transformers 5.0.0rc2__py3-none-any.whl → 5.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1594) hide show
  1. transformers/__init__.py +11 -37
  2. transformers/activations.py +2 -2
  3. transformers/audio_utils.py +32 -32
  4. transformers/backbone_utils.py +326 -0
  5. transformers/cache_utils.py +26 -126
  6. transformers/cli/chat.py +3 -3
  7. transformers/cli/serve.py +13 -10
  8. transformers/cli/transformers.py +2 -1
  9. transformers/configuration_utils.py +22 -92
  10. transformers/conversion_mapping.py +150 -26
  11. transformers/convert_slow_tokenizer.py +9 -12
  12. transformers/core_model_loading.py +217 -129
  13. transformers/data/processors/glue.py +0 -1
  14. transformers/data/processors/utils.py +0 -1
  15. transformers/data/processors/xnli.py +0 -1
  16. transformers/dependency_versions_check.py +0 -1
  17. transformers/dependency_versions_table.py +10 -11
  18. transformers/distributed/configuration_utils.py +1 -2
  19. transformers/dynamic_module_utils.py +23 -23
  20. transformers/feature_extraction_sequence_utils.py +19 -23
  21. transformers/feature_extraction_utils.py +14 -14
  22. transformers/file_utils.py +0 -2
  23. transformers/generation/candidate_generator.py +2 -4
  24. transformers/generation/configuration_utils.py +54 -39
  25. transformers/generation/continuous_batching/__init__.py +0 -1
  26. transformers/generation/continuous_batching/cache.py +74 -44
  27. transformers/generation/continuous_batching/cache_manager.py +28 -28
  28. transformers/generation/continuous_batching/continuous_api.py +133 -414
  29. transformers/generation/continuous_batching/input_ouputs.py +464 -0
  30. transformers/generation/continuous_batching/requests.py +77 -19
  31. transformers/generation/continuous_batching/scheduler.py +154 -104
  32. transformers/generation/logits_process.py +10 -133
  33. transformers/generation/stopping_criteria.py +1 -2
  34. transformers/generation/streamers.py +0 -1
  35. transformers/generation/utils.py +91 -121
  36. transformers/generation/watermarking.py +2 -3
  37. transformers/hf_argparser.py +9 -13
  38. transformers/hyperparameter_search.py +1 -2
  39. transformers/image_processing_base.py +9 -9
  40. transformers/image_processing_utils.py +11 -15
  41. transformers/image_processing_utils_fast.py +70 -71
  42. transformers/image_transforms.py +73 -42
  43. transformers/image_utils.py +30 -37
  44. transformers/initialization.py +57 -0
  45. transformers/integrations/__init__.py +10 -24
  46. transformers/integrations/accelerate.py +47 -11
  47. transformers/integrations/awq.py +1 -3
  48. transformers/integrations/deepspeed.py +146 -4
  49. transformers/integrations/eetq.py +0 -1
  50. transformers/integrations/executorch.py +2 -6
  51. transformers/integrations/fbgemm_fp8.py +1 -2
  52. transformers/integrations/finegrained_fp8.py +149 -13
  53. transformers/integrations/flash_attention.py +3 -8
  54. transformers/integrations/flex_attention.py +1 -1
  55. transformers/integrations/fp_quant.py +4 -6
  56. transformers/integrations/ggml.py +0 -1
  57. transformers/integrations/hub_kernels.py +18 -7
  58. transformers/integrations/integration_utils.py +2 -3
  59. transformers/integrations/moe.py +226 -106
  60. transformers/integrations/mxfp4.py +52 -40
  61. transformers/integrations/peft.py +488 -176
  62. transformers/integrations/quark.py +2 -4
  63. transformers/integrations/tensor_parallel.py +641 -581
  64. transformers/integrations/torchao.py +4 -6
  65. transformers/loss/loss_lw_detr.py +356 -0
  66. transformers/loss/loss_utils.py +2 -0
  67. transformers/masking_utils.py +199 -59
  68. transformers/model_debugging_utils.py +4 -5
  69. transformers/modelcard.py +14 -192
  70. transformers/modeling_attn_mask_utils.py +19 -19
  71. transformers/modeling_flash_attention_utils.py +28 -29
  72. transformers/modeling_gguf_pytorch_utils.py +5 -5
  73. transformers/modeling_layers.py +21 -22
  74. transformers/modeling_outputs.py +242 -253
  75. transformers/modeling_rope_utils.py +32 -32
  76. transformers/modeling_utils.py +416 -438
  77. transformers/models/__init__.py +10 -0
  78. transformers/models/afmoe/configuration_afmoe.py +40 -33
  79. transformers/models/afmoe/modeling_afmoe.py +38 -41
  80. transformers/models/afmoe/modular_afmoe.py +23 -25
  81. transformers/models/aimv2/configuration_aimv2.py +2 -10
  82. transformers/models/aimv2/modeling_aimv2.py +46 -45
  83. transformers/models/aimv2/modular_aimv2.py +13 -19
  84. transformers/models/albert/configuration_albert.py +8 -2
  85. transformers/models/albert/modeling_albert.py +70 -72
  86. transformers/models/albert/tokenization_albert.py +1 -4
  87. transformers/models/align/configuration_align.py +8 -6
  88. transformers/models/align/modeling_align.py +83 -86
  89. transformers/models/align/processing_align.py +2 -30
  90. transformers/models/altclip/configuration_altclip.py +4 -7
  91. transformers/models/altclip/modeling_altclip.py +106 -103
  92. transformers/models/altclip/processing_altclip.py +2 -15
  93. transformers/models/apertus/__init__.py +0 -1
  94. transformers/models/apertus/configuration_apertus.py +23 -28
  95. transformers/models/apertus/modeling_apertus.py +35 -38
  96. transformers/models/apertus/modular_apertus.py +36 -40
  97. transformers/models/arcee/configuration_arcee.py +25 -30
  98. transformers/models/arcee/modeling_arcee.py +35 -38
  99. transformers/models/arcee/modular_arcee.py +20 -23
  100. transformers/models/aria/configuration_aria.py +31 -44
  101. transformers/models/aria/image_processing_aria.py +25 -27
  102. transformers/models/aria/modeling_aria.py +102 -102
  103. transformers/models/aria/modular_aria.py +111 -124
  104. transformers/models/aria/processing_aria.py +28 -35
  105. transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
  106. transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
  107. transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +9 -11
  108. transformers/models/audioflamingo3/__init__.py +0 -1
  109. transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
  110. transformers/models/audioflamingo3/modeling_audioflamingo3.py +60 -52
  111. transformers/models/audioflamingo3/modular_audioflamingo3.py +52 -43
  112. transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
  113. transformers/models/auto/auto_factory.py +12 -11
  114. transformers/models/auto/configuration_auto.py +48 -5
  115. transformers/models/auto/feature_extraction_auto.py +5 -7
  116. transformers/models/auto/image_processing_auto.py +30 -39
  117. transformers/models/auto/modeling_auto.py +33 -199
  118. transformers/models/auto/processing_auto.py +11 -19
  119. transformers/models/auto/tokenization_auto.py +38 -37
  120. transformers/models/auto/video_processing_auto.py +7 -8
  121. transformers/models/autoformer/configuration_autoformer.py +4 -7
  122. transformers/models/autoformer/modeling_autoformer.py +100 -101
  123. transformers/models/aya_vision/configuration_aya_vision.py +4 -1
  124. transformers/models/aya_vision/modeling_aya_vision.py +64 -99
  125. transformers/models/aya_vision/modular_aya_vision.py +46 -74
  126. transformers/models/aya_vision/processing_aya_vision.py +25 -53
  127. transformers/models/bamba/configuration_bamba.py +46 -39
  128. transformers/models/bamba/modeling_bamba.py +83 -119
  129. transformers/models/bamba/modular_bamba.py +70 -109
  130. transformers/models/bark/configuration_bark.py +6 -8
  131. transformers/models/bark/generation_configuration_bark.py +3 -5
  132. transformers/models/bark/modeling_bark.py +64 -65
  133. transformers/models/bark/processing_bark.py +19 -41
  134. transformers/models/bart/configuration_bart.py +9 -5
  135. transformers/models/bart/modeling_bart.py +124 -129
  136. transformers/models/barthez/tokenization_barthez.py +1 -4
  137. transformers/models/bartpho/tokenization_bartpho.py +6 -7
  138. transformers/models/beit/configuration_beit.py +2 -15
  139. transformers/models/beit/image_processing_beit.py +53 -56
  140. transformers/models/beit/image_processing_beit_fast.py +11 -12
  141. transformers/models/beit/modeling_beit.py +65 -62
  142. transformers/models/bert/configuration_bert.py +12 -2
  143. transformers/models/bert/modeling_bert.py +117 -152
  144. transformers/models/bert/tokenization_bert.py +2 -4
  145. transformers/models/bert/tokenization_bert_legacy.py +3 -5
  146. transformers/models/bert_generation/configuration_bert_generation.py +17 -2
  147. transformers/models/bert_generation/modeling_bert_generation.py +53 -55
  148. transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
  149. transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
  150. transformers/models/bertweet/tokenization_bertweet.py +1 -3
  151. transformers/models/big_bird/configuration_big_bird.py +12 -9
  152. transformers/models/big_bird/modeling_big_bird.py +107 -124
  153. transformers/models/big_bird/tokenization_big_bird.py +1 -4
  154. transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
  155. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +118 -118
  156. transformers/models/biogpt/configuration_biogpt.py +8 -2
  157. transformers/models/biogpt/modeling_biogpt.py +73 -79
  158. transformers/models/biogpt/modular_biogpt.py +60 -66
  159. transformers/models/biogpt/tokenization_biogpt.py +3 -5
  160. transformers/models/bit/configuration_bit.py +2 -5
  161. transformers/models/bit/image_processing_bit.py +21 -24
  162. transformers/models/bit/image_processing_bit_fast.py +0 -1
  163. transformers/models/bit/modeling_bit.py +15 -16
  164. transformers/models/bitnet/configuration_bitnet.py +23 -28
  165. transformers/models/bitnet/modeling_bitnet.py +34 -38
  166. transformers/models/bitnet/modular_bitnet.py +7 -10
  167. transformers/models/blenderbot/configuration_blenderbot.py +8 -5
  168. transformers/models/blenderbot/modeling_blenderbot.py +68 -99
  169. transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
  170. transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -5
  171. transformers/models/blenderbot_small/modeling_blenderbot_small.py +70 -72
  172. transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
  173. transformers/models/blip/configuration_blip.py +9 -10
  174. transformers/models/blip/image_processing_blip.py +17 -20
  175. transformers/models/blip/image_processing_blip_fast.py +0 -1
  176. transformers/models/blip/modeling_blip.py +115 -108
  177. transformers/models/blip/modeling_blip_text.py +63 -65
  178. transformers/models/blip/processing_blip.py +5 -36
  179. transformers/models/blip_2/configuration_blip_2.py +2 -2
  180. transformers/models/blip_2/modeling_blip_2.py +145 -121
  181. transformers/models/blip_2/processing_blip_2.py +8 -38
