py +0 -1
- transformers/models/mgp_str/modeling_mgp_str.py +18 -18
- transformers/models/mgp_str/processing_mgp_str.py +3 -20
- transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
- transformers/models/mimi/configuration_mimi.py +42 -40
- transformers/models/mimi/modeling_mimi.py +116 -115
- transformers/models/minimax/__init__.py +0 -1
- transformers/models/minimax/configuration_minimax.py +40 -47
- transformers/models/minimax/modeling_minimax.py +46 -49
- transformers/models/minimax/modular_minimax.py +59 -65
- transformers/models/minimax_m2/__init__.py +28 -0
- transformers/models/minimax_m2/configuration_minimax_m2.py +188 -0
- transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
- transformers/models/minimax_m2/modular_minimax_m2.py +346 -0
- transformers/models/ministral/configuration_ministral.py +25 -29
- transformers/models/ministral/modeling_ministral.py +35 -37
- transformers/models/ministral/modular_ministral.py +32 -37
- transformers/models/ministral3/configuration_ministral3.py +23 -26
- transformers/models/ministral3/modeling_ministral3.py +35 -37
- transformers/models/ministral3/modular_ministral3.py +7 -8
- transformers/models/mistral/configuration_mistral.py +24 -29
- transformers/models/mistral/modeling_mistral.py +35 -37
- transformers/models/mistral/modular_mistral.py +14 -15
- transformers/models/mistral3/configuration_mistral3.py +4 -1
- transformers/models/mistral3/modeling_mistral3.py +79 -82
- transformers/models/mistral3/modular_mistral3.py +66 -67
- transformers/models/mixtral/configuration_mixtral.py +32 -38
- transformers/models/mixtral/modeling_mixtral.py +39 -42
- transformers/models/mixtral/modular_mixtral.py +26 -29
- transformers/models/mlcd/configuration_mlcd.py +0 -1
- transformers/models/mlcd/modeling_mlcd.py +17 -17
- transformers/models/mlcd/modular_mlcd.py +16 -16
- transformers/models/mllama/configuration_mllama.py +10 -15
- transformers/models/mllama/image_processing_mllama.py +23 -25
- transformers/models/mllama/image_processing_mllama_fast.py +11 -11
- transformers/models/mllama/modeling_mllama.py +100 -103
- transformers/models/mllama/processing_mllama.py +6 -55
- transformers/models/mluke/tokenization_mluke.py +97 -103
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -46
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +159 -179
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -46
- transformers/models/mobilebert/configuration_mobilebert.py +4 -2
- transformers/models/mobilebert/modeling_mobilebert.py +78 -88
- transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +14 -15
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +21 -22
- transformers/models/mobilevit/configuration_mobilevit.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +12 -13
- transformers/models/mobilevit/modeling_mobilevit.py +21 -21
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -22
- transformers/models/modernbert/configuration_modernbert.py +76 -51
- transformers/models/modernbert/modeling_modernbert.py +188 -943
- transformers/models/modernbert/modular_modernbert.py +255 -978
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +50 -44
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -64
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +92 -92
- transformers/models/moonshine/configuration_moonshine.py +34 -31
- transformers/models/moonshine/modeling_moonshine.py +70 -72
- transformers/models/moonshine/modular_moonshine.py +91 -86
- transformers/models/moshi/configuration_moshi.py +46 -23
- transformers/models/moshi/modeling_moshi.py +134 -142
- transformers/models/mpnet/configuration_mpnet.py +6 -2
- transformers/models/mpnet/modeling_mpnet.py +55 -57
- transformers/models/mpnet/tokenization_mpnet.py +1 -4
- transformers/models/mpt/configuration_mpt.py +17 -9
- transformers/models/mpt/modeling_mpt.py +58 -60
- transformers/models/mra/configuration_mra.py +8 -2
- transformers/models/mra/modeling_mra.py +54 -56
- transformers/models/mt5/configuration_mt5.py +9 -6
- transformers/models/mt5/modeling_mt5.py +80 -85
- transformers/models/musicgen/configuration_musicgen.py +12 -8
- transformers/models/musicgen/modeling_musicgen.py +114 -116
- transformers/models/musicgen/processing_musicgen.py +3 -21
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -8
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +113 -126
- transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
- transformers/models/mvp/configuration_mvp.py +8 -5
- transformers/models/mvp/modeling_mvp.py +121 -123
- transformers/models/myt5/tokenization_myt5.py +8 -10
- transformers/models/nanochat/configuration_nanochat.py +5 -8
- transformers/models/nanochat/modeling_nanochat.py +36 -39
- transformers/models/nanochat/modular_nanochat.py +16 -18
- transformers/models/nemotron/configuration_nemotron.py +25 -30
- transformers/models/nemotron/modeling_nemotron.py +53 -66
- transformers/models/nllb/tokenization_nllb.py +14 -14
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -10
- transformers/models/nllb_moe/modeling_nllb_moe.py +70 -72
- transformers/models/nougat/image_processing_nougat.py +29 -32
- transformers/models/nougat/image_processing_nougat_fast.py +12 -13
- transformers/models/nougat/processing_nougat.py +37 -39
- transformers/models/nougat/tokenization_nougat.py +5 -7
- transformers/models/nystromformer/configuration_nystromformer.py +8 -2
- transformers/models/nystromformer/modeling_nystromformer.py +61 -63
- transformers/models/olmo/configuration_olmo.py +23 -28
- transformers/models/olmo/modeling_olmo.py +35 -38
- transformers/models/olmo/modular_olmo.py +8 -12
- transformers/models/olmo2/configuration_olmo2.py +27 -32
- transformers/models/olmo2/modeling_olmo2.py +36 -39
- transformers/models/olmo2/modular_olmo2.py +36 -38
- transformers/models/olmo3/__init__.py +0 -1
- transformers/models/olmo3/configuration_olmo3.py +30 -34
- transformers/models/olmo3/modeling_olmo3.py +35 -38
- transformers/models/olmo3/modular_olmo3.py +44 -47
- transformers/models/olmoe/configuration_olmoe.py +29 -33
- transformers/models/olmoe/modeling_olmoe.py +41 -43
- transformers/models/olmoe/modular_olmoe.py +15 -16
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -50
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +59 -57
- transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
- transformers/models/oneformer/configuration_oneformer.py +11 -51
- transformers/models/oneformer/image_processing_oneformer.py +83 -84
- transformers/models/oneformer/image_processing_oneformer_fast.py +41 -42
- transformers/models/oneformer/modeling_oneformer.py +137 -133
- transformers/models/oneformer/processing_oneformer.py +28 -43
- transformers/models/openai/configuration_openai.py +16 -1
- transformers/models/openai/modeling_openai.py +50 -51
- transformers/models/openai/tokenization_openai.py +2 -5
- transformers/models/opt/configuration_opt.py +6 -7
- transformers/models/opt/modeling_opt.py +79 -80
- transformers/models/ovis2/__init__.py +0 -1
- transformers/models/ovis2/configuration_ovis2.py +4 -1
- transformers/models/ovis2/image_processing_ovis2.py +22 -24
- transformers/models/ovis2/image_processing_ovis2_fast.py +9 -10
- transformers/models/ovis2/modeling_ovis2.py +99 -142
- transformers/models/ovis2/modular_ovis2.py +82 -45
- transformers/models/ovis2/processing_ovis2.py +12 -40
- transformers/models/owlv2/configuration_owlv2.py +4 -2
- transformers/models/owlv2/image_processing_owlv2.py +20 -21
- transformers/models/owlv2/image_processing_owlv2_fast.py +12 -13
- transformers/models/owlv2/modeling_owlv2.py +122 -114
- transformers/models/owlv2/modular_owlv2.py +11 -12
- transformers/models/owlv2/processing_owlv2.py +20 -49
- transformers/models/owlvit/configuration_owlvit.py +4 -2
- transformers/models/owlvit/image_processing_owlvit.py +21 -22
- transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
- transformers/models/owlvit/modeling_owlvit.py +121 -113
- transformers/models/owlvit/processing_owlvit.py +20 -48
- transformers/models/paddleocr_vl/__init__.py +0 -1
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +28 -29
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +159 -158
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +148 -119
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
- transformers/models/paligemma/configuration_paligemma.py +4 -1
- transformers/models/paligemma/modeling_paligemma.py +81 -79
- transformers/models/paligemma/processing_paligemma.py +13 -66
- transformers/models/parakeet/configuration_parakeet.py +3 -8
- transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
- transformers/models/parakeet/modeling_parakeet.py +21 -25
- transformers/models/parakeet/modular_parakeet.py +19 -21
- transformers/models/parakeet/processing_parakeet.py +12 -5
- transformers/models/parakeet/tokenization_parakeet.py +2 -4
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +63 -65
- transformers/models/patchtst/configuration_patchtst.py +6 -9
- transformers/models/patchtst/modeling_patchtst.py +75 -77
- transformers/models/pe_audio/__init__.py +0 -1
- transformers/models/pe_audio/configuration_pe_audio.py +14 -16
- transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
- transformers/models/pe_audio/modeling_pe_audio.py +30 -31
- transformers/models/pe_audio/modular_pe_audio.py +17 -18
- transformers/models/pe_audio/processing_pe_audio.py +0 -1
- transformers/models/pe_audio_video/__init__.py +0 -1
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +64 -65
- transformers/models/pe_audio_video/modular_pe_audio_video.py +56 -57
- transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
- transformers/models/pe_video/__init__.py +0 -1
- transformers/models/pe_video/configuration_pe_video.py +14 -16
- transformers/models/pe_video/modeling_pe_video.py +57 -46
- transformers/models/pe_video/modular_pe_video.py +47 -35
- transformers/models/pe_video/video_processing_pe_video.py +2 -4
- transformers/models/pegasus/configuration_pegasus.py +8 -6
- transformers/models/pegasus/modeling_pegasus.py +67 -69
- transformers/models/pegasus/tokenization_pegasus.py +1 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -4
- transformers/models/pegasus_x/modeling_pegasus_x.py +53 -55
- transformers/models/perceiver/configuration_perceiver.py +0 -1
- transformers/models/perceiver/image_processing_perceiver.py +22 -25
- transformers/models/perceiver/image_processing_perceiver_fast.py +7 -8
- transformers/models/perceiver/modeling_perceiver.py +152 -145
- transformers/models/perceiver/tokenization_perceiver.py +3 -6
- transformers/models/perception_lm/configuration_perception_lm.py +0 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
- transformers/models/perception_lm/modeling_perception_lm.py +64 -67
- transformers/models/perception_lm/modular_perception_lm.py +58 -58
- transformers/models/perception_lm/processing_perception_lm.py +13 -47
- transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
- transformers/models/persimmon/configuration_persimmon.py +23 -28
- transformers/models/persimmon/modeling_persimmon.py +44 -47
- transformers/models/phi/configuration_phi.py +27 -28
- transformers/models/phi/modeling_phi.py +39 -41
- transformers/models/phi/modular_phi.py +26 -26
- transformers/models/phi3/configuration_phi3.py +32 -37
- transformers/models/phi3/modeling_phi3.py +37 -40
- transformers/models/phi3/modular_phi3.py +16 -20
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +36 -39
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +100 -117
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +103 -90
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
- transformers/models/phimoe/configuration_phimoe.py +31 -36
- transformers/models/phimoe/modeling_phimoe.py +50 -77
- transformers/models/phimoe/modular_phimoe.py +12 -8
- transformers/models/phobert/tokenization_phobert.py +4 -6
- transformers/models/pix2struct/configuration_pix2struct.py +12 -10
- transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +12 -15
- transformers/models/pix2struct/modeling_pix2struct.py +56 -52
- transformers/models/pix2struct/processing_pix2struct.py +5 -26
- transformers/models/pixio/__init__.py +0 -1
- transformers/models/pixio/configuration_pixio.py +2 -5
- transformers/models/pixio/modeling_pixio.py +16 -17
- transformers/models/pixio/modular_pixio.py +7 -8
- transformers/models/pixtral/configuration_pixtral.py +11 -14
- transformers/models/pixtral/image_processing_pixtral.py +26 -28
- transformers/models/pixtral/image_processing_pixtral_fast.py +10 -11
- transformers/models/pixtral/modeling_pixtral.py +31 -37
- transformers/models/pixtral/processing_pixtral.py +18 -52
- transformers/models/plbart/configuration_plbart.py +8 -6
- transformers/models/plbart/modeling_plbart.py +109 -109
- transformers/models/plbart/modular_plbart.py +31 -33
- transformers/models/plbart/tokenization_plbart.py +4 -5
- transformers/models/poolformer/configuration_poolformer.py +0 -1
- transformers/models/poolformer/image_processing_poolformer.py +21 -24
- transformers/models/poolformer/image_processing_poolformer_fast.py +13 -14
- transformers/models/poolformer/modeling_poolformer.py +10 -12
- transformers/models/pop2piano/configuration_pop2piano.py +7 -7
- transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
- transformers/models/pop2piano/modeling_pop2piano.py +24 -24
- transformers/models/pop2piano/processing_pop2piano.py +25 -33
- transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +13 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +20 -21
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +17 -16
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +21 -20
- transformers/models/prophetnet/configuration_prophetnet.py +37 -38
- transformers/models/prophetnet/modeling_prophetnet.py +121 -153
- transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
- transformers/models/pvt/configuration_pvt.py +0 -1
- transformers/models/pvt/image_processing_pvt.py +24 -27
- transformers/models/pvt/image_processing_pvt_fast.py +1 -2
- transformers/models/pvt/modeling_pvt.py +19 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +4 -8
- transformers/models/pvt_v2/modeling_pvt_v2.py +27 -28
- transformers/models/qwen2/configuration_qwen2.py +32 -25
- transformers/models/qwen2/modeling_qwen2.py +35 -37
- transformers/models/qwen2/modular_qwen2.py +14 -15
- transformers/models/qwen2/tokenization_qwen2.py +2 -9
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +36 -27
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +241 -214
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +228 -193
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +28 -34
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +188 -145
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +64 -91
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +39 -41
- transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +42 -35
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +40 -43
- transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -13
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +28 -33
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +12 -15
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +184 -141
- transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +38 -18
- transformers/models/qwen3/configuration_qwen3.py +34 -27
- transformers/models/qwen3/modeling_qwen3.py +35 -38
- transformers/models/qwen3/modular_qwen3.py +7 -9
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +45 -35
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +40 -43
- transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
- transformers/models/qwen3_next/configuration_qwen3_next.py +47 -38
- transformers/models/qwen3_next/modeling_qwen3_next.py +44 -47
- transformers/models/qwen3_next/modular_qwen3_next.py +37 -38
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +139 -106
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +266 -206
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +228 -181
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +22 -24
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +185 -122
- transformers/models/qwen3_vl/modular_qwen3_vl.py +153 -139
- transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +27 -30
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +249 -178
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +55 -42
- transformers/models/rag/configuration_rag.py +6 -7
- transformers/models/rag/modeling_rag.py +119 -121
- transformers/models/rag/retrieval_rag.py +3 -5
- transformers/models/rag/tokenization_rag.py +0 -50
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +29 -30
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +35 -39
- transformers/models/reformer/configuration_reformer.py +7 -8
- transformers/models/reformer/modeling_reformer.py +67 -68
- transformers/models/reformer/tokenization_reformer.py +3 -6
- transformers/models/regnet/configuration_regnet.py +0 -1
- transformers/models/regnet/modeling_regnet.py +7 -9
- transformers/models/rembert/configuration_rembert.py +8 -2
- transformers/models/rembert/modeling_rembert.py +108 -132
- transformers/models/rembert/tokenization_rembert.py +1 -4
- transformers/models/resnet/configuration_resnet.py +2 -5
- transformers/models/resnet/modeling_resnet.py +14 -15
- transformers/models/roberta/configuration_roberta.py +11 -3
- transformers/models/roberta/modeling_roberta.py +97 -99
- transformers/models/roberta/modular_roberta.py +55 -58
- transformers/models/roberta/tokenization_roberta.py +2 -5
- transformers/models/roberta/tokenization_roberta_old.py +2 -4
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -3
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +97 -99
- transformers/models/roc_bert/configuration_roc_bert.py +8 -2
- transformers/models/roc_bert/modeling_roc_bert.py +125 -162
- transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
- transformers/models/roformer/configuration_roformer.py +13 -3
- transformers/models/roformer/modeling_roformer.py +79 -95
- transformers/models/roformer/tokenization_roformer.py +3 -6
- transformers/models/roformer/tokenization_utils.py +0 -1
- transformers/models/rt_detr/configuration_rt_detr.py +8 -50
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -5
- transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +39 -26
- transformers/models/rt_detr/modeling_rt_detr.py +643 -804
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +4 -7
- transformers/models/rt_detr/modular_rt_detr.py +1522 -20
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -58
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +384 -521
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +27 -70
- transformers/models/rwkv/configuration_rwkv.py +2 -4
- transformers/models/rwkv/modeling_rwkv.py +29 -54
- transformers/models/sam/configuration_sam.py +2 -1
- transformers/models/sam/image_processing_sam.py +59 -60
- transformers/models/sam/image_processing_sam_fast.py +25 -26
- transformers/models/sam/modeling_sam.py +46 -43
- transformers/models/sam/processing_sam.py +39 -27
- transformers/models/sam2/configuration_sam2.py +1 -2
- transformers/models/sam2/image_processing_sam2_fast.py +14 -15
- transformers/models/sam2/modeling_sam2.py +96 -94
- transformers/models/sam2/modular_sam2.py +85 -94
- transformers/models/sam2/processing_sam2.py +31 -47
- transformers/models/sam2_video/configuration_sam2_video.py +0 -1
- transformers/models/sam2_video/modeling_sam2_video.py +114 -116
- transformers/models/sam2_video/modular_sam2_video.py +72 -89
- transformers/models/sam2_video/processing_sam2_video.py +49 -66
- transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
- transformers/models/sam3/configuration_sam3.py +0 -1
