transformers 5.0.0rc2__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +11 -37
- transformers/activations.py +2 -2
- transformers/audio_utils.py +32 -32
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +26 -126
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +13 -10
- transformers/cli/transformers.py +2 -1
- transformers/configuration_utils.py +22 -92
- transformers/conversion_mapping.py +150 -26
- transformers/convert_slow_tokenizer.py +9 -12
- transformers/core_model_loading.py +217 -129
- transformers/data/processors/glue.py +0 -1
- transformers/data/processors/utils.py +0 -1
- transformers/data/processors/xnli.py +0 -1
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +10 -11
- transformers/distributed/configuration_utils.py +1 -2
- transformers/dynamic_module_utils.py +23 -23
- transformers/feature_extraction_sequence_utils.py +19 -23
- transformers/feature_extraction_utils.py +14 -14
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +2 -4
- transformers/generation/configuration_utils.py +54 -39
- transformers/generation/continuous_batching/__init__.py +0 -1
- transformers/generation/continuous_batching/cache.py +74 -44
- transformers/generation/continuous_batching/cache_manager.py +28 -28
- transformers/generation/continuous_batching/continuous_api.py +133 -414
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +77 -19
- transformers/generation/continuous_batching/scheduler.py +154 -104
- transformers/generation/logits_process.py +10 -133
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/streamers.py +0 -1
- transformers/generation/utils.py +91 -121
- transformers/generation/watermarking.py +2 -3
- transformers/hf_argparser.py +9 -13
- transformers/hyperparameter_search.py +1 -2
- transformers/image_processing_base.py +9 -9
- transformers/image_processing_utils.py +11 -15
- transformers/image_processing_utils_fast.py +70 -71
- transformers/image_transforms.py +73 -42
- transformers/image_utils.py +30 -37
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/awq.py +1 -3
- transformers/integrations/deepspeed.py +146 -4
- transformers/integrations/eetq.py +0 -1
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/fbgemm_fp8.py +1 -2
- transformers/integrations/finegrained_fp8.py +149 -13
- transformers/integrations/flash_attention.py +3 -8
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +4 -6
- transformers/integrations/ggml.py +0 -1
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/integration_utils.py +2 -3
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +52 -40
- transformers/integrations/peft.py +488 -176
- transformers/integrations/quark.py +2 -4
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/integrations/torchao.py +4 -6
- transformers/loss/loss_lw_detr.py +356 -0
- transformers/loss/loss_utils.py +2 -0
- transformers/masking_utils.py +199 -59
- transformers/model_debugging_utils.py +4 -5
- transformers/modelcard.py +14 -192
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +28 -29
- transformers/modeling_gguf_pytorch_utils.py +5 -5
- transformers/modeling_layers.py +21 -22
- transformers/modeling_outputs.py +242 -253
- transformers/modeling_rope_utils.py +32 -32
- transformers/modeling_utils.py +416 -438
- transformers/models/__init__.py +10 -0
- transformers/models/afmoe/configuration_afmoe.py +40 -33
- transformers/models/afmoe/modeling_afmoe.py +38 -41
- transformers/models/afmoe/modular_afmoe.py +23 -25
- transformers/models/aimv2/configuration_aimv2.py +2 -10
- transformers/models/aimv2/modeling_aimv2.py +46 -45
- transformers/models/aimv2/modular_aimv2.py +13 -19
- transformers/models/albert/configuration_albert.py +8 -2
- transformers/models/albert/modeling_albert.py +70 -72
- transformers/models/albert/tokenization_albert.py +1 -4
- transformers/models/align/configuration_align.py +8 -6
- transformers/models/align/modeling_align.py +83 -86
- transformers/models/align/processing_align.py +2 -30
- transformers/models/altclip/configuration_altclip.py +4 -7
- transformers/models/altclip/modeling_altclip.py +106 -103
- transformers/models/altclip/processing_altclip.py +2 -15
- transformers/models/apertus/__init__.py +0 -1
- transformers/models/apertus/configuration_apertus.py +23 -28
- transformers/models/apertus/modeling_apertus.py +35 -38
- transformers/models/apertus/modular_apertus.py +36 -40
- transformers/models/arcee/configuration_arcee.py +25 -30
- transformers/models/arcee/modeling_arcee.py +35 -38
- transformers/models/arcee/modular_arcee.py +20 -23
- transformers/models/aria/configuration_aria.py +31 -44
- transformers/models/aria/image_processing_aria.py +25 -27
- transformers/models/aria/modeling_aria.py +102 -102
- transformers/models/aria/modular_aria.py +111 -124
- transformers/models/aria/processing_aria.py +28 -35
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +9 -11
- transformers/models/audioflamingo3/__init__.py +0 -1
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +60 -52
- transformers/models/audioflamingo3/modular_audioflamingo3.py +52 -43
- transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
- transformers/models/auto/auto_factory.py +12 -11
- transformers/models/auto/configuration_auto.py +48 -5
- transformers/models/auto/feature_extraction_auto.py +5 -7
- transformers/models/auto/image_processing_auto.py +30 -39
- transformers/models/auto/modeling_auto.py +33 -199
- transformers/models/auto/processing_auto.py +11 -19
- transformers/models/auto/tokenization_auto.py +38 -37
- transformers/models/auto/video_processing_auto.py +7 -8
- transformers/models/autoformer/configuration_autoformer.py +4 -7
- transformers/models/autoformer/modeling_autoformer.py +100 -101
- transformers/models/aya_vision/configuration_aya_vision.py +4 -1
- transformers/models/aya_vision/modeling_aya_vision.py +64 -99
- transformers/models/aya_vision/modular_aya_vision.py +46 -74
- transformers/models/aya_vision/processing_aya_vision.py +25 -53
- transformers/models/bamba/configuration_bamba.py +46 -39
- transformers/models/bamba/modeling_bamba.py +83 -119
- transformers/models/bamba/modular_bamba.py +70 -109
- transformers/models/bark/configuration_bark.py +6 -8
- transformers/models/bark/generation_configuration_bark.py +3 -5
- transformers/models/bark/modeling_bark.py +64 -65
- transformers/models/bark/processing_bark.py +19 -41
- transformers/models/bart/configuration_bart.py +9 -5
- transformers/models/bart/modeling_bart.py +124 -129
- transformers/models/barthez/tokenization_barthez.py +1 -4
- transformers/models/bartpho/tokenization_bartpho.py +6 -7
- transformers/models/beit/configuration_beit.py +2 -15
- transformers/models/beit/image_processing_beit.py +53 -56
- transformers/models/beit/image_processing_beit_fast.py +11 -12
- transformers/models/beit/modeling_beit.py +65 -62
- transformers/models/bert/configuration_bert.py +12 -2
- transformers/models/bert/modeling_bert.py +117 -152
- transformers/models/bert/tokenization_bert.py +2 -4
- transformers/models/bert/tokenization_bert_legacy.py +3 -5
- transformers/models/bert_generation/configuration_bert_generation.py +17 -2
- transformers/models/bert_generation/modeling_bert_generation.py +53 -55
- transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
- transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
- transformers/models/bertweet/tokenization_bertweet.py +1 -3
- transformers/models/big_bird/configuration_big_bird.py +12 -9
- transformers/models/big_bird/modeling_big_bird.py +107 -124
- transformers/models/big_bird/tokenization_big_bird.py +1 -4
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +118 -118
- transformers/models/biogpt/configuration_biogpt.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +73 -79
- transformers/models/biogpt/modular_biogpt.py +60 -66
- transformers/models/biogpt/tokenization_biogpt.py +3 -5
- transformers/models/bit/configuration_bit.py +2 -5
- transformers/models/bit/image_processing_bit.py +21 -24
- transformers/models/bit/image_processing_bit_fast.py +0 -1
- transformers/models/bit/modeling_bit.py +15 -16
- transformers/models/bitnet/configuration_bitnet.py +23 -28
- transformers/models/bitnet/modeling_bitnet.py +34 -38
- transformers/models/bitnet/modular_bitnet.py +7 -10
- transformers/models/blenderbot/configuration_blenderbot.py +8 -5
- transformers/models/blenderbot/modeling_blenderbot.py +68 -99
- transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -5
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +70 -72
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
- transformers/models/blip/configuration_blip.py +9 -10
- transformers/models/blip/image_processing_blip.py +17 -20
- transformers/models/blip/image_processing_blip_fast.py +0 -1
- transformers/models/blip/modeling_blip.py +115 -108
- transformers/models/blip/modeling_blip_text.py +63 -65
- transformers/models/blip/processing_blip.py +5 -36
- transformers/models/blip_2/configuration_blip_2.py +2 -2
- transformers/models/blip_2/modeling_blip_2.py +145 -121
- transformers/models/blip_2/processing_blip_2.py +8 -38
- transformers/models/bloom/configuration_bloom.py +5 -2
- transformers/models/bloom/modeling_bloom.py +60 -60
- transformers/models/blt/configuration_blt.py +94 -86
- transformers/models/blt/modeling_blt.py +93 -90
- transformers/models/blt/modular_blt.py +127 -69
- transformers/models/bridgetower/configuration_bridgetower.py +7 -2
- transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +13 -14
- transformers/models/bridgetower/modeling_bridgetower.py +136 -124
- transformers/models/bridgetower/processing_bridgetower.py +2 -16
- transformers/models/bros/configuration_bros.py +24 -18
- transformers/models/bros/modeling_bros.py +78 -80
- transformers/models/bros/processing_bros.py +2 -12
- transformers/models/byt5/tokenization_byt5.py +4 -6
- transformers/models/camembert/configuration_camembert.py +8 -2
- transformers/models/camembert/modeling_camembert.py +97 -99
- transformers/models/camembert/modular_camembert.py +51 -54
- transformers/models/camembert/tokenization_camembert.py +1 -4
- transformers/models/canine/configuration_canine.py +4 -2
- transformers/models/canine/modeling_canine.py +73 -75
- transformers/models/canine/tokenization_canine.py +0 -1
- transformers/models/chameleon/configuration_chameleon.py +29 -34
- transformers/models/chameleon/image_processing_chameleon.py +21 -24
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -6
- transformers/models/chameleon/modeling_chameleon.py +135 -92
- transformers/models/chameleon/processing_chameleon.py +16 -41
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -8
- transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +93 -95
- transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
- transformers/models/clap/configuration_clap.py +4 -9
- transformers/models/clap/feature_extraction_clap.py +9 -10
- transformers/models/clap/modeling_clap.py +109 -111
- transformers/models/clap/processing_clap.py +2 -15
- transformers/models/clip/configuration_clip.py +4 -2
- transformers/models/clip/image_processing_clip.py +21 -24
- transformers/models/clip/image_processing_clip_fast.py +9 -1
- transformers/models/clip/modeling_clip.py +70 -68
- transformers/models/clip/processing_clip.py +2 -14
- transformers/models/clip/tokenization_clip.py +2 -5
- transformers/models/clipseg/configuration_clipseg.py +4 -2
- transformers/models/clipseg/modeling_clipseg.py +113 -112
- transformers/models/clipseg/processing_clipseg.py +19 -42
- transformers/models/clvp/configuration_clvp.py +15 -5
- transformers/models/clvp/feature_extraction_clvp.py +7 -10
- transformers/models/clvp/modeling_clvp.py +138 -145
- transformers/models/clvp/number_normalizer.py +1 -2
- transformers/models/clvp/processing_clvp.py +3 -20
- transformers/models/clvp/tokenization_clvp.py +0 -1
- transformers/models/code_llama/tokenization_code_llama.py +3 -6
- transformers/models/codegen/configuration_codegen.py +4 -4
- transformers/models/codegen/modeling_codegen.py +50 -49
- transformers/models/codegen/tokenization_codegen.py +5 -6
- transformers/models/cohere/configuration_cohere.py +25 -30
- transformers/models/cohere/modeling_cohere.py +39 -42
- transformers/models/cohere/modular_cohere.py +27 -31
- transformers/models/cohere/tokenization_cohere.py +5 -6
- transformers/models/cohere2/configuration_cohere2.py +27 -32
- transformers/models/cohere2/modeling_cohere2.py +38 -41
- transformers/models/cohere2/modular_cohere2.py +48 -52
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +9 -10
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +52 -55
- transformers/models/cohere2_vision/modular_cohere2_vision.py +41 -43
- transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
- transformers/models/colpali/configuration_colpali.py +0 -1
- transformers/models/colpali/modeling_colpali.py +14 -16
- transformers/models/colpali/modular_colpali.py +11 -51
- transformers/models/colpali/processing_colpali.py +14 -52
- transformers/models/colqwen2/modeling_colqwen2.py +27 -28
- transformers/models/colqwen2/modular_colqwen2.py +36 -74
- transformers/models/colqwen2/processing_colqwen2.py +16 -52
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -47
- transformers/models/conditional_detr/image_processing_conditional_detr.py +67 -70
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +50 -36
- transformers/models/conditional_detr/modeling_conditional_detr.py +851 -1001
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -5
- transformers/models/convbert/configuration_convbert.py +11 -8
- transformers/models/convbert/modeling_convbert.py +85 -87
- transformers/models/convbert/tokenization_convbert.py +0 -1
- transformers/models/convnext/configuration_convnext.py +2 -5
- transformers/models/convnext/image_processing_convnext.py +18 -21
- transformers/models/convnext/image_processing_convnext_fast.py +7 -8
- transformers/models/convnext/modeling_convnext.py +12 -14
- transformers/models/convnextv2/configuration_convnextv2.py +2 -5
- transformers/models/convnextv2/modeling_convnextv2.py +12 -14
- transformers/models/cpm/tokenization_cpm.py +6 -7
- transformers/models/cpm/tokenization_cpm_fast.py +3 -5
- transformers/models/cpmant/configuration_cpmant.py +4 -1
- transformers/models/cpmant/modeling_cpmant.py +38 -40
- transformers/models/cpmant/tokenization_cpmant.py +1 -3
- transformers/models/csm/configuration_csm.py +58 -66
- transformers/models/csm/generation_csm.py +13 -14
- transformers/models/csm/modeling_csm.py +81 -84
- transformers/models/csm/modular_csm.py +56 -58
- transformers/models/csm/processing_csm.py +25 -68
- transformers/models/ctrl/configuration_ctrl.py +16 -1
- transformers/models/ctrl/modeling_ctrl.py +51 -66
- transformers/models/ctrl/tokenization_ctrl.py +0 -1
- transformers/models/cvt/configuration_cvt.py +0 -1
- transformers/models/cvt/modeling_cvt.py +13 -15
- transformers/models/cwm/__init__.py +0 -1
- transformers/models/cwm/configuration_cwm.py +8 -12
- transformers/models/cwm/modeling_cwm.py +36 -38
- transformers/models/cwm/modular_cwm.py +10 -12
- transformers/models/d_fine/configuration_d_fine.py +10 -57
- transformers/models/d_fine/modeling_d_fine.py +786 -927
- transformers/models/d_fine/modular_d_fine.py +339 -417
- transformers/models/dab_detr/configuration_dab_detr.py +22 -49
- transformers/models/dab_detr/modeling_dab_detr.py +79 -77
- transformers/models/dac/configuration_dac.py +0 -1
- transformers/models/dac/feature_extraction_dac.py +6 -9
- transformers/models/dac/modeling_dac.py +22 -24
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -2
- transformers/models/data2vec/configuration_data2vec_text.py +11 -3
- transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
- transformers/models/data2vec/modeling_data2vec_audio.py +55 -59
- transformers/models/data2vec/modeling_data2vec_text.py +97 -99
- transformers/models/data2vec/modeling_data2vec_vision.py +45 -44
- transformers/models/data2vec/modular_data2vec_audio.py +6 -1
- transformers/models/data2vec/modular_data2vec_text.py +51 -54
- transformers/models/dbrx/configuration_dbrx.py +29 -22
- transformers/models/dbrx/modeling_dbrx.py +45 -48
- transformers/models/dbrx/modular_dbrx.py +37 -39
- transformers/models/deberta/configuration_deberta.py +6 -1
- transformers/models/deberta/modeling_deberta.py +57 -60
- transformers/models/deberta/tokenization_deberta.py +2 -5
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -1
- transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
- transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -2
- transformers/models/decision_transformer/modeling_decision_transformer.py +51 -53
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +41 -47
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -41
- transformers/models/deepseek_v2/modular_deepseek_v2.py +48 -52
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +42 -48
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +38 -40
- transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -10
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +6 -3
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +27 -28
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +12 -11
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -43
- transformers/models/deepseek_vl/modular_deepseek_vl.py +15 -43
- transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +7 -5
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +37 -37
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +22 -22
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +100 -56
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +141 -109
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -46
- transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +42 -28
- transformers/models/deformable_detr/modeling_deformable_detr.py +454 -652
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -5
- transformers/models/deit/configuration_deit.py +0 -1
- transformers/models/deit/image_processing_deit.py +18 -21
- transformers/models/deit/image_processing_deit_fast.py +0 -1
- transformers/models/deit/modeling_deit.py +27 -25
- transformers/models/depth_anything/configuration_depth_anything.py +12 -43
- transformers/models/depth_anything/modeling_depth_anything.py +10 -11
- transformers/models/depth_pro/configuration_depth_pro.py +0 -1
- transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +8 -9
- transformers/models/depth_pro/modeling_depth_pro.py +29 -27
- transformers/models/detr/configuration_detr.py +18 -50
- transformers/models/detr/image_processing_detr.py +64 -66
- transformers/models/detr/image_processing_detr_fast.py +33 -34
- transformers/models/detr/modeling_detr.py +748 -789
- transformers/models/dia/configuration_dia.py +9 -15
- transformers/models/dia/feature_extraction_dia.py +6 -9
- transformers/models/dia/generation_dia.py +48 -53
- transformers/models/dia/modeling_dia.py +68 -71
- transformers/models/dia/modular_dia.py +56 -58
- transformers/models/dia/processing_dia.py +39 -29
- transformers/models/dia/tokenization_dia.py +3 -6