  182. transformers/models/bloom/configuration_bloom.py +5 -2
  183. transformers/models/bloom/modeling_bloom.py +60 -60
  184. transformers/models/blt/configuration_blt.py +94 -86
  185. transformers/models/blt/modeling_blt.py +93 -90
  186. transformers/models/blt/modular_blt.py +127 -69
  187. transformers/models/bridgetower/configuration_bridgetower.py +7 -2
  188. transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
  189. transformers/models/bridgetower/image_processing_bridgetower_fast.py +13 -14
  190. transformers/models/bridgetower/modeling_bridgetower.py +136 -124
  191. transformers/models/bridgetower/processing_bridgetower.py +2 -16
  192. transformers/models/bros/configuration_bros.py +24 -18
  193. transformers/models/bros/modeling_bros.py +78 -80
  194. transformers/models/bros/processing_bros.py +2 -12
  195. transformers/models/byt5/tokenization_byt5.py +4 -6
  196. transformers/models/camembert/configuration_camembert.py +8 -2
  197. transformers/models/camembert/modeling_camembert.py +97 -99
  198. transformers/models/camembert/modular_camembert.py +51 -54
  199. transformers/models/camembert/tokenization_camembert.py +1 -4
  200. transformers/models/canine/configuration_canine.py +4 -2
  201. transformers/models/canine/modeling_canine.py +73 -75
  202. transformers/models/canine/tokenization_canine.py +0 -1
  203. transformers/models/chameleon/configuration_chameleon.py +29 -34
  204. transformers/models/chameleon/image_processing_chameleon.py +21 -24
  205. transformers/models/chameleon/image_processing_chameleon_fast.py +5 -6
  206. transformers/models/chameleon/modeling_chameleon.py +135 -92
  207. transformers/models/chameleon/processing_chameleon.py +16 -41
  208. transformers/models/chinese_clip/configuration_chinese_clip.py +10 -8
  209. transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
  210. transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
  211. transformers/models/chinese_clip/modeling_chinese_clip.py +93 -95
  212. transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
  213. transformers/models/clap/configuration_clap.py +4 -9
  214. transformers/models/clap/feature_extraction_clap.py +9 -10
  215. transformers/models/clap/modeling_clap.py +109 -111
  216. transformers/models/clap/processing_clap.py +2 -15
  217. transformers/models/clip/configuration_clip.py +4 -2
  218. transformers/models/clip/image_processing_clip.py +21 -24
  219. transformers/models/clip/image_processing_clip_fast.py +9 -1
  220. transformers/models/clip/modeling_clip.py +70 -68
  221. transformers/models/clip/processing_clip.py +2 -14
  222. transformers/models/clip/tokenization_clip.py +2 -5
  223. transformers/models/clipseg/configuration_clipseg.py +4 -2
  224. transformers/models/clipseg/modeling_clipseg.py +113 -112
  225. transformers/models/clipseg/processing_clipseg.py +19 -42
  226. transformers/models/clvp/configuration_clvp.py +15 -5
  227. transformers/models/clvp/feature_extraction_clvp.py +7 -10
  228. transformers/models/clvp/modeling_clvp.py +138 -145
  229. transformers/models/clvp/number_normalizer.py +1 -2
  230. transformers/models/clvp/processing_clvp.py +3 -20
  231. transformers/models/clvp/tokenization_clvp.py +0 -1
  232. transformers/models/code_llama/tokenization_code_llama.py +3 -6
  233. transformers/models/codegen/configuration_codegen.py +4 -4
  234. transformers/models/codegen/modeling_codegen.py +50 -49
  235. transformers/models/codegen/tokenization_codegen.py +5 -6
  236. transformers/models/cohere/configuration_cohere.py +25 -30
  237. transformers/models/cohere/modeling_cohere.py +39 -42
  238. transformers/models/cohere/modular_cohere.py +27 -31
  239. transformers/models/cohere/tokenization_cohere.py +5 -6
  240. transformers/models/cohere2/configuration_cohere2.py +27 -32
  241. transformers/models/cohere2/modeling_cohere2.py +38 -41
  242. transformers/models/cohere2/modular_cohere2.py +48 -52
  243. transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
  244. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +9 -10
  245. transformers/models/cohere2_vision/modeling_cohere2_vision.py +52 -55
  246. transformers/models/cohere2_vision/modular_cohere2_vision.py +41 -43
  247. transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
  248. transformers/models/colpali/configuration_colpali.py +0 -1
  249. transformers/models/colpali/modeling_colpali.py +14 -16
  250. transformers/models/colpali/modular_colpali.py +11 -51
  251. transformers/models/colpali/processing_colpali.py +14 -52
  252. transformers/models/colqwen2/modeling_colqwen2.py +27 -28
  253. transformers/models/colqwen2/modular_colqwen2.py +36 -74
  254. transformers/models/colqwen2/processing_colqwen2.py +16 -52
  255. transformers/models/conditional_detr/configuration_conditional_detr.py +19 -47
  256. transformers/models/conditional_detr/image_processing_conditional_detr.py +67 -70
  257. transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +50 -36
  258. transformers/models/conditional_detr/modeling_conditional_detr.py +851 -1001
  259. transformers/models/conditional_detr/modular_conditional_detr.py +901 -5
  260. transformers/models/convbert/configuration_convbert.py +11 -8
  261. transformers/models/convbert/modeling_convbert.py +85 -87
  262. transformers/models/convbert/tokenization_convbert.py +0 -1
  263. transformers/models/convnext/configuration_convnext.py +2 -5
  264. transformers/models/convnext/image_processing_convnext.py +18 -21
  265. transformers/models/convnext/image_processing_convnext_fast.py +7 -8
  266. transformers/models/convnext/modeling_convnext.py +12 -14
  267. transformers/models/convnextv2/configuration_convnextv2.py +2 -5
  268. transformers/models/convnextv2/modeling_convnextv2.py +12 -14
  269. transformers/models/cpm/tokenization_cpm.py +6 -7
  270. transformers/models/cpm/tokenization_cpm_fast.py +3 -5
  271. transformers/models/cpmant/configuration_cpmant.py +4 -1
  272. transformers/models/cpmant/modeling_cpmant.py +38 -40
  273. transformers/models/cpmant/tokenization_cpmant.py +1 -3
  274. transformers/models/csm/configuration_csm.py +58 -66
  275. transformers/models/csm/generation_csm.py +13 -14
  276. transformers/models/csm/modeling_csm.py +81 -84
  277. transformers/models/csm/modular_csm.py +56 -58
  278. transformers/models/csm/processing_csm.py +25 -68
  279. transformers/models/ctrl/configuration_ctrl.py +16 -1
  280. transformers/models/ctrl/modeling_ctrl.py +51 -66
  281. transformers/models/ctrl/tokenization_ctrl.py +0 -1
  282. transformers/models/cvt/configuration_cvt.py +0 -1
  283. transformers/models/cvt/modeling_cvt.py +13 -15
  284. transformers/models/cwm/__init__.py +0 -1
  285. transformers/models/cwm/configuration_cwm.py +8 -12
  286. transformers/models/cwm/modeling_cwm.py +36 -38
  287. transformers/models/cwm/modular_cwm.py +10 -12
  288. transformers/models/d_fine/configuration_d_fine.py +10 -57
  289. transformers/models/d_fine/modeling_d_fine.py +786 -927
  290. transformers/models/d_fine/modular_d_fine.py +339 -417
  291. transformers/models/dab_detr/configuration_dab_detr.py +22 -49
  292. transformers/models/dab_detr/modeling_dab_detr.py +79 -77
  293. transformers/models/dac/configuration_dac.py +0 -1
  294. transformers/models/dac/feature_extraction_dac.py +6 -9
  295. transformers/models/dac/modeling_dac.py +22 -24
  296. transformers/models/data2vec/configuration_data2vec_audio.py +4 -2
  297. transformers/models/data2vec/configuration_data2vec_text.py +11 -3
  298. transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
  299. transformers/models/data2vec/modeling_data2vec_audio.py +55 -59
  300. transformers/models/data2vec/modeling_data2vec_text.py +97 -99
  301. transformers/models/data2vec/modeling_data2vec_vision.py +45 -44
  302. transformers/models/data2vec/modular_data2vec_audio.py +6 -1
  303. transformers/models/data2vec/modular_data2vec_text.py +51 -54
  304. transformers/models/dbrx/configuration_dbrx.py +29 -22
  305. transformers/models/dbrx/modeling_dbrx.py +45 -48
  306. transformers/models/dbrx/modular_dbrx.py +37 -39
  307. transformers/models/deberta/configuration_deberta.py +6 -1
  308. transformers/models/deberta/modeling_deberta.py +57 -60
  309. transformers/models/deberta/tokenization_deberta.py +2 -5
  310. transformers/models/deberta_v2/configuration_deberta_v2.py +6 -1
  311. transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
  312. transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
  313. transformers/models/decision_transformer/configuration_decision_transformer.py +3 -2
  314. transformers/models/decision_transformer/modeling_decision_transformer.py +51 -53
  315. transformers/models/deepseek_v2/configuration_deepseek_v2.py +41 -47
  316. transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -41
  317. transformers/models/deepseek_v2/modular_deepseek_v2.py +48 -52
  318. transformers/models/deepseek_v3/configuration_deepseek_v3.py +42 -48
  319. transformers/models/deepseek_v3/modeling_deepseek_v3.py +38 -40
  320. transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -10
  321. transformers/models/deepseek_vl/configuration_deepseek_vl.py +6 -3
  322. transformers/models/deepseek_vl/image_processing_deepseek_vl.py +27 -28
  323. transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +12 -11
  324. transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -43
  325. transformers/models/deepseek_vl/modular_deepseek_vl.py +15 -43
  326. transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
  327. transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +7 -5
  328. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +37 -37
  329. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +22 -22
  330. transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +100 -56
  331. transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +141 -109
  332. transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
  333. transformers/models/deformable_detr/configuration_deformable_detr.py +22 -46
  334. transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
  335. transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +42 -28
  336. transformers/models/deformable_detr/modeling_deformable_detr.py +454 -652
  337. transformers/models/deformable_detr/modular_deformable_detr.py +1385 -5
  338. transformers/models/deit/configuration_deit.py +0 -1
  339. transformers/models/deit/image_processing_deit.py +18 -21
  340. transformers/models/deit/image_processing_deit_fast.py +0 -1
  341. transformers/models/deit/modeling_deit.py +27 -25
  342. transformers/models/depth_anything/configuration_depth_anything.py +12 -43