- transformers/models/sam3/image_processing_sam3_fast.py +17 -20
- transformers/models/sam3/modeling_sam3.py +94 -100
- transformers/models/sam3/modular_sam3.py +3 -8
- transformers/models/sam3/processing_sam3.py +37 -52
- transformers/models/sam3_tracker/__init__.py +0 -1
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -3
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +79 -80
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -2
- transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -48
- transformers/models/sam3_tracker_video/__init__.py +0 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +115 -114
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -24
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
- transformers/models/sam3_video/configuration_sam3_video.py +0 -1
- transformers/models/sam3_video/modeling_sam3_video.py +56 -45
- transformers/models/sam3_video/processing_sam3_video.py +25 -45
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +2 -1
- transformers/models/sam_hq/modeling_sam_hq.py +52 -50
- transformers/models/sam_hq/modular_sam_hq.py +23 -25
- transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +41 -29
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -10
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
- transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -10
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
- transformers/models/seed_oss/configuration_seed_oss.py +30 -34
- transformers/models/seed_oss/modeling_seed_oss.py +34 -36
- transformers/models/seed_oss/modular_seed_oss.py +6 -7
- transformers/models/segformer/configuration_segformer.py +0 -10
- transformers/models/segformer/image_processing_segformer.py +39 -42
- transformers/models/segformer/image_processing_segformer_fast.py +11 -12
- transformers/models/segformer/modeling_segformer.py +28 -28
- transformers/models/segformer/modular_segformer.py +8 -9
- transformers/models/seggpt/configuration_seggpt.py +0 -1
- transformers/models/seggpt/image_processing_seggpt.py +38 -41
- transformers/models/seggpt/modeling_seggpt.py +48 -38
- transformers/models/sew/configuration_sew.py +4 -2
- transformers/models/sew/modeling_sew.py +42 -40
- transformers/models/sew/modular_sew.py +12 -13
- transformers/models/sew_d/configuration_sew_d.py +4 -2
- transformers/models/sew_d/modeling_sew_d.py +32 -31
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +19 -21
- transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
- transformers/models/siglip/configuration_siglip.py +4 -2
- transformers/models/siglip/image_processing_siglip.py +17 -20
- transformers/models/siglip/image_processing_siglip_fast.py +0 -1
- transformers/models/siglip/modeling_siglip.py +65 -110
- transformers/models/siglip/processing_siglip.py +2 -14
- transformers/models/siglip/tokenization_siglip.py +6 -7
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2.py +15 -16
- transformers/models/siglip2/image_processing_siglip2_fast.py +6 -7
- transformers/models/siglip2/modeling_siglip2.py +89 -130
- transformers/models/siglip2/modular_siglip2.py +95 -48
- transformers/models/siglip2/processing_siglip2.py +2 -14
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +29 -32
- transformers/models/smollm3/modeling_smollm3.py +35 -38
- transformers/models/smollm3/modular_smollm3.py +36 -38
- transformers/models/smolvlm/configuration_smolvlm.py +2 -4
- transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +41 -15
- transformers/models/smolvlm/modeling_smolvlm.py +124 -96
- transformers/models/smolvlm/modular_smolvlm.py +50 -39
- transformers/models/smolvlm/processing_smolvlm.py +15 -76
- transformers/models/smolvlm/video_processing_smolvlm.py +16 -17
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +26 -27
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
- transformers/models/speech_to_text/modeling_speech_to_text.py +55 -57
- transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
- transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
- transformers/models/speecht5/configuration_speecht5.py +7 -9
- transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
- transformers/models/speecht5/modeling_speecht5.py +172 -174
- transformers/models/speecht5/number_normalizer.py +0 -1
- transformers/models/speecht5/processing_speecht5.py +3 -37
- transformers/models/speecht5/tokenization_speecht5.py +4 -5
- transformers/models/splinter/configuration_splinter.py +6 -7
- transformers/models/splinter/modeling_splinter.py +62 -59
- transformers/models/splinter/tokenization_splinter.py +2 -4
- transformers/models/squeezebert/configuration_squeezebert.py +14 -2
- transformers/models/squeezebert/modeling_squeezebert.py +60 -62
- transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
- transformers/models/stablelm/configuration_stablelm.py +28 -29
- transformers/models/stablelm/modeling_stablelm.py +44 -47
- transformers/models/starcoder2/configuration_starcoder2.py +30 -27
- transformers/models/starcoder2/modeling_starcoder2.py +38 -41
- transformers/models/starcoder2/modular_starcoder2.py +17 -19
- transformers/models/superglue/configuration_superglue.py +7 -3
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +8 -8
- transformers/models/superglue/modeling_superglue.py +41 -37
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +7 -9
- transformers/models/superpoint/modeling_superpoint.py +17 -16
- transformers/models/swiftformer/configuration_swiftformer.py +0 -1
- transformers/models/swiftformer/modeling_swiftformer.py +12 -14
- transformers/models/swin/configuration_swin.py +2 -5
- transformers/models/swin/modeling_swin.py +69 -78
- transformers/models/swin2sr/configuration_swin2sr.py +0 -1
- transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +4 -7
- transformers/models/swin2sr/modeling_swin2sr.py +30 -30
- transformers/models/swinv2/configuration_swinv2.py +2 -5
- transformers/models/swinv2/modeling_swinv2.py +65 -74
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -7
- transformers/models/switch_transformers/modeling_switch_transformers.py +35 -36
- transformers/models/switch_transformers/modular_switch_transformers.py +32 -33
- transformers/models/t5/configuration_t5.py +9 -9
- transformers/models/t5/modeling_t5.py +80 -85
- transformers/models/t5/tokenization_t5.py +1 -3
- transformers/models/t5gemma/configuration_t5gemma.py +43 -59
- transformers/models/t5gemma/modeling_t5gemma.py +105 -108
- transformers/models/t5gemma/modular_t5gemma.py +128 -142
- transformers/models/t5gemma2/configuration_t5gemma2.py +86 -100
- transformers/models/t5gemma2/modeling_t5gemma2.py +234 -194
- transformers/models/t5gemma2/modular_t5gemma2.py +279 -264
- transformers/models/table_transformer/configuration_table_transformer.py +18 -50
- transformers/models/table_transformer/modeling_table_transformer.py +73 -101
- transformers/models/tapas/configuration_tapas.py +12 -2
- transformers/models/tapas/modeling_tapas.py +65 -67
- transformers/models/tapas/tokenization_tapas.py +116 -153
- transformers/models/textnet/configuration_textnet.py +4 -7
- transformers/models/textnet/image_processing_textnet.py +22 -25
- transformers/models/textnet/image_processing_textnet_fast.py +8 -9
- transformers/models/textnet/modeling_textnet.py +28 -28
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +82 -84
- transformers/models/timesfm/configuration_timesfm.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +22 -25
- transformers/models/timesfm/modular_timesfm.py +21 -24
- transformers/models/timesformer/configuration_timesformer.py +0 -1
- transformers/models/timesformer/modeling_timesformer.py +13 -16
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -8
- transformers/models/timm_backbone/modeling_timm_backbone.py +25 -30
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +22 -19
- transformers/models/trocr/configuration_trocr.py +11 -8
- transformers/models/trocr/modeling_trocr.py +42 -42
- transformers/models/trocr/processing_trocr.py +5 -25
- transformers/models/tvp/configuration_tvp.py +10 -36
- transformers/models/tvp/image_processing_tvp.py +50 -52
- transformers/models/tvp/image_processing_tvp_fast.py +15 -15
- transformers/models/tvp/modeling_tvp.py +26 -28
- transformers/models/tvp/processing_tvp.py +2 -14
- transformers/models/udop/configuration_udop.py +16 -8
- transformers/models/udop/modeling_udop.py +73 -72
- transformers/models/udop/processing_udop.py +7 -26
- transformers/models/udop/tokenization_udop.py +80 -93
- transformers/models/umt5/configuration_umt5.py +8 -7
- transformers/models/umt5/modeling_umt5.py +87 -84
- transformers/models/unispeech/configuration_unispeech.py +4 -2
- transformers/models/unispeech/modeling_unispeech.py +54 -53
- transformers/models/unispeech/modular_unispeech.py +20 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -2
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +70 -69
- transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +7 -8
- transformers/models/upernet/configuration_upernet.py +8 -36
- transformers/models/upernet/modeling_upernet.py +11 -14
- transformers/models/vaultgemma/__init__.py +0 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +29 -33
- transformers/models/vaultgemma/modeling_vaultgemma.py +38 -40
- transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +12 -14
- transformers/models/video_llama_3/modeling_video_llama_3.py +149 -112
- transformers/models/video_llama_3/modular_video_llama_3.py +152 -150
- transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
- transformers/models/video_llama_3/video_processing_video_llama_3.py +45 -24
- transformers/models/video_llava/configuration_video_llava.py +4 -1
- transformers/models/video_llava/image_processing_video_llava.py +35 -38
- transformers/models/video_llava/modeling_video_llava.py +139 -143
- transformers/models/video_llava/processing_video_llava.py +38 -78
- transformers/models/video_llava/video_processing_video_llava.py +0 -1
- transformers/models/videomae/configuration_videomae.py +0 -1
- transformers/models/videomae/image_processing_videomae.py +31 -34
- transformers/models/videomae/modeling_videomae.py +17 -20
- transformers/models/videomae/video_processing_videomae.py +0 -1
- transformers/models/vilt/configuration_vilt.py +4 -2
- transformers/models/vilt/image_processing_vilt.py +29 -30
- transformers/models/vilt/image_processing_vilt_fast.py +15 -16
- transformers/models/vilt/modeling_vilt.py +103 -90
- transformers/models/vilt/processing_vilt.py +2 -14
- transformers/models/vipllava/configuration_vipllava.py +4 -1
- transformers/models/vipllava/modeling_vipllava.py +92 -67
- transformers/models/vipllava/modular_vipllava.py +78 -54
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +28 -27
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +45 -41
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
- transformers/models/visual_bert/configuration_visual_bert.py +6 -2
- transformers/models/visual_bert/modeling_visual_bert.py +90 -92
- transformers/models/vit/configuration_vit.py +2 -3
- transformers/models/vit/image_processing_vit.py +19 -22
- transformers/models/vit/image_processing_vit_fast.py +0 -1
- transformers/models/vit/modeling_vit.py +20 -20
- transformers/models/vit_mae/configuration_vit_mae.py +0 -1
- transformers/models/vit_mae/modeling_vit_mae.py +32 -30
- transformers/models/vit_msn/configuration_vit_msn.py +0 -1
- transformers/models/vit_msn/modeling_vit_msn.py +21 -19
- transformers/models/vitdet/configuration_vitdet.py +2 -5
- transformers/models/vitdet/modeling_vitdet.py +14 -17
- transformers/models/vitmatte/configuration_vitmatte.py +7 -39
- transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +16 -17
- transformers/models/vitmatte/modeling_vitmatte.py +10 -12
- transformers/models/vitpose/configuration_vitpose.py +7 -47
- transformers/models/vitpose/image_processing_vitpose.py +24 -25
- transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
- transformers/models/vitpose/modeling_vitpose.py +15 -15
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -5
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +13 -16
- transformers/models/vits/configuration_vits.py +4 -1
- transformers/models/vits/modeling_vits.py +43 -42
- transformers/models/vits/tokenization_vits.py +3 -4
- transformers/models/vivit/configuration_vivit.py +0 -1
- transformers/models/vivit/image_processing_vivit.py +36 -39
- transformers/models/vivit/modeling_vivit.py +9 -11
- transformers/models/vjepa2/__init__.py +0 -1
- transformers/models/vjepa2/configuration_vjepa2.py +0 -1
- transformers/models/vjepa2/modeling_vjepa2.py +39 -41
- transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
- transformers/models/voxtral/__init__.py +0 -1
- transformers/models/voxtral/configuration_voxtral.py +0 -2
- transformers/models/voxtral/modeling_voxtral.py +41 -48
- transformers/models/voxtral/modular_voxtral.py +35 -38
- transformers/models/voxtral/processing_voxtral.py +25 -48
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -2
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
- transformers/models/wav2vec2/modeling_wav2vec2.py +74 -126
- transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
- transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -2
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
- transformers/models/wavlm/configuration_wavlm.py +4 -2
- transformers/models/wavlm/modeling_wavlm.py +49 -49
- transformers/models/wavlm/modular_wavlm.py +4 -5
- transformers/models/whisper/configuration_whisper.py +6 -5
- transformers/models/whisper/english_normalizer.py +3 -4
- transformers/models/whisper/feature_extraction_whisper.py +9 -24
- transformers/models/whisper/generation_whisper.py +26 -49
- transformers/models/whisper/modeling_whisper.py +71 -73
- transformers/models/whisper/processing_whisper.py +3 -20
- transformers/models/whisper/tokenization_whisper.py +9 -30
- transformers/models/x_clip/configuration_x_clip.py +4 -2
- transformers/models/x_clip/modeling_x_clip.py +94 -96
- transformers/models/x_clip/processing_x_clip.py +2 -14
- transformers/models/xcodec/configuration_xcodec.py +4 -6
- transformers/models/xcodec/modeling_xcodec.py +15 -17
- transformers/models/xglm/configuration_xglm.py +9 -8
- transformers/models/xglm/modeling_xglm.py +49 -55
- transformers/models/xglm/tokenization_xglm.py +1 -4
- transformers/models/xlm/configuration_xlm.py +10 -8
- transformers/models/xlm/modeling_xlm.py +127 -131
- transformers/models/xlm/tokenization_xlm.py +3 -5
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -3
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +96 -98
- transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -2
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +97 -99
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
- transformers/models/xlnet/configuration_xlnet.py +3 -12
- transformers/models/xlnet/modeling_xlnet.py +149 -162
- transformers/models/xlnet/tokenization_xlnet.py +1 -4
- transformers/models/xlstm/configuration_xlstm.py +8 -12
- transformers/models/xlstm/modeling_xlstm.py +61 -96
- transformers/models/xmod/configuration_xmod.py +11 -3
- transformers/models/xmod/modeling_xmod.py +111 -116
- transformers/models/yolos/configuration_yolos.py +0 -1
- transformers/models/yolos/image_processing_yolos.py +60 -62
- transformers/models/yolos/image_processing_yolos_fast.py +42 -45
- transformers/models/yolos/modeling_yolos.py +19 -21
- transformers/models/yolos/modular_yolos.py +17 -19
- transformers/models/yoso/configuration_yoso.py +8 -2
- transformers/models/yoso/modeling_yoso.py +60 -62
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -8
- transformers/models/zamba/modeling_zamba.py +93 -125
- transformers/models/zamba2/configuration_zamba2.py +44 -50
- transformers/models/zamba2/modeling_zamba2.py +137 -165
- transformers/models/zamba2/modular_zamba2.py +79 -74
- transformers/models/zoedepth/configuration_zoedepth.py +17 -41
- transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +20 -21
- transformers/models/zoedepth/modeling_zoedepth.py +19 -19
- transformers/pipelines/__init__.py +47 -106
- transformers/pipelines/any_to_any.py +15 -23
- transformers/pipelines/audio_utils.py +1 -2
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +13 -17
- transformers/pipelines/image_text_to_text.py +1 -2
- transformers/pipelines/question_answering.py +4 -43
- transformers/pipelines/text_classification.py +1 -14
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/pipelines/token_classification.py +1 -22
- transformers/pipelines/video_classification.py +1 -9
- transformers/pipelines/zero_shot_audio_classification.py +0 -1
- transformers/pipelines/zero_shot_classification.py +0 -6
- transformers/pipelines/zero_shot_image_classification.py +0 -7
- transformers/processing_utils.py +128 -137
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/base.py +10 -0
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_quark.py +0 -1
- transformers/quantizers/quantizer_torchao.py +3 -19
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +6 -65
- transformers/tokenization_mistral_common.py +563 -903
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +228 -341
- transformers/tokenization_utils_sentencepiece.py +5 -6
- transformers/tokenization_utils_tokenizers.py +36 -7
- transformers/trainer.py +30 -41
- transformers/trainer_jit_checkpoint.py +1 -2
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +414 -420
- transformers/utils/__init__.py +1 -4
- transformers/utils/attention_visualizer.py +1 -1
- transformers/utils/auto_docstring.py +567 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/dummy_pt_objects.py +0 -42
- transformers/utils/generic.py +70 -34
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +135 -107
- transformers/utils/quantization_config.py +8 -31
- transformers/video_processing_utils.py +24 -25
- transformers/video_utils.py +21 -23
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/METADATA +120 -239
- transformers-5.1.0.dist-info/RECORD +2092 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -229
- transformers-5.0.0rc2.dist-info/RECORD +0 -2042
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -4,7 +4,6 @@
|
|
|
4
4
|
# the file from the modular. If any change should be done, please apply the change to the
|
|
5
5
|
# modular_d_fine.py file directly. One of our CI enforces this.
|
|
6
6
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
7
|
-
# coding=utf-8
|
|
8
7
|
# Copyright 2025 Baidu Inc and The HuggingFace Inc. team.
|
|
9
8
|
#
|
|
10
9
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -19,24 +18,134 @@
|
|
|
19
18
|
# See the License for the specific language governing permissions and
|
|
20
19
|
# limitations under the License.
|
|
21
20
|
import math
|
|
21
|
+
from collections.abc import Callable
|
|
22
22
|
from dataclasses import dataclass
|
|
23
|
-
from typing import Any, Optional, Union
|
|
24
23
|
|
|
25
24
|
import torch
|
|
25
|
+
import torch.nn as nn
|
|
26
26
|
import torch.nn.functional as F
|
|
27
|
-
from torch import Tensor
|
|
27
|
+
from torch import Tensor
|
|
28
28
|
|
|
29
29
|
from ... import initialization as init
|
|
30
|
-
from ...activations import ACT2CLS
|
|
30
|
+
from ...activations import ACT2CLS
|
|
31
|
+
from ...backbone_utils import load_backbone
|
|
31
32
|
from ...image_transforms import center_to_corners_format, corners_to_center_format
|
|
32
33
|
from ...modeling_outputs import BaseModelOutput
|
|
33
|
-
from ...modeling_utils import PreTrainedModel
|
|
34
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
35
|
+
from ...processing_utils import Unpack
|
|
34
36
|
from ...pytorch_utils import compile_compatible_method_lru_cache
|
|
35
|
-
from ...utils import ModelOutput, auto_docstring,
|
|
36
|
-
from ...utils.