- transformers/models/diffllama/configuration_diffllama.py +25 -30
- transformers/models/diffllama/modeling_diffllama.py +45 -53
- transformers/models/diffllama/modular_diffllama.py +18 -25
- transformers/models/dinat/configuration_dinat.py +2 -5
- transformers/models/dinat/modeling_dinat.py +47 -48
- transformers/models/dinov2/configuration_dinov2.py +2 -5
- transformers/models/dinov2/modeling_dinov2.py +20 -21
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +3 -5
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +21 -21
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +11 -14
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +6 -11
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +5 -9
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +7 -12
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +7 -8
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +19 -22
- transformers/models/dinov3_vit/modular_dinov3_vit.py +16 -19
- transformers/models/distilbert/configuration_distilbert.py +8 -2
- transformers/models/distilbert/modeling_distilbert.py +47 -49
- transformers/models/distilbert/tokenization_distilbert.py +0 -1
- transformers/models/doge/__init__.py +0 -1
- transformers/models/doge/configuration_doge.py +42 -35
- transformers/models/doge/modeling_doge.py +46 -49
- transformers/models/doge/modular_doge.py +77 -68
- transformers/models/donut/configuration_donut_swin.py +0 -1
- transformers/models/donut/image_processing_donut.py +26 -29
- transformers/models/donut/image_processing_donut_fast.py +9 -14
- transformers/models/donut/modeling_donut_swin.py +44 -46
- transformers/models/donut/processing_donut.py +5 -26
- transformers/models/dots1/configuration_dots1.py +43 -36
- transformers/models/dots1/modeling_dots1.py +35 -38
- transformers/models/dots1/modular_dots1.py +0 -1
- transformers/models/dpr/configuration_dpr.py +19 -2
- transformers/models/dpr/modeling_dpr.py +37 -39
- transformers/models/dpr/tokenization_dpr.py +7 -9
- transformers/models/dpr/tokenization_dpr_fast.py +7 -9
- transformers/models/dpt/configuration_dpt.py +23 -66
- transformers/models/dpt/image_processing_dpt.py +65 -66
- transformers/models/dpt/image_processing_dpt_fast.py +18 -19
- transformers/models/dpt/modeling_dpt.py +38 -36
- transformers/models/dpt/modular_dpt.py +14 -15
- transformers/models/edgetam/configuration_edgetam.py +1 -2
- transformers/models/edgetam/modeling_edgetam.py +87 -89
- transformers/models/edgetam/modular_edgetam.py +7 -13
- transformers/models/edgetam_video/__init__.py +0 -1
- transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +126 -128
- transformers/models/edgetam_video/modular_edgetam_video.py +25 -27
- transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
- transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +8 -7
- transformers/models/efficientloftr/modeling_efficientloftr.py +46 -38
- transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
- transformers/models/efficientnet/configuration_efficientnet.py +0 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +16 -17
- transformers/models/efficientnet/modeling_efficientnet.py +12 -14
- transformers/models/electra/configuration_electra.py +13 -3
- transformers/models/electra/modeling_electra.py +107 -109
- transformers/models/emu3/configuration_emu3.py +17 -17
- transformers/models/emu3/image_processing_emu3.py +44 -39
- transformers/models/emu3/modeling_emu3.py +143 -109
- transformers/models/emu3/modular_emu3.py +109 -73
- transformers/models/emu3/processing_emu3.py +18 -43
- transformers/models/encodec/configuration_encodec.py +2 -4
- transformers/models/encodec/feature_extraction_encodec.py +10 -13
- transformers/models/encodec/modeling_encodec.py +25 -29
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -2
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +37 -43
- transformers/models/eomt/configuration_eomt.py +12 -14
- transformers/models/eomt/image_processing_eomt.py +53 -55
- transformers/models/eomt/image_processing_eomt_fast.py +18 -19
- transformers/models/eomt/modeling_eomt.py +19 -21
- transformers/models/eomt/modular_eomt.py +28 -30
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -3
- transformers/models/ernie/modeling_ernie.py +127 -162
- transformers/models/ernie/modular_ernie.py +91 -103
- transformers/models/ernie4_5/configuration_ernie4_5.py +23 -27
- transformers/models/ernie4_5/modeling_ernie4_5.py +35 -37
- transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +34 -39
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +40 -42
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -7
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +305 -267
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +163 -142
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
- transformers/models/esm/configuration_esm.py +11 -15
- transformers/models/esm/modeling_esm.py +35 -37
- transformers/models/esm/modeling_esmfold.py +43 -50
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +1 -2
- transformers/models/esm/openfold_utils/protein.py +15 -16
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +2 -4
- transformers/models/evolla/configuration_evolla.py +50 -40
- transformers/models/evolla/modeling_evolla.py +69 -68
- transformers/models/evolla/modular_evolla.py +50 -48
- transformers/models/evolla/processing_evolla.py +23 -35
- transformers/models/exaone4/configuration_exaone4.py +27 -27
- transformers/models/exaone4/modeling_exaone4.py +36 -39
- transformers/models/exaone4/modular_exaone4.py +51 -50
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +31 -26
- transformers/models/falcon/modeling_falcon.py +76 -84
- transformers/models/falcon_h1/configuration_falcon_h1.py +57 -51
- transformers/models/falcon_h1/modeling_falcon_h1.py +74 -109
- transformers/models/falcon_h1/modular_falcon_h1.py +68 -100
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +64 -73
- transformers/models/falcon_mamba/modular_falcon_mamba.py +14 -13
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +70 -97
- transformers/models/fast_vlm/modular_fast_vlm.py +148 -38
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -6
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
- transformers/models/flaubert/configuration_flaubert.py +10 -5
- transformers/models/flaubert/modeling_flaubert.py +125 -129
- transformers/models/flaubert/tokenization_flaubert.py +3 -5
- transformers/models/flava/configuration_flava.py +9 -9
- transformers/models/flava/image_processing_flava.py +66 -67
- transformers/models/flava/image_processing_flava_fast.py +46 -47
- transformers/models/flava/modeling_flava.py +144 -135
- transformers/models/flava/processing_flava.py +2 -12
- transformers/models/flex_olmo/__init__.py +0 -1
- transformers/models/flex_olmo/configuration_flex_olmo.py +34 -39
- transformers/models/flex_olmo/modeling_flex_olmo.py +41 -43
- transformers/models/flex_olmo/modular_flex_olmo.py +46 -51
- transformers/models/florence2/configuration_florence2.py +4 -1
- transformers/models/florence2/modeling_florence2.py +96 -72
- transformers/models/florence2/modular_florence2.py +100 -107
- transformers/models/florence2/processing_florence2.py +18 -47
- transformers/models/fnet/configuration_fnet.py +6 -2
- transformers/models/fnet/modeling_fnet.py +69 -80
- transformers/models/fnet/tokenization_fnet.py +0 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -5
- transformers/models/focalnet/modeling_focalnet.py +49 -48
- transformers/models/fsmt/configuration_fsmt.py +12 -17
- transformers/models/fsmt/modeling_fsmt.py +47 -48
- transformers/models/fsmt/tokenization_fsmt.py +3 -5
- transformers/models/funnel/configuration_funnel.py +8 -1
- transformers/models/funnel/modeling_funnel.py +91 -93
- transformers/models/funnel/tokenization_funnel.py +2 -5
- transformers/models/fuyu/configuration_fuyu.py +28 -34
- transformers/models/fuyu/image_processing_fuyu.py +29 -31
- transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
- transformers/models/fuyu/modeling_fuyu.py +50 -52
- transformers/models/fuyu/processing_fuyu.py +9 -36
- transformers/models/gemma/configuration_gemma.py +25 -30
- transformers/models/gemma/modeling_gemma.py +36 -38
- transformers/models/gemma/modular_gemma.py +33 -36
- transformers/models/gemma/tokenization_gemma.py +3 -6
- transformers/models/gemma2/configuration_gemma2.py +30 -35
- transformers/models/gemma2/modeling_gemma2.py +38 -41
- transformers/models/gemma2/modular_gemma2.py +63 -67
- transformers/models/gemma3/configuration_gemma3.py +53 -48
- transformers/models/gemma3/image_processing_gemma3.py +29 -31
- transformers/models/gemma3/image_processing_gemma3_fast.py +11 -12
- transformers/models/gemma3/modeling_gemma3.py +123 -122
- transformers/models/gemma3/modular_gemma3.py +128 -125
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +42 -30
- transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
- transformers/models/gemma3n/modeling_gemma3n.py +166 -147
- transformers/models/gemma3n/modular_gemma3n.py +176 -148
- transformers/models/gemma3n/processing_gemma3n.py +12 -26
- transformers/models/git/configuration_git.py +5 -8
- transformers/models/git/modeling_git.py +115 -127
- transformers/models/git/processing_git.py +2 -14
- transformers/models/glm/configuration_glm.py +26 -30
- transformers/models/glm/modeling_glm.py +36 -39
- transformers/models/glm/modular_glm.py +4 -7
- transformers/models/glm4/configuration_glm4.py +26 -30
- transformers/models/glm4/modeling_glm4.py +39 -41
- transformers/models/glm4/modular_glm4.py +8 -10
- transformers/models/glm46v/configuration_glm46v.py +4 -1
- transformers/models/glm46v/image_processing_glm46v.py +40 -38
- transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
- transformers/models/glm46v/modeling_glm46v.py +138 -93
- transformers/models/glm46v/modular_glm46v.py +5 -3
- transformers/models/glm46v/processing_glm46v.py +7 -41
- transformers/models/glm46v/video_processing_glm46v.py +9 -11
- transformers/models/glm4_moe/configuration_glm4_moe.py +42 -35
- transformers/models/glm4_moe/modeling_glm4_moe.py +36 -39
- transformers/models/glm4_moe/modular_glm4_moe.py +43 -36
- transformers/models/glm4_moe_lite/__init__.py +28 -0
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +233 -0
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +302 -0
- transformers/models/glm4v/configuration_glm4v.py +25 -24
- transformers/models/glm4v/image_processing_glm4v.py +39 -38
- transformers/models/glm4v/image_processing_glm4v_fast.py +8 -9
- transformers/models/glm4v/modeling_glm4v.py +249 -210
- transformers/models/glm4v/modular_glm4v.py +211 -230
- transformers/models/glm4v/processing_glm4v.py +7 -41
- transformers/models/glm4v/video_processing_glm4v.py +9 -11
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +136 -127
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +348 -356
- transformers/models/glm4v_moe/modular_glm4v_moe.py +76 -174
- transformers/models/glm_image/__init__.py +31 -0
- transformers/models/glm_image/configuration_glm_image.py +358 -0
- transformers/models/glm_image/image_processing_glm_image.py +503 -0
- transformers/models/glm_image/image_processing_glm_image_fast.py +294 -0
- transformers/models/glm_image/modeling_glm_image.py +1691 -0
- transformers/models/glm_image/modular_glm_image.py +1640 -0
- transformers/models/glm_image/processing_glm_image.py +265 -0
- transformers/models/glm_ocr/__init__.py +28 -0
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/__init__.py +0 -1
- transformers/models/glmasr/configuration_glmasr.py +0 -1
- transformers/models/glmasr/modeling_glmasr.py +51 -46
- transformers/models/glmasr/modular_glmasr.py +39 -29
- transformers/models/glmasr/processing_glmasr.py +7 -8
- transformers/models/glpn/configuration_glpn.py +0 -1
- transformers/models/glpn/image_processing_glpn.py +11 -12
- transformers/models/glpn/image_processing_glpn_fast.py +11 -12
- transformers/models/glpn/modeling_glpn.py +14 -14
- transformers/models/got_ocr2/configuration_got_ocr2.py +10 -13
- transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +9 -10
- transformers/models/got_ocr2/modeling_got_ocr2.py +69 -77
- transformers/models/got_ocr2/modular_got_ocr2.py +60 -52
- transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
- transformers/models/gpt2/configuration_gpt2.py +13 -2
- transformers/models/gpt2/modeling_gpt2.py +111 -113
- transformers/models/gpt2/tokenization_gpt2.py +6 -9
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -2
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +78 -84
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -2
- transformers/models/gpt_neo/modeling_gpt_neo.py +66 -71
- transformers/models/gpt_neox/configuration_gpt_neox.py +27 -25
- transformers/models/gpt_neox/modeling_gpt_neox.py +74 -76
- transformers/models/gpt_neox/modular_gpt_neox.py +68 -70
- transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +24 -19
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +43 -46
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
- transformers/models/gpt_oss/configuration_gpt_oss.py +31 -30
- transformers/models/gpt_oss/modeling_gpt_oss.py +80 -114
- transformers/models/gpt_oss/modular_gpt_oss.py +62 -97
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +4 -5
- transformers/models/gptj/modeling_gptj.py +85 -88
- transformers/models/granite/configuration_granite.py +28 -33
- transformers/models/granite/modeling_granite.py +43 -45
- transformers/models/granite/modular_granite.py +29 -31
- transformers/models/granite_speech/configuration_granite_speech.py +0 -1
- transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
- transformers/models/granite_speech/modeling_granite_speech.py +84 -60
- transformers/models/granite_speech/processing_granite_speech.py +11 -4
- transformers/models/granitemoe/configuration_granitemoe.py +31 -36
- transformers/models/granitemoe/modeling_granitemoe.py +39 -41
- transformers/models/granitemoe/modular_granitemoe.py +21 -23
- transformers/models/granitemoehybrid/__init__.py +0 -1
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +55 -48
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +82 -118
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +57 -65
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +33 -37
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +52 -56
- transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -46
- transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +28 -29
- transformers/models/grounding_dino/modeling_grounding_dino.py +161 -181
- transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
- transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
- transformers/models/groupvit/configuration_groupvit.py +4 -2
- transformers/models/groupvit/modeling_groupvit.py +98 -92
- transformers/models/helium/configuration_helium.py +25 -29
- transformers/models/helium/modeling_helium.py +37 -40
- transformers/models/helium/modular_helium.py +3 -7
- transformers/models/herbert/tokenization_herbert.py +4 -6
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -5
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +12 -14
- transformers/models/hgnet_v2/modular_hgnet_v2.py +13 -17
- transformers/models/hiera/configuration_hiera.py +2 -5
- transformers/models/hiera/modeling_hiera.py +71 -70
- transformers/models/hubert/configuration_hubert.py +4 -2
- transformers/models/hubert/modeling_hubert.py +42 -41
- transformers/models/hubert/modular_hubert.py +8 -11
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +26 -31
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +58 -37
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +31 -11
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +31 -36
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +54 -44
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +27 -15
- transformers/models/ibert/configuration_ibert.py +4 -2
- transformers/models/ibert/modeling_ibert.py +60 -62
- transformers/models/ibert/quant_modules.py +0 -1
- transformers/models/idefics/configuration_idefics.py +5 -8
- transformers/models/idefics/image_processing_idefics.py +13 -15
- transformers/models/idefics/modeling_idefics.py +63 -65
- transformers/models/idefics/perceiver.py +1 -3
- transformers/models/idefics/processing_idefics.py +32 -48
- transformers/models/idefics/vision.py +27 -28
- transformers/models/idefics2/configuration_idefics2.py +1 -3
- transformers/models/idefics2/image_processing_idefics2.py +31 -32
- transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
- transformers/models/idefics2/modeling_idefics2.py +126 -106
- transformers/models/idefics2/processing_idefics2.py +10 -68
- transformers/models/idefics3/configuration_idefics3.py +1 -4
- transformers/models/idefics3/image_processing_idefics3.py +42 -43
- transformers/models/idefics3/image_processing_idefics3_fast.py +40 -15
- transformers/models/idefics3/modeling_idefics3.py +113 -92
- transformers/models/idefics3/processing_idefics3.py +15 -69
- transformers/models/ijepa/configuration_ijepa.py +0 -1
- transformers/models/ijepa/modeling_ijepa.py +13 -14
- transformers/models/ijepa/modular_ijepa.py +5 -7
- transformers/models/imagegpt/configuration_imagegpt.py +9 -2
- transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +10 -11
- transformers/models/imagegpt/modeling_imagegpt.py +65 -62
- transformers/models/informer/configuration_informer.py +6 -9
- transformers/models/informer/modeling_informer.py +87 -89
- transformers/models/informer/modular_informer.py +13 -16
- transformers/models/instructblip/configuration_instructblip.py +2 -2
- transformers/models/instructblip/modeling_instructblip.py +104 -79
- transformers/models/instructblip/processing_instructblip.py +10 -36
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +108 -105
- transformers/models/instructblipvideo/modular_instructblipvideo.py +73 -64
- transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +6 -7
- transformers/models/internvl/configuration_internvl.py +5 -1
- transformers/models/internvl/modeling_internvl.py +76 -98
- transformers/models/internvl/modular_internvl.py +45 -59
- transformers/models/internvl/processing_internvl.py +12 -45
- transformers/models/internvl/video_processing_internvl.py +10 -11
- transformers/models/jais2/configuration_jais2.py +25 -29
- transformers/models/jais2/modeling_jais2.py +36 -38
- transformers/models/jais2/modular_jais2.py +20 -22
- transformers/models/jamba/configuration_jamba.py +5 -8
- transformers/models/jamba/modeling_jamba.py +47 -50
- transformers/models/jamba/modular_jamba.py +40 -41
- transformers/models/janus/configuration_janus.py +0 -1
- transformers/models/janus/image_processing_janus.py +37 -39
- transformers/models/janus/image_processing_janus_fast.py +20 -21
- transformers/models/janus/modeling_janus.py +103 -188
- transformers/models/janus/modular_janus.py +122 -83
- transformers/models/janus/processing_janus.py +17 -43
- transformers/models/jetmoe/configuration_jetmoe.py +26 -27
- transformers/models/jetmoe/modeling_jetmoe.py +42 -45