  343. transformers/models/depth_anything/modeling_depth_anything.py +10 -11
  344. transformers/models/depth_pro/configuration_depth_pro.py +0 -1
  345. transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
  346. transformers/models/depth_pro/image_processing_depth_pro_fast.py +8 -9
  347. transformers/models/depth_pro/modeling_depth_pro.py +29 -27
  348. transformers/models/detr/configuration_detr.py +18 -50
  349. transformers/models/detr/image_processing_detr.py +64 -66
  350. transformers/models/detr/image_processing_detr_fast.py +33 -34
  351. transformers/models/detr/modeling_detr.py +748 -789
  352. transformers/models/dia/configuration_dia.py +9 -15
  353. transformers/models/dia/feature_extraction_dia.py +6 -9
  354. transformers/models/dia/generation_dia.py +48 -53
  355. transformers/models/dia/modeling_dia.py +68 -71
  356. transformers/models/dia/modular_dia.py +56 -58
  357. transformers/models/dia/processing_dia.py +39 -29
  358. transformers/models/dia/tokenization_dia.py +3 -6
  359. transformers/models/diffllama/configuration_diffllama.py +25 -30
  360. transformers/models/diffllama/modeling_diffllama.py +45 -53
  361. transformers/models/diffllama/modular_diffllama.py +18 -25
  362. transformers/models/dinat/configuration_dinat.py +2 -5
  363. transformers/models/dinat/modeling_dinat.py +47 -48
  364. transformers/models/dinov2/configuration_dinov2.py +2 -5
  365. transformers/models/dinov2/modeling_dinov2.py +20 -21
  366. transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +3 -5
  367. transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +21 -21
  368. transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +11 -14
  369. transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +6 -11
  370. transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +5 -9
  371. transformers/models/dinov3_vit/configuration_dinov3_vit.py +7 -12
  372. transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +7 -8
  373. transformers/models/dinov3_vit/modeling_dinov3_vit.py +19 -22
  374. transformers/models/dinov3_vit/modular_dinov3_vit.py +16 -19
  375. transformers/models/distilbert/configuration_distilbert.py +8 -2
  376. transformers/models/distilbert/modeling_distilbert.py +47 -49
  377. transformers/models/distilbert/tokenization_distilbert.py +0 -1
  378. transformers/models/doge/__init__.py +0 -1
  379. transformers/models/doge/configuration_doge.py +42 -35
  380. transformers/models/doge/modeling_doge.py +46 -49
  381. transformers/models/doge/modular_doge.py +77 -68
  382. transformers/models/donut/configuration_donut_swin.py +0 -1
  383. transformers/models/donut/image_processing_donut.py +26 -29
  384. transformers/models/donut/image_processing_donut_fast.py +9 -14
  385. transformers/models/donut/modeling_donut_swin.py +44 -46
  386. transformers/models/donut/processing_donut.py +5 -26
  387. transformers/models/dots1/configuration_dots1.py +43 -36
  388. transformers/models/dots1/modeling_dots1.py +35 -38
  389. transformers/models/dots1/modular_dots1.py +0 -1
  390. transformers/models/dpr/configuration_dpr.py +19 -2
  391. transformers/models/dpr/modeling_dpr.py +37 -39
  392. transformers/models/dpr/tokenization_dpr.py +7 -9
  393. transformers/models/dpr/tokenization_dpr_fast.py +7 -9
  394. transformers/models/dpt/configuration_dpt.py +23 -66
  395. transformers/models/dpt/image_processing_dpt.py +65 -66
  396. transformers/models/dpt/image_processing_dpt_fast.py +18 -19
  397. transformers/models/dpt/modeling_dpt.py +38 -36
  398. transformers/models/dpt/modular_dpt.py +14 -15
  399. transformers/models/edgetam/configuration_edgetam.py +1 -2
  400. transformers/models/edgetam/modeling_edgetam.py +87 -89
  401. transformers/models/edgetam/modular_edgetam.py +7 -13
  402. transformers/models/edgetam_video/__init__.py +0 -1
  403. transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
  404. transformers/models/edgetam_video/modeling_edgetam_video.py +126 -128
  405. transformers/models/edgetam_video/modular_edgetam_video.py +25 -27
  406. transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
  407. transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
  408. transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +8 -7
  409. transformers/models/efficientloftr/modeling_efficientloftr.py +46 -38
  410. transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
  411. transformers/models/efficientnet/configuration_efficientnet.py +0 -1
  412. transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
  413. transformers/models/efficientnet/image_processing_efficientnet_fast.py +16 -17
  414. transformers/models/efficientnet/modeling_efficientnet.py +12 -14
  415. transformers/models/electra/configuration_electra.py +13 -3
  416. transformers/models/electra/modeling_electra.py +107 -109
  417. transformers/models/emu3/configuration_emu3.py +17 -17
  418. transformers/models/emu3/image_processing_emu3.py +44 -39
  419. transformers/models/emu3/modeling_emu3.py +143 -109
  420. transformers/models/emu3/modular_emu3.py +109 -73
  421. transformers/models/emu3/processing_emu3.py +18 -43
  422. transformers/models/encodec/configuration_encodec.py +2 -4
  423. transformers/models/encodec/feature_extraction_encodec.py +10 -13
  424. transformers/models/encodec/modeling_encodec.py +25 -29
  425. transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -2
  426. transformers/models/encoder_decoder/modeling_encoder_decoder.py +37 -43
  427. transformers/models/eomt/configuration_eomt.py +12 -14
  428. transformers/models/eomt/image_processing_eomt.py +53 -55
  429. transformers/models/eomt/image_processing_eomt_fast.py +18 -19
  430. transformers/models/eomt/modeling_eomt.py +19 -21
  431. transformers/models/eomt/modular_eomt.py +28 -30
  432. transformers/models/eomt_dinov3/__init__.py +28 -0
  433. transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
  434. transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
  435. transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
  436. transformers/models/ernie/configuration_ernie.py +24 -3
  437. transformers/models/ernie/modeling_ernie.py +127 -162
  438. transformers/models/ernie/modular_ernie.py +91 -103
  439. transformers/models/ernie4_5/configuration_ernie4_5.py +23 -27
  440. transformers/models/ernie4_5/modeling_ernie4_5.py +35 -37
  441. transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
  442. transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +34 -39
  443. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +40 -42
  444. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
  445. transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -7
  446. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
  447. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
  448. transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +305 -267
  449. transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +163 -142
  450. transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
  451. transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
  452. transformers/models/esm/configuration_esm.py +11 -15
  453. transformers/models/esm/modeling_esm.py +35 -37
  454. transformers/models/esm/modeling_esmfold.py +43 -50
  455. transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
  456. transformers/models/esm/openfold_utils/loss.py +1 -2
  457. transformers/models/esm/openfold_utils/protein.py +15 -16
  458. transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
  459. transformers/models/esm/tokenization_esm.py +2 -4
  460. transformers/models/evolla/configuration_evolla.py +50 -40
  461. transformers/models/evolla/modeling_evolla.py +69 -68
  462. transformers/models/evolla/modular_evolla.py +50 -48
  463. transformers/models/evolla/processing_evolla.py +23 -35
  464. transformers/models/exaone4/configuration_exaone4.py +27 -27
  465. transformers/models/exaone4/modeling_exaone4.py +36 -39
  466. transformers/models/exaone4/modular_exaone4.py +51 -50
  467. transformers/models/exaone_moe/__init__.py +27 -0
  468. transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
  469. transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
  470. transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
  471. transformers/models/falcon/configuration_falcon.py +31 -26
  472. transformers/models/falcon/modeling_falcon.py +76 -84
  473. transformers/models/falcon_h1/configuration_falcon_h1.py +57 -51
  474. transformers/models/falcon_h1/modeling_falcon_h1.py +74 -109
  475. transformers/models/falcon_h1/modular_falcon_h1.py +68 -100
  476. transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -2
  477. transformers/models/falcon_mamba/modeling_falcon_mamba.py +64 -73
  478. transformers/models/falcon_mamba/modular_falcon_mamba.py +14 -13
  479. transformers/models/fast_vlm/configuration_fast_vlm.py +10 -0
  480. transformers/models/fast_vlm/modeling_fast_vlm.py +70 -97
  481. transformers/models/fast_vlm/modular_fast_vlm.py +148 -38
  482. transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -6
  483. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
  484. transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
  485. transformers/models/flaubert/configuration_flaubert.py +10 -5
  486. transformers/models/flaubert/modeling_flaubert.py +125 -129
  487. transformers/models/flaubert/tokenization_flaubert.py +3 -5
  488. transformers/models/flava/configuration_flava.py +9 -9
  489. transformers/models/flava/image_processing_flava.py +66 -67
  490. transformers/models/flava/image_processing_flava_fast.py +46 -47
  491. transformers/models/flava/modeling_flava.py +144 -135
  492. transformers/models/flava/processing_flava.py +2 -12
  493. transformers/models/flex_olmo/__init__.py +0 -1
  494. transformers/models/flex_olmo/configuration_flex_olmo.py +34 -39
  495. transformers/models/flex_olmo/modeling_flex_olmo.py +41 -43
  496. transformers/models/flex_olmo/modular_flex_olmo.py +46 -51
  497. transformers/models/florence2/configuration_florence2.py +4 -1
  498. transformers/models/florence2/modeling_florence2.py +96 -72
  499. transformers/models/florence2/modular_florence2.py +100 -107
  500. transformers/models/florence2/processing_florence2.py +18 -47
  501. transformers/models/fnet/configuration_fnet.py +6 -2
  502. transformers/models/fnet/modeling_fnet.py +69 -80
  503. transformers/models/fnet/tokenization_fnet.py +0 -1
  504. transformers/models/focalnet/configuration_focalnet.py +2 -5
  505. transformers/models/focalnet/modeling_focalnet.py +49 -48
  506. transformers/models/fsmt/configuration_fsmt.py +12 -17
  507. transformers/models/fsmt/modeling_fsmt.py +47 -48
  508. transformers/models/fsmt/tokenization_fsmt.py +3 -5