|
|
37
|
+
from ...utils import ModelOutput, TransformersKwargs, auto_docstring, torch_compilable_check, torch_int
|
|
38
|
+
from ...utils.generic import can_return_tuple, check_model_inputs
|
|
37
39
|
from .configuration_d_fine import DFineConfig
|
|
38
40
|
|
|
39
41
|
|
|
42
|
+
@dataclass
|
|
43
|
+
@auto_docstring(
|
|
44
|
+
custom_intro="""
|
|
45
|
+
Base class for outputs of the DFineDecoder. This class adds two attributes to
|
|
46
|
+
BaseModelOutputWithCrossAttentions, namely:
|
|
47
|
+
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
|
|
48
|
+
- a stacked tensor of intermediate reference points.
|
|
49
|
+
"""
|
|
50
|
+
)
|
|
51
|
+
class DFineDecoderOutput(ModelOutput):
|
|
52
|
+
r"""
|
|
53
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
54
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
55
|
+
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
|
|
56
|
+
Stacked intermediate logits (logits of each layer of the decoder).
|
|
57
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
|
58
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
59
|
+
intermediate_predicted_corners (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
60
|
+
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
|
|
61
|
+
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
62
|
+
Stacked initial reference points (initial reference points of each layer of the decoder).
|
|
63
|
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
|
64
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
65
|
+
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
|
66
|
+
used to compute the weighted average in the cross-attention heads.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
70
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
71
|
+
intermediate_logits: torch.FloatTensor | None = None
|
|
72
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
73
|
+
intermediate_predicted_corners: torch.FloatTensor | None = None
|
|
74
|
+
initial_reference_points: torch.FloatTensor | None = None
|
|
75
|
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
|
76
|
+
attentions: tuple[torch.FloatTensor] | None = None
|
|
77
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
class DFineMLP(nn.Module):
|
|
81
|
+
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act: str = "relu"):
|
|
82
|
+
super().__init__()
|
|
83
|
+
self.num_layers = num_layers
|
|
84
|
+
hidden_dims = [hidden_dim] * (num_layers - 1)
|
|
85
|
+
input_dims = [input_dim] + hidden_dims
|
|
86
|
+
output_dims = hidden_dims + [output_dim]
|
|
87
|
+
self.layers = nn.ModuleList(nn.Linear(in_dim, out_dim) for in_dim, out_dim in zip(input_dims, output_dims))
|
|
88
|
+
self.act = ACT2CLS[act]()
|
|
89
|
+
|
|
90
|
+
def forward(self, stat_features: torch.Tensor) -> torch.Tensor:
|
|
91
|
+
for i, layer in enumerate(self.layers):
|
|
92
|
+
stat_features = self.act(layer(stat_features)) if i < self.num_layers - 1 else layer(stat_features)
|
|
93
|
+
return stat_features
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class DFineGate(nn.Module):
|
|
97
|
+
def __init__(self, d_model: int):
|
|
98
|
+
super().__init__()
|
|
99
|
+
self.gate = nn.Linear(2 * d_model, 2 * d_model)
|
|
100
|
+
self.norm = nn.LayerNorm(d_model)
|
|
101
|
+
|
|
102
|
+
def forward(self, second_residual: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
103
|
+
gate_input = torch.cat([second_residual, hidden_states], dim=-1)
|
|
104
|
+
gates = torch.sigmoid(self.gate(gate_input))
|
|
105
|
+
gate1, gate2 = gates.chunk(2, dim=-1)
|
|
106
|
+
hidden_states = self.norm(gate1 * second_residual + gate2 * hidden_states)
|
|
107
|
+
return hidden_states
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
class DFineFrozenBatchNorm2d(nn.Module):
|
|
111
|
+
"""
|
|
112
|
+
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
|
113
|
+
|
|
114
|
+
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
|
|
115
|
+
torchvision.models.resnet[18,34,50,101] produce nans.
|
|
116
|
+
"""
|
|
117
|
+
|
|
118
|
+
def __init__(self, n):
|
|
119
|
+
super().__init__()
|
|
120
|
+
self.register_buffer("weight", torch.ones(n))
|
|
121
|
+
self.register_buffer("bias", torch.zeros(n))
|
|
122
|
+
self.register_buffer("running_mean", torch.zeros(n))
|
|
123
|
+
self.register_buffer("running_var", torch.ones(n))
|
|
124
|
+
|
|
125
|
+
def _load_from_state_dict(
|
|
126
|
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
127
|
+
):
|
|
128
|
+
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
129
|
+
if num_batches_tracked_key in state_dict:
|
|
130
|
+
del state_dict[num_batches_tracked_key]
|
|
131
|
+
|
|
132
|
+
super()._load_from_state_dict(
|
|
133
|
+
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
def forward(self, x):
|
|
137
|
+
# move reshapes to the beginning
|
|
138
|
+
# to make it user-friendly
|
|
139
|
+
weight = self.weight.reshape(1, -1, 1, 1)
|
|
140
|
+
bias = self.bias.reshape(1, -1, 1, 1)
|
|
141
|
+
running_var = self.running_var.reshape(1, -1, 1, 1)
|
|
142
|
+
running_mean = self.running_mean.reshape(1, -1, 1, 1)
|
|
143
|
+
epsilon = 1e-5
|
|
144
|
+
scale = weight * (running_var + epsilon).rsqrt()
|
|
145
|
+
bias = bias - running_mean * scale
|
|
146
|
+
return x * scale + bias
|
|
147
|
+
|
|
148
|
+
|
|
40
149
|
def multi_scale_deformable_attention_v2(
|
|
41
150
|
value: Tensor,
|
|
42
151
|
value_spatial_shapes: Tensor,
|
|
@@ -143,19 +252,20 @@ class DFineMultiscaleDeformableAttention(nn.Module):
|
|
|
143
252
|
def forward(
|
|
144
253
|
self,
|
|
145
254
|
hidden_states: torch.Tensor,
|
|
146
|
-
attention_mask:
|
|
255
|
+
attention_mask: torch.Tensor | None = None,
|
|
147
256
|
reference_points=None,
|
|
148
257
|
encoder_hidden_states=None,
|
|
149
258
|
spatial_shapes=None,
|
|
150
259
|
spatial_shapes_list=None,
|
|
260
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
151
261
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
152
262
|
batch_size, num_queries, _ = hidden_states.shape
|
|
153
263
|
batch_size, sequence_length, _ = encoder_hidden_states.shape
|
|
154
264
|
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
265
|
+
torch_compilable_check(
|
|
266
|
+
(spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == sequence_length,
|
|
267
|
+
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states",
|
|
268
|
+
)
|
|
159
269
|
|
|
160
270
|
# Reshape for multi-head attention
|
|
161
271
|
value = encoder_hidden_states.reshape(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
|
|
@@ -202,182 +312,485 @@ class DFineMultiscaleDeformableAttention(nn.Module):
|
|
|
202
312
|
return output, attention_weights
|
|
203
313
|
|
|
204
314
|
|
|
205
|
-
class
|
|
206
|
-
def __init__(
|
|
315
|
+
class DFineConvNormLayer(nn.Module):
|
|
316
|
+
def __init__(
|
|
317
|
+
self,
|
|
318
|
+
config: DFineConfig,
|
|
319
|
+
in_channels: int,
|
|
320
|
+
out_channels: int,
|
|
321
|
+
kernel_size: int,
|
|
322
|
+
stride: int,
|
|
323
|
+
groups: int = 1,
|
|
324
|
+
padding: int | None = None,
|
|
325
|
+
activation: str | None = None,
|
|
326
|
+
):
|
|
207
327
|
super().__init__()
|
|
208
|
-
self.
|
|
209
|
-
|
|
328
|
+
self.conv = nn.Conv2d(
|
|
329
|
+
in_channels,
|
|
330
|
+
out_channels,
|
|
331
|
+
kernel_size,
|
|
332
|
+
stride,
|
|
333
|
+
groups=groups,
|
|
334
|
+
padding=(kernel_size - 1) // 2 if padding is None else padding,
|
|
335
|
+
bias=False,
|
|
336
|
+
)
|
|
337
|
+
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
|
|
338
|
+
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
210
339
|
|
|
211
|
-
def forward(self,
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
return hidden_states
|
|
340
|
+
def forward(self, hidden_state):
|
|
341
|
+
hidden_state = self.conv(hidden_state)
|
|
342
|
+
hidden_state = self.norm(hidden_state)
|
|
343
|
+
hidden_state = self.activation(hidden_state)
|
|
344
|
+
return hidden_state
|
|
217
345
|
|
|
218
346
|
|
|
219
|
-
class
|
|
347
|
+
class DFineRepVggBlock(nn.Module):
|
|
348
|
+
"""
|
|
349
|
+
RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
|
|
220
350
|
"""
|
|
221
|
-
Multi-headed attention from 'Attention Is All You Need' paper.
|
|
222
351
|
|
|
223
|
-
|
|
352
|
+
def __init__(self, config: DFineConfig, in_channels: int, out_channels: int):
|
|
353
|
+
super().__init__()
|
|
354
|
+
|
|
355
|
+
activation = config.activation_function
|
|
356
|
+
hidden_channels = in_channels
|
|
357
|
+
self.conv1 = DFineConvNormLayer(config, hidden_channels, out_channels, 3, 1, padding=1)
|
|
358
|
+
self.conv2 = DFineConvNormLayer(config, hidden_channels, out_channels, 1, 1, padding=0)
|
|
359
|
+
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
360
|
+
|
|
361
|
+
def forward(self, x):
|
|
362
|
+
y = self.conv1(x) + self.conv2(x)
|
|
363
|
+
return self.activation(y)
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
class DFineCSPRepLayer(nn.Module):
|
|
367
|
+
"""
|
|
368
|
+
Cross Stage Partial (CSP) network layer with RepVGG blocks.
|
|
224
369
|
"""
|
|
225
370
|
|
|
226
371
|
def __init__(
|
|
227
|
-
self,
|
|
228
|
-
embed_dim: int,
|
|
229
|
-
num_heads: int,
|
|
230
|
-
dropout: float = 0.0,
|
|
231
|
-
bias: bool = True,
|
|
372
|
+
self, config: DFineConfig, in_channels: int, out_channels: int, num_blocks: int, expansion: float = 1.0
|
|
232
373
|
):
|
|
233
374
|
super().__init__()
|
|
234
|
-
|
|
235
|
-
self.num_heads = num_heads
|
|
236
|
-
self.dropout = dropout
|
|
237
|
-
self.head_dim = embed_dim // num_heads
|
|
238
|
-
if self.head_dim * num_heads != self.embed_dim:
|
|
239
|
-
raise ValueError(
|
|
240
|
-
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
241
|
-
f" {num_heads})."
|
|
242
|
-
)
|
|
243
|
-
self.scaling = self.head_dim**-0.5
|
|
375
|
+
activation = config.activation_function
|
|
244
376
|
|
|
245
|
-
|
|
246
|
-
self.
|
|
247
|
-
self.
|
|
248
|
-
self.
|
|
377
|
+
hidden_channels = int(out_channels * expansion)
|
|
378
|
+
self.conv1 = DFineConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
|
|
379
|
+
self.conv2 = DFineConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
|
|
380
|
+
self.bottlenecks = nn.ModuleList(
|
|
381
|
+
[DFineRepVggBlock(config, hidden_channels, hidden_channels) for _ in range(num_blocks)]
|
|
382
|
+
)
|
|
383
|
+
if hidden_channels != out_channels:
|
|
384
|
+
self.conv3 = DFineConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
|
|
385
|
+
else:
|
|
386
|
+
self.conv3 = nn.Identity()
|
|
249
387
|
|
|
250
|
-
def
|
|
251
|
-
|
|
388
|
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
|
389
|
+
hidden_state_1 = self.conv1(hidden_state)
|
|
390
|
+
for bottleneck in self.bottlenecks:
|
|
391
|
+
hidden_state_1 = bottleneck(hidden_state_1)
|
|
392
|
+
hidden_state_2 = self.conv2(hidden_state)
|
|
393
|
+
hidden_state_3 = self.conv3(hidden_state_1 + hidden_state_2)
|
|
394
|
+
return hidden_state_3
|
|
252
395
|
|
|
253
|
-
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
|
|
254
|
-
return tensor if position_embeddings is None else tensor + position_embeddings
|
|
255
396
|
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
397
|
+
class DFineRepNCSPELAN4(nn.Module):
|
|
398
|
+
def __init__(self, config: DFineConfig, act: str = "silu", numb_blocks: int = 3):
|
|
399
|
+
super().__init__()
|
|
400
|
+
conv1_dim = config.encoder_hidden_dim * 2
|
|
401
|
+
conv2_dim = config.encoder_hidden_dim
|
|
402
|
+
conv3_dim = config.encoder_hidden_dim * 2
|
|
403
|
+
conv4_dim = round(config.hidden_expansion * config.encoder_hidden_dim // 2)
|
|
404
|
+
self.conv_dim = conv3_dim // 2
|
|
405
|
+
self.conv1 = DFineConvNormLayer(config, conv1_dim, conv3_dim, 1, 1, activation=act)
|
|
406
|
+
self.csp_rep1 = DFineCSPRepLayer(config, conv3_dim // 2, conv4_dim, num_blocks=numb_blocks)
|
|
407
|
+
self.conv2 = DFineConvNormLayer(config, conv4_dim, conv4_dim, 3, 1, activation=act)
|
|
408
|
+
self.csp_rep2 = DFineCSPRepLayer(config, conv4_dim, conv4_dim, num_blocks=numb_blocks)
|
|
409
|
+
self.conv3 = DFineConvNormLayer(config, conv4_dim, conv4_dim, 3, 1, activation=act)
|
|
410
|
+
self.conv4 = DFineConvNormLayer(config, conv3_dim + (2 * conv4_dim), conv2_dim, 1, 1, activation=act)
|
|
264
411
|
|
|
265
|
-
|
|
266
|
-
#
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
412
|
+
def forward(self, input_features: torch.Tensor) -> torch.Tensor:
|
|
413
|
+
# Split initial features into two branches after first convolution
|
|
414
|
+
split_features = list(self.conv1(input_features).split((self.conv_dim, self.conv_dim), 1))
|
|
415
|
+
|
|
416
|
+
# Process branches sequentially
|
|
417
|
+
branch1 = self.csp_rep1(split_features[-1])
|
|
418
|
+
branch1 = self.conv2(branch1)
|
|
419
|
+
branch2 = self.csp_rep2(branch1)
|
|
420
|
+
branch2 = self.conv3(branch2)
|
|
270
421
|
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
422
|
+
split_features.extend([branch1, branch2])
|
|
423
|
+
merged_features = torch.cat(split_features, 1)
|
|
424
|
+
merged_features = self.conv4(merged_features)
|
|
425
|
+
return merged_features
|
|
275
426
|
|
|
276
|
-
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
|
|
277
|
-
query_states = self._reshape(query_states, target_len, batch_size).view(*proj_shape)
|
|
278
|
-
key_states = key_states.view(*proj_shape)
|
|
279
|
-
value_states = value_states.view(*proj_shape)
|
|
280
427
|
|
|
281
|
-
|
|
428
|
+
class DFineSCDown(nn.Module):
|
|
429
|
+
def __init__(self, config: DFineConfig, kernel_size: int, stride: int):
|
|
430
|
+
super().__init__()
|
|
431
|
+
self.conv1 = DFineConvNormLayer(config, config.encoder_hidden_dim, config.encoder_hidden_dim, 1, 1)
|
|
432
|
+
self.conv2 = DFineConvNormLayer(
|
|
433
|
+
config,
|
|
434
|
+
config.encoder_hidden_dim,
|
|
435
|
+
config.encoder_hidden_dim,
|
|
436
|
+
kernel_size,
|
|
437
|
+
stride,
|
|
438
|
+
config.encoder_hidden_dim,
|
|
439
|
+
)
|
|
282
440
|
|
|
283
|
-
|
|
441
|
+
def forward(self, input_features: torch.Tensor) -> torch.Tensor:
|
|
442
|
+
input_features = self.conv1(input_features)
|
|
443
|
+
input_features = self.conv2(input_features)
|
|
444
|
+
return input_features
|
|
284
445
|
|
|
285
|
-
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
|
|
286
|
-
raise ValueError(
|
|
287
|
-
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
|
|
288
|
-
f" {attn_weights.size()}"
|
|
289
|
-
)
|
|
290
446
|
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
447
|
+
def eager_attention_forward(
|
|
448
|
+
module: nn.Module,
|
|
449
|
+
query: torch.Tensor,
|
|
450
|
+
key: torch.Tensor,
|
|
451
|
+
value: torch.Tensor,
|
|
452
|
+
attention_mask: torch.Tensor | None,
|
|
453
|
+
scaling: float | None = None,
|
|
454
|
+
dropout: float = 0.0,
|
|
455
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
456
|
+
):
|
|
457
|
+
if scaling is None:
|
|
458
|
+
scaling = query.size(-1) ** -0.5
|
|
295
459
|
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
raise ValueError(
|
|
299
|
-
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
|
|
300
|
-
f" {attention_mask.size()}"
|
|
301
|
-
)
|
|
302
|
-
if attention_mask.dtype == torch.bool:
|
|
303
|
-
attention_mask = torch.zeros_like(attention_mask, dtype=attn_weights.dtype).masked_fill_(
|
|
304
|
-
attention_mask, -torch.inf
|
|
305
|
-
)
|
|
306
|
-
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
|
|
307
|
-
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
|
|
308
|
-
|
|
309
|
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
310
|
-
|
|
311
|
-
if output_attentions:
|
|
312
|
-
# this operation is a bit awkward, but it's required to
|
|
313
|
-
# make sure that attn_weights keeps its gradient.
|
|
314
|
-
# In order to do so, attn_weights have to reshaped
|
|
315
|
-
# twice and have to be reused in the following
|
|
316
|
-
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
|
|
317
|
-
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
|
|
318
|
-
else:
|
|
319
|
-
attn_weights_reshaped = None
|
|
460
|
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
461
|
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
|
|
320
462
|
|
|
321
|
-
|
|
463
|
+
if attention_mask is not None:
|
|
464
|
+
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
|
|
465
|
+
attn_weights = attn_weights + attention_mask
|
|
322
466
|
|
|
323
|
-
|
|
467
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
468
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
324
469
|
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
|
|
328
|
-
f" {attn_output.size()}"
|
|
329
|
-
)
|
|
470
|
+
attn_output = torch.matmul(attn_weights, value)
|
|
471
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
330
472
|
|
|
331
|
-
|
|
332
|
-
attn_output = attn_output.transpose(1, 2)
|
|
333
|
-
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
|
|
473
|
+
return attn_output, attn_weights
|
|
334
474
|
|
|
335
|
-
attn_output = self.out_proj(attn_output)
|
|
336
475
|
|
|
337
|
-
|
|
476
|
+
class DFineSelfAttention(nn.Module):
|
|
477
|
+
"""
|
|
478
|
+
Multi-headed self-attention from 'Attention Is All You Need' paper.
|
|
338
479
|
|
|
480
|
+
In D_FINE, position embeddings are added to both queries and keys (but not values) in self-attention.
|
|
481
|
+
"""
|
|
339
482
|
|
|
340
|
-
|
|
341
|
-
|
|
483
|
+
def __init__(
|
|
484
|
+
self,
|
|
485
|
+
config: DFineConfig,
|
|
486
|
+
hidden_size: int,
|
|
487
|
+
num_attention_heads: int,
|
|
488
|
+
dropout: float = 0.0,
|
|
489
|
+
bias: bool = True,
|
|
490
|
+
):
|
|
342
491
|
super().__init__()
|
|
343
|
-
|
|
344
|
-
self.