- transformers/models/jetmoe/modular_jetmoe.py +33 -36
- transformers/models/kosmos2/configuration_kosmos2.py +10 -9
- transformers/models/kosmos2/modeling_kosmos2.py +199 -178
- transformers/models/kosmos2/processing_kosmos2.py +40 -55
- transformers/models/kosmos2_5/__init__.py +0 -1
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -9
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +162 -172
- transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +31 -28
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +103 -106
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +20 -22
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
- transformers/models/lasr/configuration_lasr.py +3 -7
- transformers/models/lasr/feature_extraction_lasr.py +10 -12
- transformers/models/lasr/modeling_lasr.py +21 -24
- transformers/models/lasr/modular_lasr.py +11 -13
- transformers/models/lasr/processing_lasr.py +12 -6
- transformers/models/lasr/tokenization_lasr.py +2 -4
- transformers/models/layoutlm/configuration_layoutlm.py +14 -2
- transformers/models/layoutlm/modeling_layoutlm.py +70 -72
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -17
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +7 -8
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
- transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -19
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +9 -10
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
- transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -17
- transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
- transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
- transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
- transformers/models/led/configuration_led.py +8 -12
- transformers/models/led/modeling_led.py +113 -267
- transformers/models/levit/configuration_levit.py +0 -1
- transformers/models/levit/image_processing_levit.py +19 -21
- transformers/models/levit/image_processing_levit_fast.py +4 -5
- transformers/models/levit/modeling_levit.py +17 -19
- transformers/models/lfm2/configuration_lfm2.py +27 -30
- transformers/models/lfm2/modeling_lfm2.py +46 -48
- transformers/models/lfm2/modular_lfm2.py +32 -32
- transformers/models/lfm2_moe/__init__.py +0 -1
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +6 -9
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +48 -49
- transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +43 -20
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +73 -61
- transformers/models/lfm2_vl/modular_lfm2_vl.py +66 -54
- transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
- transformers/models/lightglue/image_processing_lightglue.py +16 -15
- transformers/models/lightglue/image_processing_lightglue_fast.py +8 -7
- transformers/models/lightglue/modeling_lightglue.py +31 -33
- transformers/models/lightglue/modular_lightglue.py +31 -31
- transformers/models/lighton_ocr/__init__.py +28 -0
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +463 -0
- transformers/models/lighton_ocr/modular_lighton_ocr.py +404 -0
- transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
- transformers/models/lilt/configuration_lilt.py +6 -2
- transformers/models/lilt/modeling_lilt.py +53 -55
- transformers/models/llama/configuration_llama.py +26 -31
- transformers/models/llama/modeling_llama.py +35 -38
- transformers/models/llama/tokenization_llama.py +2 -4
- transformers/models/llama4/configuration_llama4.py +87 -69
- transformers/models/llama4/image_processing_llama4_fast.py +11 -12
- transformers/models/llama4/modeling_llama4.py +116 -115
- transformers/models/llama4/processing_llama4.py +33 -57
- transformers/models/llava/configuration_llava.py +10 -1
- transformers/models/llava/image_processing_llava.py +25 -28
- transformers/models/llava/image_processing_llava_fast.py +9 -10
- transformers/models/llava/modeling_llava.py +73 -102
- transformers/models/llava/processing_llava.py +18 -51
- transformers/models/llava_next/configuration_llava_next.py +2 -2
- transformers/models/llava_next/image_processing_llava_next.py +43 -45
- transformers/models/llava_next/image_processing_llava_next_fast.py +11 -12
- transformers/models/llava_next/modeling_llava_next.py +103 -104
- transformers/models/llava_next/processing_llava_next.py +18 -47
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -7
- transformers/models/llava_next_video/modeling_llava_next_video.py +168 -155
- transformers/models/llava_next_video/modular_llava_next_video.py +154 -147
- transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
- transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -7
- transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +14 -14
- transformers/models/llava_onevision/modeling_llava_onevision.py +170 -166
- transformers/models/llava_onevision/modular_llava_onevision.py +156 -152
- transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
- transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
- transformers/models/longcat_flash/__init__.py +0 -1
- transformers/models/longcat_flash/configuration_longcat_flash.py +39 -45
- transformers/models/longcat_flash/modeling_longcat_flash.py +37 -38
- transformers/models/longcat_flash/modular_longcat_flash.py +23 -24
- transformers/models/longformer/configuration_longformer.py +5 -5
- transformers/models/longformer/modeling_longformer.py +99 -101
- transformers/models/longt5/configuration_longt5.py +9 -7
- transformers/models/longt5/modeling_longt5.py +45 -45
- transformers/models/luke/configuration_luke.py +8 -2
- transformers/models/luke/modeling_luke.py +179 -181
- transformers/models/luke/tokenization_luke.py +99 -105
- transformers/{pipelines/deprecated → models/lw_detr}/__init__.py +14 -3
- transformers/models/lw_detr/configuration_lw_detr.py +362 -0
- transformers/models/lw_detr/modeling_lw_detr.py +1697 -0
- transformers/models/lw_detr/modular_lw_detr.py +1609 -0
- transformers/models/lxmert/configuration_lxmert.py +16 -1
- transformers/models/lxmert/modeling_lxmert.py +63 -74
- transformers/models/m2m_100/configuration_m2m_100.py +7 -9
- transformers/models/m2m_100/modeling_m2m_100.py +72 -74
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +5 -3
- transformers/models/mamba/modeling_mamba.py +61 -70
- transformers/models/mamba2/configuration_mamba2.py +5 -8
- transformers/models/mamba2/modeling_mamba2.py +66 -79
- transformers/models/marian/configuration_marian.py +10 -5
- transformers/models/marian/modeling_marian.py +88 -90
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +4 -7
- transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
- transformers/models/markuplm/modeling_markuplm.py +63 -65
- transformers/models/markuplm/processing_markuplm.py +31 -38
- transformers/models/markuplm/tokenization_markuplm.py +67 -77
- transformers/models/mask2former/configuration_mask2former.py +14 -52
- transformers/models/mask2former/image_processing_mask2former.py +84 -85
- transformers/models/mask2former/image_processing_mask2former_fast.py +36 -36
- transformers/models/mask2former/modeling_mask2former.py +108 -104
- transformers/models/mask2former/modular_mask2former.py +6 -8
- transformers/models/maskformer/configuration_maskformer.py +17 -51
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -5
- transformers/models/maskformer/image_processing_maskformer.py +84 -85
- transformers/models/maskformer/image_processing_maskformer_fast.py +35 -36
- transformers/models/maskformer/modeling_maskformer.py +71 -67
- transformers/models/maskformer/modeling_maskformer_swin.py +20 -23
- transformers/models/mbart/configuration_mbart.py +9 -5
- transformers/models/mbart/modeling_mbart.py +120 -119
- transformers/models/mbart/tokenization_mbart.py +2 -4
- transformers/models/mbart50/tokenization_mbart50.py +3 -5
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -3
- transformers/models/megatron_bert/modeling_megatron_bert.py +139 -165
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +94 -87
- transformers/models/metaclip_2/modular_metaclip_2.py +59 -45
- transformers/models/mgp_str/configuration_mgp_str.py +0 -1
- transformers/models/mgp_str/modeling_mgp_str.py +18 -18
- transformers/models/mgp_str/processing_mgp_str.py +3 -20
- transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
- transformers/models/mimi/configuration_mimi.py +42 -40
- transformers/models/mimi/modeling_mimi.py +116 -115
- transformers/models/minimax/__init__.py +0 -1
- transformers/models/minimax/configuration_minimax.py +40 -47
- transformers/models/minimax/modeling_minimax.py +46 -49
- transformers/models/minimax/modular_minimax.py +59 -65
- transformers/models/minimax_m2/__init__.py +28 -0
- transformers/models/minimax_m2/configuration_minimax_m2.py +188 -0
- transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
- transformers/models/minimax_m2/modular_minimax_m2.py +346 -0
- transformers/models/ministral/configuration_ministral.py +25 -29
- transformers/models/ministral/modeling_ministral.py +35 -37
- transformers/models/ministral/modular_ministral.py +32 -37
- transformers/models/ministral3/configuration_ministral3.py +23 -26
- transformers/models/ministral3/modeling_ministral3.py +35 -37
- transformers/models/ministral3/modular_ministral3.py +7 -8
- transformers/models/mistral/configuration_mistral.py +24 -29
- transformers/models/mistral/modeling_mistral.py +35 -37
- transformers/models/mistral/modular_mistral.py +14 -15
- transformers/models/mistral3/configuration_mistral3.py +4 -1
- transformers/models/mistral3/modeling_mistral3.py +79 -82
- transformers/models/mistral3/modular_mistral3.py +66 -67
- transformers/models/mixtral/configuration_mixtral.py +32 -38
- transformers/models/mixtral/modeling_mixtral.py +39 -42
- transformers/models/mixtral/modular_mixtral.py +26 -29
- transformers/models/mlcd/configuration_mlcd.py +0 -1
- transformers/models/mlcd/modeling_mlcd.py +17 -17
- transformers/models/mlcd/modular_mlcd.py +16 -16
- transformers/models/mllama/configuration_mllama.py +10 -15
- transformers/models/mllama/image_processing_mllama.py +23 -25
- transformers/models/mllama/image_processing_mllama_fast.py +11 -11
- transformers/models/mllama/modeling_mllama.py +100 -103
- transformers/models/mllama/processing_mllama.py +6 -55
- transformers/models/mluke/tokenization_mluke.py +97 -103
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -46
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +159 -179
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -46
- transformers/models/mobilebert/configuration_mobilebert.py +4 -2
- transformers/models/mobilebert/modeling_mobilebert.py +78 -88
- transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +14 -15
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +21 -22
- transformers/models/mobilevit/configuration_mobilevit.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +12 -13
- transformers/models/mobilevit/modeling_mobilevit.py +21 -21
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -22
- transformers/models/modernbert/configuration_modernbert.py +76 -51
- transformers/models/modernbert/modeling_modernbert.py +188 -943
- transformers/models/modernbert/modular_modernbert.py +255 -978
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +50 -44
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -64
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +92 -92
- transformers/models/moonshine/configuration_moonshine.py +34 -31
- transformers/models/moonshine/modeling_moonshine.py +70 -72
- transformers/models/moonshine/modular_moonshine.py +91 -86
- transformers/models/moshi/configuration_moshi.py +46 -23
- transformers/models/moshi/modeling_moshi.py +134 -142
- transformers/models/mpnet/configuration_mpnet.py +6 -2
- transformers/models/mpnet/modeling_mpnet.py +55 -57
- transformers/models/mpnet/tokenization_mpnet.py +1 -4
- transformers/models/mpt/configuration_mpt.py +17 -9
- transformers/models/mpt/modeling_mpt.py +58 -60
- transformers/models/mra/configuration_mra.py +8 -2
- transformers/models/mra/modeling_mra.py +54 -56
- transformers/models/mt5/configuration_mt5.py +9 -6
- transformers/models/mt5/modeling_mt5.py +80 -85
- transformers/models/musicgen/configuration_musicgen.py +12 -8
- transformers/models/musicgen/modeling_musicgen.py +114 -116
- transformers/models/musicgen/processing_musicgen.py +3 -21
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -8
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +113 -126
- transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
- transformers/models/mvp/configuration_mvp.py +8 -5
- transformers/models/mvp/modeling_mvp.py +121 -123
- transformers/models/myt5/tokenization_myt5.py +8 -10
- transformers/models/nanochat/configuration_nanochat.py +5 -8
- transformers/models/nanochat/modeling_nanochat.py +36 -39
- transformers/models/nanochat/modular_nanochat.py +16 -18
- transformers/models/nemotron/configuration_nemotron.py +25 -30
- transformers/models/nemotron/modeling_nemotron.py +53 -66
- transformers/models/nllb/tokenization_nllb.py +14 -14
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -10
- transformers/models/nllb_moe/modeling_nllb_moe.py +70 -72
- transformers/models/nougat/image_processing_nougat.py +29 -32
- transformers/models/nougat/image_processing_nougat_fast.py +12 -13
- transformers/models/nougat/processing_nougat.py +37 -39
- transformers/models/nougat/tokenization_nougat.py +5 -7
- transformers/models/nystromformer/configuration_nystromformer.py +8 -2
- transformers/models/nystromformer/modeling_nystromformer.py +61 -63
- transformers/models/olmo/configuration_olmo.py +23 -28
- transformers/models/olmo/modeling_olmo.py +35 -38
- transformers/models/olmo/modular_olmo.py +8 -12
- transformers/models/olmo2/configuration_olmo2.py +27 -32
- transformers/models/olmo2/modeling_olmo2.py +36 -39
- transformers/models/olmo2/modular_olmo2.py +36 -38
- transformers/models/olmo3/__init__.py +0 -1
- transformers/models/olmo3/configuration_olmo3.py +30 -34
- transformers/models/olmo3/modeling_olmo3.py +35 -38
- transformers/models/olmo3/modular_olmo3.py +44 -47
- transformers/models/olmoe/configuration_olmoe.py +29 -33
- transformers/models/olmoe/modeling_olmoe.py +41 -43
- transformers/models/olmoe/modular_olmoe.py +15 -16
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -50
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +59 -57
- transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
- transformers/models/oneformer/configuration_oneformer.py +11 -51
- transformers/models/oneformer/image_processing_oneformer.py +83 -84
- transformers/models/oneformer/image_processing_oneformer_fast.py +41 -42
- transformers/models/oneformer/modeling_oneformer.py +137 -133
- transformers/models/oneformer/processing_oneformer.py +28 -43
- transformers/models/openai/configuration_openai.py +16 -1
- transformers/models/openai/modeling_openai.py +50 -51
- transformers/models/openai/tokenization_openai.py +2 -5
- transformers/models/opt/configuration_opt.py +6 -7
- transformers/models/opt/modeling_opt.py +79 -80
- transformers/models/ovis2/__init__.py +0 -1
- transformers/models/ovis2/configuration_ovis2.py +4 -1
- transformers/models/ovis2/image_processing_ovis2.py +22 -24
- transformers/models/ovis2/image_processing_ovis2_fast.py +9 -10
- transformers/models/ovis2/modeling_ovis2.py +99 -142
- transformers/models/ovis2/modular_ovis2.py +82 -45
- transformers/models/ovis2/processing_ovis2.py +12 -40
- transformers/models/owlv2/configuration_owlv2.py +4 -2
- transformers/models/owlv2/image_processing_owlv2.py +20 -21
- transformers/models/owlv2/image_processing_owlv2_fast.py +12 -13
- transformers/models/owlv2/modeling_owlv2.py +122 -114
- transformers/models/owlv2/modular_owlv2.py +11 -12
- transformers/models/owlv2/processing_owlv2.py +20 -49
- transformers/models/owlvit/configuration_owlvit.py +4 -2
- transformers/models/owlvit/image_processing_owlvit.py +21 -22
- transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
- transformers/models/owlvit/modeling_owlvit.py +121 -113
- transformers/models/owlvit/processing_owlvit.py +20 -48
- transformers/models/paddleocr_vl/__init__.py +0 -1
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +28 -29
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +159 -158
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +148 -119
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
- transformers/models/paligemma/configuration_paligemma.py +4 -1
- transformers/models/paligemma/modeling_paligemma.py +81 -79
- transformers/models/paligemma/processing_paligemma.py +13 -66
- transformers/models/parakeet/configuration_parakeet.py +3 -8
- transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
- transformers/models/parakeet/modeling_parakeet.py +21 -25
- transformers/models/parakeet/modular_parakeet.py +19 -21
- transformers/models/parakeet/processing_parakeet.py +12 -5
- transformers/models/parakeet/tokenization_parakeet.py +2 -4
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +63 -65
- transformers/models/patchtst/configuration_patchtst.py +6 -9
- transformers/models/patchtst/modeling_patchtst.py +75 -77
- transformers/models/pe_audio/__init__.py +0 -1
- transformers/models/pe_audio/configuration_pe_audio.py +14 -16
- transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
- transformers/models/pe_audio/modeling_pe_audio.py +30 -31
- transformers/models/pe_audio/modular_pe_audio.py +17 -18
- transformers/models/pe_audio/processing_pe_audio.py +0 -1
- transformers/models/pe_audio_video/__init__.py +0 -1
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +64 -65
- transformers/models/pe_audio_video/modular_pe_audio_video.py +56 -57
- transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
- transformers/models/pe_video/__init__.py +0 -1
- transformers/models/pe_video/configuration_pe_video.py +14 -16
- transformers/models/pe_video/modeling_pe_video.py +57 -46
- transformers/models/pe_video/modular_pe_video.py +47 -35
- transformers/models/pe_video/video_processing_pe_video.py +2 -4
- transformers/models/pegasus/configuration_pegasus.py +8 -6
- transformers/models/pegasus/modeling_pegasus.py +67 -69
- transformers/models/pegasus/tokenization_pegasus.py +1 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -4
- transformers/models/pegasus_x/modeling_pegasus_x.py +53 -55
- transformers/models/perceiver/configuration_perceiver.py +0 -1
- transformers/models/perceiver/image_processing_perceiver.py +22 -25
- transformers/models/perceiver/image_processing_perceiver_fast.py +7 -8
- transformers/models/perceiver/modeling_perceiver.py +152 -145
- transformers/models/perceiver/tokenization_perceiver.py +3 -6
- transformers/models/perception_lm/configuration_perception_lm.py +0 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
- transformers/models/perception_lm/modeling_perception_lm.py +64 -67
- transformers/models/perception_lm/modular_perception_lm.py +58 -58
- transformers/models/perception_lm/processing_perception_lm.py +13 -47
- transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