  509. transformers/models/funnel/configuration_funnel.py +8 -1
  510. transformers/models/funnel/modeling_funnel.py +91 -93
  511. transformers/models/funnel/tokenization_funnel.py +2 -5
  512. transformers/models/fuyu/configuration_fuyu.py +28 -34
  513. transformers/models/fuyu/image_processing_fuyu.py +29 -31
  514. transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
  515. transformers/models/fuyu/modeling_fuyu.py +50 -52
  516. transformers/models/fuyu/processing_fuyu.py +9 -36
  517. transformers/models/gemma/configuration_gemma.py +25 -30
  518. transformers/models/gemma/modeling_gemma.py +36 -38
  519. transformers/models/gemma/modular_gemma.py +33 -36
  520. transformers/models/gemma/tokenization_gemma.py +3 -6
  521. transformers/models/gemma2/configuration_gemma2.py +30 -35
  522. transformers/models/gemma2/modeling_gemma2.py +38 -41
  523. transformers/models/gemma2/modular_gemma2.py +63 -67
  524. transformers/models/gemma3/configuration_gemma3.py +53 -48
  525. transformers/models/gemma3/image_processing_gemma3.py +29 -31
  526. transformers/models/gemma3/image_processing_gemma3_fast.py +11 -12
  527. transformers/models/gemma3/modeling_gemma3.py +123 -122
  528. transformers/models/gemma3/modular_gemma3.py +128 -125
  529. transformers/models/gemma3/processing_gemma3.py +5 -5
  530. transformers/models/gemma3n/configuration_gemma3n.py +42 -30
  531. transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
  532. transformers/models/gemma3n/modeling_gemma3n.py +166 -147
  533. transformers/models/gemma3n/modular_gemma3n.py +176 -148
  534. transformers/models/gemma3n/processing_gemma3n.py +12 -26
  535. transformers/models/git/configuration_git.py +5 -8
  536. transformers/models/git/modeling_git.py +115 -127
  537. transformers/models/git/processing_git.py +2 -14
  538. transformers/models/glm/configuration_glm.py +26 -30
  539. transformers/models/glm/modeling_glm.py +36 -39
  540. transformers/models/glm/modular_glm.py +4 -7
  541. transformers/models/glm4/configuration_glm4.py +26 -30
  542. transformers/models/glm4/modeling_glm4.py +39 -41
  543. transformers/models/glm4/modular_glm4.py +8 -10
  544. transformers/models/glm46v/configuration_glm46v.py +4 -1
  545. transformers/models/glm46v/image_processing_glm46v.py +40 -38
  546. transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
  547. transformers/models/glm46v/modeling_glm46v.py +138 -93
  548. transformers/models/glm46v/modular_glm46v.py +5 -3
  549. transformers/models/glm46v/processing_glm46v.py +7 -41
  550. transformers/models/glm46v/video_processing_glm46v.py +9 -11
  551. transformers/models/glm4_moe/configuration_glm4_moe.py +42 -35
  552. transformers/models/glm4_moe/modeling_glm4_moe.py +36 -39
  553. transformers/models/glm4_moe/modular_glm4_moe.py +43 -36
  554. transformers/models/glm4_moe_lite/__init__.py +28 -0
  555. transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +233 -0
  556. transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
  557. transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +302 -0
  558. transformers/models/glm4v/configuration_glm4v.py +25 -24
  559. transformers/models/glm4v/image_processing_glm4v.py +39 -38
  560. transformers/models/glm4v/image_processing_glm4v_fast.py +8 -9
  561. transformers/models/glm4v/modeling_glm4v.py +249 -210
  562. transformers/models/glm4v/modular_glm4v.py +211 -230
  563. transformers/models/glm4v/processing_glm4v.py +7 -41
  564. transformers/models/glm4v/video_processing_glm4v.py +9 -11
  565. transformers/models/glm4v_moe/configuration_glm4v_moe.py +136 -127
  566. transformers/models/glm4v_moe/modeling_glm4v_moe.py +348 -356
  567. transformers/models/glm4v_moe/modular_glm4v_moe.py +76 -174
  568. transformers/models/glm_image/__init__.py +31 -0
  569. transformers/models/glm_image/configuration_glm_image.py +358 -0
  570. transformers/models/glm_image/image_processing_glm_image.py +503 -0
  571. transformers/models/glm_image/image_processing_glm_image_fast.py +294 -0
  572. transformers/models/glm_image/modeling_glm_image.py +1691 -0
  573. transformers/models/glm_image/modular_glm_image.py +1640 -0
  574. transformers/models/glm_image/processing_glm_image.py +265 -0
  575. transformers/models/glm_ocr/__init__.py +28 -0
  576. transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
  577. transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
  578. transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
  579. transformers/models/glmasr/__init__.py +0 -1
  580. transformers/models/glmasr/configuration_glmasr.py +0 -1
  581. transformers/models/glmasr/modeling_glmasr.py +51 -46
  582. transformers/models/glmasr/modular_glmasr.py +39 -29
  583. transformers/models/glmasr/processing_glmasr.py +7 -8
  584. transformers/models/glpn/configuration_glpn.py +0 -1
  585. transformers/models/glpn/image_processing_glpn.py +11 -12
  586. transformers/models/glpn/image_processing_glpn_fast.py +11 -12
  587. transformers/models/glpn/modeling_glpn.py +14 -14
  588. transformers/models/got_ocr2/configuration_got_ocr2.py +10 -13
  589. transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
  590. transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +9 -10
  591. transformers/models/got_ocr2/modeling_got_ocr2.py +69 -77
  592. transformers/models/got_ocr2/modular_got_ocr2.py +60 -52
  593. transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
  594. transformers/models/gpt2/configuration_gpt2.py +13 -2
  595. transformers/models/gpt2/modeling_gpt2.py +111 -113
  596. transformers/models/gpt2/tokenization_gpt2.py +6 -9
  597. transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -2
  598. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +78 -84
  599. transformers/models/gpt_neo/configuration_gpt_neo.py +9 -2
  600. transformers/models/gpt_neo/modeling_gpt_neo.py +66 -71
  601. transformers/models/gpt_neox/configuration_gpt_neox.py +27 -25
  602. transformers/models/gpt_neox/modeling_gpt_neox.py +74 -76
  603. transformers/models/gpt_neox/modular_gpt_neox.py +68 -70
  604. transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
  605. transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +24 -19
  606. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +43 -46
  607. transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
  608. transformers/models/gpt_oss/configuration_gpt_oss.py +31 -30
  609. transformers/models/gpt_oss/modeling_gpt_oss.py +80 -114
  610. transformers/models/gpt_oss/modular_gpt_oss.py +62 -97
  611. transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
  612. transformers/models/gptj/configuration_gptj.py +4 -5
  613. transformers/models/gptj/modeling_gptj.py +85 -88
  614. transformers/models/granite/configuration_granite.py +28 -33
  615. transformers/models/granite/modeling_granite.py +43 -45
  616. transformers/models/granite/modular_granite.py +29 -31
  617. transformers/models/granite_speech/configuration_granite_speech.py +0 -1
  618. transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
  619. transformers/models/granite_speech/modeling_granite_speech.py +84 -60
  620. transformers/models/granite_speech/processing_granite_speech.py +11 -4
  621. transformers/models/granitemoe/configuration_granitemoe.py +31 -36
  622. transformers/models/granitemoe/modeling_granitemoe.py +39 -41
  623. transformers/models/granitemoe/modular_granitemoe.py +21 -23
  624. transformers/models/granitemoehybrid/__init__.py +0 -1
  625. transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +55 -48
  626. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +82 -118
  627. transformers/models/granitemoehybrid/modular_granitemoehybrid.py +57 -65
  628. transformers/models/granitemoeshared/configuration_granitemoeshared.py +33 -37
  629. transformers/models/granitemoeshared/modeling_granitemoeshared.py +52 -56
  630. transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
  631. transformers/models/grounding_dino/configuration_grounding_dino.py +10 -46
  632. transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
  633. transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +28 -29
  634. transformers/models/grounding_dino/modeling_grounding_dino.py +161 -181
  635. transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
  636. transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
  637. transformers/models/groupvit/configuration_groupvit.py +4 -2
  638. transformers/models/groupvit/modeling_groupvit.py +98 -92
  639. transformers/models/helium/configuration_helium.py +25 -29
  640. transformers/models/helium/modeling_helium.py +37 -40
  641. transformers/models/helium/modular_helium.py +3 -7
  642. transformers/models/herbert/tokenization_herbert.py +4 -6
  643. transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -5
  644. transformers/models/hgnet_v2/modeling_hgnet_v2.py +12 -14
  645. transformers/models/hgnet_v2/modular_hgnet_v2.py +13 -17
  646. transformers/models/hiera/configuration_hiera.py +2 -5
  647. transformers/models/hiera/modeling_hiera.py +71 -70
  648. transformers/models/hubert/configuration_hubert.py +4 -2
  649. transformers/models/hubert/modeling_hubert.py +42 -41
  650. transformers/models/hubert/modular_hubert.py +8 -11
  651. transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +26 -31
  652. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +58 -37
  653. transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +31 -11
  654. transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +31 -36
  655. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +54 -44
  656. transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +27 -15
  657. transformers/models/ibert/configuration_ibert.py +4 -2
  658. transformers/models/ibert/modeling_ibert.py +60 -62
  659. transformers/models/ibert/quant_modules.py +0 -1
  660. transformers/models/idefics/configuration_idefics.py +5 -8
  661. transformers/models/idefics/image_processing_idefics.py +13 -15
  662. transformers/models/idefics/modeling_idefics.py +63 -65
  663. transformers/models/idefics/perceiver.py +1 -3
  664. transformers/models/idefics/processing_idefics.py +32 -48
  665. transformers/models/idefics/vision.py +27 -28
  666. transformers/models/idefics2/configuration_idefics2.py +1 -3
  667. transformers/models/idefics2/image_processing_idefics2.py +31 -32
  668. transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
  669. transformers/models/idefics2/modeling_idefics2.py +126 -106
  670. transformers/models/idefics2/processing_idefics2.py +10 -68
  671. transformers/models/idefics3/configuration_idefics3.py +1 -4
  672. transformers/models/idefics3/image_processing_idefics3.py +42 -43