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
)
|
|
349
|
-
self.dropout = config.dropout
|
|
350
|
-
self.activation_fn = ACT2FN[config.decoder_activation_function]
|
|
351
|
-
self.activation_dropout = config.activation_dropout
|
|
492
|
+
self.config = config
|
|
493
|
+
self.head_dim = hidden_size // num_attention_heads
|
|
494
|
+
self.scaling = self.head_dim**-0.5
|
|
495
|
+
self.attention_dropout = dropout
|
|
496
|
+
self.is_causal = False
|
|
352
497
|
|
|
353
|
-
self.
|
|
498
|
+
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
499
|
+
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
500
|
+
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
501
|
+
self.o_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
354
502
|
|
|
355
|
-
|
|
503
|
+
def forward(
|
|
504
|
+
self,
|
|
505
|
+
hidden_states: torch.Tensor,
|
|
506
|
+
attention_mask: torch.Tensor | None = None,
|
|
507
|
+
position_embeddings: torch.Tensor | None = None,
|
|
508
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
509
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
510
|
+
"""
|
|
511
|
+
Position embeddings are added to both queries and keys (but not values).
|
|
512
|
+
"""
|
|
513
|
+
input_shape = hidden_states.shape[:-1]
|
|
514
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
515
|
+
|
|
516
|
+
query_key_input = hidden_states + position_embeddings if position_embeddings is not None else hidden_states
|
|
517
|
+
|
|
518
|
+
query_states = self.q_proj(query_key_input).view(hidden_shape).transpose(1, 2)
|
|
519
|
+
key_states = self.k_proj(query_key_input).view(hidden_shape).transpose(1, 2)
|
|
520
|
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
521
|
+
|
|
522
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
523
|
+
self.config._attn_implementation, eager_attention_forward
|
|
524
|
+
)
|
|
525
|
+
|
|
526
|
+
attn_output, attn_weights = attention_interface(
|
|
527
|
+
self,
|
|
528
|
+
query_states,
|
|
529
|
+
key_states,
|
|
530
|
+
value_states,
|
|
531
|
+
attention_mask,
|
|
532
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
533
|
+
scaling=self.scaling,
|
|
534
|
+
**kwargs,
|
|
535
|
+
)
|
|
536
|
+
|
|
537
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
538
|
+
attn_output = self.o_proj(attn_output)
|
|
539
|
+
return attn_output, attn_weights
|
|
540
|
+
|
|
541
|
+
|
|
542
|
+
class DFineEncoderLayer(nn.Module):
|
|
543
|
+
def __init__(self, config: DFineConfig):
|
|
544
|
+
super().__init__()
|
|
545
|
+
self.normalize_before = config.normalize_before
|
|
546
|
+
self.hidden_size = config.encoder_hidden_dim
|
|
547
|
+
|
|
548
|
+
# self-attention
|
|
549
|
+
self.self_attn = DFineSelfAttention(
|
|
550
|
+
config=config,
|
|
551
|
+
hidden_size=self.hidden_size,
|
|
552
|
+
num_attention_heads=config.num_attention_heads,
|
|
553
|
+
dropout=config.dropout,
|
|
554
|
+
)
|
|
555
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
556
|
+
self.dropout = config.dropout
|
|
557
|
+
self.mlp = DFineMLP(
|
|
558
|
+
self.hidden_size, config.encoder_ffn_dim, self.hidden_size, 2, config.encoder_activation_function
|
|
559
|
+
)
|
|
560
|
+
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
561
|
+
|
|
562
|
+
def forward(
|
|
563
|
+
self,
|
|
564
|
+
hidden_states: torch.Tensor,
|
|
565
|
+
attention_mask: torch.Tensor,
|
|
566
|
+
spatial_position_embeddings: torch.Tensor | None = None,
|
|
567
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
568
|
+
) -> torch.Tensor:
|
|
569
|
+
"""
|
|
570
|
+
Args:
|
|
571
|
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)`
|
|
572
|
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
573
|
+
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
574
|
+
values.
|
|
575
|
+
spatial_position_embeddings (`torch.FloatTensor`, *optional*):
|
|
576
|
+
Spatial position embeddings (2D positional encodings of image locations), to be added to both
|
|
577
|
+
the queries and keys in self-attention (but not to values).
|
|
578
|
+
"""
|
|
579
|
+
residual = hidden_states
|
|
580
|
+
if self.normalize_before:
|
|
581
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
582
|
+
|
|
583
|
+
hidden_states, _ = self.self_attn(
|
|
584
|
+
hidden_states=hidden_states,
|
|
585
|
+
attention_mask=attention_mask,
|
|
586
|
+
position_embeddings=spatial_position_embeddings,
|
|
587
|
+
**kwargs,
|
|
588
|
+
)
|
|
589
|
+
|
|
590
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
591
|
+
hidden_states = residual + hidden_states
|
|
592
|
+
if not self.normalize_before:
|
|
593
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
594
|
+
|
|
595
|
+
if self.normalize_before:
|
|
596
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
597
|
+
residual = hidden_states
|
|
598
|
+
|
|
599
|
+
hidden_states = self.mlp(hidden_states)
|
|
600
|
+
|
|
601
|
+
hidden_states = residual + hidden_states
|
|
602
|
+
if not self.normalize_before:
|
|
603
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
604
|
+
|
|
605
|
+
if self.training:
|
|
606
|
+
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
|
|
607
|
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
608
|
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
|
609
|
+
|
|
610
|
+
return hidden_states
|
|
611
|
+
|
|
612
|
+
|
|
613
|
+
class DFineSinePositionEmbedding(nn.Module):
|
|
614
|
+
"""
|
|
615
|
+
2D sinusoidal position embedding used in RT-DETR hybrid encoder.
|
|
616
|
+
"""
|
|
617
|
+
|
|
618
|
+
def __init__(self, embed_dim: int = 256, temperature: int = 10000):
|
|
619
|
+
super().__init__()
|
|
620
|
+
self.embed_dim = embed_dim
|
|
621
|
+
self.temperature = temperature
|
|
622
|
+
|
|
623
|
+
@compile_compatible_method_lru_cache(maxsize=32)
|
|
624
|
+
def forward(
|
|
625
|
+
self,
|
|
626
|
+
width: int,
|
|
627
|
+
height: int,
|
|
628
|
+
device: torch.device | str,
|
|
629
|
+
dtype: torch.dtype,
|
|
630
|
+
) -> torch.Tensor:
|
|
631
|
+
"""
|
|
632
|
+
Generate 2D sinusoidal position embeddings.
|
|
633
|
+
|
|
634
|
+
Returns:
|
|
635
|
+
Position embeddings of shape (1, height*width, embed_dim)
|
|
636
|
+
"""
|
|
637
|
+
grid_w = torch.arange(torch_int(width), device=device).to(dtype)
|
|
638
|
+
grid_h = torch.arange(torch_int(height), device=device).to(dtype)
|
|
639
|
+
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="xy")
|
|
640
|
+
if self.embed_dim % 4 != 0:
|
|
641
|
+
raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
|
|
642
|
+
pos_dim = self.embed_dim // 4
|
|
643
|
+
omega = torch.arange(pos_dim, device=device).to(dtype) / pos_dim
|
|
644
|
+
omega = 1.0 / (self.temperature**omega)
|
|
645
|
+
|
|
646
|
+
out_w = grid_w.flatten()[..., None] @ omega[None]
|
|
647
|
+
out_h = grid_h.flatten()[..., None] @ omega[None]
|
|
648
|
+
|
|
649
|
+
return torch.concat([out_h.sin(), out_h.cos(), out_w.sin(), out_w.cos()], dim=1)[None, :, :]
|
|
650
|
+
|
|
651
|
+
|
|
652
|
+
class DFineAIFILayer(nn.Module):
|
|
653
|
+
"""
|
|
654
|
+
AIFI (Attention-based Intra-scale Feature Interaction) layer used in RT-DETR hybrid encoder.
|
|
655
|
+
"""
|
|
656
|
+
|
|
657
|
+
def __init__(self, config: DFineConfig):
|
|
658
|
+
super().__init__()
|
|
659
|
+
self.config = config
|
|
660
|
+
self.encoder_hidden_dim = config.encoder_hidden_dim
|
|
661
|
+
self.eval_size = config.eval_size
|
|
662
|
+
|
|
663
|
+
self.position_embedding = DFineSinePositionEmbedding(
|
|
664
|
+
embed_dim=self.encoder_hidden_dim,
|
|
665
|
+
temperature=config.positional_encoding_temperature,
|
|
666
|
+
)
|
|
667
|
+
self.layers = nn.ModuleList([DFineEncoderLayer(config) for _ in range(config.encoder_layers)])
|
|
668
|
+
|
|
669
|
+
def forward(
|
|
670
|
+
self,
|
|
671
|
+
hidden_states: torch.Tensor,
|
|
672
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
673
|
+
) -> torch.Tensor:
|
|
674
|
+
"""
|
|
675
|
+
Args:
|
|
676
|
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`):
|
|
677
|
+
Feature map to process.
|
|
678
|
+
"""
|
|
679
|
+
batch_size = hidden_states.shape[0]
|
|
680
|
+
height, width = hidden_states.shape[2:]
|
|
681
|
+
|
|
682
|
+
hidden_states = hidden_states.flatten(2).permute(0, 2, 1)
|
|
683
|
+
|
|
684
|
+
if self.training or self.eval_size is None:
|
|
685
|
+
pos_embed = self.position_embedding(
|
|
686
|
+
width=width,
|
|
687
|
+
height=height,
|
|
688
|
+
device=hidden_states.device,
|
|
689
|
+
dtype=hidden_states.dtype,
|
|
690
|
+
)
|
|
691
|
+
else:
|
|
692
|
+
pos_embed = None
|
|
693
|
+
|
|
694
|
+
for layer in self.layers:
|
|
695
|
+
hidden_states = layer(
|
|
696
|
+
hidden_states,
|
|
697
|
+
attention_mask=None,
|
|
698
|
+
spatial_position_embeddings=pos_embed,
|
|
699
|
+
**kwargs,
|
|
700
|
+
)
|
|
701
|
+
|
|
702
|
+
hidden_states = (
|
|
703
|
+
hidden_states.permute(0, 2, 1).reshape(batch_size, self.encoder_hidden_dim, height, width).contiguous()
|
|
704
|
+
)
|
|
705
|
+
|
|
706
|
+
return hidden_states
|
|
707
|
+
|
|
708
|
+
|
|
709
|
+
class DFineIntegral(nn.Module):
|
|
710
|
+
"""
|
|
711
|
+
A static layer that calculates integral results from a distribution.
|
|
712
|
+
|
|
713
|
+
This layer computes the target location using the formula: `sum{Pr(n) * W(n)}`,
|
|
714
|
+
where Pr(n) is the softmax probability vector representing the discrete
|
|
715
|
+
distribution, and W(n) is the non-uniform Weighting Function.
|
|
716
|
+
|
|
717
|
+
Args:
|
|
718
|
+
max_num_bins (int): Max number of the discrete bins. Default is 32.
|
|
719
|
+
It can be adjusted based on the dataset or task requirements.
|
|
720
|
+
"""
|
|
721
|
+
|
|
722
|
+
def __init__(self, config: DFineConfig):
|
|
723
|
+
super().__init__()
|
|
724
|
+
self.max_num_bins = config.max_num_bins
|
|
725
|
+
|
|
726
|
+
def forward(self, pred_corners: torch.Tensor, project: torch.Tensor) -> torch.Tensor:
|
|
727
|
+
batch_size, num_queries, _ = pred_corners.shape
|
|
728
|
+
pred_corners = F.softmax(pred_corners.reshape(-1, self.max_num_bins + 1), dim=1)
|
|
729
|
+
pred_corners = F.linear(pred_corners, project.to(pred_corners.device)).reshape(-1, 4)
|
|
730
|
+
pred_corners = pred_corners.reshape(batch_size, num_queries, -1)
|
|
731
|
+
return pred_corners
|
|
732
|
+
|
|
733
|
+
|
|
734
|
+
class DFineLQE(nn.Module):
|
|
735
|
+
def __init__(self, config: DFineConfig):
|
|
736
|
+
super().__init__()
|
|
737
|
+
self.top_prob_values = config.top_prob_values
|
|
738
|
+
self.max_num_bins = config.max_num_bins
|
|
739
|
+
self.reg_conf = DFineMLP(4 * (self.top_prob_values + 1), config.lqe_hidden_dim, 1, config.lqe_layers)
|
|
740
|
+
|
|
741
|
+
def forward(self, scores: torch.Tensor, pred_corners: torch.Tensor) -> torch.Tensor:
|
|
742
|
+
batch_size, length, _ = pred_corners.size()
|
|
743
|
+
prob = F.softmax(pred_corners.reshape(batch_size, length, 4, self.max_num_bins + 1), dim=-1)
|
|
744
|
+
prob_topk, _ = prob.topk(self.top_prob_values, dim=-1)
|
|
745
|
+
stat = torch.cat([prob_topk, prob_topk.mean(dim=-1, keepdim=True)], dim=-1)
|
|
746
|
+
quality_score = self.reg_conf(stat.reshape(batch_size, length, -1))
|
|
747
|
+
scores = scores + quality_score
|
|
748
|
+
return scores
|
|
749
|
+
|
|
750
|
+
|
|
751
|
+
class DFineDecoderLayer(nn.Module):
|
|
752
|
+
def __init__(self, config: DFineConfig):
|
|
753
|
+
super().__init__()
|
|
754
|
+
self.hidden_size = config.d_model
|
|
755
|
+
|
|
756
|
+
# self-attention
|
|
757
|
+
self.self_attn = DFineSelfAttention(
|
|
758
|
+
config=config,
|
|
759
|
+
hidden_size=self.hidden_size,
|
|
760
|
+
num_attention_heads=config.decoder_attention_heads,
|
|
761
|
+
dropout=config.attention_dropout,
|
|
762
|
+
)
|
|
763
|
+
self.dropout = config.dropout
|
|
764
|
+
|
|
765
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
766
|
+
|
|
767
|
+
# override the encoder attention module with d-fine version
|
|
356
768
|
self.encoder_attn = DFineMultiscaleDeformableAttention(config=config)
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
self.final_layer_norm = nn.LayerNorm(
|
|
769
|
+
self.mlp = DFineMLP(
|
|
770
|
+
self.hidden_size, config.decoder_ffn_dim, self.hidden_size, 2, config.decoder_activation_function
|
|
771
|
+
)
|
|
772
|
+
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
361
773
|
# gate
|
|
362
774
|
self.gateway = DFineGate(config.d_model)
|
|
363
775
|
|
|
364
776
|
def forward(
|
|
365
777
|
self,
|
|
366
778
|
hidden_states: torch.Tensor,
|
|
367
|
-
position_embeddings:
|
|
779
|
+
position_embeddings: torch.Tensor | None = None,
|
|
368
780
|
reference_points=None,
|
|
369
781
|
spatial_shapes=None,
|
|
370
782
|
spatial_shapes_list=None,
|
|
371
|
-
encoder_hidden_states:
|
|
372
|
-
encoder_attention_mask:
|
|
373
|
-
|
|
374
|
-
) ->
|
|
783
|
+
encoder_hidden_states: torch.Tensor | None = None,
|
|
784
|
+
encoder_attention_mask: torch.Tensor | None = None,
|
|
785
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
786
|
+
) -> torch.Tensor:
|
|
375
787
|
"""
|
|
376
788
|
Args:
|
|
377
789
|
hidden_states (`torch.FloatTensor`):
|
|
378
|
-
Input to the layer of shape `(
|
|
379
|
-
|
|
380
|
-
Position embeddings
|
|
790
|
+
Input to the layer of shape `(batch, seq_len, hidden_size)`.