- transformers/models/persimmon/configuration_persimmon.py +23 -28
- transformers/models/persimmon/modeling_persimmon.py +44 -47
- transformers/models/phi/configuration_phi.py +27 -28
- transformers/models/phi/modeling_phi.py +39 -41
- transformers/models/phi/modular_phi.py +26 -26
- transformers/models/phi3/configuration_phi3.py +32 -37
- transformers/models/phi3/modeling_phi3.py +37 -40
- transformers/models/phi3/modular_phi3.py +16 -20
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +36 -39
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +100 -117
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +103 -90
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
- transformers/models/phimoe/configuration_phimoe.py +31 -36
- transformers/models/phimoe/modeling_phimoe.py +50 -77
- transformers/models/phimoe/modular_phimoe.py +12 -8
- transformers/models/phobert/tokenization_phobert.py +4 -6
- transformers/models/pix2struct/configuration_pix2struct.py +12 -10
- transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +12 -15
- transformers/models/pix2struct/modeling_pix2struct.py +56 -52
- transformers/models/pix2struct/processing_pix2struct.py +5 -26
- transformers/models/pixio/__init__.py +0 -1
- transformers/models/pixio/configuration_pixio.py +2 -5
- transformers/models/pixio/modeling_pixio.py +16 -17
- transformers/models/pixio/modular_pixio.py +7 -8
- transformers/models/pixtral/configuration_pixtral.py +11 -14
- transformers/models/pixtral/image_processing_pixtral.py +26 -28
- transformers/models/pixtral/image_processing_pixtral_fast.py +10 -11
- transformers/models/pixtral/modeling_pixtral.py +31 -37
- transformers/models/pixtral/processing_pixtral.py +18 -52
- transformers/models/plbart/configuration_plbart.py +8 -6
- transformers/models/plbart/modeling_plbart.py +109 -109
- transformers/models/plbart/modular_plbart.py +31 -33
- transformers/models/plbart/tokenization_plbart.py +4 -5
- transformers/models/poolformer/configuration_poolformer.py +0 -1
- transformers/models/poolformer/image_processing_poolformer.py +21 -24
- transformers/models/poolformer/image_processing_poolformer_fast.py +13 -14
- transformers/models/poolformer/modeling_poolformer.py +10 -12
- transformers/models/pop2piano/configuration_pop2piano.py +7 -7
- transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
- transformers/models/pop2piano/modeling_pop2piano.py +24 -24
- transformers/models/pop2piano/processing_pop2piano.py +25 -33
- transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +13 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +20 -21
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +17 -16
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +21 -20
- transformers/models/prophetnet/configuration_prophetnet.py +37 -38
- transformers/models/prophetnet/modeling_prophetnet.py +121 -153
- transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
- transformers/models/pvt/configuration_pvt.py +0 -1
- transformers/models/pvt/image_processing_pvt.py +24 -27
- transformers/models/pvt/image_processing_pvt_fast.py +1 -2
- transformers/models/pvt/modeling_pvt.py +19 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +4 -8
- transformers/models/pvt_v2/modeling_pvt_v2.py +27 -28
- transformers/models/qwen2/configuration_qwen2.py +32 -25
- transformers/models/qwen2/modeling_qwen2.py +35 -37
- transformers/models/qwen2/modular_qwen2.py +14 -15
- transformers/models/qwen2/tokenization_qwen2.py +2 -9
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +36 -27
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +241 -214
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +228 -193
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +28 -34
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +188 -145
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +64 -91
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +39 -41
- transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +42 -35
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +40 -43
- transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -13
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +28 -33
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +12 -15
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +184 -141
- transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +38 -18
- transformers/models/qwen3/configuration_qwen3.py +34 -27
- transformers/models/qwen3/modeling_qwen3.py +35 -38
- transformers/models/qwen3/modular_qwen3.py +7 -9
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +45 -35
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +40 -43
- transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
- transformers/models/qwen3_next/configuration_qwen3_next.py +47 -38
- transformers/models/qwen3_next/modeling_qwen3_next.py +44 -47
- transformers/models/qwen3_next/modular_qwen3_next.py +37 -38
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +139 -106
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +266 -206
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +228 -181
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +22 -24
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +185 -122
- transformers/models/qwen3_vl/modular_qwen3_vl.py +153 -139
- transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +27 -30
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +249 -178
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +55 -42
- transformers/models/rag/configuration_rag.py +6 -7
- transformers/models/rag/modeling_rag.py +119 -121
- transformers/models/rag/retrieval_rag.py +3 -5
- transformers/models/rag/tokenization_rag.py +0 -50
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +29 -30
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +35 -39
- transformers/models/reformer/configuration_reformer.py +7 -8
- transformers/models/reformer/modeling_reformer.py +67 -68
- transformers/models/reformer/tokenization_reformer.py +3 -6
- transformers/models/regnet/configuration_regnet.py +0 -1
- transformers/models/regnet/modeling_regnet.py +7 -9
- transformers/models/rembert/configuration_rembert.py +8 -2
- transformers/models/rembert/modeling_rembert.py +108 -132
- transformers/models/rembert/tokenization_rembert.py +1 -4
- transformers/models/resnet/configuration_resnet.py +2 -5
- transformers/models/resnet/modeling_resnet.py +14 -15
- transformers/models/roberta/configuration_roberta.py +11 -3
- transformers/models/roberta/modeling_roberta.py +97 -99
- transformers/models/roberta/modular_roberta.py +55 -58
- transformers/models/roberta/tokenization_roberta.py +2 -5
- transformers/models/roberta/tokenization_roberta_old.py +2 -4
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -3
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +97 -99
- transformers/models/roc_bert/configuration_roc_bert.py +8 -2
- transformers/models/roc_bert/modeling_roc_bert.py +125 -162
- transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
- transformers/models/roformer/configuration_roformer.py +13 -3
- transformers/models/roformer/modeling_roformer.py +79 -95
- transformers/models/roformer/tokenization_roformer.py +3 -6
- transformers/models/roformer/tokenization_utils.py +0 -1
- transformers/models/rt_detr/configuration_rt_detr.py +8 -50
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -5
- transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +39 -26
- transformers/models/rt_detr/modeling_rt_detr.py +643 -804
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +4 -7
- transformers/models/rt_detr/modular_rt_detr.py +1522 -20
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -58
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +384 -521
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +27 -70
- transformers/models/rwkv/configuration_rwkv.py +2 -4
- transformers/models/rwkv/modeling_rwkv.py +29 -54
- transformers/models/sam/configuration_sam.py +2 -1
- transformers/models/sam/image_processing_sam.py +59 -60
- transformers/models/sam/image_processing_sam_fast.py +25 -26
- transformers/models/sam/modeling_sam.py +46 -43
- transformers/models/sam/processing_sam.py +39 -27
- transformers/models/sam2/configuration_sam2.py +1 -2
- transformers/models/sam2/image_processing_sam2_fast.py +14 -15
- transformers/models/sam2/modeling_sam2.py +96 -94
- transformers/models/sam2/modular_sam2.py +85 -94
- transformers/models/sam2/processing_sam2.py +31 -47
- transformers/models/sam2_video/configuration_sam2_video.py +0 -1
- transformers/models/sam2_video/modeling_sam2_video.py +114 -116
- transformers/models/sam2_video/modular_sam2_video.py +72 -89
- transformers/models/sam2_video/processing_sam2_video.py +49 -66
- transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
- transformers/models/sam3/configuration_sam3.py +0 -1
- transformers/models/sam3/image_processing_sam3_fast.py +17 -20
- transformers/models/sam3/modeling_sam3.py +94 -100
- transformers/models/sam3/modular_sam3.py +3 -8
- transformers/models/sam3/processing_sam3.py +37 -52
- transformers/models/sam3_tracker/__init__.py +0 -1
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -3
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +79 -80
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -2
- transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -48
- transformers/models/sam3_tracker_video/__init__.py +0 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +115 -114
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -24
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
- transformers/models/sam3_video/configuration_sam3_video.py +0 -1
- transformers/models/sam3_video/modeling_sam3_video.py +56 -45
- transformers/models/sam3_video/processing_sam3_video.py +25 -45
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +2 -1
- transformers/models/sam_hq/modeling_sam_hq.py +52 -50
- transformers/models/sam_hq/modular_sam_hq.py +23 -25
- transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +41 -29
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -10
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
- transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -10
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
- transformers/models/seed_oss/configuration_seed_oss.py +30 -34
- transformers/models/seed_oss/modeling_seed_oss.py +34 -36
- transformers/models/seed_oss/modular_seed_oss.py +6 -7
- transformers/models/segformer/configuration_segformer.py +0 -10
- transformers/models/segformer/image_processing_segformer.py +39 -42
- transformers/models/segformer/image_processing_segformer_fast.py +11 -12
- transformers/models/segformer/modeling_segformer.py +28 -28
- transformers/models/segformer/modular_segformer.py +8 -9
- transformers/models/seggpt/configuration_seggpt.py +0 -1
- transformers/models/seggpt/image_processing_seggpt.py +38 -41
- transformers/models/seggpt/modeling_seggpt.py +48 -38
- transformers/models/sew/configuration_sew.py +4 -2
- transformers/models/sew/modeling_sew.py +42 -40
- transformers/models/sew/modular_sew.py +12 -13
- transformers/models/sew_d/configuration_sew_d.py +4 -2
- transformers/models/sew_d/modeling_sew_d.py +32 -31
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +19 -21
- transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
- transformers/models/siglip/configuration_siglip.py +4 -2
- transformers/models/siglip/image_processing_siglip.py +17 -20
- transformers/models/siglip/image_processing_siglip_fast.py +0 -1
- transformers/models/siglip/modeling_siglip.py +65 -110
- transformers/models/siglip/processing_siglip.py +2 -14
- transformers/models/siglip/tokenization_siglip.py +6 -7
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2.py +15 -16
- transformers/models/siglip2/image_processing_siglip2_fast.py +6 -7
- transformers/models/siglip2/modeling_siglip2.py +89 -130
- transformers/models/siglip2/modular_siglip2.py +95 -48
- transformers/models/siglip2/processing_siglip2.py +2 -14
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +29 -32
- transformers/models/smollm3/modeling_smollm3.py +35 -38
- transformers/models/smollm3/modular_smollm3.py +36 -38
- transformers/models/smolvlm/configuration_smolvlm.py +2 -4
- transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +41 -15
- transformers/models/smolvlm/modeling_smolvlm.py +124 -96
- transformers/models/smolvlm/modular_smolvlm.py +50 -39
- transformers/models/smolvlm/processing_smolvlm.py +15 -76
- transformers/models/smolvlm/video_processing_smolvlm.py +16 -17
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +26 -27
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
- transformers/models/speech_to_text/modeling_speech_to_text.py +55 -57
- transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
- transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
- transformers/models/speecht5/configuration_speecht5.py +7 -9
- transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
- transformers/models/speecht5/modeling_speecht5.py +172 -174
- transformers/models/speecht5/number_normalizer.py +0 -1
- transformers/models/speecht5/processing_speecht5.py +3 -37
- transformers/models/speecht5/tokenization_speecht5.py +4 -5
- transformers/models/splinter/configuration_splinter.py +6 -7
- transformers/models/splinter/modeling_splinter.py +62 -59
- transformers/models/splinter/tokenization_splinter.py +2 -4
- transformers/models/squeezebert/configuration_squeezebert.py +14 -2
- transformers/models/squeezebert/modeling_squeezebert.py +60 -62
- transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
- transformers/models/stablelm/configuration_stablelm.py +28 -29
- transformers/models/stablelm/modeling_stablelm.py +44 -47
- transformers/models/starcoder2/configuration_starcoder2.py +30 -27
- transformers/models/starcoder2/modeling_starcoder2.py +38 -41
- transformers/models/starcoder2/modular_starcoder2.py +17 -19
- transformers/models/superglue/configuration_superglue.py +7 -3
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +8 -8
- transformers/models/superglue/modeling_superglue.py +41 -37
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +7 -9
- transformers/models/superpoint/modeling_superpoint.py +17 -16
- transformers/models/swiftformer/configuration_swiftformer.py +0 -1
- transformers/models/swiftformer/modeling_swiftformer.py +12 -14
- transformers/models/swin/configuration_swin.py +2 -5
- transformers/models/swin/modeling_swin.py +69 -78
- transformers/models/swin2sr/configuration_swin2sr.py +0 -1
- transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +4 -7
- transformers/models/swin2sr/modeling_swin2sr.py +30 -30
- transformers/models/swinv2/configuration_swinv2.py +2 -5
- transformers/models/swinv2/modeling_swinv2.py +65 -74
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -7
- transformers/models/switch_transformers/modeling_switch_transformers.py +35 -36
- transformers/models/switch_transformers/modular_switch_transformers.py +32 -33
- transformers/models/t5/configuration_t5.py +9 -9
- transformers/models/t5/modeling_t5.py +80 -85
- transformers/models/t5/tokenization_t5.py +1 -3
- transformers/models/t5gemma/configuration_t5gemma.py +43 -59
- transformers/models/t5gemma/modeling_t5gemma.py +105 -108
- transformers/models/t5gemma/modular_t5gemma.py +128 -142
- transformers/models/t5gemma2/configuration_t5gemma2.py +86 -100
- transformers/models/t5gemma2/modeling_t5gemma2.py +234 -194
- transformers/models/t5gemma2/modular_t5gemma2.py +279 -264
- transformers/models/table_transformer/configuration_table_transformer.py +18 -50
- transformers/models/table_transformer/modeling_table_transformer.py +73 -101
- transformers/models/tapas/configuration_tapas.py +12 -2
- transformers/models/tapas/modeling_tapas.py +65 -67
- transformers/models/tapas/tokenization_tapas.py +116 -153
- transformers/models/textnet/configuration_textnet.py +4 -7
- transformers/models/textnet/image_processing_textnet.py +22 -25
- transformers/models/textnet/image_processing_textnet_fast.py +8 -9
- transformers/models/textnet/modeling_textnet.py +28 -28
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +82 -84
- transformers/models/timesfm/configuration_timesfm.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +22 -25
- transformers/models/timesfm/modular_timesfm.py +21 -24
- transformers/models/timesformer/configuration_timesformer.py +0 -1
- transformers/models/timesformer/modeling_timesformer.py +13 -16
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -8
- transformers/models/timm_backbone/modeling_timm_backbone.py +25 -30
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +22 -19
- transformers/models/trocr/configuration_trocr.py +11 -8
- transformers/models/trocr/modeling_trocr.py +42 -42
- transformers/models/trocr/processing_trocr.py +5 -25
- transformers/models/tvp/configuration_tvp.py +10 -36
- transformers/models/tvp/image_processing_tvp.py +50 -52
- transformers/models/tvp/image_processing_tvp_fast.py +15 -15
- transformers/models/tvp/modeling_tvp.py +26 -28
- transformers/models/tvp/processing_tvp.py +2 -14
- transformers/models/udop/configuration_udop.py +16 -8
- transformers/models/udop/modeling_udop.py +73 -72
- transformers/models/udop/processing_udop.py +7 -26
- transformers/models/udop/tokenization_udop.py +80 -93
- transformers/models/umt5/configuration_umt5.py +8 -7
- transformers/models/umt5/modeling_umt5.py +87 -84
- transformers/models/unispeech/configuration_unispeech.py +4 -2
- transformers/models/unispeech/modeling_unispeech.py +54 -53
- transformers/models/unispeech/modular_unispeech.py +20 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -2
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +70 -69
- transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +7 -8
- transformers/models/upernet/configuration_upernet.py +8 -36
- transformers/models/upernet/modeling_upernet.py +11 -14
- transformers/models/vaultgemma/__init__.py +0 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +29 -33
- transformers/models/vaultgemma/modeling_vaultgemma.py +38 -40
- transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +12 -14
- transformers/models/video_llama_3/modeling_video_llama_3.py +149 -112
- transformers/models/video_llama_3/modular_video_llama_3.py +152 -150
- transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
- transformers/models/video_llama_3/video_processing_video_llama_3.py +45 -24
- transformers/models/video_llava/configuration_video_llava.py +4 -1
- transformers/models/video_llava/image_processing_video_llava.py +35 -38
- transformers/models/video_llava/modeling_video_llava.py +139 -143
- transformers/models/video_llava/processing_video_llava.py +38 -78
- transformers/models/video_llava/video_processing_video_llava.py +0 -1
- transformers/models/videomae/configuration_videomae.py +0 -1
- transformers/models/videomae/image_processing_videomae.py +31 -34
- transformers/models/videomae/modeling_videomae.py +17 -20
- transformers/models/videomae/video_processing_videomae.py +0 -1