  673. transformers/models/idefics3/image_processing_idefics3_fast.py +40 -15
  674. transformers/models/idefics3/modeling_idefics3.py +113 -92
  675. transformers/models/idefics3/processing_idefics3.py +15 -69
  676. transformers/models/ijepa/configuration_ijepa.py +0 -1
  677. transformers/models/ijepa/modeling_ijepa.py +13 -14
  678. transformers/models/ijepa/modular_ijepa.py +5 -7
  679. transformers/models/imagegpt/configuration_imagegpt.py +9 -2
  680. transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
  681. transformers/models/imagegpt/image_processing_imagegpt_fast.py +10 -11
  682. transformers/models/imagegpt/modeling_imagegpt.py +65 -62
  683. transformers/models/informer/configuration_informer.py +6 -9
  684. transformers/models/informer/modeling_informer.py +87 -89
  685. transformers/models/informer/modular_informer.py +13 -16
  686. transformers/models/instructblip/configuration_instructblip.py +2 -2
  687. transformers/models/instructblip/modeling_instructblip.py +104 -79
  688. transformers/models/instructblip/processing_instructblip.py +10 -36
  689. transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
  690. transformers/models/instructblipvideo/modeling_instructblipvideo.py +108 -105
  691. transformers/models/instructblipvideo/modular_instructblipvideo.py +73 -64
  692. transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
  693. transformers/models/instructblipvideo/video_processing_instructblipvideo.py +6 -7
  694. transformers/models/internvl/configuration_internvl.py +5 -1
  695. transformers/models/internvl/modeling_internvl.py +76 -98
  696. transformers/models/internvl/modular_internvl.py +45 -59
  697. transformers/models/internvl/processing_internvl.py +12 -45
  698. transformers/models/internvl/video_processing_internvl.py +10 -11
  699. transformers/models/jais2/configuration_jais2.py +25 -29
  700. transformers/models/jais2/modeling_jais2.py +36 -38
  701. transformers/models/jais2/modular_jais2.py +20 -22
  702. transformers/models/jamba/configuration_jamba.py +5 -8
  703. transformers/models/jamba/modeling_jamba.py +47 -50
  704. transformers/models/jamba/modular_jamba.py +40 -41
  705. transformers/models/janus/configuration_janus.py +0 -1
  706. transformers/models/janus/image_processing_janus.py +37 -39
  707. transformers/models/janus/image_processing_janus_fast.py +20 -21
  708. transformers/models/janus/modeling_janus.py +103 -188
  709. transformers/models/janus/modular_janus.py +122 -83
  710. transformers/models/janus/processing_janus.py +17 -43
  711. transformers/models/jetmoe/configuration_jetmoe.py +26 -27
  712. transformers/models/jetmoe/modeling_jetmoe.py +42 -45
  713. transformers/models/jetmoe/modular_jetmoe.py +33 -36
  714. transformers/models/kosmos2/configuration_kosmos2.py +10 -9
  715. transformers/models/kosmos2/modeling_kosmos2.py +199 -178
  716. transformers/models/kosmos2/processing_kosmos2.py +40 -55
  717. transformers/models/kosmos2_5/__init__.py +0 -1
  718. transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -9
  719. transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
  720. transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
  721. transformers/models/kosmos2_5/modeling_kosmos2_5.py +162 -172
  722. transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
  723. transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +31 -28
  724. transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
  725. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +103 -106
  726. transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +20 -22
  727. transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
  728. transformers/models/lasr/configuration_lasr.py +3 -7
  729. transformers/models/lasr/feature_extraction_lasr.py +10 -12
  730. transformers/models/lasr/modeling_lasr.py +21 -24
  731. transformers/models/lasr/modular_lasr.py +11 -13
  732. transformers/models/lasr/processing_lasr.py +12 -6
  733. transformers/models/lasr/tokenization_lasr.py +2 -4
  734. transformers/models/layoutlm/configuration_layoutlm.py +14 -2
  735. transformers/models/layoutlm/modeling_layoutlm.py +70 -72
  736. transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -17
  737. transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
  738. transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +7 -8
  739. transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
  740. transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
  741. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
  742. transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -19
  743. transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
  744. transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +9 -10
  745. transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
  746. transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
  747. transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
  748. transformers/models/layoutxlm/configuration_layoutxlm.py +14 -17
  749. transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
  750. transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
  751. transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
  752. transformers/models/led/configuration_led.py +8 -12
  753. transformers/models/led/modeling_led.py +113 -267
  754. transformers/models/levit/configuration_levit.py +0 -1
  755. transformers/models/levit/image_processing_levit.py +19 -21
  756. transformers/models/levit/image_processing_levit_fast.py +4 -5
  757. transformers/models/levit/modeling_levit.py +17 -19
  758. transformers/models/lfm2/configuration_lfm2.py +27 -30
  759. transformers/models/lfm2/modeling_lfm2.py +46 -48
  760. transformers/models/lfm2/modular_lfm2.py +32 -32
  761. transformers/models/lfm2_moe/__init__.py +0 -1
  762. transformers/models/lfm2_moe/configuration_lfm2_moe.py +6 -9
  763. transformers/models/lfm2_moe/modeling_lfm2_moe.py +48 -49
  764. transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
  765. transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
  766. transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +43 -20
  767. transformers/models/lfm2_vl/modeling_lfm2_vl.py +73 -61
  768. transformers/models/lfm2_vl/modular_lfm2_vl.py +66 -54
  769. transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
  770. transformers/models/lightglue/image_processing_lightglue.py +16 -15
  771. transformers/models/lightglue/image_processing_lightglue_fast.py +8 -7
  772. transformers/models/lightglue/modeling_lightglue.py +31 -33
  773. transformers/models/lightglue/modular_lightglue.py +31 -31
  774. transformers/models/lighton_ocr/__init__.py +28 -0
  775. transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
  776. transformers/models/lighton_ocr/modeling_lighton_ocr.py +463 -0
  777. transformers/models/lighton_ocr/modular_lighton_ocr.py +404 -0
  778. transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
  779. transformers/models/lilt/configuration_lilt.py +6 -2
  780. transformers/models/lilt/modeling_lilt.py +53 -55
  781. transformers/models/llama/configuration_llama.py +26 -31
  782. transformers/models/llama/modeling_llama.py +35 -38
  783. transformers/models/llama/tokenization_llama.py +2 -4
  784. transformers/models/llama4/configuration_llama4.py +87 -69
  785. transformers/models/llama4/image_processing_llama4_fast.py +11 -12
  786. transformers/models/llama4/modeling_llama4.py +116 -115
  787. transformers/models/llama4/processing_llama4.py +33 -57
  788. transformers/models/llava/configuration_llava.py +10 -1
  789. transformers/models/llava/image_processing_llava.py +25 -28
  790. transformers/models/llava/image_processing_llava_fast.py +9 -10
  791. transformers/models/llava/modeling_llava.py +73 -102
  792. transformers/models/llava/processing_llava.py +18 -51
  793. transformers/models/llava_next/configuration_llava_next.py +2 -2
  794. transformers/models/llava_next/image_processing_llava_next.py +43 -45
  795. transformers/models/llava_next/image_processing_llava_next_fast.py +11 -12
  796. transformers/models/llava_next/modeling_llava_next.py +103 -104
  797. transformers/models/llava_next/processing_llava_next.py +18 -47
  798. transformers/models/llava_next_video/configuration_llava_next_video.py +10 -7
  799. transformers/models/llava_next_video/modeling_llava_next_video.py +168 -155
  800. transformers/models/llava_next_video/modular_llava_next_video.py +154 -147
  801. transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
  802. transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
  803. transformers/models/llava_onevision/configuration_llava_onevision.py +10 -7
  804. transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
  805. transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +14 -14
  806. transformers/models/llava_onevision/modeling_llava_onevision.py +170 -166
  807. transformers/models/llava_onevision/modular_llava_onevision.py +156 -152
  808. transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
  809. transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
  810. transformers/models/longcat_flash/__init__.py +0 -1
  811. transformers/models/longcat_flash/configuration_longcat_flash.py +39 -45
  812. transformers/models/longcat_flash/modeling_longcat_flash.py +37 -38
  813. transformers/models/longcat_flash/modular_longcat_flash.py +23 -24
  814. transformers/models/longformer/configuration_longformer.py +5 -5
  815. transformers/models/longformer/modeling_longformer.py +99 -101
  816. transformers/models/longt5/configuration_longt5.py +9 -7
  817. transformers/models/longt5/modeling_longt5.py +45 -45
  818. transformers/models/luke/configuration_luke.py +8 -2
  819. transformers/models/luke/modeling_luke.py +179 -181
  820. transformers/models/luke/tokenization_luke.py +99 -105
  821. transformers/{pipelines/deprecated → models/lw_detr}/__init__.py +14 -3
  822. transformers/models/lw_detr/configuration_lw_detr.py +362 -0
  823. transformers/models/lw_detr/modeling_lw_detr.py +1697 -0
  824. transformers/models/lw_detr/modular_lw_detr.py +1609 -0
  825. transformers/models/lxmert/configuration_lxmert.py +16 -1
  826. transformers/models/lxmert/modeling_lxmert.py +63 -74
  827. transformers/models/m2m_100/configuration_m2m_100.py +7 -9
  828. transformers/models/m2m_100/modeling_m2m_100.py +72 -74
  829. transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
  830. transformers/models/mamba/configuration_mamba.py +5 -3
  831. transformers/models/mamba/modeling_mamba.py +61 -70
  832. transformers/models/mamba2/configuration_mamba2.py +5 -8
  833. transformers/models/mamba2/modeling_mamba2.py +66 -79