|
|
791
|
+
object_queries_position_embeddings (`torch.FloatTensor`, *optional*):
|
|
792
|
+
Position embeddings for the object query slots. These are added to both queries and keys
|
|
793
|
+
in the self-attention layer (not values).
|
|
381
794
|
reference_points (`torch.FloatTensor`, *optional*):
|
|
382
795
|
Reference points.
|
|
383
796
|
spatial_shapes (`torch.LongTensor`, *optional*):
|
|
@@ -385,55 +798,65 @@ class DFineDecoderLayer(nn.Module):
|
|
|
385
798
|
level_start_index (`torch.LongTensor`, *optional*):
|
|
386
799
|
Level start index.
|
|
387
800
|
encoder_hidden_states (`torch.FloatTensor`):
|
|
388
|
-
cross attention input to the layer of shape `(
|
|
801
|
+
cross attention input to the layer of shape `(batch, seq_len, hidden_size)`
|
|
389
802
|
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
|
390
803
|
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
391
804
|
values.
|
|
392
|
-
output_attentions (`bool`, *optional*):
|
|
393
|
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
394
|
-
returned tensors for more detail.
|
|
395
805
|
"""
|
|
806
|
+
residual = hidden_states
|
|
807
|
+
|
|
396
808
|
# Self Attention
|
|
397
|
-
|
|
809
|
+
hidden_states, _ = self.self_attn(
|
|
398
810
|
hidden_states=hidden_states,
|
|
399
811
|
attention_mask=encoder_attention_mask,
|
|
400
812
|
position_embeddings=position_embeddings,
|
|
401
|
-
|
|
813
|
+
**kwargs,
|
|
402
814
|
)
|
|
403
815
|
|
|
404
|
-
|
|
405
|
-
hidden_states =
|
|
816
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
817
|
+
hidden_states = residual + hidden_states
|
|
406
818
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
819
|
+
|
|
407
820
|
residual = hidden_states
|
|
408
821
|
|
|
409
822
|
# Cross-Attention
|
|
410
|
-
cross_attn_weights = None
|
|
411
823
|
hidden_states = hidden_states if position_embeddings is None else hidden_states + position_embeddings
|
|
412
|
-
|
|
824
|
+
hidden_states, _ = self.encoder_attn(
|
|
413
825
|
hidden_states=hidden_states,
|
|
414
826
|
encoder_hidden_states=encoder_hidden_states,
|
|
415
827
|
reference_points=reference_points,
|
|
416
828
|
spatial_shapes=spatial_shapes,
|
|
417
829
|
spatial_shapes_list=spatial_shapes_list,
|
|
418
830
|
)
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
hidden_states = self.gateway(residual, hidden_states_2)
|
|
831
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
832
|
+
hidden_states = self.gateway(residual, hidden_states)
|
|
422
833
|
|
|
423
834
|
# Fully Connected
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
hidden_states_2 = nn.functional.dropout(hidden_states_2, p=self.dropout, training=self.training)
|
|
428
|
-
hidden_states = hidden_states + hidden_states_2
|
|
835
|
+
residual = hidden_states
|
|
836
|
+
hidden_states = self.mlp(hidden_states)
|
|
837
|
+
hidden_states = residual + hidden_states
|
|
429
838
|
hidden_states = self.final_layer_norm(hidden_states.clamp(min=-65504, max=65504))
|
|
430
839
|
|
|
431
|
-
|
|
840
|
+
return hidden_states
|
|
841
|
+
|
|
842
|
+
|
|
843
|
+
class DFineMLPPredictionHead(nn.Module):
|
|
844
|
+
"""
|
|
845
|
+
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
|
|
846
|
+
height and width of a bounding box w.r.t. an image.
|
|
847
|
+
|
|
848
|
+
"""
|
|
432
849
|
|
|
433
|
-
|
|
434
|
-
|
|
850
|
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|
851
|
+
super().__init__()
|
|
852
|
+
self.num_layers = num_layers
|
|
853
|
+
h = [hidden_dim] * (num_layers - 1)
|
|
854
|
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
435
855
|
|
|
436
|
-
|
|
856
|
+
def forward(self, x):
|
|
857
|
+
for i, layer in enumerate(self.layers):
|
|
858
|
+
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
859
|
+
return x
|
|
437
860
|
|
|
438
861
|
|
|
439
862
|
@auto_docstring
|
|
@@ -443,6 +866,10 @@ class DFinePreTrainedModel(PreTrainedModel):
|
|
|
443
866
|
main_input_name = "pixel_values"
|
|
444
867
|
input_modalities = ("image",)
|
|
445
868
|
_no_split_modules = [r"DFineHybridEncoder", r"DFineDecoderLayer"]
|
|
869
|
+
_supports_sdpa = True
|
|
870
|
+
_supports_flash_attn = True
|
|
871
|
+
_supports_attention_backend = True
|
|
872
|
+
_supports_flex_attn = True
|
|
446
873
|
|
|
447
874
|
@torch.no_grad()
|
|
448
875
|
def _init_weights(self, module):
|
|
@@ -520,67 +947,102 @@ class DFinePreTrainedModel(PreTrainedModel):
|
|
|
520
947
|
init.xavier_uniform_(module.denoising_class_embed.weight)
|
|
521
948
|
|
|
522
949
|
|
|
523
|
-
class
|
|
950
|
+
class DFineHybridEncoder(DFinePreTrainedModel):
|
|
524
951
|
"""
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
where Pr(n) is the softmax probability vector representing the discrete
|
|
529
|
-
distribution, and W(n) is the non-uniform Weighting Function.
|
|
952
|
+
Hybrid encoder consisting of AIFI (Attention-based Intra-scale Feature Interaction) layers,
|
|
953
|
+
a top-down Feature Pyramid Network (FPN) and a bottom-up Path Aggregation Network (PAN).
|
|
954
|
+
More details on the paper: https://huggingface.co/papers/2304.08069
|
|
530
955
|
|
|
531
956
|
Args:
|
|
532
|
-
|
|
533
|
-
It can be adjusted based on the dataset or task requirements.
|
|
957
|
+
config: DFineConfig
|
|
534
958
|
"""
|
|
535
959
|
|
|
960
|
+
_can_record_outputs = {
|
|
961
|
+
"hidden_states": DFineAIFILayer,
|
|
962
|
+
"attentions": DFineSelfAttention,
|
|
963
|
+
}
|
|
964
|
+
|
|
536
965
|
def __init__(self, config: DFineConfig):
|
|
537
|
-
super().__init__()
|
|
538
|
-
self.
|
|
966
|
+
super().__init__(config)
|
|
967
|
+
self.config = config
|
|
968
|
+
self.in_channels = config.encoder_in_channels
|
|
969
|
+
self.num_fpn_stages = len(self.in_channels) - 1
|
|
970
|
+
self.feat_strides = config.feat_strides
|
|
971
|
+
self.encoder_hidden_dim = config.encoder_hidden_dim
|
|
972
|
+
self.encode_proj_layers = config.encode_proj_layers
|
|
973
|
+
self.positional_encoding_temperature = config.positional_encoding_temperature
|
|
974
|
+
self.eval_size = config.eval_size
|
|
975
|
+
self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
|
|
976
|
+
self.out_strides = self.feat_strides
|
|
539
977
|
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
pred_corners = F.softmax(pred_corners.reshape(-1, self.max_num_bins + 1), dim=1)
|
|
543
|
-
pred_corners = F.linear(pred_corners, project.to(pred_corners.device)).reshape(-1, 4)
|
|
544
|
-
pred_corners = pred_corners.reshape(batch_size, num_queries, -1)
|
|
545
|
-
return pred_corners
|
|
978
|
+
# AIFI (Attention-based Intra-scale Feature Interaction) layers
|
|
979
|
+
self.aifi = nn.ModuleList([DFineAIFILayer(config) for _ in range(len(self.encode_proj_layers))])
|
|
546
980
|
|
|
981
|
+
# top-down fpn
|
|
982
|
+
self.lateral_convs = nn.ModuleList()
|
|
983
|
+
self.fpn_blocks = nn.ModuleList()
|
|
984
|
+
for _ in range(len(self.in_channels) - 1, 0, -1):
|
|
985
|
+
lateral_layer = DFineConvNormLayer(config, self.encoder_hidden_dim, self.encoder_hidden_dim, 1, 1)
|
|
986
|
+
self.lateral_convs.append(lateral_layer)
|
|
987
|
+
num_blocks = round(3 * config.depth_mult)
|
|
988
|
+
fpn_layer = DFineRepNCSPELAN4(config, numb_blocks=num_blocks)
|
|
989
|
+
self.fpn_blocks.append(fpn_layer)
|
|
547
990
|
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
)
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
571
|
-
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
|
572
|
-
used to compute the weighted average in the cross-attention heads.
|
|
573
|
-
"""
|
|
991
|
+
# bottom-up pan
|
|
992
|
+
self.downsample_convs = nn.ModuleList()
|
|
993
|
+
self.pan_blocks = nn.ModuleList()
|
|
994
|
+
for _ in range(len(self.in_channels) - 1):
|
|
995
|
+
self.downsample_convs.append(DFineSCDown(config, 3, 2))
|
|
996
|
+
num_blocks = round(3 * config.depth_mult)
|
|
997
|
+
self.pan_blocks.append(DFineRepNCSPELAN4(config, numb_blocks=num_blocks))
|
|
998
|
+
|
|
999
|
+
self.post_init()
|
|
1000
|
+
|
|
1001
|
+
@check_model_inputs(tie_last_hidden_states=False)
|
|
1002
|
+
def forward(
|
|
1003
|
+
self,
|
|
1004
|
+
inputs_embeds=None,
|
|
1005
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1006
|
+
) -> BaseModelOutput:
|
|
1007
|
+
r"""
|
|
1008
|
+
Args:
|
|
1009
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
1010
|
+
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
|
|
1011
|
+
"""
|
|
1012
|
+
feature_maps = inputs_embeds
|
|
574
1013
|
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
1014
|
+
# AIFI: Apply transformer encoder to specified feature levels
|
|
1015
|
+
if self.config.encoder_layers > 0:
|
|
1016
|
+
for i, enc_ind in enumerate(self.encode_proj_layers):
|
|
1017
|
+
feature_maps[enc_ind] = self.aifi[i](feature_maps[enc_ind], **kwargs)
|
|
1018
|
+
|
|
1019
|
+
# top-down FPN
|
|
1020
|
+
fpn_feature_maps = [feature_maps[-1]]
|
|
1021
|
+
for idx, (lateral_conv, fpn_block) in enumerate(zip(self.lateral_convs, self.fpn_blocks)):
|
|
1022
|
+
backbone_feature_map = feature_maps[self.num_fpn_stages - idx - 1]
|
|
1023
|
+
top_fpn_feature_map = fpn_feature_maps[-1]
|
|
1024
|
+
# apply lateral block
|
|
1025
|
+
top_fpn_feature_map = lateral_conv(top_fpn_feature_map)
|
|
1026
|
+
fpn_feature_maps[-1] = top_fpn_feature_map
|
|
1027
|
+
# apply fpn block
|
|
1028
|
+
top_fpn_feature_map = F.interpolate(top_fpn_feature_map, scale_factor=2.0, mode="nearest")
|
|
1029
|
+
fused_feature_map = torch.concat([top_fpn_feature_map, backbone_feature_map], dim=1)
|
|
1030
|
+
new_fpn_feature_map = fpn_block(fused_feature_map)
|
|
1031
|
+
fpn_feature_maps.append(new_fpn_feature_map)
|
|
1032
|
+
|
|
1033
|
+
fpn_feature_maps.reverse()
|
|
1034
|
+
|
|
1035
|
+
# bottom-up PAN
|
|
1036
|
+
pan_feature_maps = [fpn_feature_maps[0]]
|
|
1037
|
+
for idx, (downsample_conv, pan_block) in enumerate(zip(self.downsample_convs, self.pan_blocks)):
|
|
1038
|
+
top_pan_feature_map = pan_feature_maps[-1]
|
|
1039
|
+
fpn_feature_map = fpn_feature_maps[idx + 1]
|
|
1040
|
+
downsampled_feature_map = downsample_conv(top_pan_feature_map)
|
|
1041
|
+
fused_feature_map = torch.concat([downsampled_feature_map, fpn_feature_map], dim=1)
|
|
1042
|
+
new_pan_feature_map = pan_block(fused_feature_map)
|
|
1043
|
+
pan_feature_maps.append(new_pan_feature_map)
|
|
1044
|
+
|
|
1045
|
+
return BaseModelOutput(last_hidden_state=pan_feature_maps)
|
|
584
1046
|
|
|
585
1047
|
|
|
586
1048
|
def inverse_sigmoid(x, eps=1e-5):
|
|
@@ -648,6 +1110,12 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
648
1110
|
to improve bounding box accuracy and robustness.
|
|
649
1111
|
"""
|
|
650
1112
|
|
|
1113
|
+
_can_record_outputs = {
|
|
1114
|
+
"hidden_states": DFineDecoderLayer,
|
|
1115
|
+
"attentions": DFineSelfAttention,
|
|
1116
|
+
"cross_attentions": DFineMultiscaleDeformableAttention,
|
|
1117
|
+
}
|
|
1118
|
+
|
|
651
1119
|
def __init__(self, config: DFineConfig):
|
|
652
1120
|
super().__init__(config)
|
|
653
1121
|
self.eval_idx = config.eval_idx if config.eval_idx >= 0 else config.decoder_layers + config.eval_idx
|
|
@@ -657,7 +1125,7 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
657
1125
|
[DFineDecoderLayer(config) for _ in range(config.decoder_layers)]
|
|
658
1126
|
+ [DFineDecoderLayer(config) for _ in range(config.decoder_layers - self.eval_idx - 1)]
|
|
659
1127
|
)
|
|
660
|
-
self.query_pos_head = DFineMLPPredictionHead(
|
|
1128
|
+
self.query_pos_head = DFineMLPPredictionHead(4, 2 * config.d_model, config.d_model, num_layers=2)
|
|
661
1129
|
|
|
662
1130
|
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
|
|
663
1131
|
self.bbox_embed = None
|
|
@@ -675,6 +1143,7 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
675
1143
|
# Initialize weights and apply final processing
|
|
676
1144
|
self.post_init()
|
|
677
1145
|
|
|
1146
|
+
@check_model_inputs()
|
|
678
1147
|
def forward(
|
|
679
1148
|
self,
|
|
680
1149
|
encoder_hidden_states: torch.Tensor,
|
|
@@ -683,12 +1152,9 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
683
1152
|
spatial_shapes,
|
|
684
1153
|
level_start_index=None,
|
|
685
1154
|
spatial_shapes_list=None,
|
|
686
|
-
output_hidden_states=None,
|
|
687
1155
|
encoder_attention_mask=None,
|
|
688
1156
|
memory_mask=None,
|
|
689
|
-
|
|
690
|
-
return_dict=None,
|
|
691
|
-
**kwargs,
|
|
1157
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
692
1158
|
) -> DFineDecoderOutput:
|
|
693
1159
|
r"""
|
|
694
1160
|
Args:
|
|
@@ -702,39 +1168,17 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
702
1168
|
in `[0, 1]`:
|
|
703
1169
|
- 1 for pixels that are real (i.e. **not masked**),
|
|
704
1170
|
- 0 for pixels that are padding (i.e. **masked**).
|
|
705
|
-
position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
706
|
-
Position embeddings that are added to the queries and keys in each self-attention layer.
|
|
707
1171
|
reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
|
|
708
1172
|
Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
|
|
709
1173
|
spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
|
|
710
1174
|
Spatial shapes of the feature maps.
|
|
711
1175
|
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
|
|
712
1176
|
Indexes for the start of each feature level. In range `[0, sequence_length]`.
|
|
713
|
-
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
|
|
714
|
-
Ratio of valid area in each feature level.
|
|
715
|
-
|
|
716
|
-
output_attentions (`bool`, *optional*):
|
|
717
|
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
718
|
-
returned tensors for more detail.
|
|
719
|
-
output_hidden_states (`bool`, *optional*):
|
|
720
|
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
721
|
-
for more detail.