- transformers/models/vilt/configuration_vilt.py +4 -2
- transformers/models/vilt/image_processing_vilt.py +29 -30
- transformers/models/vilt/image_processing_vilt_fast.py +15 -16
- transformers/models/vilt/modeling_vilt.py +103 -90
- transformers/models/vilt/processing_vilt.py +2 -14
- transformers/models/vipllava/configuration_vipllava.py +4 -1
- transformers/models/vipllava/modeling_vipllava.py +92 -67
- transformers/models/vipllava/modular_vipllava.py +78 -54
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +28 -27
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +45 -41
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
- transformers/models/visual_bert/configuration_visual_bert.py +6 -2
- transformers/models/visual_bert/modeling_visual_bert.py +90 -92
- transformers/models/vit/configuration_vit.py +2 -3
- transformers/models/vit/image_processing_vit.py +19 -22
- transformers/models/vit/image_processing_vit_fast.py +0 -1
- transformers/models/vit/modeling_vit.py +20 -20
- transformers/models/vit_mae/configuration_vit_mae.py +0 -1
- transformers/models/vit_mae/modeling_vit_mae.py +32 -30
- transformers/models/vit_msn/configuration_vit_msn.py +0 -1
- transformers/models/vit_msn/modeling_vit_msn.py +21 -19
- transformers/models/vitdet/configuration_vitdet.py +2 -5
- transformers/models/vitdet/modeling_vitdet.py +14 -17
- transformers/models/vitmatte/configuration_vitmatte.py +7 -39
- transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +16 -17
- transformers/models/vitmatte/modeling_vitmatte.py +10 -12
- transformers/models/vitpose/configuration_vitpose.py +7 -47
- transformers/models/vitpose/image_processing_vitpose.py +24 -25
- transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
- transformers/models/vitpose/modeling_vitpose.py +15 -15
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -5
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +13 -16
- transformers/models/vits/configuration_vits.py +4 -1
- transformers/models/vits/modeling_vits.py +43 -42
- transformers/models/vits/tokenization_vits.py +3 -4
- transformers/models/vivit/configuration_vivit.py +0 -1
- transformers/models/vivit/image_processing_vivit.py +36 -39
- transformers/models/vivit/modeling_vivit.py +9 -11
- transformers/models/vjepa2/__init__.py +0 -1
- transformers/models/vjepa2/configuration_vjepa2.py +0 -1
- transformers/models/vjepa2/modeling_vjepa2.py +39 -41
- transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
- transformers/models/voxtral/__init__.py +0 -1
- transformers/models/voxtral/configuration_voxtral.py +0 -2
- transformers/models/voxtral/modeling_voxtral.py +41 -48
- transformers/models/voxtral/modular_voxtral.py +35 -38
- transformers/models/voxtral/processing_voxtral.py +25 -48
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -2
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
- transformers/models/wav2vec2/modeling_wav2vec2.py +74 -126
- transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
- transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -2
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
- transformers/models/wavlm/configuration_wavlm.py +4 -2
- transformers/models/wavlm/modeling_wavlm.py +49 -49
- transformers/models/wavlm/modular_wavlm.py +4 -5
- transformers/models/whisper/configuration_whisper.py +6 -5
- transformers/models/whisper/english_normalizer.py +3 -4
- transformers/models/whisper/feature_extraction_whisper.py +9 -24
- transformers/models/whisper/generation_whisper.py +26 -49
- transformers/models/whisper/modeling_whisper.py +71 -73
- transformers/models/whisper/processing_whisper.py +3 -20
- transformers/models/whisper/tokenization_whisper.py +9 -30
- transformers/models/x_clip/configuration_x_clip.py +4 -2
- transformers/models/x_clip/modeling_x_clip.py +94 -96
- transformers/models/x_clip/processing_x_clip.py +2 -14
- transformers/models/xcodec/configuration_xcodec.py +4 -6
- transformers/models/xcodec/modeling_xcodec.py +15 -17
- transformers/models/xglm/configuration_xglm.py +9 -8
- transformers/models/xglm/modeling_xglm.py +49 -55
- transformers/models/xglm/tokenization_xglm.py +1 -4
- transformers/models/xlm/configuration_xlm.py +10 -8
- transformers/models/xlm/modeling_xlm.py +127 -131
- transformers/models/xlm/tokenization_xlm.py +3 -5
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -3
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +96 -98
- transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -2
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +97 -99
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
- transformers/models/xlnet/configuration_xlnet.py +3 -12
- transformers/models/xlnet/modeling_xlnet.py +149 -162
- transformers/models/xlnet/tokenization_xlnet.py +1 -4
- transformers/models/xlstm/configuration_xlstm.py +8 -12
- transformers/models/xlstm/modeling_xlstm.py +61 -96
- transformers/models/xmod/configuration_xmod.py +11 -3
- transformers/models/xmod/modeling_xmod.py +111 -116
- transformers/models/yolos/configuration_yolos.py +0 -1
- transformers/models/yolos/image_processing_yolos.py +60 -62
- transformers/models/yolos/image_processing_yolos_fast.py +42 -45
- transformers/models/yolos/modeling_yolos.py +19 -21
- transformers/models/yolos/modular_yolos.py +17 -19
- transformers/models/yoso/configuration_yoso.py +8 -2
- transformers/models/yoso/modeling_yoso.py +60 -62
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -8
- transformers/models/zamba/modeling_zamba.py +93 -125
- transformers/models/zamba2/configuration_zamba2.py +44 -50
- transformers/models/zamba2/modeling_zamba2.py +137 -165
- transformers/models/zamba2/modular_zamba2.py +79 -74
- transformers/models/zoedepth/configuration_zoedepth.py +17 -41
- transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +20 -21
- transformers/models/zoedepth/modeling_zoedepth.py +19 -19
- transformers/pipelines/__init__.py +47 -106
- transformers/pipelines/any_to_any.py +15 -23
- transformers/pipelines/audio_utils.py +1 -2
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +13 -17
- transformers/pipelines/image_text_to_text.py +1 -2
- transformers/pipelines/question_answering.py +4 -43
- transformers/pipelines/text_classification.py +1 -14
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/pipelines/token_classification.py +1 -22
- transformers/pipelines/video_classification.py +1 -9
- transformers/pipelines/zero_shot_audio_classification.py +0 -1
- transformers/pipelines/zero_shot_classification.py +0 -6
- transformers/pipelines/zero_shot_image_classification.py +0 -7
- transformers/processing_utils.py +128 -137
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/base.py +10 -0
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_quark.py +0 -1
- transformers/quantizers/quantizer_torchao.py +3 -19
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +6 -65
- transformers/tokenization_mistral_common.py +563 -903
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +228 -341
- transformers/tokenization_utils_sentencepiece.py +5 -6
- transformers/tokenization_utils_tokenizers.py +36 -7
- transformers/trainer.py +30 -41
- transformers/trainer_jit_checkpoint.py +1 -2
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +414 -420
- transformers/utils/__init__.py +1 -4
- transformers/utils/attention_visualizer.py +1 -1
- transformers/utils/auto_docstring.py +567 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/dummy_pt_objects.py +0 -42
- transformers/utils/generic.py +70 -34
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +135 -107
- transformers/utils/quantization_config.py +8 -31
- transformers/video_processing_utils.py +24 -25
- transformers/video_utils.py +21 -23
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/METADATA +120 -239
- transformers-5.1.0.dist-info/RECORD +2092 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -229
- transformers-5.0.0rc2.dist-info/RECORD +0 -2042
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
transformers/training_args.py
CHANGED
|
@@ -194,179 +194,370 @@ def _convert_str_dict(passed_value: dict):
|
|
|
194
194
|
return passed_value
|
|
195
195
|
|
|
196
196
|
|
|
197
|
-
# TODO: `TrainingArguments` users rely on it being fully mutable. In the future see if we can narrow this to a few keys: https://github.com/huggingface/transformers/pull/25903
|
|
198
197
|
@dataclass
|
|
199
198
|
class TrainingArguments:
|
|
200
199
|
"""
|
|
201
|
-
|
|
202
|
-
|
|
200
|
+
Configuration class for controlling all aspects of model training with the Trainer.
|
|
201
|
+
TrainingArguments centralizes all hyperparameters, optimization settings, logging preferences, and infrastructure choices needed for training.
|
|
203
202
|
|
|
204
|
-
|
|
203
|
+
[`HfArgumentParser`] can turn this class into
|
|
205
204
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
|
|
206
205
|
command line.
|
|
207
206
|
|
|
208
207
|
Parameters:
|
|
209
208
|
output_dir (`str`, *optional*, defaults to `"trainer_output"`):
|
|
210
209
|
The output directory where the model predictions and checkpoints will be written.
|
|
211
|
-
do_train (`bool`, *optional*, defaults to `False`):
|
|
212
|
-
Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
|
|
213
|
-
by your training/evaluation scripts instead. See the [example
|
|
214
|
-
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
215
|
-
do_eval (`bool`, *optional*):
|
|
216
|
-
Whether to run evaluation on the validation set or not. Will be set to `True` if `eval_strategy` is
|
|
217
|
-
different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
|
|
218
|
-
training/evaluation scripts instead. See the [example
|
|
219
|
-
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
220
|
-
do_predict (`bool`, *optional*, defaults to `False`):
|
|
221
|
-
Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
|
|
222
|
-
intended to be used by your training/evaluation scripts instead. See the [example
|
|
223
|
-
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
224
|
-
eval_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
|
|
225
|
-
The evaluation strategy to adopt during training. Possible values are:
|
|
226
210
|
|
|
227
|
-
|
|
228
|
-
- `"steps"`: Evaluation is done (and logged) every `eval_steps`.
|
|
229
|
-
- `"epoch"`: Evaluation is done at the end of each epoch.
|
|
211
|
+
> Training Duration and Batch Size
|
|
230
212
|
|
|
231
|
-
prediction_loss_only (`bool`, *optional*, defaults to `False`):
|
|
232
|
-
When performing evaluation and generating predictions, only returns the loss.
|
|
233
213
|
per_device_train_batch_size (`int`, *optional*, defaults to 8):
|
|
234
214
|
The batch size *per device*. The **global batch size** is computed as:
|
|
235
215
|
`per_device_train_batch_size * number_of_devices` in multi-GPU or distributed setups.
|
|
236
|
-
per_device_eval_batch_size (`int`, *optional*, defaults to 8):
|
|
237
|
-
The batch size per device accelerator core/CPU for evaluation.
|
|
238
|
-
gradient_accumulation_steps (`int`, *optional*, defaults to 1):
|
|
239
|
-
Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
|
|
240
|
-
|
|
241
|
-
<Tip warning={true}>
|
|
242
|
-
|
|
243
|
-
When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging,
|
|
244
|
-
evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples.
|
|
245
|
-
|
|
246
|
-
</Tip>
|
|
247
|
-
|
|
248
|
-
eval_accumulation_steps (`int`, *optional*):
|
|
249
|
-
Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
|
|
250
|
-
left unset, the whole predictions are accumulated on the device accelerator before being moved to the CPU (faster but
|
|
251
|
-
requires more memory).
|
|
252
|
-
eval_delay (`float`, *optional*):
|
|
253
|
-
Number of epochs or steps to wait for before the first evaluation can be performed, depending on the
|
|
254
|
-
eval_strategy.
|
|
255
|
-
torch_empty_cache_steps (`int`, *optional*):
|
|
256
|
-
Number of steps to wait before calling `torch.<device>.empty_cache()`. If left unset or set to None, cache will not be emptied.
|
|
257
|
-
|
|
258
|
-
<Tip>
|
|
259
|
-
|
|
260
|
-
This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372).
|
|
261
|
-
|
|
262
|
-
</Tip>
|
|
263
|
-
|
|
264
|
-
learning_rate (`float`, *optional*, defaults to 5e-5):
|
|
265
|
-
The initial learning rate for [`AdamW`] optimizer.
|
|
266
|
-
weight_decay (`float`, *optional*, defaults to 0):
|
|
267
|
-
The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in [`AdamW`]
|
|
268
|
-
optimizer.
|
|
269
|
-
adam_beta1 (`float`, *optional*, defaults to 0.9):
|
|
270
|
-
The beta1 hyperparameter for the [`AdamW`] optimizer.
|
|
271
|
-
adam_beta2 (`float`, *optional*, defaults to 0.999):
|
|
272
|
-
The beta2 hyperparameter for the [`AdamW`] optimizer.
|
|
273
|
-
adam_epsilon (`float`, *optional*, defaults to 1e-8):
|
|
274
|
-
The epsilon hyperparameter for the [`AdamW`] optimizer.
|
|
275
|
-
max_grad_norm (`float`, *optional*, defaults to 1.0):
|
|
276
|
-
Maximum gradient norm (for gradient clipping).
|
|
277
216
|
num_train_epochs(`float`, *optional*, defaults to 3.0):
|
|
278
217
|
Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
|
|
279
218
|
the last epoch before stopping training).
|
|
280
219
|
max_steps (`int`, *optional*, defaults to -1):
|
|
281
|
-
If set to a positive number, the total number of training steps to perform.
|
|
220
|
+
Overrides `num_train_epochs`. If set to a positive number, the total number of training steps to perform.
|
|
282
221
|
For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until
|
|
283
222
|
`max_steps` is reached.
|
|
223
|
+
|
|
224
|
+
> Learning Rate & Scheduler
|
|
225
|
+
|
|
226
|
+
learning_rate (`float`, *optional*, defaults to 5e-5):
|
|
227
|
+
The initial learning rate for the optimizer. This is typically the peak learning rate when using a scheduler with warmup.
|
|
284
228
|
lr_scheduler_type (`str` or [`SchedulerType`], *optional*, defaults to `"linear"`):
|
|
285
|
-
The scheduler type to use. See
|
|
229
|
+
The learning rate scheduler type to use. See [`SchedulerType`] for all possible values. Common choices:
|
|
230
|
+
- "linear" = [`get_linear_schedule_with_warmup`]
|
|
231
|
+
- "cosine" = [`get_cosine_schedule_with_warmup`]
|
|
232
|
+
- "constant" = [`get_constant_schedule`]
|
|
233
|
+
- "constant_with_warmup" = [`get_constant_schedule_with_warmup`]
|
|
286
234
|
lr_scheduler_kwargs (`dict` or `str`, *optional*, defaults to `None`):
|
|
287
235
|
The extra arguments for the lr_scheduler. See the documentation of each scheduler for possible values.
|
|
288
236
|
warmup_steps (`int` or `float`, *optional*, defaults to 0):
|
|
289
|
-
Number of steps
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
237
|
+
Number of steps for a linear warmup from 0 to `learning_rate`. Warmup helps stabilize training in the initial phase. Can be:
|
|
238
|
+
- An integer: exact number of warmup steps
|
|
239
|
+
- A float in range [0, 1): interpreted as ratio of total training steps
|
|
240
|
+
|
|
241
|
+
> Optimizer
|
|
242
|
+
|
|
243
|
+
optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"` (for torch>=2.8 `"adamw_torch_fused"`)):
|
|
244
|
+
The optimizer to use. Common options:
|
|
245
|
+
- `"adamw_torch"`: PyTorch's AdamW (recommended default)
|
|
246
|
+
- `"adamw_torch_fused"`: Fused AdamW kernel
|
|
247
|
+
- `"adamw_hf"`: HuggingFace's AdamW implementation
|
|
248
|
+
- `"sgd"`: Stochastic Gradient Descent with momentum
|
|
249
|
+
- `"adafactor"`: Memory-efficient optimizer for large models
|
|
250
|
+
- `"adamw_8bit"`: 8-bit AdamW (requires bitsandbytes)
|
|
251
|
+
See [`OptimizerNames`] for the complete list.
|
|
252
|
+
optim_args (`str`, *optional*):
|
|
253
|
+
Optional arguments that are supplied to optimizers such as AnyPrecisionAdamW, AdEMAMix, and GaLore.
|
|
254
|
+
weight_decay (`float`, *optional*, defaults to 0):
|
|
255
|
+
Weight decay coefficient applied by the optimizer (not the loss function). Adds L2
|
|
256
|
+
regularization to prevent overfitting by penalizing large weights. Automatically
|
|
257
|
+
excluded from bias and LayerNorm parameters. Typical values: 0.01 (standard), 0.1
|
|
258
|
+
(stronger regularization), 0.0 (no regularization).
|
|
259
|
+
adam_beta1 (`float`, *optional*, defaults to 0.9):
|
|
260
|
+
The exponential decay rate for the first moment estimates (momentum) in Adam-based
|
|
261
|
+
optimizers. Controls how much history of gradients to retain.
|
|
262
|
+
adam_beta2 (`float`, *optional*, defaults to 0.999):
|
|
263
|
+
The exponential decay rate for the second moment estimates (variance) in Adam-based
|
|
264
|
+
optimizers. Controls adaptive learning rate scaling.
|
|
265
|
+
adam_epsilon (`float`, *optional*, defaults to 1e-8):
|
|
266
|
+
Epsilon value for numerical stability in Adam-based optimizers. Prevents division by
|
|
267
|
+
zero in the denominator of the update rule.
|
|
268
|
+
optim_target_modules (`Union[str, list[str]]`, *optional*):
|
|
269
|
+
The target modules to optimize, i.e. the module names that you would like to train.
|
|
270
|
+
Currently used for the [GaLore algorithm](https://huggingface.co/papers/2403.03507) and [APOLLO algorithm](https://huggingface.co/papers/2412.05270).
|
|
271
|
+
See [GaLore implementation](https://github.com/jiaweizzhao/GaLore) and [APOLLO implementation](https://github.com/zhuhanqing/APOLLO) for more details.
|
|
272
|
+
You need to make sure to pass a valid GaLore or APOLLO optimizer, e.g., one of: "apollo_adamw", "galore_adamw", "galore_adamw_8bit", "galore_adafactor" and make sure that the target modules are `nn.Linear` modules only.
|
|
273
|
+
|
|
274
|
+
> Regularization & Training Stability
|
|
275
|
+
|
|
276
|
+
gradient_accumulation_steps (`int`, *optional*, defaults to 1):
|
|
277
|
+
Number of update steps to accumulate gradients before performing a backward/update pass.
|
|
278
|
+
Simulates larger batch sizes without additional memory. Effective batch size =
|
|
279
|
+
`per_device_train_batch_size × num_devices × gradient_accumulation_steps`.
|
|
280
|
+
> [!TIP]
|
|
281
|
+
> When using gradient accumulation, one "step" is counted as one step with a backward pass. Therefore, logging, evaluation, and saving will occur every `gradient_accumulation_steps × xxx_step` training examples.
|
|
282
|
+
average_tokens_across_devices (`bool`, *optional*, defaults to `True`):
|
|
283
|
+
Whether or not to average tokens across devices. If enabled, will use all_reduce to synchronize
|
|
284
|
+
num_tokens_in_batch for precise loss calculation. Reference:
|
|
285
|
+
https://github.com/huggingface/transformers/issues/34242
|
|
286
|
+
max_grad_norm (`float`, *optional*, defaults to 1.0):
|
|
287
|
+
Maximum gradient norm for gradient clipping. Applied after backward pass, before
|
|
288
|
+
optimizer step. Prevents gradient explosion by scaling down gradients when their global
|
|
289
|
+
norm exceeds this threshold. Set to 0 to disable clipping. Typical values:
|
|
290
|
+
1.0 (standard), 0.5 (more conservative), 5.0 (less aggressive).