  834. transformers/models/marian/configuration_marian.py +10 -5
  835. transformers/models/marian/modeling_marian.py +88 -90
  836. transformers/models/marian/tokenization_marian.py +6 -6
  837. transformers/models/markuplm/configuration_markuplm.py +4 -7
  838. transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
  839. transformers/models/markuplm/modeling_markuplm.py +63 -65
  840. transformers/models/markuplm/processing_markuplm.py +31 -38
  841. transformers/models/markuplm/tokenization_markuplm.py +67 -77
  842. transformers/models/mask2former/configuration_mask2former.py +14 -52
  843. transformers/models/mask2former/image_processing_mask2former.py +84 -85
  844. transformers/models/mask2former/image_processing_mask2former_fast.py +36 -36
  845. transformers/models/mask2former/modeling_mask2former.py +108 -104
  846. transformers/models/mask2former/modular_mask2former.py +6 -8
  847. transformers/models/maskformer/configuration_maskformer.py +17 -51
  848. transformers/models/maskformer/configuration_maskformer_swin.py +2 -5
  849. transformers/models/maskformer/image_processing_maskformer.py +84 -85
  850. transformers/models/maskformer/image_processing_maskformer_fast.py +35 -36
  851. transformers/models/maskformer/modeling_maskformer.py +71 -67
  852. transformers/models/maskformer/modeling_maskformer_swin.py +20 -23
  853. transformers/models/mbart/configuration_mbart.py +9 -5
  854. transformers/models/mbart/modeling_mbart.py +120 -119
  855. transformers/models/mbart/tokenization_mbart.py +2 -4
  856. transformers/models/mbart50/tokenization_mbart50.py +3 -5
  857. transformers/models/megatron_bert/configuration_megatron_bert.py +13 -3
  858. transformers/models/megatron_bert/modeling_megatron_bert.py +139 -165
  859. transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
  860. transformers/models/metaclip_2/modeling_metaclip_2.py +94 -87
  861. transformers/models/metaclip_2/modular_metaclip_2.py +59 -45
  862. transformers/models/mgp_str/configuration_mgp_str.py +0 -1
  863. transformers/models/mgp_str/modeling_mgp_str.py +18 -18
  864. transformers/models/mgp_str/processing_mgp_str.py +3 -20
  865. transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
  866. transformers/models/mimi/configuration_mimi.py +42 -40
  867. transformers/models/mimi/modeling_mimi.py +116 -115
  868. transformers/models/minimax/__init__.py +0 -1
  869. transformers/models/minimax/configuration_minimax.py +40 -47
  870. transformers/models/minimax/modeling_minimax.py +46 -49
  871. transformers/models/minimax/modular_minimax.py +59 -65
  872. transformers/models/minimax_m2/__init__.py +28 -0
  873. transformers/models/minimax_m2/configuration_minimax_m2.py +188 -0
  874. transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
  875. transformers/models/minimax_m2/modular_minimax_m2.py +346 -0
  876. transformers/models/ministral/configuration_ministral.py +25 -29
  877. transformers/models/ministral/modeling_ministral.py +35 -37
  878. transformers/models/ministral/modular_ministral.py +32 -37
  879. transformers/models/ministral3/configuration_ministral3.py +23 -26
  880. transformers/models/ministral3/modeling_ministral3.py +35 -37
  881. transformers/models/ministral3/modular_ministral3.py +7 -8
  882. transformers/models/mistral/configuration_mistral.py +24 -29
  883. transformers/models/mistral/modeling_mistral.py +35 -37
  884. transformers/models/mistral/modular_mistral.py +14 -15
  885. transformers/models/mistral3/configuration_mistral3.py +4 -1
  886. transformers/models/mistral3/modeling_mistral3.py +79 -82
  887. transformers/models/mistral3/modular_mistral3.py +66 -67
  888. transformers/models/mixtral/configuration_mixtral.py +32 -38
  889. transformers/models/mixtral/modeling_mixtral.py +39 -42
  890. transformers/models/mixtral/modular_mixtral.py +26 -29
  891. transformers/models/mlcd/configuration_mlcd.py +0 -1
  892. transformers/models/mlcd/modeling_mlcd.py +17 -17
  893. transformers/models/mlcd/modular_mlcd.py +16 -16
  894. transformers/models/mllama/configuration_mllama.py +10 -15
  895. transformers/models/mllama/image_processing_mllama.py +23 -25
  896. transformers/models/mllama/image_processing_mllama_fast.py +11 -11
  897. transformers/models/mllama/modeling_mllama.py +100 -103
  898. transformers/models/mllama/processing_mllama.py +6 -55
  899. transformers/models/mluke/tokenization_mluke.py +97 -103
  900. transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -46
  901. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +159 -179
  902. transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -46
  903. transformers/models/mobilebert/configuration_mobilebert.py +4 -2
  904. transformers/models/mobilebert/modeling_mobilebert.py +78 -88
  905. transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
  906. transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
  907. transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
  908. transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
  909. transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
  910. transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
  911. transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
  912. transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +14 -15
  913. transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +21 -22
  914. transformers/models/mobilevit/configuration_mobilevit.py +0 -1
  915. transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
  916. transformers/models/mobilevit/image_processing_mobilevit_fast.py +12 -13
  917. transformers/models/mobilevit/modeling_mobilevit.py +21 -21
  918. transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
  919. transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -22
  920. transformers/models/modernbert/configuration_modernbert.py +76 -51
  921. transformers/models/modernbert/modeling_modernbert.py +188 -943
  922. transformers/models/modernbert/modular_modernbert.py +255 -978
  923. transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +50 -44
  924. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -64
  925. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +92 -92
  926. transformers/models/moonshine/configuration_moonshine.py +34 -31
  927. transformers/models/moonshine/modeling_moonshine.py +70 -72
  928. transformers/models/moonshine/modular_moonshine.py +91 -86
  929. transformers/models/moshi/configuration_moshi.py +46 -23
  930. transformers/models/moshi/modeling_moshi.py +134 -142
  931. transformers/models/mpnet/configuration_mpnet.py +6 -2
  932. transformers/models/mpnet/modeling_mpnet.py +55 -57
  933. transformers/models/mpnet/tokenization_mpnet.py +1 -4
  934. transformers/models/mpt/configuration_mpt.py +17 -9
  935. transformers/models/mpt/modeling_mpt.py +58 -60
  936. transformers/models/mra/configuration_mra.py +8 -2
  937. transformers/models/mra/modeling_mra.py +54 -56
  938. transformers/models/mt5/configuration_mt5.py +9 -6
  939. transformers/models/mt5/modeling_mt5.py +80 -85
  940. transformers/models/musicgen/configuration_musicgen.py +12 -8
  941. transformers/models/musicgen/modeling_musicgen.py +114 -116
  942. transformers/models/musicgen/processing_musicgen.py +3 -21
  943. transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -8
  944. transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
  945. transformers/models/musicgen_melody/modeling_musicgen_melody.py +113 -126
  946. transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
  947. transformers/models/mvp/configuration_mvp.py +8 -5
  948. transformers/models/mvp/modeling_mvp.py +121 -123
  949. transformers/models/myt5/tokenization_myt5.py +8 -10
  950. transformers/models/nanochat/configuration_nanochat.py +5 -8
  951. transformers/models/nanochat/modeling_nanochat.py +36 -39
  952. transformers/models/nanochat/modular_nanochat.py +16 -18
  953. transformers/models/nemotron/configuration_nemotron.py +25 -30
  954. transformers/models/nemotron/modeling_nemotron.py +53 -66
  955. transformers/models/nllb/tokenization_nllb.py +14 -14
  956. transformers/models/nllb_moe/configuration_nllb_moe.py +7 -10
  957. transformers/models/nllb_moe/modeling_nllb_moe.py +70 -72
  958. transformers/models/nougat/image_processing_nougat.py +29 -32
  959. transformers/models/nougat/image_processing_nougat_fast.py +12 -13
  960. transformers/models/nougat/processing_nougat.py +37 -39
  961. transformers/models/nougat/tokenization_nougat.py +5 -7
  962. transformers/models/nystromformer/configuration_nystromformer.py +8 -2
  963. transformers/models/nystromformer/modeling_nystromformer.py +61 -63
  964. transformers/models/olmo/configuration_olmo.py +23 -28
  965. transformers/models/olmo/modeling_olmo.py +35 -38
  966. transformers/models/olmo/modular_olmo.py +8 -12
  967. transformers/models/olmo2/configuration_olmo2.py +27 -32
  968. transformers/models/olmo2/modeling_olmo2.py +36 -39
  969. transformers/models/olmo2/modular_olmo2.py +36 -38
  970. transformers/models/olmo3/__init__.py +0 -1
  971. transformers/models/olmo3/configuration_olmo3.py +30 -34
  972. transformers/models/olmo3/modeling_olmo3.py +35 -38
  973. transformers/models/olmo3/modular_olmo3.py +44 -47
  974. transformers/models/olmoe/configuration_olmoe.py +29 -33
  975. transformers/models/olmoe/modeling_olmoe.py +41 -43
  976. transformers/models/olmoe/modular_olmoe.py +15 -16
  977. transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -50
  978. transformers/models/omdet_turbo/modeling_omdet_turbo.py +59 -57
  979. transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
  980. transformers/models/oneformer/configuration_oneformer.py +11 -51
  981. transformers/models/oneformer/image_processing_oneformer.py +83 -84
  982. transformers/models/oneformer/image_processing_oneformer_fast.py +41 -42
  983. transformers/models/oneformer/modeling_oneformer.py +137 -133
  984. transformers/models/oneformer/processing_oneformer.py +28 -43
  985. transformers/models/openai/configuration_openai.py +16 -1
  986. transformers/models/openai/modeling_openai.py +50 -51
  987. transformers/models/openai/tokenization_openai.py +2 -5
  988. transformers/models/opt/configuration_opt.py +6 -7
  989. transformers/models/opt/modeling_opt.py +79 -80
  990. transformers/models/ovis2/__init__.py +0 -1
  991. transformers/models/ovis2/configuration_ovis2.py +4 -1
  992. transformers/models/ovis2/image_processing_ovis2.py +22 -24
  993. transformers/models/ovis2/image_processing_ovis2_fast.py +9 -10
  994. transformers/models/ovis2/modeling_ovis2.py +99 -142
  995. transformers/models/ovis2/modular_ovis2.py +82 -45
  996. transformers/models/ovis2/processing_ovis2.py +12 -40