|
|
722
|
-
return_dict (`bool`, *optional*):
|
|
723
|
-
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
|
724
1177
|
"""
|
|
725
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
726
|
-
output_hidden_states = (
|
|
727
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
728
|
-
)
|
|
729
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
730
|
-
|
|
731
1178
|
if inputs_embeds is not None:
|
|
732
1179
|
hidden_states = inputs_embeds
|
|
733
1180
|
|
|
734
1181
|
# decoder layers
|
|
735
|
-
all_hidden_states = () if output_hidden_states else None
|
|
736
|
-
all_self_attns = () if output_attentions else None
|
|
737
|
-
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
|
738
1182
|
intermediate = ()
|
|
739
1183
|
intermediate_reference_points = ()
|
|
740
1184
|
intermediate_logits = ()
|
|
@@ -750,25 +1194,22 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
750
1194
|
ref_points_input = ref_points_detach.unsqueeze(2)
|
|
751
1195
|
query_pos_embed = self.query_pos_head(ref_points_detach).clamp(min=-10, max=10)
|
|
752
1196
|
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
|
|
756
|
-
output = decoder_layer(
|
|
757
|
-
hidden_states=hidden_states,
|
|
1197
|
+
hidden_states = decoder_layer(
|
|
1198
|
+
hidden_states,
|
|
758
1199
|
position_embeddings=query_pos_embed,
|
|
759
1200
|
reference_points=ref_points_input,
|
|
760
1201
|
spatial_shapes=spatial_shapes,
|
|
761
1202
|
spatial_shapes_list=spatial_shapes_list,
|
|
762
1203
|
encoder_hidden_states=encoder_hidden_states,
|
|
763
1204
|
encoder_attention_mask=encoder_attention_mask,
|
|
764
|
-
|
|
1205
|
+
**kwargs,
|
|
765
1206
|
)
|
|
766
1207
|
|
|
767
|
-
hidden_states = output[0]
|
|
768
|
-
|
|
769
1208
|
if i == 0:
|
|
770
1209
|
# Initial bounding box predictions with inverse sigmoid refinement
|
|
771
|
-
new_reference_points = F.sigmoid(
|
|
1210
|
+
new_reference_points = F.sigmoid(
|
|
1211
|
+
self.pre_bbox_head(hidden_states) + inverse_sigmoid(ref_points_detach)
|
|
1212
|
+
)
|
|
772
1213
|
ref_points_initial = new_reference_points.detach()
|
|
773
1214
|
|
|
774
1215
|
# Refine bounding box corners using FDR, integrating previous layer's corrections
|
|
@@ -797,12 +1238,6 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
797
1238
|
initial_reference_points += (ref_points_initial,)
|
|
798
1239
|
intermediate_predicted_corners += (pred_corners,)
|
|
799
1240
|
|
|
800
|
-
if output_attentions:
|
|
801
|
-
all_self_attns += (output[1],)
|
|
802
|
-
|
|
803
|
-
if encoder_hidden_states is not None:
|
|
804
|
-
all_cross_attentions += (output[2],)
|
|
805
|
-
|
|
806
1241
|
# Keep batch_size as first dimension
|
|
807
1242
|
intermediate = torch.stack(intermediate)
|
|
808
1243
|
if self.class_embed is not None and self.bbox_embed is not None:
|
|
@@ -811,27 +1246,6 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
811
1246
|
initial_reference_points = torch.stack(initial_reference_points, dim=1)
|
|
812
1247
|
intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
|
|
813
1248
|
|
|
814
|
-
# add hidden states from the last decoder layer
|
|
815
|
-
if output_hidden_states:
|
|
816
|
-
all_hidden_states += (hidden_states,)
|
|
817
|
-
|
|
818
|
-
if not return_dict:
|
|
819
|
-
return tuple(
|
|
820
|
-
v
|
|
821
|
-
for v in [
|
|
822
|
-
hidden_states,
|
|
823
|
-
intermediate,
|
|
824
|
-
intermediate_logits,
|
|
825
|
-
intermediate_reference_points,
|
|
826
|
-
intermediate_predicted_corners,
|
|
827
|
-
initial_reference_points,
|
|
828
|
-
all_hidden_states,
|
|
829
|
-
all_self_attns,
|
|
830
|
-
all_cross_attentions,
|
|
831
|
-
]
|
|
832
|
-
if v is not None
|
|
833
|
-
)
|
|
834
|
-
|
|
835
1249
|
return DFineDecoderOutput(
|
|
836
1250
|
last_hidden_state=hidden_states,
|
|
837
1251
|
intermediate_hidden_states=intermediate,
|
|
@@ -839,51 +1253,9 @@ class DFineDecoder(DFinePreTrainedModel):
|
|
|
839
1253
|
intermediate_reference_points=intermediate_reference_points,
|
|
840
1254
|
intermediate_predicted_corners=intermediate_predicted_corners,
|
|
841
1255
|
initial_reference_points=initial_reference_points,
|
|
842
|
-
hidden_states=all_hidden_states,
|
|
843
|
-
attentions=all_self_attns,
|
|
844
|
-
cross_attentions=all_cross_attentions,
|
|
845
1256
|
)
|
|
846
1257
|
|
|
847
1258
|
|
|
848
|
-
class DFineFrozenBatchNorm2d(nn.Module):
|
|
849
|
-
"""
|
|
850
|
-
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
|
851
|
-
|
|
852
|
-
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
|
|
853
|
-
torchvision.models.resnet[18,34,50,101] produce nans.
|
|
854
|
-
"""
|
|
855
|
-
|
|
856
|
-
def __init__(self, n):
|
|
857
|
-
super().__init__()
|
|
858
|
-
self.register_buffer("weight", torch.ones(n))
|
|
859
|
-
self.register_buffer("bias", torch.zeros(n))
|
|
860
|
-
self.register_buffer("running_mean", torch.zeros(n))
|
|
861
|
-
self.register_buffer("running_var", torch.ones(n))
|
|
862
|
-
|
|
863
|
-
def _load_from_state_dict(
|
|
864
|
-
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
865
|
-
):
|
|
866
|
-
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
867
|
-
if num_batches_tracked_key in state_dict:
|
|
868
|
-
del state_dict[num_batches_tracked_key]
|
|
869
|
-
|
|
870
|
-
super()._load_from_state_dict(
|
|
871
|
-
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
872
|
-
)
|
|
873
|
-
|
|
874
|
-
def forward(self, x):
|
|
875
|
-
# move reshapes to the beginning
|
|
876
|
-
# to make it user-friendly
|
|
877
|
-
weight = self.weight.reshape(1, -1, 1, 1)
|
|
878
|
-
bias = self.bias.reshape(1, -1, 1, 1)
|
|
879
|
-
running_var = self.running_var.reshape(1, -1, 1, 1)
|
|
880
|
-
running_mean = self.running_mean.reshape(1, -1, 1, 1)
|
|
881
|
-
epsilon = 1e-5
|
|
882
|
-
scale = weight * (running_var + epsilon).rsqrt()
|
|
883
|
-
bias = bias - running_mean * scale
|
|
884
|
-
return x * scale + bias
|
|
885
|
-
|
|
886
|
-
|
|
887
1259
|
@dataclass
|
|
888
1260
|
@auto_docstring(
|
|
889
1261
|
custom_intro="""
|
|
@@ -922,24 +1294,24 @@ class DFineModelOutput(ModelOutput):
|
|
|
922
1294
|
Extra dictionary for the denoising related values.
|
|
923
1295
|
"""
|
|
924
1296
|
|
|
925
|
-
last_hidden_state:
|
|
926
|
-
intermediate_hidden_states:
|
|
927
|
-
intermediate_logits:
|
|
928
|
-
intermediate_reference_points:
|
|
929
|
-
intermediate_predicted_corners:
|
|
930
|
-
initial_reference_points:
|
|
931
|
-
decoder_hidden_states:
|
|
932
|
-
decoder_attentions:
|
|
933
|
-
cross_attentions:
|
|
934
|
-
encoder_last_hidden_state:
|
|
935
|
-
encoder_hidden_states:
|
|
936
|
-
encoder_attentions:
|
|
937
|
-
init_reference_points:
|
|
938
|
-
enc_topk_logits:
|
|
939
|
-
enc_topk_bboxes:
|
|
940
|
-
enc_outputs_class:
|
|
941
|
-
enc_outputs_coord_logits:
|
|
942
|
-
denoising_meta_values:
|
|
1297
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
1298
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
1299
|
+
intermediate_logits: torch.FloatTensor | None = None
|
|
1300
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
1301
|
+
intermediate_predicted_corners: torch.FloatTensor | None = None
|
|
1302
|
+
initial_reference_points: torch.FloatTensor | None = None
|
|
1303
|
+
decoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1304
|
+
decoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
1305
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
1306
|
+
encoder_last_hidden_state: torch.FloatTensor | None = None
|
|
1307
|
+
encoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1308
|
+
encoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
1309
|
+
init_reference_points: torch.FloatTensor | None = None
|
|
1310
|
+
enc_topk_logits: torch.FloatTensor | None = None
|
|
1311
|
+
enc_topk_bboxes: torch.FloatTensor | None = None
|
|
1312
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
1313
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
1314
|
+
denoising_meta_values: dict | None = None
|
|
943
1315
|
|
|
944
1316
|
|
|
945
1317
|
def replace_batch_norm(model):
|
|
@@ -1135,8 +1507,8 @@ class DFineModel(DFinePreTrainedModel):
|
|
|
1135
1507
|
intermediate_channel_sizes = self.backbone.intermediate_channel_sizes
|
|
1136
1508
|
num_backbone_outs = len(config.decoder_in_channels)
|
|
1137
1509
|
encoder_input_proj_list = []
|
|
1138
|
-
for
|
|
1139
|
-
in_channels = intermediate_channel_sizes[
|
|
1510
|
+
for i in range(num_backbone_outs):
|
|
1511
|
+
in_channels = intermediate_channel_sizes[i]
|
|
1140
1512
|
encoder_input_proj_list.append(
|
|
1141
1513
|
nn.Sequential(
|
|
1142
1514
|
nn.Conv2d(in_channels, config.encoder_hidden_dim, kernel_size=1, bias=False),
|
|
@@ -1162,15 +1534,15 @@ class DFineModel(DFinePreTrainedModel):
|
|
|
1162
1534
|
nn.LayerNorm(config.d_model, eps=config.layer_norm_eps),
|
|
1163
1535
|
)
|
|
1164
1536
|
self.enc_score_head = nn.Linear(config.d_model, config.num_labels)
|
|
1165
|
-
self.enc_bbox_head = DFineMLPPredictionHead(config
|
|
1537
|
+
self.enc_bbox_head = DFineMLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3)
|
|
1166
1538
|
|
|
1167
1539
|
# init encoder output anchors and valid_mask
|
|
1168
1540
|
if config.anchor_image_size:
|
|
1169
1541
|
self.anchors, self.valid_mask = self.generate_anchors(dtype=self.dtype)
|
|
1170
1542
|
num_backbone_outs = len(config.decoder_in_channels)
|
|
1171
1543
|
decoder_input_proj_list = []
|
|
1172
|
-
for
|
|
1173
|
-
in_channels = config.decoder_in_channels[
|
|
1544
|
+
for i in range(num_backbone_outs):
|
|
1545
|
+
in_channels = config.decoder_in_channels[i]
|
|
1174
1546
|
decoder_input_proj_list.append(
|
|
1175
1547
|
nn.Sequential(
|
|
1176
1548
|
nn.Conv2d(in_channels, config.d_model, kernel_size=1, bias=False),
|
|
@@ -1244,26 +1616,20 @@ class DFineModel(DFinePreTrainedModel):
|
|
|
1244
1616
|
return anchors, valid_mask
|
|
1245
1617
|
|
|
1246
1618
|
@auto_docstring
|
|
1619
|
+
@can_return_tuple
|
|
1247
1620
|
def forward(
|
|
1248
1621
|
self,
|
|
1249
1622
|
pixel_values: torch.FloatTensor,
|
|
1250
|
-
pixel_mask:
|
|
1251
|
-
encoder_outputs:
|
|
1252
|
-
inputs_embeds:
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
|
|
1256
|
-
output_hidden_states: Optional[bool] = None,
|
|
1257
|
-
return_dict: Optional[bool] = None,
|
|
1258
|
-
**kwargs,
|
|
1259
|
-
) -> Union[tuple[torch.FloatTensor], DFineModelOutput]:
|
|
1623
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1624
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
1625
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1626
|
+
labels: list[dict] | None = None,
|
|
1627
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1628
|
+
) -> tuple[torch.FloatTensor] | DFineModelOutput:
|
|
1260
1629
|
r"""
|
|
1261
1630
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1262
1631
|
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
1263
1632
|
can choose to directly pass a flattened representation of an image.
|
|
1264
|
-
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
1265
|
-
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
1266
|
-
embedded representation.
|
|
1267
1633
|
labels (`list[Dict]` of len `(batch_size,)`, *optional*):
|
|
1268
1634
|
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
|
1269
1635
|
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
|
@@ -1291,53 +1657,46 @@ class DFineModel(DFinePreTrainedModel):
|
|
|
1291
1657
|
>>> list(last_hidden_states.shape)
|
|
1292
1658
|
[1, 300, 256]
|
|
1293
1659
|
```"""
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
|
|
1308
|
-
proj_feats = [self.encoder_input_proj[level](source) for level, (source, mask) in enumerate(features)]
|
|
1660
|
+
if pixel_values is None and inputs_embeds is None:
|
|
1661
|
+
raise ValueError("You have to specify either pixel_values or inputs_embeds")
|
|
1662
|
+
|
|
1663
|
+
if inputs_embeds is None:
|
|
1664
|
+
batch_size, num_channels, height, width = pixel_values.shape
|
|
1665
|
+
device = pixel_values.device
|
|
1666
|
+
if pixel_mask is None:
|
|
1667
|
+
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
|
|
1668
|
+
features = self.backbone(pixel_values, pixel_mask)
|
|
1669
|
+
proj_feats = [self.encoder_input_proj[level](source) for level, (source, mask) in enumerate(features)]
|
|
1670
|
+
else:
|
|
1671
|
+
batch_size = inputs_embeds.shape[0]
|
|
1672
|
+
device = inputs_embeds.device
|
|
1673
|
+
proj_feats = inputs_embeds
|
|
1309
1674
|
|
|
1310
1675
|
if encoder_outputs is None:
|
|
1311
1676
|
encoder_outputs = self.encoder(
|
|
1312
1677
|
proj_feats,
|
|
1313
|
-
|
|
1314
|
-
output_hidden_states=output_hidden_states,
|
|
1315
|
-
return_dict=return_dict,
|
|
1678
|
+
**kwargs,
|
|
1316
1679
|
)
|
|
1317
|
-
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput
|
|
1318
|
-
elif
|
|
1680
|
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput
|
|
1681
|
+
elif not isinstance(encoder_outputs, BaseModelOutput):
|
|
1319
1682
|
encoder_outputs = BaseModelOutput(
|
|
1320
1683
|
last_hidden_state=encoder_outputs[0],
|
|
1321
|
-
hidden_states=encoder_outputs[1] if
|
|
1322
|
-
attentions=encoder_outputs[2]
|
|
1323
|
-
if len(encoder_outputs) > 2
|
|
1324
|
-
else encoder_outputs[1]
|
|
1325
|
-
if output_attentions
|
|
1326
|
-
else None,
|
|
1684
|
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
1685
|
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
1327
1686
|
)
|
|
1328
1687
|
|
|
1329
1688
|
# Equivalent to def _get_encoder_input
|
|
1330
1689
|
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/DFine_pytorch/src/zoo/DFine/DFine_decoder.py#L412
|
|
1331
1690
|
sources = []
|
|
1332
|
-
for level, source in enumerate(encoder_outputs
|
|
1691
|
+
for level, source in enumerate(encoder_outputs.last_hidden_state):
|
|
1333
1692
|
sources.append(self.decoder_input_proj[level](source))
|
|
1334
1693
|
|
|
1335
1694
|
# Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
|
|
1336
1695
|
if self.config.num_feature_levels > len(sources):