|
|
291
|
+
label_smoothing_factor (`float`, *optional*, defaults to 0.0):
|
|
292
|
+
Label smoothing factor to prevent overconfidence. Replaces hard 0/1 targets with soft
|
|
293
|
+
targets: 0 becomes `ε/num_labels` and 1 becomes `1 - ε + ε/num_labels`, where
|
|
294
|
+
ε = `label_smoothing_factor`. Zero means no smoothing. Typical range: 0.0 to 0.1.
|
|
295
|
+
|
|
296
|
+
> Mixed Precision Training
|
|
297
|
+
|
|
298
|
+
bf16 (`bool`, *optional*, defaults to `False`):
|
|
299
|
+
Enable bfloat16 (BF16) mixed precision training
|
|
300
|
+
Generally preferred over FP16 due to better numerical stability and no loss scaling required.
|
|
301
|
+
fp16 (`bool`, *optional*, defaults to `False`):
|
|
302
|
+
Enable float16 (FP16) mixed precision training.
|
|
303
|
+
Consider using BF16 instead if your hardware supports it.
|
|
304
|
+
bf16_full_eval (`bool`, *optional*, defaults to `False`):
|
|
305
|
+
Use full BF16 precision for evaluation (not just mixed precision). Faster and saves
|
|
306
|
+
memory but may affect metric values slightly. Only applies during evaluation.
|
|
307
|
+
fp16_full_eval (`bool`, *optional*, defaults to `False`):
|
|
308
|
+
Use full FP16 precision for evaluation (not just mixed precision). Faster and saves
|
|
309
|
+
memory but may affect metric values slightly. Only applies during evaluation.
|
|
310
|
+
tf32 (`bool`, *optional*):
|
|
311
|
+
Enable TensorFloat-32 (TF32) mode on Ampere and newer GPUs. TF32 uses 19-bit precision
|
|
312
|
+
for matrix multiplications (instead of FP32's 23-bit), providing up to 8x speedup with
|
|
313
|
+
negligible accuracy loss. Default depends on PyTorch version. See
|
|
314
|
+
[TF32 docs](https://huggingface.co/docs/transformers/perf_train_gpu_one#tf32).
|
|
315
|
+
|
|
316
|
+
> Gradient Checkpointing
|
|
317
|
+
|
|
318
|
+
gradient_checkpointing (`bool`, *optional*, defaults to `False`):
|
|
319
|
+
Enable gradient checkpointing to trade compute for memory. Reduces memory usage by
|
|
320
|
+
clearing activations during forward pass and recomputing them during backward pass.
|
|
321
|
+
Enables training larger models or batch sizes at the cost of ~20% slower training.
|
|
322
|
+
gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`):
|
|
323
|
+
Keyword arguments passed to `gradient_checkpointing_enable()`.
|
|
324
|
+
|
|
325
|
+
> Compilation
|
|
326
|
+
|
|
327
|
+
torch_compile (`bool`, *optional*, defaults to `False`):
|
|
328
|
+
Compile the model using PyTorch 2.0's `torch.compile()` for faster training. Can provide
|
|
329
|
+
20-50% speedup with no code changes. Uses default compilation settings unless
|
|
330
|
+
`torch_compile_backend` or `torch_compile_mode` are specified.
|
|
331
|
+
torch_compile_backend (`str`, *optional*):
|
|
332
|
+
Backend for `torch.compile()`. If set, automatically enables `torch_compile`. Options
|
|
333
|
+
include `"inductor"` (default), `"aot_eager"`, `"cudagraphs"`. Backends vary by PyTorch
|
|
334
|
+
version - see PyTorch docs for available options.
|
|
335
|
+
torch_compile_mode (`str`, *optional*):
|
|
336
|
+
Compilation mode for `torch.compile()`. If set, automatically enables `torch_compile`.
|
|
337
|
+
Options: `"default"`, `"reduce-overhead"` (minimize Python overhead), `"max-autotune"`
|
|
338
|
+
(aggressive optimization, slower compile time).
|
|
339
|
+
|
|
340
|
+
> Kernels
|
|
341
|
+
|
|
342
|
+
use_liger_kernel (`bool`, *optional*, defaults to `False`):
|
|
343
|
+
Enable [Liger Kernel](https://github.com/linkedin/Liger-Kernel) optimizations. Increases
|
|
344
|
+
multi-GPU throughput by ~20% and reduces memory usage by ~60%. Works with Flash Attention,
|
|
345
|
+
FSDP, and DeepSpeed. Currently supports Llama, Mistral, Mixtral, and Gemma models.
|
|
346
|
+
liger_kernel_config (`Optional[dict]`, *optional*):
|
|
347
|
+
Configuration for Liger Kernel. Passed as kwargs to `_apply_liger_kernel_to_instance()`.
|
|
348
|
+
Options typically include: `"rope"`, `"swiglu"`, `"cross_entropy"`,
|
|
349
|
+
`"fused_linear_cross_entropy"`, `"rms_norm"`. If `None`, uses default configuration.
|
|
350
|
+
|
|
351
|
+
> Additional Optimizations
|
|
352
|
+
|
|
353
|
+
use_cache (`bool`, *optional*, defaults to `False`):
|
|
354
|
+
Whether or not to enable cache for the model. For training, this is usually not needed apart from some PEFT methods that uses `past_key_values`.
|
|
355
|
+
neftune_noise_alpha (`Optional[float]`):
|
|
356
|
+
If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance
|
|
357
|
+
for instruction fine-tuning. Check out the [original paper](https://huggingface.co/papers/2310.05914) and the
|
|
358
|
+
[original code](https://github.com/neelsjain/NEFTune). Support transformers `PreTrainedModel` and also
|
|
359
|
+
`PeftModel` from peft. The original paper used values in the range [5.0, 15.0].
|
|
360
|
+
torch_empty_cache_steps (`int`, *optional*):
|
|
361
|
+
Number of steps to wait before calling `torch.<device>.empty_cache()`. If left unset or set to None, cache will not be emptied.
|
|
362
|
+
This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372).
|
|
363
|
+
auto_find_batch_size (`bool`, *optional*, defaults to `False`)
|
|
364
|
+
Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding
|
|
365
|
+
CUDA Out-of-Memory errors.
|
|
366
|
+
|
|
367
|
+
> Logging & Monitoring Training
|
|
368
|
+
|
|
300
369
|
logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
|
|
301
370
|
The logging strategy to adopt during training. Possible values are:
|
|
302
|
-
|
|
303
371
|
- `"no"`: No logging is done during training.
|
|
304
372
|
- `"epoch"`: Logging is done at the end of each epoch.
|
|
305
373
|
- `"steps"`: Logging is done every `logging_steps`.
|
|
306
|
-
|
|
307
|
-
logging_first_step (`bool`, *optional*, defaults to `False`):
|
|
308
|
-
Whether to log the first `global_step` or not.
|
|
309
374
|
logging_steps (`int` or `float`, *optional*, defaults to 500):
|
|
310
375
|
Number of update steps between two logs if `logging_strategy="steps"`. Should be an integer or a float in
|
|
311
376
|
range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.
|
|
377
|
+
logging_first_step (`bool`, *optional*, defaults to `False`):
|
|
378
|
+
Whether to log the first `global_step` or not.
|
|
379
|
+
log_on_each_node (`bool`, *optional*, defaults to `True`):
|
|
380
|
+
In multinode distributed training, whether to log using `log_level` once per node, or only on the main
|
|
381
|
+
node.
|
|
312
382
|
logging_nan_inf_filter (`bool`, *optional*, defaults to `True`):
|
|
313
|
-
|
|
314
|
-
|
|
383
|
+
Filter out NaN and Inf losses when logging. If `True`, replaces NaN/Inf losses with the
|
|
384
|
+
average of recent valid losses. Does not affect gradient computation, only logging.
|
|
385
|
+
include_num_input_tokens_seen (`Optional[Union[str, bool]]`, *optional*, defaults to "no"):
|
|
386
|
+
Whether to track the number of input tokens seen. Must be one of ["all", "non_padding", "no"] or a boolean value which map to "all" or "no".
|
|
387
|
+
May be slower in distributed training as gather operations must be called.
|
|
315
388
|
|
|
316
|
-
|
|
389
|
+
> Logging
|
|
317
390
|
|
|
318
|
-
|
|
319
|
-
|
|
391
|
+
log_level (`str`, *optional*, defaults to `passive`):
|
|
392
|
+
Logging level for the main process. Options: `"debug"`, `"info"`, `"warning"`, `"error"`,
|
|
393
|
+
`"critical"`, or `"passive"` (doesn't change the current Transformers logging level,
|
|
394
|
+
which defaults to `"warning"`)
|
|
395
|
+
log_level_replica (`str`, *optional*, defaults to `"warning"`):
|
|
396
|
+
Logging level for replica processes in distributed training. Same options as `log_level`.
|
|
397
|
+
disable_tqdm (`bool`, *optional*):
|
|
398
|
+
Disable tqdm progress bars. Defaults to `True` if `log_level` is warning or lower, `False` otherwise.
|
|
320
399
|
|
|
321
|
-
|
|
400
|
+
> Experiment Tracking Integration
|
|
401
|
+
|
|
402
|
+
report_to (`str` or `list[str]`, *optional*, defaults to `"none"`):
|
|
403
|
+
The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,
|
|
404
|
+
`"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"swanlab"`,
|
|
405
|
+
`"tensorboard"`, `"trackio"` and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"`
|
|
406
|
+
for no integrations.
|
|
407
|
+
run_name (`str`, *optional*):
|
|
408
|
+
A descriptor for the run. Typically used for [trackio](https://github.com/gradio-app/trackio),
|
|
409
|
+
[wandb](https://www.wandb.com/), [mlflow](https://www.mlflow.org/), [comet](https://www.comet.com/site) and
|
|
410
|
+
[swanlab](https://swanlab.cn) logging.
|
|
411
|
+
project (`str`, *optional*, defaults to `"huggingface"`):
|
|
412
|
+
The name of the project to use for logging. Currently, only used by Trackio.
|
|
413
|
+
trackio_space_id (`str` or `None`, *optional*, defaults to `"trackio"`):
|
|
414
|
+
The Hugging Face Space ID to deploy to when using Trackio. Should be a complete Space name like
|
|
415
|
+
`'username/reponame'` or `'orgname/reponame'`, or just `'reponame'` in which case the Space will be
|
|
416
|
+
created in the currently-logged-in Hugging Face user's namespace. If `None`, will log to a local directory.
|
|
417
|
+
Note that this Space will be public unless you set `hub_private_repo=True` or your organization's default
|
|
418
|
+
is to create private Spaces."
|
|
419
|
+
|
|
420
|
+
> Evaluation
|
|
421
|
+
|
|
422
|
+
eval_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
|
|
423
|
+
When to run evaluation. Options:
|
|
424
|
+
- `"no"`: No evaluation during training
|
|
425
|
+
- `"steps"`: Evaluate every `eval_steps`
|
|
426
|
+
- `"epoch"`: Evaluate at the end of each epoch
|
|
427
|
+
eval_steps (`int` or `float`, *optional*):
|
|
428
|
+
Number of update steps between two evaluations if `eval_strategy="steps"`. Will default to the same
|
|
429
|
+
value as `logging_steps` if not set. Should be an integer or a float in range `[0,1)`. If smaller than 1,
|
|
430
|
+
will be interpreted as ratio of total training steps.
|
|
431
|
+
eval_delay (`float`, *optional*):
|
|
432
|
+
Number of epochs or steps to wait for before the first evaluation can be performed, depending on the
|
|
433
|
+
eval_strategy.
|
|
434
|
+
per_device_eval_batch_size (`int`, *optional*, defaults to 8):
|
|
435
|
+
The batch size per device accelerator core/CPU for evaluation.
|
|
436
|
+
prediction_loss_only (`bool`, *optional*, defaults to `False`):
|
|
437
|
+
When performing evaluation and generating predictions, only returns the loss.
|
|
438
|
+
eval_on_start (`bool`, *optional*, defaults to `False`):
|
|
439
|
+
Whether to perform a evaluation step (sanity check) before the training to ensure the validation steps works correctly.
|
|
440
|
+
eval_do_concat_batches (`bool`, *optional*, defaults to `True`):
|
|
441
|
+
Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`,
|
|
442
|
+
will instead store them as lists, with each batch kept separate.
|
|
443
|
+
eval_use_gather_object (`bool`, *optional*, defaults to `False`):
|
|
444
|
+
Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices. This should only be enabled if users are not just returning tensors, and this is actively discouraged by PyTorch.
|
|
445
|
+
This is useful when the labels structure is non standard, like in computer vision tasks.
|
|
446
|
+
eval_accumulation_steps (`int`, *optional*):
|
|
447
|
+
Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
|
|
448
|
+
left unset, the whole predictions are accumulated on the device accelerator before being moved to the CPU (faster but
|
|
449
|
+
requires more memory).
|
|
450
|
+
|
|
451
|
+
> Metrics Computation
|
|
452
|
+
|
|
453
|
+
include_for_metrics (`list[str]`, *optional*, defaults to `[]`):
|
|
454
|
+
Include additional data in the `compute_metrics` function if needed for metrics computation.
|
|
455
|
+
Possible options to add to `include_for_metrics` list:
|
|
456
|
+
- `"inputs"`: Input data passed to the model, intended for calculating input dependent metrics.
|
|
457
|
+
- `"loss"`: Loss values computed during evaluation, intended for calculating loss dependent metrics.
|
|
458
|
+
batch_eval_metrics (`bool`, *optional*, defaults to `False`):
|
|
459
|
+
If set to `True`, evaluation will call compute_metrics at the end of each batch to accumulate statistics
|
|
460
|
+
rather than saving all eval logits in memory. When set to `True`, you must pass a compute_metrics function
|
|
461
|
+
that takes a boolean argument `compute_result`, which when passed `True`, will trigger the final global
|
|
462
|
+
summary statistics from the batch-level summary statistics you've accumulated over the evaluation set.
|
|
322
463
|
|
|
464
|
+
> Checkpointing & Saving
|
|
465
|
+
|
|
466
|
+
save_only_model (`bool`, *optional*, defaults to `False`):
|
|
467
|
+
Save only model weights, not optimizer/scheduler/RNG state. Significantly reduces
|
|
468
|
+
checkpoint size but prevents resuming training from the checkpoint. Use when you only
|
|
469
|
+
need the trained model for inference, not continued training.
|
|
470
|
+
You can only load the model using `from_pretrained` with this option set to `True`.
|
|
323
471
|
save_strategy (`str` or [`~trainer_utils.SaveStrategy`], *optional*, defaults to `"steps"`):
|
|
324
472
|
The checkpoint save strategy to adopt during training. Possible values are:
|
|
325
|
-
|
|
326
473
|
- `"no"`: No save is done during training.
|
|
327
474
|
- `"epoch"`: Save is done at the end of each epoch.
|
|
328
475
|
- `"steps"`: Save is done every `save_steps`.
|
|
329
476
|
- `"best"`: Save is done whenever a new `best_metric` is achieved.
|
|
330
|
-
|
|
331
|
-
If `"epoch"` or `"steps"` is chosen, saving will also be performed at the
|
|
332
|
-
very end of training, always.
|
|
333
477
|
save_steps (`int` or `float`, *optional*, defaults to 500):
|
|
334
478
|
Number of updates steps before two checkpoint saves if `save_strategy="steps"`. Should be an integer or a
|
|
335
479
|
float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.
|
|
336
|
-
save_total_limit (`int`, *optional*):
|
|
337
|
-
If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
|
|
338
|
-
`output_dir`. When `load_best_model_at_end` is enabled, the "best" checkpoint according to
|
|
339
|
-
`metric_for_best_model` will always be retained in addition to the most recent ones. For example, for
|
|
340
|
-
`save_total_limit=5` and `load_best_model_at_end`, the four last checkpoints will always be retained
|
|
341
|
-
alongside the best model. When `save_total_limit=1` and `load_best_model_at_end`, it is possible that two
|
|
342
|
-
checkpoints are saved: the last one and the best one (if they are different).
|
|
343
|
-
enable_jit_checkpoint (`bool`, *optional*, defaults to `False`):
|
|
344
|
-
Whether to enable Just-In-Time (JIT) checkpointing on SIGTERM signal. When enabled, training will
|
|
345
|
-
checkpoint upon receiving SIGTERM, allowing for graceful termination without losing
|
|
346
|
-
progress. This is particularly useful for shared clusters with preemptible workloads (e.g., Kueue).
|
|
347
|
-
**Important**: You must configure your orchestrator's graceful shutdown period to allow sufficient time
|
|
348
|
-
for checkpoint completion. For Kubernetes, set `terminationGracePeriodSeconds` in your job definition
|
|
349
|
-
(method varies by cloud-native trainer: Kubeflow, Ray, etc.). Note: the default is only 30 seconds,
|
|
350
|
-
which is typically insufficient. For Slurm, use `--signal=USR1@<seconds>` in your sbatch script to send
|
|
351
|
-
SIGTERM with adequate time before the job time limit. Calculate the required grace period as: longest
|
|
352
|
-
possible iteration time + checkpoint saving time. For example, if an iteration takes 2 minutes and
|
|
353
|
-
checkpoint saving takes 2 minutes, set at least 4 minutes (240 seconds) of grace time.
|
|
354
480
|
save_on_each_node (`bool`, *optional*, defaults to `False`):
|
|
355
481
|
When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
|
|
356
482
|
the main one.
|
|
357
|
-
|
|
358
483
|
This should not be activated when the different nodes use the same storage as the files will be saved with
|
|
359
484
|
the same names for each node.