  997. transformers/models/owlv2/configuration_owlv2.py +4 -2
  998. transformers/models/owlv2/image_processing_owlv2.py +20 -21
  999. transformers/models/owlv2/image_processing_owlv2_fast.py +12 -13
  1000. transformers/models/owlv2/modeling_owlv2.py +122 -114
  1001. transformers/models/owlv2/modular_owlv2.py +11 -12
  1002. transformers/models/owlv2/processing_owlv2.py +20 -49
  1003. transformers/models/owlvit/configuration_owlvit.py +4 -2
  1004. transformers/models/owlvit/image_processing_owlvit.py +21 -22
  1005. transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
  1006. transformers/models/owlvit/modeling_owlvit.py +121 -113
  1007. transformers/models/owlvit/processing_owlvit.py +20 -48
  1008. transformers/models/paddleocr_vl/__init__.py +0 -1
  1009. transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +28 -29
  1010. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
  1011. transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
  1012. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +159 -158
  1013. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +148 -119
  1014. transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
  1015. transformers/models/paligemma/configuration_paligemma.py +4 -1
  1016. transformers/models/paligemma/modeling_paligemma.py +81 -79
  1017. transformers/models/paligemma/processing_paligemma.py +13 -66
  1018. transformers/models/parakeet/configuration_parakeet.py +3 -8
  1019. transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
  1020. transformers/models/parakeet/modeling_parakeet.py +21 -25
  1021. transformers/models/parakeet/modular_parakeet.py +19 -21
  1022. transformers/models/parakeet/processing_parakeet.py +12 -5
  1023. transformers/models/parakeet/tokenization_parakeet.py +2 -4
  1024. transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
  1025. transformers/models/patchtsmixer/modeling_patchtsmixer.py +63 -65
  1026. transformers/models/patchtst/configuration_patchtst.py +6 -9
  1027. transformers/models/patchtst/modeling_patchtst.py +75 -77
  1028. transformers/models/pe_audio/__init__.py +0 -1
  1029. transformers/models/pe_audio/configuration_pe_audio.py +14 -16
  1030. transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
  1031. transformers/models/pe_audio/modeling_pe_audio.py +30 -31
  1032. transformers/models/pe_audio/modular_pe_audio.py +17 -18
  1033. transformers/models/pe_audio/processing_pe_audio.py +0 -1
  1034. transformers/models/pe_audio_video/__init__.py +0 -1
  1035. transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
  1036. transformers/models/pe_audio_video/modeling_pe_audio_video.py +64 -65
  1037. transformers/models/pe_audio_video/modular_pe_audio_video.py +56 -57
  1038. transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
  1039. transformers/models/pe_video/__init__.py +0 -1
  1040. transformers/models/pe_video/configuration_pe_video.py +14 -16
  1041. transformers/models/pe_video/modeling_pe_video.py +57 -46
  1042. transformers/models/pe_video/modular_pe_video.py +47 -35
  1043. transformers/models/pe_video/video_processing_pe_video.py +2 -4
  1044. transformers/models/pegasus/configuration_pegasus.py +8 -6
  1045. transformers/models/pegasus/modeling_pegasus.py +67 -69
  1046. transformers/models/pegasus/tokenization_pegasus.py +1 -4
  1047. transformers/models/pegasus_x/configuration_pegasus_x.py +5 -4
  1048. transformers/models/pegasus_x/modeling_pegasus_x.py +53 -55
  1049. transformers/models/perceiver/configuration_perceiver.py +0 -1
  1050. transformers/models/perceiver/image_processing_perceiver.py +22 -25
  1051. transformers/models/perceiver/image_processing_perceiver_fast.py +7 -8
  1052. transformers/models/perceiver/modeling_perceiver.py +152 -145
  1053. transformers/models/perceiver/tokenization_perceiver.py +3 -6
  1054. transformers/models/perception_lm/configuration_perception_lm.py +0 -1
  1055. transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
  1056. transformers/models/perception_lm/modeling_perception_lm.py +64 -67
  1057. transformers/models/perception_lm/modular_perception_lm.py +58 -58
  1058. transformers/models/perception_lm/processing_perception_lm.py +13 -47
  1059. transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
  1060. transformers/models/persimmon/configuration_persimmon.py +23 -28
  1061. transformers/models/persimmon/modeling_persimmon.py +44 -47
  1062. transformers/models/phi/configuration_phi.py +27 -28
  1063. transformers/models/phi/modeling_phi.py +39 -41
  1064. transformers/models/phi/modular_phi.py +26 -26
  1065. transformers/models/phi3/configuration_phi3.py +32 -37
  1066. transformers/models/phi3/modeling_phi3.py +37 -40
  1067. transformers/models/phi3/modular_phi3.py +16 -20
  1068. transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +36 -39
  1069. transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
  1070. transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
  1071. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +100 -117
  1072. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +103 -90
  1073. transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
  1074. transformers/models/phimoe/configuration_phimoe.py +31 -36
  1075. transformers/models/phimoe/modeling_phimoe.py +50 -77
  1076. transformers/models/phimoe/modular_phimoe.py +12 -8
  1077. transformers/models/phobert/tokenization_phobert.py +4 -6
  1078. transformers/models/pix2struct/configuration_pix2struct.py +12 -10
  1079. transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
  1080. transformers/models/pix2struct/image_processing_pix2struct_fast.py +12 -15
  1081. transformers/models/pix2struct/modeling_pix2struct.py +56 -52
  1082. transformers/models/pix2struct/processing_pix2struct.py +5 -26
  1083. transformers/models/pixio/__init__.py +0 -1
  1084. transformers/models/pixio/configuration_pixio.py +2 -5
  1085. transformers/models/pixio/modeling_pixio.py +16 -17
  1086. transformers/models/pixio/modular_pixio.py +7 -8
  1087. transformers/models/pixtral/configuration_pixtral.py +11 -14
  1088. transformers/models/pixtral/image_processing_pixtral.py +26 -28
  1089. transformers/models/pixtral/image_processing_pixtral_fast.py +10 -11
  1090. transformers/models/pixtral/modeling_pixtral.py +31 -37
  1091. transformers/models/pixtral/processing_pixtral.py +18 -52
  1092. transformers/models/plbart/configuration_plbart.py +8 -6
  1093. transformers/models/plbart/modeling_plbart.py +109 -109
  1094. transformers/models/plbart/modular_plbart.py +31 -33
  1095. transformers/models/plbart/tokenization_plbart.py +4 -5
  1096. transformers/models/poolformer/configuration_poolformer.py +0 -1
  1097. transformers/models/poolformer/image_processing_poolformer.py +21 -24
  1098. transformers/models/poolformer/image_processing_poolformer_fast.py +13 -14
  1099. transformers/models/poolformer/modeling_poolformer.py +10 -12
  1100. transformers/models/pop2piano/configuration_pop2piano.py +7 -7
  1101. transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
  1102. transformers/models/pop2piano/modeling_pop2piano.py +24 -24
  1103. transformers/models/pop2piano/processing_pop2piano.py +25 -33
  1104. transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
  1105. transformers/models/pp_doclayout_v3/__init__.py +30 -0
  1106. transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
  1107. transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
  1108. transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
  1109. transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
  1110. transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +13 -46
  1111. transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
  1112. transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +20 -21
  1113. transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +17 -16
  1114. transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +21 -20
  1115. transformers/models/prophetnet/configuration_prophetnet.py +37 -38
  1116. transformers/models/prophetnet/modeling_prophetnet.py +121 -153
  1117. transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
  1118. transformers/models/pvt/configuration_pvt.py +0 -1
  1119. transformers/models/pvt/image_processing_pvt.py +24 -27
  1120. transformers/models/pvt/image_processing_pvt_fast.py +1 -2
  1121. transformers/models/pvt/modeling_pvt.py +19 -21
  1122. transformers/models/pvt_v2/configuration_pvt_v2.py +4 -8
  1123. transformers/models/pvt_v2/modeling_pvt_v2.py +27 -28
  1124. transformers/models/qwen2/configuration_qwen2.py +32 -25
  1125. transformers/models/qwen2/modeling_qwen2.py +35 -37
  1126. transformers/models/qwen2/modular_qwen2.py +14 -15
  1127. transformers/models/qwen2/tokenization_qwen2.py +2 -9
  1128. transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +36 -27
  1129. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +241 -214
  1130. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +228 -193
  1131. transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
  1132. transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +28 -34
  1133. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +188 -145
  1134. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +64 -91
  1135. transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
  1136. transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
  1137. transformers/models/qwen2_audio/modeling_qwen2_audio.py +39 -41
  1138. transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
  1139. transformers/models/qwen2_moe/configuration_qwen2_moe.py +42 -35
  1140. transformers/models/qwen2_moe/modeling_qwen2_moe.py +40 -43
  1141. transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -13
  1142. transformers/models/qwen2_vl/configuration_qwen2_vl.py +28 -33
  1143. transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
  1144. transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +12 -15
  1145. transformers/models/qwen2_vl/modeling_qwen2_vl.py +184 -141
  1146. transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
  1147. transformers/models/qwen2_vl/video_processing_qwen2_vl.py +38 -18
  1148. transformers/models/qwen3/configuration_qwen3.py +34 -27
  1149. transformers/models/qwen3/modeling_qwen3.py +35 -38
  1150. transformers/models/qwen3/modular_qwen3.py +7 -9
  1151. transformers/models/qwen3_moe/configuration_qwen3_moe.py +45 -35
  1152. transformers/models/qwen3_moe/modeling_qwen3_moe.py +40 -43
  1153. transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
  1154. transformers/models/qwen3_next/configuration_qwen3_next.py +47 -38
  1155. transformers/models/qwen3_next/modeling_qwen3_next.py +44 -47