|
|
1337
1696
|
_len_sources = len(sources)
|
|
1338
|
-
sources.append(self.decoder_input_proj[_len_sources](encoder_outputs
|
|
1697
|
+
sources.append(self.decoder_input_proj[_len_sources](encoder_outputs.last_hidden_state)[-1])
|
|
1339
1698
|
for i in range(_len_sources + 1, self.config.num_feature_levels):
|
|
1340
|
-
sources.append(self.decoder_input_proj[i](encoder_outputs[
|
|
1699
|
+
sources.append(self.decoder_input_proj[i](encoder_outputs.last_hidden_state[-1]))
|
|
1341
1700
|
|
|
1342
1701
|
# Prepare encoder inputs (by flattening)
|
|
1343
1702
|
source_flatten = []
|
|
@@ -1429,22 +1788,9 @@ class DFineModel(DFinePreTrainedModel):
|
|
|
1429
1788
|
spatial_shapes=spatial_shapes,
|
|
1430
1789
|
spatial_shapes_list=spatial_shapes_list,
|
|
1431
1790
|
level_start_index=level_start_index,
|
|
1432
|
-
|
|
1433
|
-
output_hidden_states=output_hidden_states,
|
|
1434
|
-
return_dict=return_dict,
|
|
1791
|
+
**kwargs,
|
|
1435
1792
|
)
|
|
1436
1793
|
|
|
1437
|
-
if not return_dict:
|
|
1438
|
-
enc_outputs = tuple(
|
|
1439
|
-
value
|
|
1440
|
-
for value in [enc_topk_logits, enc_topk_bboxes, enc_outputs_class, enc_outputs_coord_logits]
|
|
1441
|
-
if value is not None
|
|
1442
|
-
)
|
|
1443
|
-
dn_outputs = tuple(value if value is not None else None for value in [denoising_meta_values])
|
|
1444
|
-
tuple_outputs = decoder_outputs + encoder_outputs + (init_reference_points,) + enc_outputs + dn_outputs
|
|
1445
|
-
|
|
1446
|
-
return tuple_outputs
|
|
1447
|
-
|
|
1448
1794
|
return DFineModelOutput(
|
|
1449
1795
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
1450
1796
|
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
|
|
@@ -1520,29 +1866,29 @@ class DFineObjectDetectionOutput(ModelOutput):
|
|
|
1520
1866
|
Extra dictionary for the denoising related values
|
|
1521
1867
|
"""
|
|
1522
1868
|
|
|
1523
|
-
loss:
|
|
1524
|
-
loss_dict:
|
|
1525
|
-
logits:
|
|
1526
|
-
pred_boxes:
|
|
1527
|
-
auxiliary_outputs:
|
|
1528
|
-
last_hidden_state:
|
|
1529
|
-
intermediate_hidden_states:
|
|
1530
|
-
intermediate_logits:
|
|
1531
|
-
intermediate_reference_points:
|
|
1532
|
-
intermediate_predicted_corners:
|
|
1533
|
-
initial_reference_points:
|
|
1534
|
-
decoder_hidden_states:
|
|
1535
|
-
decoder_attentions:
|
|
1536
|
-
cross_attentions:
|
|
1537
|
-
encoder_last_hidden_state:
|
|
1538
|
-
encoder_hidden_states:
|
|
1539
|
-
encoder_attentions:
|
|
1540
|
-
init_reference_points:
|
|
1541
|
-
enc_topk_logits:
|
|
1542
|
-
enc_topk_bboxes:
|
|
1543
|
-
enc_outputs_class:
|
|
1544
|
-
enc_outputs_coord_logits:
|
|
1545
|
-
denoising_meta_values:
|
|
1869
|
+
loss: torch.FloatTensor | None = None
|
|
1870
|
+
loss_dict: dict | None = None
|
|
1871
|
+
logits: torch.FloatTensor | None = None
|
|
1872
|
+
pred_boxes: torch.FloatTensor | None = None
|
|
1873
|
+
auxiliary_outputs: list[dict] | None = None
|
|
1874
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
1875
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
1876
|
+
intermediate_logits: torch.FloatTensor | None = None
|
|
1877
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
1878
|
+
intermediate_predicted_corners: torch.FloatTensor | None = None
|
|
1879
|
+
initial_reference_points: torch.FloatTensor | None = None
|
|
1880
|
+
decoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1881
|
+
decoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
1882
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
1883
|
+
encoder_last_hidden_state: torch.FloatTensor | None = None
|
|
1884
|
+
encoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1885
|
+
encoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
1886
|
+
init_reference_points: tuple[torch.FloatTensor] | None = None
|
|
1887
|
+
enc_topk_logits: torch.FloatTensor | None = None
|
|
1888
|
+
enc_topk_bboxes: torch.FloatTensor | None = None
|
|
1889
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
1890
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
1891
|
+
denoising_meta_values: dict | None = None
|
|
1546
1892
|
|
|
1547
1893
|
|
|
1548
1894
|
@auto_docstring(
|
|
@@ -1556,10 +1902,10 @@ class DFineForObjectDetection(DFinePreTrainedModel):
|
|
|
1556
1902
|
# We can't initialize the model on meta device as some weights are modified during the initialization
|
|
1557
1903
|
_no_split_modules = None
|
|
1558
1904
|
_tied_weights_keys = {
|
|
1559
|
-
r"bbox_embed.(?![0])\d+": "bbox_embed.0",
|
|
1560
|
-
r"class_embed.(?![0])\d+": "class_embed.0",
|
|
1561
|
-
"
|
|
1562
|
-
"
|
|
1905
|
+
r"bbox_embed.(?![0])\d+": r"bbox_embed.0",
|
|
1906
|
+
r"class_embed.(?![0])\d+": r"^class_embed.0",
|
|
1907
|
+
"class_embed": "model.decoder.class_embed",
|
|
1908
|
+
"bbox_embed": "model.decoder.bbox_embed",
|
|
1563
1909
|
}
|
|
1564
1910
|
|
|
1565
1911
|
def __init__(self, config: DFineConfig):
|
|
@@ -1591,19 +1937,16 @@ class DFineForObjectDetection(DFinePreTrainedModel):
|
|
|
1591
1937
|
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class, outputs_coord)]
|
|
1592
1938
|
|
|
1593
1939
|
@auto_docstring
|
|
1940
|
+
@can_return_tuple
|
|
1594
1941
|
def forward(
|
|
1595
1942
|
self,
|
|
1596
1943
|
pixel_values: torch.FloatTensor,
|
|
1597
|
-
pixel_mask:
|
|
1598
|
-
encoder_outputs:
|
|
1599
|
-
inputs_embeds:
|
|
1600
|
-
|
|
1601
|
-
|
|
1602
|
-
|
|
1603
|
-
output_hidden_states: Optional[bool] = None,
|
|
1604
|
-
return_dict: Optional[bool] = None,
|
|
1605
|
-
**kwargs,
|
|
1606
|
-
) -> Union[tuple[torch.FloatTensor], DFineObjectDetectionOutput]:
|
|
1944
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1945
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
1946
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1947
|
+
labels: list[dict] | None = None,
|
|
1948
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1949
|
+
) -> tuple[torch.FloatTensor] | DFineObjectDetectionOutput:
|
|
1607
1950
|
r"""
|
|
1608
1951
|
Example:
|
|
1609
1952
|
|
|
@@ -1649,40 +1992,29 @@ class DFineForObjectDetection(DFinePreTrainedModel):
|
|
|
1649
1992
|
Detected sofa with confidence 0.918 at location [0.59, 1.88, 640.25, 474.74]
|
|
1650
1993
|
```
|
|
1651
1994
|
"""
|
|
1652
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
1653
|
-
output_hidden_states = (
|
|
1654
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
1655
|
-
)
|
|
1656
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1657
|
-
|
|
1658
1995
|
outputs = self.model(
|
|
1659
1996
|
pixel_values,
|
|
1660
1997
|
pixel_mask=pixel_mask,
|
|
1661
1998
|
encoder_outputs=encoder_outputs,
|
|
1662
1999
|
inputs_embeds=inputs_embeds,
|
|
1663
|
-
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
1664
2000
|
labels=labels,
|
|
1665
|
-
|
|
1666
|
-
output_hidden_states=output_hidden_states,
|
|
1667
|
-
return_dict=return_dict,
|
|
2001
|
+
**kwargs,
|
|
1668
2002
|
)
|
|
1669
2003
|
|
|
1670
|
-
denoising_meta_values =
|
|
1671
|
-
outputs.denoising_meta_values if return_dict else outputs[-1] if self.training else None
|
|
1672
|
-
)
|
|
2004
|
+
denoising_meta_values = outputs.denoising_meta_values if self.training else None
|
|
1673
2005
|
|
|
1674
|
-
outputs_class = outputs.intermediate_logits
|
|
1675
|
-
outputs_coord = outputs.intermediate_reference_points
|
|
1676
|
-
predicted_corners = outputs.intermediate_predicted_corners
|
|
1677
|
-
initial_reference_points = outputs.initial_reference_points
|
|
2006
|
+
outputs_class = outputs.intermediate_logits
|
|
2007
|
+
outputs_coord = outputs.intermediate_reference_points
|
|
2008
|
+
predicted_corners = outputs.intermediate_predicted_corners
|
|
2009
|
+
initial_reference_points = outputs.initial_reference_points
|
|
1678
2010
|
|
|
1679
2011
|
logits = outputs_class[:, -1]
|
|
1680
2012
|
pred_boxes = outputs_coord[:, -1]
|
|
1681
2013
|
|
|
1682
2014
|
loss, loss_dict, auxiliary_outputs, enc_topk_logits, enc_topk_bboxes = None, None, None, None, None
|
|
1683
2015
|
if labels is not None:
|
|
1684
|
-
enc_topk_logits = outputs.enc_topk_logits
|
|
1685
|
-
enc_topk_bboxes = outputs.enc_topk_bboxes
|
|
2016
|
+
enc_topk_logits = outputs.enc_topk_logits
|
|
2017
|
+
enc_topk_bboxes = outputs.enc_topk_bboxes
|
|
1686
2018
|
loss, loss_dict, auxiliary_outputs = self.loss_function(
|
|
1687
2019
|
logits,
|
|
1688
2020
|
labels,
|
|
@@ -1699,13 +2031,6 @@ class DFineForObjectDetection(DFinePreTrainedModel):
|
|
|
1699
2031
|
**kwargs,
|
|
1700
2032
|
)
|
|
1701
2033
|
|
|
1702
|
-
if not return_dict:
|
|
1703
|
-
if auxiliary_outputs is not None:
|
|
1704
|
-
output = (logits, pred_boxes) + (auxiliary_outputs,) + outputs
|
|
1705
|
-
else:
|
|
1706
|
-
output = (logits, pred_boxes) + outputs
|
|
1707
|
-
return ((loss, loss_dict) + output) if loss is not None else output
|
|
1708
|
-
|
|
1709
2034
|
return DFineObjectDetectionOutput(
|
|
1710
2035
|
loss=loss,
|
|
1711
2036
|
loss_dict=loss_dict,
|
|
@@ -1733,470 +2058,4 @@ class DFineForObjectDetection(DFinePreTrainedModel):
|
|
|
1733
2058
|
)
|
|
1734
2059
|
|
|
1735
2060
|
|
|
1736
|
-
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
|
1737
|
-
class DFineMLPPredictionHead(nn.Module):
|
|
1738
|
-
"""
|
|
1739
|
-
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
|
|
1740
|
-
height and width of a bounding box w.r.t. an image.
|
|
1741
|
-
|
|
1742
|
-
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
|
1743
|
-
Origin from https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/DFine_paddle/ppdet/modeling/transformers/utils.py#L453
|
|
1744
|
-
|
|
1745
|
-
"""
|
|
1746
|
-
|
|
1747
|
-
def __init__(self, config, input_dim, d_model, output_dim, num_layers):
|
|
1748
|
-
super().__init__()
|
|
1749
|
-
self.num_layers = num_layers
|
|
1750
|
-
h = [d_model] * (num_layers - 1)
|
|
1751
|
-
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
1752
|
-
|
|
1753
|
-
def forward(self, x):
|
|
1754
|
-
for i, layer in enumerate(self.layers):
|
|
1755
|
-
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
1756
|
-
return x
|
|
1757
|
-
|
|
1758
|
-
|
|
1759
|
-
class DFineMLP(nn.Module):
|
|
1760
|
-
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act: str = "relu"):
|
|
1761
|
-
super().__init__()
|
|
1762
|
-
self.num_layers = num_layers
|
|
1763
|
-
hidden_dims = [hidden_dim] * (num_layers - 1)
|
|
1764
|
-
input_dims = [input_dim] + hidden_dims
|
|
1765
|
-
output_dims = hidden_dims + [output_dim]
|
|
1766
|
-
self.layers = nn.ModuleList(nn.Linear(in_dim, out_dim) for in_dim, out_dim in zip(input_dims, output_dims))
|
|
1767
|
-
self.act = ACT2CLS[act]()
|
|
1768
|
-
|
|
1769
|
-
def forward(self, stat_features: torch.Tensor) -> torch.Tensor:
|
|
1770
|
-
for i, layer in enumerate(self.layers):
|
|
1771
|
-
stat_features = self.act(layer(stat_features)) if i < self.num_layers - 1 else layer(stat_features)
|
|
1772
|
-
return stat_features
|
|
1773
|
-
|
|
1774
|
-
|
|
1775
|
-
class DFineLQE(nn.Module):
|
|
1776
|
-
def __init__(self, config: DFineConfig):
|
|
1777
|
-
super().__init__()
|
|
1778
|
-
self.top_prob_values = config.top_prob_values
|
|
1779
|
-
self.max_num_bins = config.max_num_bins
|
|
1780
|
-
self.reg_conf = DFineMLP(4 * (self.top_prob_values + 1), config.lqe_hidden_dim, 1, config.lqe_layers)
|
|
1781
|
-
|
|
1782
|
-
def forward(self, scores: torch.Tensor, pred_corners: torch.Tensor) -> torch.Tensor:
|
|
1783
|
-
batch_size, length, _ = pred_corners.size()
|
|
1784
|
-
prob = F.softmax(pred_corners.reshape(batch_size, length, 4, self.max_num_bins + 1), dim=-1)
|
|
1785
|
-
prob_topk, _ = prob.topk(self.top_prob_values, dim=-1)
|
|
1786
|
-
stat = torch.cat([prob_topk, prob_topk.mean(dim=-1, keepdim=True)], dim=-1)
|
|
1787
|
-
quality_score = self.reg_conf(stat.reshape(batch_size, length, -1))
|
|
1788
|
-
scores = scores + quality_score
|
|
1789
|
-
return scores
|
|
1790
|
-
|
|
1791
|
-
|
|
1792
|
-
class DFineConvNormLayer(nn.Module):
|
|
1793
|
-
def __init__(
|
|
1794
|
-
self,
|
|
1795
|
-
config: DFineConfig,
|
|
1796
|
-
in_channels: int,
|
|
1797
|
-
out_channels: int,
|
|
1798
|
-
kernel_size: int,
|
|
1799
|
-
stride: int,
|
|
1800
|
-
groups: int = 1,
|
|
1801
|
-
padding: Optional[int] = None,
|
|
1802
|
-
activation: Optional[str] = None,
|
|
1803
|
-
):
|
|
1804
|
-
super().__init__()
|
|
1805
|
-
self.conv = nn.Conv2d(
|
|
1806
|
-
in_channels,
|
|
1807
|
-
out_channels,
|
|
1808
|
-
kernel_size,
|
|
1809
|
-
stride,
|
|
1810
|
-
groups=groups,
|
|
1811
|
-
padding=(kernel_size - 1) // 2 if padding is None else padding,
|
|
1812
|
-
bias=False,
|
|
1813
|
-
)
|
|
1814
|
-
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
|
|
1815
|
-
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
1816
|
-
|
|
1817
|
-
def forward(self, hidden_state):
|
|
1818
|
-
hidden_state = self.conv(hidden_state)
|
|
1819
|
-
hidden_state = self.norm(hidden_state)
|
|
1820
|
-
hidden_state = self.activation(hidden_state)
|
|
1821
|
-
return hidden_state
|
|
1822
|
-
|
|
1823
|
-
|
|
1824
|
-
class DFineRepVggBlock(nn.Module):
|
|
1825
|
-
"""
|
|
1826
|
-
RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
|
|
1827
|
-
"""
|
|
1828
|
-
|
|
1829
|
-
def __init__(self, config: DFineConfig, in_channels: int, out_channels: int):
|
|
1830
|
-
super().__init__()
|
|
1831
|
-
|
|
1832
|
-
activation = config.activation_function
|
|
1833
|
-
hidden_channels = in_channels
|
|
1834
|
-
self.conv1 = DFineConvNormLayer(config, hidden_channels, out_channels, 3, 1, padding=1)
|
|
1835
|
-
self.conv2 = DFineConvNormLayer(config, hidden_channels, out_channels, 1, 1, padding=0)
|
|
1836
|
-
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
1837
|
-
|
|
1838
|
-
def forward(self, x):
|
|
1839
|
-
y = self.conv1(x) + self.conv2(x)
|
|
1840
|
-
return self.activation(y)
|
|
1841
|
-
|
|
1842
|
-
|
|
1843
|
-
class DFineCSPRepLayer(nn.Module):
|
|
1844
|
-
"""
|
|
1845
|
-
Cross Stage Partial (CSP) network layer with RepVGG blocks.