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
485
|
+
save_total_limit (`int`, *optional*):
|
|
486
|
+
Maximum number of checkpoints to keep. Deletes older checkpoints in `output_dir`. When
|
|
487
|
+
`load_best_model_at_end=True`, the best checkpoint is always retained plus the most
|
|
488
|
+
recent ones. For example, `save_total_limit=5` keeps the 4 most recent plus the best
|
|
489
|
+
enable_jit_checkpoint (`bool`, *optional*, defaults to `False`):
|
|
490
|
+
Enable Just-In-Time checkpointing on SIGTERM signal for graceful termination on
|
|
491
|
+
preemptible workloads. **Important**: Configure your orchestrator's graceful shutdown
|
|
492
|
+
period to allow sufficient time. For Kubernetes, set `terminationGracePeriodSeconds`
|
|
493
|
+
(default 30s is usually insufficient). For Slurm, use `--signal=USR1@<seconds>`.
|
|
494
|
+
Required grace period ≥ longest iteration time + checkpoint save time.
|
|
495
|
+
|
|
496
|
+
> Hugging Face Hub Integration
|
|
497
|
+
|
|
498
|
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
|
499
|
+
Whether or not to push the model to the Hub every time the model is saved. If this is activated,
|
|
500
|
+
`output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content
|
|
501
|
+
will be pushed each time a save is triggered (depending on your `save_strategy`). Calling
|
|
502
|
+
[`~Trainer.save_model`] will also trigger a push.
|
|
503
|
+
hub_token (`str`, *optional*):
|
|
504
|
+
The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
|
|
505
|
+
`hf auth login`.
|
|
506
|
+
hub_private_repo (`bool`, *optional*):
|
|
507
|
+
Whether to make the repo private. If `None` (default), the repo will be public unless the organization's
|
|
508
|
+
default is private. This value is ignored if the repo already exists. If reporting to Trackio with
|
|
509
|
+
deployment to Hugging Face Spaces enabled, the same logic determines whether the Space is private.
|
|
510
|
+
hub_model_id (`str`, *optional*):
|
|
511
|
+
The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in
|
|
512
|
+
which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
|
|
513
|
+
for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
|
|
514
|
+
`"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the
|
|
515
|
+
name of `output_dir`.
|
|
516
|
+
hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`):
|
|
517
|
+
Defines what and when to push to Hub. Options:
|
|
518
|
+
- `"end"`: Push only at the end of training
|
|
519
|
+
- `"every_save"`: Push on each save (async to not block training)
|
|
520
|
+
- `"checkpoint"`: Like `"every_save"` plus push latest checkpoint to `"last-checkpoint"` subfolder for easy resuming
|
|
521
|
+
- `"all_checkpoints"`: Push all checkpoints as they appear
|
|
522
|
+
hub_always_push (`bool`, *optional*, defaults to `False`):
|
|
523
|
+
Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished.
|
|
524
|
+
hub_revision (`str`, *optional*):
|
|
525
|
+
The revision to use when pushing to the Hub. Can be a branch name, a tag, or a commit hash.
|
|
526
|
+
|
|
527
|
+
> Best Model Tracking
|
|
528
|
+
|
|
529
|
+
load_best_model_at_end (`bool`, *optional*, defaults to `False`):
|
|
530
|
+
Load the best checkpoint at the end of training. Requires `eval_strategy` to be set.
|
|
531
|
+
When enabled, the best checkpoint is always saved (see `save_total_limit`).
|
|
532
|
+
<Tip>
|
|
533
|
+
When `True`, `save_strategy` must match `eval_strategy`, and if using `"steps"`,
|
|
534
|
+
`save_steps` must be a multiple of `eval_steps`.
|
|
535
|
+
</Tip>
|
|
536
|
+
metric_for_best_model (`str`, *optional*):
|
|
537
|
+
Metric to use for comparing models when `load_best_model_at_end=True`. Must be a metric
|
|
538
|
+
name returned by evaluation, with or without the `"eval_"` prefix. Defaults to `"loss"`.
|
|
539
|
+
If you set this, `greater_is_better` will default to `True` unless the name ends with
|
|
540
|
+
`"loss"`. Examples: `"accuracy"`, `"f1"`, `"eval_bleu"`.
|
|
541
|
+
greater_is_better (`bool`, *optional*):
|
|
542
|
+
Whether higher metric values are better. Defaults based on `metric_for_best_model`:
|
|
543
|
+
`True` if the metric name doesn't end in `"loss"`, `False` otherwise.
|
|
544
|
+
|
|
545
|
+
> Resuming Training
|
|
546
|
+
|
|
547
|
+
ignore_data_skip (`bool`, *optional*, defaults to `False`):
|
|
548
|
+
When resuming training, skip fast-forwarding through the dataset to reach the previous
|
|
549
|
+
state. If `True`, training starts from the beginning of the dataset (faster resume but
|
|
550
|
+
results won't match interrupted training). If `False`, skips seen data (slower resume
|
|
551
|
+
but exact continuation).
|
|
365
552
|
restore_callback_states_from_checkpoint (`bool`, *optional*, defaults to `False`):
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
553
|
+
Restore callback states from checkpoint when resuming. If `True`, will override callbacks
|
|
554
|
+
passed to Trainer if they exist in the checkpoint.
|
|
555
|
+
|
|
556
|
+
> Reproducibility
|
|
557
|
+
|
|
558
|
+
full_determinism (`bool`, *optional*, defaults to `False`)
|
|
559
|
+
If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in
|
|
560
|
+
distributed training. Important: this will negatively impact the performance, so only use it for debugging.
|
|
370
561
|
seed (`int`, *optional*, defaults to 42):
|
|
371
562
|
Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
|
|
372
563
|
[`~Trainer.model_init`] function to instantiate the model if it has some randomly initialized parameters.
|
|
@@ -374,96 +565,98 @@ class TrainingArguments:
|
|
|
374
565
|
Random seed to be used with data samplers. If not set, random generators for data sampling will use the
|
|
375
566
|
same seed as `seed`. This can be used to ensure reproducibility of data sampling, independent of the model
|
|
376
567
|
seed.
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
Whether to use
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
568
|
+
|
|
569
|
+
> Hardware Configuration
|
|
570
|
+
|
|
571
|
+
use_cpu (`bool`, *optional*, defaults to `False`):
|
|
572
|
+
Whether or not to use cpu. If set to False, we will use the available torch device/backend.
|
|
573
|
+
|
|
574
|
+
> Accelerate Configuration
|
|
575
|
+
|
|
576
|
+
accelerator_config (`str`, `dict`, or `AcceleratorConfig`, *optional*):
|
|
577
|
+
Configuration for the internal Accelerate integration. Can be:
|
|
578
|
+
- Path to JSON config file: `"accelerator_config.json"`
|
|
579
|
+
- Dictionary with config options
|
|
580
|
+
- `AcceleratorConfig` instance
|
|
581
|
+
Key options:
|
|
582
|
+
- `split_batches` (`bool`, defaults to `False`): Whether to split batches across devices.
|
|
583
|
+
If `True`, actual batch size is the same on all devices (total must be divisible by
|
|
584
|
+
num_processes). If `False`, each device gets the specified batch size.
|
|
585
|
+
- `dispatch_batches` (`bool`): If `True`, only main process iterates through dataloader
|
|
586
|
+
and dispatches batches to devices. Defaults to `True` for `IterableDataset`, `False`
|
|
587
|
+
otherwise.
|
|
588
|
+
- `even_batches` (`bool`, defaults to `True`): Duplicate samples from dataset start to
|
|
589
|
+
ensure all workers get equal batch sizes.
|
|
590
|
+
- `use_seedable_sampler` (`bool`, defaults to `True`): Use fully seedable random sampler
|
|
591
|
+
for reproducibility.
|
|
592
|
+
- `use_configured_state` (`bool`, defaults to `False`): Use pre-initialized
|
|
593
|
+
`AcceleratorState`/`PartialState` instead of creating new one. May cause issues with
|
|
594
|
+
hyperparameter tuning.
|
|
595
|
+
|
|
596
|
+
parallelism_config (`ParallelismConfig`, *optional*):
|
|
597
|
+
Parallelism configuration for the training run. Requires Accelerate `1.10.1`
|
|
598
|
+
|
|
599
|
+
> Dataloader
|
|
600
|
+
|
|
395
601
|
dataloader_drop_last (`bool`, *optional*, defaults to `False`):
|
|
396
602
|
Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
|
|
397
603
|
or not.
|
|
398
|
-
eval_steps (`int` or `float`, *optional*):
|
|
399
|
-
Number of update steps between two evaluations if `eval_strategy="steps"`. Will default to the same
|
|
400
|
-
value as `logging_steps` if not set. Should be an integer or a float in range `[0,1)`. If smaller than 1,
|
|
401
|
-
will be interpreted as ratio of total training steps.
|
|
402
604
|
dataloader_num_workers (`int`, *optional*, defaults to 0):
|
|
403
605
|
Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
|
|
404
606
|
main process.
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
607
|
+
dataloader_pin_memory (`bool`, *optional*, defaults to `True`):
|
|
608
|
+
Whether you want to pin memory in data loaders or not. Will default to `True`.
|
|
609
|
+
dataloader_persistent_workers (`bool`, *optional*, defaults to `False`):
|
|
610
|
+
If True, the data loader will not shut down the worker processes after a dataset has been consumed once.
|
|
611
|
+
This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will
|
|
612
|
+
increase RAM usage. Will default to `False`.
|
|
613
|
+
dataloader_prefetch_factor (`int`, *optional*):
|
|
614
|
+
Number of batches loaded in advance by each worker.
|
|
615
|
+
2 means there will be a total of 2 * num_workers batches prefetched across all workers.
|
|
413
616
|
remove_unused_columns (`bool`, *optional*, defaults to `True`):
|
|
414
617
|
Whether or not to automatically remove the columns unused by the model forward method.
|
|
415
618
|
label_names (`list[str]`, *optional*):
|
|
416
619
|
The list of keys in your dictionary of inputs that correspond to the labels.
|
|
417
|
-
|
|
418
620
|
Will eventually default to the list of argument names accepted by the model that contain the word "label",
|
|
419
621
|
except if the model used is one of the `XxxForQuestionAnswering` in which case it will also include the
|
|
420
622
|
`["start_positions", "end_positions"]` keys.
|
|
421
|
-
|
|
422
623
|
You should only specify `label_names` if you're using custom label names or if your model's `forward` consumes multiple label tensors (e.g., extractive QA).
|
|
423
|
-
|
|
424
|
-
Whether or not to
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
for
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
When set to `True`, the parameters `save_strategy` needs to be the same as `eval_strategy`, and in
|
|
432
|
-
the case it is "steps", `save_steps` must be a round multiple of `eval_steps`.
|
|
624
|
+
group_by_length (`bool`, *optional*, defaults to `False`):
|
|
625
|
+
Whether or not to group together samples of roughly the same length in the training dataset (to minimize
|
|
626
|
+
padding applied and be more efficient). Only useful if applying dynamic padding.
|
|
627
|
+
length_column_name (`str`, *optional*, defaults to `"length"`):
|
|
628
|
+
Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
|
|
629
|
+
than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an
|
|
630
|
+
instance of `Dataset`.
|
|
433
631
|
|
|
434
|
-
|
|
632
|
+
> DDP (DistributedDataParallel)
|
|
435
633
|
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
634
|
+
ddp_find_unused_parameters (`bool`, *optional*):
|
|
635
|
+
When using distributed training, the value of the flag `find_unused_parameters` passed to
|
|
636
|
+
`DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
|
|
637
|
+
ddp_bucket_cap_mb (`int`, *optional*):
|
|
638
|
+
When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`.
|
|
639
|
+
ddp_broadcast_buffers (`bool`, *optional*):
|
|
640
|
+
When using distributed training, the value of the flag `broadcast_buffers` passed to
|
|
641
|
+
`DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
|
|
642
|
+
ddp_backend (`str`, *optional*):
|
|
643
|
+
The backend to use for distributed training. Must be one of `"nccl"`, `"mpi"`, `"xccl"`, `"gloo"`, `"hccl"`.
|
|
644
|
+
ddp_timeout (`int`, *optional*, defaults to 1800):
|
|
645
|
+
The timeout for `torch.distributed.init_process_group` calls, used to avoid GPU socket timeouts when
|
|
646
|
+
performing slow operations in distributed runnings. Please refer to the [PyTorch documentation](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
|
|
647
|
+
information.
|
|
442
648
|
|
|
443
|
-
|
|
444
|
-
Don't forget to set it to `False` if your metric is better when lower.
|
|
445
|
-
greater_is_better (`bool`, *optional*):
|
|
446
|
-
Use in conjunction with `load_best_model_at_end` and `metric_for_best_model` to specify if better models
|
|
447
|
-
should have a greater metric or not. Will default to:
|
|
649
|
+
> FSDP (Fully Sharded Data Parallel)
|
|
448
650
|
|
|
449
|
-
- `True` if `metric_for_best_model` is set to a value that doesn't end in `"loss"`.
|
|
450
|
-
- `False` if `metric_for_best_model` is not set, or set to a value that ends in `"loss"`.
|
|
451
|
-
ignore_data_skip (`bool`, *optional*, defaults to `False`):
|
|
452
|
-
When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
|
|
453
|
-
stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step
|
|
454
|
-
can take a long time) but will not yield the same results as the interrupted training would have.
|
|
455
651
|
fsdp (`bool`, `str` or list of [`~trainer_utils.FSDPOption`], *optional*, defaults to `None`):
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
- `"offload"`: Offload parameters and gradients to CPUs (only compatible with `"full_shard"` and
|
|
465
|
-
`"shard_grad_op"`).
|
|
466
|
-
- `"auto_wrap"`: Automatically recursively wrap layers with FSDP using `default_auto_wrap_policy`.
|
|
652
|
+
Enable PyTorch Fully Sharded Data Parallel (FSDP) for distributed training. Options:
|
|
653
|
+
- `"full_shard"`: Shard parameters, gradients, and optimizer states (most memory efficient)
|
|
654
|
+
- `"shard_grad_op"`: Shard only optimizer states and gradients (ZeRO-2)
|
|
655
|
+
- `"hybrid_shard"`: Full shard within nodes, replicate across nodes
|
|
656
|
+
- `"hybrid_shard_zero2"`: Shard gradients/optimizer within nodes, replicate across nodes
|
|
657
|
+
- `"offload"`: Offload parameters and gradients to CPU (only with `"full_shard"` or
|
|
658
|
+
`"shard_grad_op"`)
|
|
659
|
+
- `"auto_wrap"`: Automatically wrap layers using `default_auto_wrap_policy`
|
|
467
660
|
fsdp_config (`str` or `dict`, *optional*):
|
|
468
661
|
Config to be used with fsdp (Pytorch Distributed Parallel Training). The value is either a location of
|
|
469
662
|
fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`.
|
|
@@ -524,247 +717,48 @@ class TrainingArguments:
|
|
|
524
717
|
Will use gradient checkpointing over each nested XLA FSDP wrapped layer. This setting can only be
|
|
525
718
|
used when the xla flag is set to true, and an auto wrapping policy is specified through
|
|
526
719
|
fsdp_min_num_params or fsdp_transformer_layer_cls_to_wrap.
|
|
720
|
+
|
|
721
|
+
> DeepSpeed
|
|
722
|
+
|
|
527
723
|
deepspeed (`str` or `dict`, *optional*):
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
724
|
+
Enable [DeepSpeed](https://github.com/deepspeedai/DeepSpeed) integration. Value is either:
|
|
725
|
+
- Path to DeepSpeed JSON config file: `"ds_config.json"`
|
|
726
|
+
- Loaded config as dictionary
|
|
727
|
+
> [!TIP]
|
|
728
|
+
> If using ZeRO initialization, instantiate your model *after* initializing
|
|
729
|
+
`TrainingArguments`, otherwise ZeRO won't be applied.
|
|
531
730
|
|
|
532
|
-
|
|
533
|
-
If enabling any Zero-init, make sure that your model is not initialized until
|
|
534
|
-
*after* initializing the `TrainingArguments`, else it will not be applied.
|
|
535
|
-
</Tip>
|
|
731
|
+
> Debugging & Profiling (Experimental)
|
|
536
732
|
|
|
537
|
-
accelerator_config (`str`, `dict`, or `AcceleratorConfig`, *optional*):
|
|
538
|
-
Config to be used with the internal `Accelerator` implementation. The value is either a location of
|
|
539
|
-
accelerator json config file (e.g., `accelerator_config.json`), an already loaded json file as `dict`,
|
|
540
|
-
or an instance of [`~trainer_pt_utils.AcceleratorConfig`].
|
|
541
|
-
|
|
542
|
-
A list of config and its options:
|
|
543
|
-
- split_batches (`bool`, *optional*, defaults to `False`):
|
|
544
|
-
Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If
|
|
545
|
-
`True` the actual batch size used will be the same on any kind of distributed processes, but it must be a
|
|
546
|
-
round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set
|
|
547
|
-
in your script multiplied by the number of processes.
|
|
548
|
-
- dispatch_batches (`bool`, *optional*):
|
|
549
|
-
If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process
|
|
550
|
-
and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose
|
|
551
|
-
underlying dataset is an `IterableDataset`, `False` otherwise.
|
|
552
|
-
- even_batches (`bool`, *optional*, defaults to `True`):
|
|
553
|
-
If set to `True`, in cases where the total batch size across all processes does not exactly divide the
|
|
554
|
-
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
|
|
555
|
-
all workers.
|
|
556
|
-
- use_seedable_sampler (`bool`, *optional*, defaults to `True`):
|
|
557
|
-
Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`]). Ensures
|
|
558
|
-
training results are fully reproducible using a different sampling technique. While seed-to-seed results
|
|
559
|
-
may differ, on average the differences are negligible when using multiple different seeds to compare. Should
|
|
560
|
-
also be ran with [`~utils.set_seed`] for the best results.
|
|
561
|
-
- use_configured_state (`bool`, *optional*, defaults to `False`):
|
|
562
|
-
Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined before calling `TrainingArguments`.
|
|
563
|
-
If `True`, an `Accelerator` or `PartialState` must be initialized. Note that by doing so, this could lead to issues
|
|
564
|
-
with hyperparameter tuning.