|
|
1846
|
-
"""
|
|
1847
|
-
|
|
1848
|
-
def __init__(
|
|
1849
|
-
self, config: DFineConfig, in_channels: int, out_channels: int, num_blocks: int, expansion: float = 1.0
|
|
1850
|
-
):
|
|
1851
|
-
super().__init__()
|
|
1852
|
-
activation = config.activation_function
|
|
1853
|
-
|
|
1854
|
-
hidden_channels = int(out_channels * expansion)
|
|
1855
|
-
self.conv1 = DFineConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
|
|
1856
|
-
self.conv2 = DFineConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
|
|
1857
|
-
self.bottlenecks = nn.ModuleList(
|
|
1858
|
-
[DFineRepVggBlock(config, hidden_channels, hidden_channels) for _ in range(num_blocks)]
|
|
1859
|
-
)
|
|
1860
|
-
if hidden_channels != out_channels:
|
|
1861
|
-
self.conv3 = DFineConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
|
|
1862
|
-
else:
|
|
1863
|
-
self.conv3 = nn.Identity()
|
|
1864
|
-
|
|
1865
|
-
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
|
1866
|
-
hidden_state_1 = self.conv1(hidden_state)
|
|
1867
|
-
for bottleneck in self.bottlenecks:
|
|
1868
|
-
hidden_state_1 = bottleneck(hidden_state_1)
|
|
1869
|
-
hidden_state_2 = self.conv2(hidden_state)
|
|
1870
|
-
hidden_state_3 = self.conv3(hidden_state_1 + hidden_state_2)
|
|
1871
|
-
return hidden_state_3
|
|
1872
|
-
|
|
1873
|
-
|
|
1874
|
-
class DFineRepNCSPELAN4(nn.Module):
|
|
1875
|
-
def __init__(self, config: DFineConfig, act: str = "silu", numb_blocks: int = 3):
|
|
1876
|
-
super().__init__()
|
|
1877
|
-
conv1_dim = config.encoder_hidden_dim * 2
|
|
1878
|
-
conv2_dim = config.encoder_hidden_dim
|
|
1879
|
-
conv3_dim = config.encoder_hidden_dim * 2
|
|
1880
|
-
conv4_dim = round(config.hidden_expansion * config.encoder_hidden_dim // 2)
|
|
1881
|
-
self.conv_dim = conv3_dim // 2
|
|
1882
|
-
self.conv1 = DFineConvNormLayer(config, conv1_dim, conv3_dim, 1, 1, activation=act)
|
|
1883
|
-
self.csp_rep1 = DFineCSPRepLayer(config, conv3_dim // 2, conv4_dim, num_blocks=numb_blocks)
|
|
1884
|
-
self.conv2 = DFineConvNormLayer(config, conv4_dim, conv4_dim, 3, 1, activation=act)
|
|
1885
|
-
self.csp_rep2 = DFineCSPRepLayer(config, conv4_dim, conv4_dim, num_blocks=numb_blocks)
|
|
1886
|
-
self.conv3 = DFineConvNormLayer(config, conv4_dim, conv4_dim, 3, 1, activation=act)
|
|
1887
|
-
self.conv4 = DFineConvNormLayer(config, conv3_dim + (2 * conv4_dim), conv2_dim, 1, 1, activation=act)
|
|
1888
|
-
|
|
1889
|
-
def forward(self, input_features: torch.Tensor) -> torch.Tensor:
|
|
1890
|
-
# Split initial features into two branches after first convolution
|
|
1891
|
-
split_features = list(self.conv1(input_features).split((self.conv_dim, self.conv_dim), 1))
|
|
1892
|
-
|
|
1893
|
-
# Process branches sequentially
|
|
1894
|
-
branch1 = self.csp_rep1(split_features[-1])
|
|
1895
|
-
branch1 = self.conv2(branch1)
|
|
1896
|
-
branch2 = self.csp_rep2(branch1)
|
|
1897
|
-
branch2 = self.conv3(branch2)
|
|
1898
|
-
|
|
1899
|
-
split_features.extend([branch1, branch2])
|
|
1900
|
-
merged_features = torch.cat(split_features, 1)
|
|
1901
|
-
merged_features = self.conv4(merged_features)
|
|
1902
|
-
return merged_features
|
|
1903
|
-
|
|
1904
|
-
|
|
1905
|
-
class DFineSCDown(nn.Module):
|
|
1906
|
-
def __init__(self, config: DFineConfig, kernel_size: int, stride: int):
|
|
1907
|
-
super().__init__()
|
|
1908
|
-
self.conv1 = DFineConvNormLayer(config, config.encoder_hidden_dim, config.encoder_hidden_dim, 1, 1)
|
|
1909
|
-
self.conv2 = DFineConvNormLayer(
|
|
1910
|
-
config,
|
|
1911
|
-
config.encoder_hidden_dim,
|
|
1912
|
-
config.encoder_hidden_dim,
|
|
1913
|
-
kernel_size,
|
|
1914
|
-
stride,
|
|
1915
|
-
config.encoder_hidden_dim,
|
|
1916
|
-
)
|
|
1917
|
-
|
|
1918
|
-
def forward(self, input_features: torch.Tensor) -> torch.Tensor:
|
|
1919
|
-
input_features = self.conv1(input_features)
|
|
1920
|
-
input_features = self.conv2(input_features)
|
|
1921
|
-
return input_features
|
|
1922
|
-
|
|
1923
|
-
|
|
1924
|
-
class DFineEncoderLayer(nn.Module):
|
|
1925
|
-
def __init__(self, config: DFineConfig):
|
|
1926
|
-
super().__init__()
|
|
1927
|
-
self.normalize_before = config.normalize_before
|
|
1928
|
-
|
|
1929
|
-
# self-attention
|
|
1930
|
-
self.self_attn = DFineMultiheadAttention(
|
|
1931
|
-
embed_dim=config.encoder_hidden_dim,
|
|
1932
|
-
num_heads=config.num_attention_heads,
|
|
1933
|
-
dropout=config.dropout,
|
|
1934
|
-
)
|
|
1935
|
-
self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
|
|
1936
|
-
self.dropout = config.dropout
|
|
1937
|
-
self.activation_fn = ACT2FN[config.encoder_activation_function]
|
|
1938
|
-
self.activation_dropout = config.activation_dropout
|
|
1939
|
-
self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_ffn_dim)
|
|
1940
|
-
self.fc2 = nn.Linear(config.encoder_ffn_dim, config.encoder_hidden_dim)
|
|
1941
|
-
self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
|
|
1942
|
-
|
|
1943
|
-
def forward(
|
|
1944
|
-
self,
|
|
1945
|
-
hidden_states: torch.Tensor,
|
|
1946
|
-
attention_mask: torch.Tensor,
|
|
1947
|
-
position_embeddings: Optional[torch.Tensor] = None,
|
|
1948
|
-
output_attentions: bool = False,
|
|
1949
|
-
**kwargs,
|
|
1950
|
-
):
|
|
1951
|
-
"""
|
|
1952
|
-
Args:
|
|
1953
|
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
1954
|
-
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
1955
|
-
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
1956
|
-
values.
|
|
1957
|
-
position_embeddings (`torch.FloatTensor`, *optional*):
|
|
1958
|
-
Object queries (also called content embeddings), to be added to the hidden states.
|
|
1959
|
-
output_attentions (`bool`, *optional*):
|
|
1960
|
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
1961
|
-
returned tensors for more detail.
|
|
1962
|
-
"""
|
|
1963
|
-
residual = hidden_states
|
|
1964
|
-
if self.normalize_before:
|
|
1965
|
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
1966
|
-
|
|
1967
|
-
hidden_states, attn_weights = self.self_attn(
|
|
1968
|
-
hidden_states=hidden_states,
|
|
1969
|
-
attention_mask=attention_mask,
|
|
1970
|
-
position_embeddings=position_embeddings,
|
|
1971
|
-
output_attentions=output_attentions,
|
|
1972
|
-
)
|
|
1973
|
-
|
|
1974
|
-
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
1975
|
-
hidden_states = residual + hidden_states
|
|
1976
|
-
if not self.normalize_before:
|
|
1977
|
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
1978
|
-
|
|
1979
|
-
if self.normalize_before:
|
|
1980
|
-
hidden_states = self.final_layer_norm(hidden_states)
|
|
1981
|
-
residual = hidden_states
|
|
1982
|
-
|
|
1983
|
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
1984
|
-
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
1985
|
-
|
|
1986
|
-
hidden_states = self.fc2(hidden_states)
|
|
1987
|
-
|
|
1988
|
-
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
1989
|
-
|
|
1990
|
-
hidden_states = residual + hidden_states
|
|
1991
|
-
if not self.normalize_before:
|
|
1992
|
-
hidden_states = self.final_layer_norm(hidden_states)
|
|
1993
|
-
|
|
1994
|
-
if self.training:
|
|
1995
|
-
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
|
|
1996
|
-
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
1997
|
-
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
|
1998
|
-
|
|
1999
|
-
outputs = (hidden_states,)
|
|
2000
|
-
|
|
2001
|
-
if output_attentions:
|
|
2002
|
-
outputs += (attn_weights,)
|
|
2003
|
-
|
|
2004
|
-
return outputs
|
|
2005
|
-
|
|
2006
|
-
|
|
2007
|
-
class DFineEncoder(nn.Module):
|
|
2008
|
-
def __init__(self, config: DFineConfig):
|
|
2009
|
-
super().__init__()
|
|
2010
|
-
|
|
2011
|
-
self.layers = nn.ModuleList([DFineEncoderLayer(config) for _ in range(config.encoder_layers)])
|
|
2012
|
-
|
|
2013
|
-
def forward(self, src, src_mask=None, pos_embed=None, output_attentions: bool = False) -> torch.Tensor:
|
|
2014
|
-
hidden_states = src
|
|
2015
|
-
for layer in self.layers:
|
|
2016
|
-
hidden_states = layer(
|
|
2017
|
-
hidden_states,
|
|
2018
|
-
attention_mask=src_mask,
|
|
2019
|
-
position_embeddings=pos_embed,
|
|
2020
|
-
output_attentions=output_attentions,
|
|
2021
|
-
)
|
|
2022
|
-
return hidden_states
|
|
2023
|
-
|
|
2024
|
-
|
|
2025
|
-
class DFineHybridEncoder(nn.Module):
|
|
2026
|
-
"""
|
|
2027
|
-
Decoder consisting of a projection layer, a set of `DFineEncoder`, a top-down Feature Pyramid Network
|
|
2028
|
-
(FPN) and a bottom-up Path Aggregation Network (PAN). More details on the paper: https://huggingface.co/papers/2304.08069
|
|
2029
|
-
|
|
2030
|
-
Args:
|
|
2031
|
-
config: DFineConfig
|
|
2032
|
-
"""
|
|
2033
|
-
|
|
2034
|
-
def __init__(self, config: DFineConfig):
|
|
2035
|
-
super().__init__()
|
|
2036
|
-
self.config = config
|
|
2037
|
-
self.in_channels = config.encoder_in_channels
|
|
2038
|
-
self.num_fpn_stages = len(self.in_channels) - 1
|
|
2039
|
-
self.feat_strides = config.feat_strides
|
|
2040
|
-
self.encoder_hidden_dim = config.encoder_hidden_dim
|
|
2041
|
-
self.encode_proj_layers = config.encode_proj_layers
|
|
2042
|
-
self.positional_encoding_temperature = config.positional_encoding_temperature
|
|
2043
|
-
self.eval_size = config.eval_size
|
|
2044
|
-
self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
|
|
2045
|
-
self.out_strides = self.feat_strides
|
|
2046
|
-
|
|
2047
|
-
# encoder transformer
|
|
2048
|
-
self.encoder = nn.ModuleList([DFineEncoder(config) for _ in range(len(self.encode_proj_layers))])
|
|
2049
|
-
# top-down fpn
|
|
2050
|
-
self.lateral_convs = nn.ModuleList()
|
|
2051
|
-
self.fpn_blocks = nn.ModuleList()
|
|
2052
|
-
for _ in range(len(self.in_channels) - 1, 0, -1):
|
|
2053
|
-
lateral_layer = DFineConvNormLayer(config, self.encoder_hidden_dim, self.encoder_hidden_dim, 1, 1)
|
|
2054
|
-
self.lateral_convs.append(lateral_layer)
|
|
2055
|
-
num_blocks = round(3 * config.depth_mult)
|
|
2056
|
-
fpn_layer = DFineRepNCSPELAN4(config, numb_blocks=num_blocks)
|
|
2057
|
-
self.fpn_blocks.append(fpn_layer)
|
|
2058
|
-
|
|
2059
|
-
# bottom-up pan
|
|
2060
|
-
self.downsample_convs = nn.ModuleList()
|
|
2061
|
-
self.pan_blocks = nn.ModuleList()
|
|
2062
|
-
for _ in range(len(self.in_channels) - 1):
|
|
2063
|
-
self.downsample_convs.append(DFineSCDown(config, 3, 2))
|
|
2064
|
-
num_blocks = round(3 * config.depth_mult)
|
|
2065
|
-
self.pan_blocks.append(DFineRepNCSPELAN4(config, numb_blocks=num_blocks))
|
|
2066
|
-
|
|
2067
|
-
@staticmethod
|
|
2068
|
-
def build_2d_sincos_position_embedding(
|
|
2069
|
-
width, height, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32
|
|
2070
|
-
):
|
|
2071
|
-
grid_w = torch.arange(torch_int(width), device=device).to(dtype)
|
|
2072
|
-
grid_h = torch.arange(torch_int(height), device=device).to(dtype)
|
|
2073
|
-
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="xy")
|
|
2074
|
-
if embed_dim % 4 != 0:
|
|
2075
|
-
raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
|
|
2076
|
-
pos_dim = embed_dim // 4
|
|
2077
|
-
omega = torch.arange(pos_dim, device=device).to(dtype) / pos_dim
|
|
2078
|
-
omega = 1.0 / (temperature**omega)
|
|
2079
|
-
|
|
2080
|
-
out_w = grid_w.flatten()[..., None] @ omega[None]
|
|
2081
|
-
out_h = grid_h.flatten()[..., None] @ omega[None]
|
|
2082
|
-
|
|
2083
|
-
return torch.concat([out_h.sin(), out_h.cos(), out_w.sin(), out_w.cos()], dim=1)[None, :, :]
|
|
2084
|
-
|
|
2085
|
-
def forward(
|
|
2086
|
-
self,
|
|
2087
|
-
inputs_embeds=None,
|
|
2088
|
-
attention_mask=None,
|
|
2089
|
-
position_embeddings=None,
|
|
2090
|
-
spatial_shapes=None,
|
|
2091
|
-
level_start_index=None,
|
|
2092
|
-
valid_ratios=None,
|
|
2093
|
-
output_attentions=None,
|
|
2094
|
-
output_hidden_states=None,
|
|
2095
|
-
return_dict=None,
|
|
2096
|
-
):
|
|
2097
|
-
r"""
|
|
2098
|
-
Args:
|
|
2099
|
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
2100
|
-
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
|
|
2101
|
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
2102
|
-
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
|
|
2103
|
-
- 1 for pixel features that are real (i.e. **not masked**),
|
|
2104
|
-
- 0 for pixel features that are padding (i.e. **masked**).
|
|
2105
|
-
[What are attention masks?](../glossary#attention-mask)
|
|
2106
|
-
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
2107
|
-
Position embeddings that are added to the queries and keys in each self-attention layer.
|
|
2108
|
-
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
|
|
2109
|
-
Spatial shapes of each feature map.
|
|
2110
|
-
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
|
|
2111
|
-
Starting index of each feature map.
|
|
2112
|
-
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
|
|
2113
|
-
Ratio of valid area in each feature level.
|
|
2114
|
-
output_attentions (`bool`, *optional*):
|
|
2115
|
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
2116
|
-
returned tensors for more detail.
|
|
2117
|
-
output_hidden_states (`bool`, *optional*):
|
|
2118
|
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
2119
|
-
for more detail.
|
|
2120
|
-
return_dict (`bool`, *optional*):
|
|
2121
|
-
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
|
2122
|
-
"""
|
|
2123
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
2124
|
-
output_hidden_states = (
|
|
2125
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
2126
|
-
)
|
|
2127
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
2128
|
-
|
|
2129
|
-
hidden_states = inputs_embeds
|
|
2130
|
-
|
|
2131
|
-
encoder_states = () if output_hidden_states else None
|
|
2132
|
-
all_attentions = () if output_attentions else None
|
|
2133
|
-
|
|
2134
|
-
# encoder
|
|
2135
|
-
if self.config.encoder_layers > 0:
|
|
2136
|
-
for i, enc_ind in enumerate(self.encode_proj_layers):
|
|
2137
|
-
if output_hidden_states:
|
|
2138
|
-
encoder_states = encoder_states + (hidden_states[enc_ind],)
|
|
2139
|
-
height, width = hidden_states[enc_ind].shape[2:]
|
|
2140
|
-
# flatten [batch, channel, height, width] to [batch, height*width, channel]
|
|
2141
|
-
src_flatten = hidden_states[enc_ind].flatten(2).permute(0, 2, 1)
|
|
2142
|
-
if self.training or self.eval_size is None:
|
|
2143
|
-
pos_embed = self.build_2d_sincos_position_embedding(
|
|
2144
|
-
width,
|
|
2145
|
-
height,
|
|
2146
|
-
self.encoder_hidden_dim,
|
|
2147
|
-
self.positional_encoding_temperature,
|
|
2148
|
-
device=src_flatten.device,
|
|
2149
|
-
dtype=src_flatten.dtype,
|
|
2150
|
-
)
|
|
2151
|
-
else:
|
|
2152
|
-
pos_embed = None
|
|
2153
|
-
|
|
2154
|
-
layer_outputs = self.encoder[i](
|
|
2155
|
-
src_flatten,
|
|
2156
|
-
pos_embed=pos_embed,
|
|
2157
|
-
output_attentions=output_attentions,
|
|
2158
|
-
)
|
|
2159
|
-
hidden_states[enc_ind] = (
|
|
2160
|
-
layer_outputs[0].permute(0, 2, 1).reshape(-1, self.encoder_hidden_dim, height, width).contiguous()
|
|
2161
|
-
)
|
|
2162
|
-
|
|
2163
|
-
if output_attentions:
|
|
2164
|
-
all_attentions = all_attentions + (layer_outputs[1],)
|
|
2165
|
-
|
|
2166
|
-
if output_hidden_states:
|
|
2167
|
-
encoder_states = encoder_states + (hidden_states[enc_ind],)
|
|
2168
|
-
|
|
2169
|
-
# top-down FPN
|
|
2170
|
-
fpn_feature_maps = [hidden_states[-1]]
|
|
2171
|
-
for idx, (lateral_conv, fpn_block) in enumerate(zip(self.lateral_convs, self.fpn_blocks)):
|
|
2172
|
-
backbone_feature_map = hidden_states[self.num_fpn_stages - idx - 1]
|
|
2173
|
-
top_fpn_feature_map = fpn_feature_maps[-1]
|
|
2174
|
-
# apply lateral block
|
|
2175
|
-
top_fpn_feature_map = lateral_conv(top_fpn_feature_map)
|
|
2176
|
-
fpn_feature_maps[-1] = top_fpn_feature_map
|
|
2177
|
-
# apply fpn block
|
|
2178
|
-
top_fpn_feature_map = F.interpolate(top_fpn_feature_map, scale_factor=2.0, mode="nearest")
|
|
2179
|
-
fused_feature_map = torch.concat([top_fpn_feature_map, backbone_feature_map], dim=1)
|
|
2180
|
-
new_fpn_feature_map = fpn_block(fused_feature_map)
|
|
2181
|
-
fpn_feature_maps.append(new_fpn_feature_map)
|
|
2182
|
-
|
|
2183
|
-
fpn_feature_maps.reverse()
|
|
2184
|
-
|
|
2185
|
-
# bottom-up PAN
|
|
2186
|
-
pan_feature_maps = [fpn_feature_maps[0]]
|
|
2187
|
-
for idx, (downsample_conv, pan_block) in enumerate(zip(self.downsample_convs, self.pan_blocks)):
|
|
2188
|
-
top_pan_feature_map = pan_feature_maps[-1]
|
|
2189
|
-
fpn_feature_map = fpn_feature_maps[idx + 1]
|
|
2190
|
-
downsampled_feature_map = downsample_conv(top_pan_feature_map)
|
|
2191
|
-
fused_feature_map = torch.concat([downsampled_feature_map, fpn_feature_map], dim=1)
|
|
2192
|
-
new_pan_feature_map = pan_block(fused_feature_map)
|
|
2193
|
-
pan_feature_maps.append(new_pan_feature_map)
|
|
2194
|
-
|
|
2195
|
-
if not return_dict:
|
|
2196
|
-
return tuple(v for v in [pan_feature_maps, encoder_states, all_attentions] if v is not None)
|
|
2197
|
-
return BaseModelOutput(
|
|
2198
|
-
last_hidden_state=pan_feature_maps, hidden_states=encoder_states, attentions=all_attentions
|
|
2199
|
-
)
|
|
2200
|
-
|
|
2201
|
-
|
|
2202
2061
|
__all__ = ["DFineModel", "DFinePreTrainedModel", "DFineForObjectDetection"]
|