|
|
565
|
-
parallelism_config (`ParallelismConfig`, *optional*):
|
|
566
|
-
Parallelism configuration for the training run. Requires Accelerate `1.10.1`
|
|
567
|
-
label_smoothing_factor (`float`, *optional*, defaults to 0.0):
|
|
568
|
-
The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
|
|
569
|
-
labels are changed from 0s and 1s to `label_smoothing_factor/num_labels` and `1 - label_smoothing_factor +
|
|
570
|
-
label_smoothing_factor/num_labels` respectively.
|
|
571
733
|
debug (`str` or list of [`~debug_utils.DebugOption`], *optional*, defaults to `""`):
|
|
572
734
|
Enable one or more debug features. This is an experimental feature.
|
|
573
|
-
|
|
574
735
|
Possible options are:
|
|
575
|
-
|
|
576
|
-
- `"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that led to
|
|
736
|
+
- "underflow_overflow": detects overflow in model's input/outputs and reports the last frames that led to
|
|
577
737
|
the event
|
|
578
|
-
-
|
|
579
|
-
|
|
580
|
-
The options should be separated by whitespaces.
|
|
581
|
-
optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"` (for torch>=2.8 `"adamw_torch_fused"`)):
|
|
582
|
-
The optimizer to use, such as "adamw_torch", "adamw_torch_fused", "adamw_anyprecision",
|
|
583
|
-
"adafactor". See `OptimizerNames` in [training_args.py](https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py)
|
|
584
|
-
for a full list of optimizers.
|
|
585
|
-
optim_args (`str`, *optional*):
|
|
586
|
-
Optional arguments that are supplied to optimizers such as AnyPrecisionAdamW, AdEMAMix, and GaLore.
|
|
587
|
-
group_by_length (`bool`, *optional*, defaults to `False`):
|
|
588
|
-
Whether or not to group together samples of roughly the same length in the training dataset (to minimize
|
|
589
|
-
padding applied and be more efficient). Only useful if applying dynamic padding.
|
|
590
|
-
length_column_name (`str`, *optional*, defaults to `"length"`):
|
|
591
|
-
Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
|
|
592
|
-
than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an
|
|
593
|
-
instance of `Dataset`.
|
|
594
|
-
report_to (`str` or `list[str]`, *optional*, defaults to `"none"`):
|
|
595
|
-
The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,
|
|
596
|
-
`"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"swanlab"`,
|
|
597
|
-
`"tensorboard"`, `"trackio"` and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"`
|
|
598
|
-
for no integrations.
|
|
599
|
-
project (`str`, *optional*, defaults to `"huggingface"`):
|
|
600
|
-
The name of the project to use for logging. Currently, only used by Trackio.
|
|
601
|
-
trackio_space_id (`str` or `None`, *optional*, defaults to `"trackio"`):
|
|
602
|
-
The Hugging Face Space ID to deploy to when using Trackio. Should be a complete Space name like
|
|
603
|
-
`'username/reponame'` or `'orgname/reponame' `, or just `'reponame'` in which case the Space will be
|
|
604
|
-
created in the currently-logged-in Hugging Face user's namespace. If `None`, will log to a local directory.
|
|
605
|
-
Note that this Space will be public unless you set `hub_private_repo=True` or your organization's default
|
|
606
|
-
is to create private Spaces."
|
|
607
|
-
ddp_find_unused_parameters (`bool`, *optional*):
|
|
608
|
-
When using distributed training, the value of the flag `find_unused_parameters` passed to
|
|
609
|
-
`DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
|
|
610
|
-
ddp_bucket_cap_mb (`int`, *optional*):
|
|
611
|
-
When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`.
|
|
612
|
-
ddp_broadcast_buffers (`bool`, *optional*):
|
|
613
|
-
When using distributed training, the value of the flag `broadcast_buffers` passed to
|
|
614
|
-
`DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
|
|
615
|
-
dataloader_pin_memory (`bool`, *optional*, defaults to `True`):
|
|
616
|
-
Whether you want to pin memory in data loaders or not. Will default to `True`.
|
|
617
|
-
dataloader_persistent_workers (`bool`, *optional*, defaults to `False`):
|
|
618
|
-
If True, the data loader will not shut down the worker processes after a dataset has been consumed once.
|
|
619
|
-
This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will
|
|
620
|
-
increase RAM usage. Will default to `False`.
|
|
621
|
-
dataloader_prefetch_factor (`int`, *optional*):
|
|
622
|
-
Number of batches loaded in advance by each worker.
|
|
623
|
-
2 means there will be a total of 2 * num_workers batches prefetched across all workers.
|
|
738
|
+
- "tpu_metrics_debug": print debug metrics on TPU
|
|
624
739
|
skip_memory_metrics (`bool`, *optional*, defaults to `True`):
|
|
625
740
|
Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
|
|
626
741
|
down the training and evaluation speed.
|
|
627
|
-
push_to_hub (`bool`, *optional*, defaults to `False`):
|
|
628
|
-
Whether or not to push the model to the Hub every time the model is saved. If this is activated,
|
|
629
|
-
`output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content
|
|
630
|
-
will be pushed each time a save is triggered (depending on your `save_strategy`). Calling
|
|
631
|
-
[`~Trainer.save_model`] will also trigger a push.
|
|
632
|
-
|
|
633
|
-
<Tip warning={true}>
|
|
634
742
|
|
|
635
|
-
|
|
636
|
-
pushed.
|
|
637
|
-
|
|
638
|
-
</Tip>
|
|
743
|
+
> External Script Flags (not used by Trainer)
|
|
639
744
|
|
|
745
|
+
do_train (`bool`, *optional*, defaults to `False`):
|
|
746
|
+
Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
|
|
747
|
+
by your training/evaluation scripts instead. See the [example
|
|
748
|
+
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
749
|
+
do_eval (`bool`, *optional*):
|
|
750
|
+
Whether to run evaluation on the validation set or not. Will be set to `True` if `eval_strategy` is
|
|
751
|
+
different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
|
|
752
|
+
training/evaluation scripts instead. See the [example
|
|
753
|
+
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
754
|
+
do_predict (`bool`, *optional*, defaults to `False`):
|
|
755
|
+
Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
|
|
756
|
+
intended to be used by your training/evaluation scripts instead. See the [example
|
|
757
|
+
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
640
758
|
resume_from_checkpoint (`str`, *optional*):
|
|
641
759
|
The path to a folder with a valid checkpoint for your model. This argument is not directly used by
|
|
642
760
|
[`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example
|
|
643
761
|
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
|
644
|
-
hub_model_id (`str`, *optional*):
|
|
645
|
-
The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in
|
|
646
|
-
which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
|
|
647
|
-
for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
|
|
648
|
-
`"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the
|
|
649
|
-
name of `output_dir`.
|
|
650
|
-
|
|
651
|
-
Will default to the name of `output_dir`.
|
|
652
|
-
hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`):
|
|
653
|
-
Defines the scope of what is pushed to the Hub and when. Possible values are:
|
|
654
|
-
|
|
655
|
-
- `"end"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and a
|
|
656
|
-
draft of a model card when the [`~Trainer.save_model`] method is called.
|
|
657
|
-
- `"every_save"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and
|
|
658
|
-
a draft of a model card each time there is a model save. The pushes are asynchronous to not block
|
|
659
|
-
training, and in case the save are very frequent, a new push is only attempted if the previous one is
|
|
660
|
-
finished. A last push is made with the final model at the end of training.
|
|
661
|
-
- `"checkpoint"`: like `"every_save"` but the latest checkpoint is also pushed in a subfolder named
|
|
662
|
-
last-checkpoint, allowing you to resume training easily with
|
|
663
|
-
`trainer.train(resume_from_checkpoint="last-checkpoint")`.
|
|
664
|
-
- `"all_checkpoints"`: like `"checkpoint"` but all checkpoints are pushed like they appear in the output
|
|
665
|
-
folder (so you will get one checkpoint folder per folder in your final repository)
|
|
666
|
-
|
|
667
|
-
hub_token (`str`, *optional*):
|
|
668
|
-
The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
|
|
669
|
-
`hf auth login`.
|
|
670
|
-
hub_private_repo (`bool`, *optional*):
|
|
671
|
-
Whether to make the repo private. If `None` (default), the repo will be public unless the organization's
|
|
672
|
-
default is private. This value is ignored if the repo already exists. If reporting to Trackio with
|
|
673
|
-
deployment to Hugging Face Spaces enabled, the same logic determines whether the Space is private.
|
|
674
|
-
hub_always_push (`bool`, *optional*, defaults to `False`):
|
|
675
|
-
Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished.
|
|
676
|
-
hub_revision (`str`, *optional*):
|
|
677
|
-
The revision to use when pushing to the Hub. Can be a branch name, a tag, or a commit hash.
|
|
678
|
-
gradient_checkpointing (`bool`, *optional*, defaults to `False`):
|
|
679
|
-
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
|
680
|
-
gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`):
|
|
681
|
-
Key word arguments to be passed to the `gradient_checkpointing_enable` method.
|
|
682
|
-
include_for_metrics (`list[str]`, *optional*, defaults to `[]`):
|
|
683
|
-
Include additional data in the `compute_metrics` function if needed for metrics computation.
|
|
684
|
-
Possible options to add to `include_for_metrics` list:
|
|
685
|
-
- `"inputs"`: Input data passed to the model, intended for calculating input dependent metrics.
|
|
686
|
-
- `"loss"`: Loss values computed during evaluation, intended for calculating loss dependent metrics.
|
|
687
|
-
eval_do_concat_batches (`bool`, *optional*, defaults to `True`):
|
|
688
|
-
Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`,
|
|
689
|
-
will instead store them as lists, with each batch kept separate.
|
|
690
|
-
auto_find_batch_size (`bool`, *optional*, defaults to `False`)
|
|
691
|
-
Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding
|
|
692
|
-
CUDA Out-of-Memory errors. Requires accelerate to be installed (`pip install accelerate`)
|
|
693
|
-
full_determinism (`bool`, *optional*, defaults to `False`)
|
|
694
|
-
If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in
|
|
695
|
-
distributed training. Important: this will negatively impact the performance, so only use it for debugging.
|
|
696
|
-
ddp_timeout (`int`, *optional*, defaults to 1800):
|
|
697
|
-
The timeout for `torch.distributed.init_process_group` calls, used to avoid GPU socket timeouts when
|
|
698
|
-
performing slow operations in distributed runnings. Please refer the [PyTorch documentation]
|
|
699
|
-
(https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
|
|
700
|
-
information.
|
|
701
|
-
torch_compile (`bool`, *optional*, defaults to `False`):
|
|
702
|
-
Whether or not to compile the model using PyTorch 2.0
|
|
703
|
-
[`torch.compile`](https://pytorch.org/get-started/pytorch-2.0/).
|
|
704
|
-
|
|
705
|
-
This will use the best defaults for the [`torch.compile`
|
|
706
|
-
API](https://pytorch.org/docs/stable/generated/torch.compile.html?highlight=torch+compile#torch.compile).
|
|
707
|
-
You can customize the defaults with the argument `torch_compile_backend` and `torch_compile_mode` but we
|
|
708
|
-
don't guarantee any of them will work as the support is progressively rolled in in PyTorch.
|
|
709
|
-
|
|
710
|
-
This flag and the whole compile API is experimental and subject to change in future releases.
|
|
711
|
-
torch_compile_backend (`str`, *optional*):
|
|
712
|
-
The backend to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`.
|
|
713
|
-
|
|
714
|
-
Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions.
|
|
715
|
-
|
|
716
|
-
This flag is experimental and subject to change in future releases.
|
|
717
|
-
torch_compile_mode (`str`, *optional*):
|
|
718
|
-
The mode to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`.
|
|
719
|
-
|
|
720
|
-
Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions.
|
|
721
|
-
|
|
722
|
-
This flag is experimental and subject to change in future releases.
|
|
723
|
-
include_num_input_tokens_seen (`Optional[Union[str, bool]]`, *optional*, defaults to "no"):
|
|
724
|
-
Whether to track the number of input tokens seen. Must be one of ["all", "non_padding", "no"] or a boolean value which map to "all" or "no".
|
|
725
|
-
May be slower in distributed training as gather operations must be called.
|
|
726
|
-
|
|
727
|
-
neftune_noise_alpha (`Optional[float]`):
|
|
728
|
-
If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance
|
|
729
|
-
for instruction fine-tuning. Check out the [original paper](https://huggingface.co/papers/2310.05914) and the
|
|
730
|
-
[original code](https://github.com/neelsjain/NEFTune). Support transformers `PreTrainedModel` and also
|
|
731
|
-
`PeftModel` from peft. The original paper used values in the range [5.0, 15.0].
|
|
732
|
-
optim_target_modules (`Union[str, list[str]]`, *optional*):
|
|
733
|
-
The target modules to optimize, i.e. the module names that you would like to train.
|
|
734
|
-
Currently used for the GaLore algorithm (https://huggingface.co/papers/2403.03507) and APOLLO algorithm (https://huggingface.co/papers/2412.05270).
|
|
735
|
-
See GaLore implementation (https://github.com/jiaweizzhao/GaLore) and APOLLO implementation (https://github.com/zhuhanqing/APOLLO) for more details.
|
|
736
|
-
You need to make sure to pass a valid GaLore or APOLLO optimizer, e.g., one of: "apollo_adamw", "galore_adamw", "galore_adamw_8bit", "galore_adafactor" and make sure that the target modules are `nn.Linear` modules only.
|
|
737
|
-
|
|
738
|
-
batch_eval_metrics (`bool`, *optional*, defaults to `False`):
|
|
739
|
-
If set to `True`, evaluation will call compute_metrics at the end of each batch to accumulate statistics
|
|
740
|
-
rather than saving all eval logits in memory. When set to `True`, you must pass a compute_metrics function
|
|
741
|
-
that takes a boolean argument `compute_result`, which when passed `True`, will trigger the final global
|
|
742
|
-
summary statistics from the batch-level summary statistics you've accumulated over the evaluation set.
|
|
743
|
-
|
|
744
|
-
eval_on_start (`bool`, *optional*, defaults to `False`):
|
|
745
|
-
Whether to perform a evaluation step (sanity check) before the training to ensure the validation steps works correctly.
|
|
746
|
-
|
|
747
|
-
eval_use_gather_object (`bool`, *optional*, defaults to `False`):
|
|
748
|
-
Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices. This should only be enabled if users are not just returning tensors, and this is actively discouraged by PyTorch.
|
|
749
|
-
|
|
750
|
-
use_liger_kernel (`bool`, *optional*, defaults to `False`):
|
|
751
|
-
Whether enable [Liger](https://github.com/linkedin/Liger-Kernel) Kernel for LLM model training.
|
|
752
|
-
It can effectively increase multi-GPU training throughput by ~20% and reduces memory usage by ~60%, works out of the box with
|
|
753
|
-
flash attention, PyTorch FSDP, and Microsoft DeepSpeed. Currently, it supports llama, mistral, mixtral and gemma models.
|
|
754
|
-
|
|
755
|
-
liger_kernel_config (`Optional[dict]`, *optional*):
|
|
756
|
-
Configuration to be used for Liger Kernel. When use_liger_kernel=True, this dict is passed as keyword arguments to the
|
|
757
|
-
`_apply_liger_kernel_to_instance` function, which specifies which kernels to apply. Available options vary by model but typically
|
|
758
|
-
include: 'rope', 'swiglu', 'cross_entropy', 'fused_linear_cross_entropy', 'rms_norm', etc. If `None`, use the default kernel configurations.
|
|
759
|
-
|
|
760
|
-
average_tokens_across_devices (`bool`, *optional*, defaults to `True`):
|
|
761
|
-
Whether or not to average tokens across devices. If enabled, will use all_reduce to synchronize
|
|
762
|
-
num_tokens_in_batch for precise loss calculation. Reference:
|
|
763
|
-
https://github.com/huggingface/transformers/issues/34242
|
|
764
|
-
|
|
765
|
-
use_cache (`bool`, *optional*, defaults to `False`):
|
|
766
|
-
Whether or not to enable cache for the model. For training, this is usually not needed apart from some PEFT methods that uses `past_key_values`.
|
|
767
|
-
|
|
768
762
|
"""
|
|
769
763
|
|
|
770
764
|
# Sometimes users will pass in a `str` repr of a dict in the CLI
|
|
@@ -1037,7 +1031,7 @@ class TrainingArguments:
|
|
|
1037
1031
|
default=None,
|
|
1038
1032
|
metadata={
|
|
1039
1033
|
"help": "The backend to be used for distributed training",
|
|
1040
|
-
"choices": ["nccl", "gloo", "mpi", "
|
|
1034
|
+
"choices": ["nccl", "gloo", "mpi", "xccl", "hccl", "cncl", "mccl"],
|
|
1041
1035
|
},
|
|
1042
1036
|
)
|
|
1043
1037
|
debug: str | list[DebugOption] = field(
|
|
@@ -1432,15 +1426,15 @@ class TrainingArguments:
|
|
|
1432
1426
|
)
|
|
1433
1427
|
|
|
1434
1428
|
# Parse in args that could be `dict` sent in from the CLI as a string
|
|
1435
|
-
for
|
|
1436
|
-
passed_value = getattr(self,
|
|
1429
|
+
for valid_field in self._VALID_DICT_FIELDS:
|
|
1430
|
+
passed_value = getattr(self, valid_field)
|
|
1437
1431
|
# We only want to do this if the str starts with a bracket to indicate a `dict`
|
|
1438
1432
|
# else its likely a filename if supported
|
|
1439
1433
|
if isinstance(passed_value, str) and passed_value.startswith("{"):
|
|
1440
1434
|
loaded_dict = json.loads(passed_value)
|
|
1441
1435
|
# Convert str values to types if applicable
|
|
1442
1436
|
loaded_dict = _convert_str_dict(loaded_dict)
|
|
1443
|
-
setattr(self,
|
|
1437
|
+
setattr(self, valid_field, loaded_dict)
|
|
1444
1438
|
|
|
1445
1439
|
# expand paths, if not os.makedirs("~/bar") will make directory
|
|
1446
1440
|
# in the current directory instead of the actual home
|