  1156. transformers/models/qwen3_next/modular_qwen3_next.py +37 -38
  1157. transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +139 -106
  1158. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +266 -206
  1159. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +228 -181
  1160. transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
  1161. transformers/models/qwen3_vl/configuration_qwen3_vl.py +22 -24
  1162. transformers/models/qwen3_vl/modeling_qwen3_vl.py +185 -122
  1163. transformers/models/qwen3_vl/modular_qwen3_vl.py +153 -139
  1164. transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
  1165. transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
  1166. transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +27 -30
  1167. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +249 -178
  1168. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +55 -42
  1169. transformers/models/rag/configuration_rag.py +6 -7
  1170. transformers/models/rag/modeling_rag.py +119 -121
  1171. transformers/models/rag/retrieval_rag.py +3 -5
  1172. transformers/models/rag/tokenization_rag.py +0 -50
  1173. transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +29 -30
  1174. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +35 -39
  1175. transformers/models/reformer/configuration_reformer.py +7 -8
  1176. transformers/models/reformer/modeling_reformer.py +67 -68
  1177. transformers/models/reformer/tokenization_reformer.py +3 -6
  1178. transformers/models/regnet/configuration_regnet.py +0 -1
  1179. transformers/models/regnet/modeling_regnet.py +7 -9
  1180. transformers/models/rembert/configuration_rembert.py +8 -2
  1181. transformers/models/rembert/modeling_rembert.py +108 -132
  1182. transformers/models/rembert/tokenization_rembert.py +1 -4
  1183. transformers/models/resnet/configuration_resnet.py +2 -5
  1184. transformers/models/resnet/modeling_resnet.py +14 -15
  1185. transformers/models/roberta/configuration_roberta.py +11 -3
  1186. transformers/models/roberta/modeling_roberta.py +97 -99
  1187. transformers/models/roberta/modular_roberta.py +55 -58
  1188. transformers/models/roberta/tokenization_roberta.py +2 -5
  1189. transformers/models/roberta/tokenization_roberta_old.py +2 -4
  1190. transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -3
  1191. transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +97 -99
  1192. transformers/models/roc_bert/configuration_roc_bert.py +8 -2
  1193. transformers/models/roc_bert/modeling_roc_bert.py +125 -162
  1194. transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
  1195. transformers/models/roformer/configuration_roformer.py +13 -3
  1196. transformers/models/roformer/modeling_roformer.py +79 -95
  1197. transformers/models/roformer/tokenization_roformer.py +3 -6
  1198. transformers/models/roformer/tokenization_utils.py +0 -1
  1199. transformers/models/rt_detr/configuration_rt_detr.py +8 -50
  1200. transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -5
  1201. transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
  1202. transformers/models/rt_detr/image_processing_rt_detr_fast.py +39 -26
  1203. transformers/models/rt_detr/modeling_rt_detr.py +643 -804
  1204. transformers/models/rt_detr/modeling_rt_detr_resnet.py +4 -7
  1205. transformers/models/rt_detr/modular_rt_detr.py +1522 -20
  1206. transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -58
  1207. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +384 -521
  1208. transformers/models/rt_detr_v2/modular_rt_detr_v2.py +27 -70
  1209. transformers/models/rwkv/configuration_rwkv.py +2 -4
  1210. transformers/models/rwkv/modeling_rwkv.py +29 -54
  1211. transformers/models/sam/configuration_sam.py +2 -1
  1212. transformers/models/sam/image_processing_sam.py +59 -60
  1213. transformers/models/sam/image_processing_sam_fast.py +25 -26
  1214. transformers/models/sam/modeling_sam.py +46 -43
  1215. transformers/models/sam/processing_sam.py +39 -27
  1216. transformers/models/sam2/configuration_sam2.py +1 -2
  1217. transformers/models/sam2/image_processing_sam2_fast.py +14 -15
  1218. transformers/models/sam2/modeling_sam2.py +96 -94
  1219. transformers/models/sam2/modular_sam2.py +85 -94
  1220. transformers/models/sam2/processing_sam2.py +31 -47
  1221. transformers/models/sam2_video/configuration_sam2_video.py +0 -1
  1222. transformers/models/sam2_video/modeling_sam2_video.py +114 -116
  1223. transformers/models/sam2_video/modular_sam2_video.py +72 -89
  1224. transformers/models/sam2_video/processing_sam2_video.py +49 -66
  1225. transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
  1226. transformers/models/sam3/configuration_sam3.py +0 -1
  1227. transformers/models/sam3/image_processing_sam3_fast.py +17 -20
  1228. transformers/models/sam3/modeling_sam3.py +94 -100
  1229. transformers/models/sam3/modular_sam3.py +3 -8
  1230. transformers/models/sam3/processing_sam3.py +37 -52
  1231. transformers/models/sam3_tracker/__init__.py +0 -1
  1232. transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -3
  1233. transformers/models/sam3_tracker/modeling_sam3_tracker.py +79 -80
  1234. transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -2
  1235. transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -48
  1236. transformers/models/sam3_tracker_video/__init__.py +0 -1
  1237. transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
  1238. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +115 -114
  1239. transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -24
  1240. transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
  1241. transformers/models/sam3_video/configuration_sam3_video.py +0 -1
  1242. transformers/models/sam3_video/modeling_sam3_video.py +56 -45
  1243. transformers/models/sam3_video/processing_sam3_video.py +25 -45
  1244. transformers/models/sam_hq/__init__.py +1 -1
  1245. transformers/models/sam_hq/configuration_sam_hq.py +2 -1
  1246. transformers/models/sam_hq/modeling_sam_hq.py +52 -50
  1247. transformers/models/sam_hq/modular_sam_hq.py +23 -25
  1248. transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +41 -29
  1249. transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -10
  1250. transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
  1251. transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
  1252. transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
  1253. transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
  1254. transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -10
  1255. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
  1256. transformers/models/seed_oss/configuration_seed_oss.py +30 -34
  1257. transformers/models/seed_oss/modeling_seed_oss.py +34 -36
  1258. transformers/models/seed_oss/modular_seed_oss.py +6 -7
  1259. transformers/models/segformer/configuration_segformer.py +0 -10
  1260. transformers/models/segformer/image_processing_segformer.py +39 -42
  1261. transformers/models/segformer/image_processing_segformer_fast.py +11 -12
  1262. transformers/models/segformer/modeling_segformer.py +28 -28
  1263. transformers/models/segformer/modular_segformer.py +8 -9
  1264. transformers/models/seggpt/configuration_seggpt.py +0 -1
  1265. transformers/models/seggpt/image_processing_seggpt.py +38 -41
  1266. transformers/models/seggpt/modeling_seggpt.py +48 -38
  1267. transformers/models/sew/configuration_sew.py +4 -2
  1268. transformers/models/sew/modeling_sew.py +42 -40
  1269. transformers/models/sew/modular_sew.py +12 -13
  1270. transformers/models/sew_d/configuration_sew_d.py +4 -2
  1271. transformers/models/sew_d/modeling_sew_d.py +32 -31
  1272. transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
  1273. transformers/models/shieldgemma2/modeling_shieldgemma2.py +19 -21
  1274. transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
  1275. transformers/models/siglip/configuration_siglip.py +4 -2
  1276. transformers/models/siglip/image_processing_siglip.py +17 -20
  1277. transformers/models/siglip/image_processing_siglip_fast.py +0 -1
  1278. transformers/models/siglip/modeling_siglip.py +65 -110
  1279. transformers/models/siglip/processing_siglip.py +2 -14
  1280. transformers/models/siglip/tokenization_siglip.py +6 -7
  1281. transformers/models/siglip2/__init__.py +1 -0
  1282. transformers/models/siglip2/configuration_siglip2.py +4 -2
  1283. transformers/models/siglip2/image_processing_siglip2.py +15 -16
  1284. transformers/models/siglip2/image_processing_siglip2_fast.py +6 -7
  1285. transformers/models/siglip2/modeling_siglip2.py +89 -130
  1286. transformers/models/siglip2/modular_siglip2.py +95 -48
  1287. transformers/models/siglip2/processing_siglip2.py +2 -14
  1288. transformers/models/siglip2/tokenization_siglip2.py +95 -0
  1289. transformers/models/smollm3/configuration_smollm3.py +29 -32
  1290. transformers/models/smollm3/modeling_smollm3.py +35 -38
  1291. transformers/models/smollm3/modular_smollm3.py +36 -38
  1292. transformers/models/smolvlm/configuration_smolvlm.py +2 -4
  1293. transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
  1294. transformers/models/smolvlm/image_processing_smolvlm_fast.py +41 -15
  1295. transformers/models/smolvlm/modeling_smolvlm.py +124 -96
  1296. transformers/models/smolvlm/modular_smolvlm.py +50 -39
  1297. transformers/models/smolvlm/processing_smolvlm.py +15 -76
  1298. transformers/models/smolvlm/video_processing_smolvlm.py +16 -17
  1299. transformers/models/solar_open/__init__.py +27 -0
  1300. transformers/models/solar_open/configuration_solar_open.py +184 -0
  1301. transformers/models/solar_open/modeling_solar_open.py +642 -0
  1302. transformers/models/solar_open/modular_solar_open.py +224 -0
  1303. transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
  1304. transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +26 -27
  1305. transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
  1306. transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
  1307. transformers/models/speech_to_text/modeling_speech_to_text.py +55 -57
  1308. transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
  1309. transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
  1310. transformers/models/speecht5/configuration_speecht5.py +7 -9
  1311. transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
  1312. transformers/models/speecht5/modeling_speecht5.py +172 -174
  1313. transformers/models/speecht5/number_normalizer.py +0 -1
  1314. transformers/models/speecht5/processing_speecht5.py +3 -37
  1315. transformers/models/speecht5/tokenization_speecht5.py +4 -5
  1316. transformers/models/splinter/configuration_splinter.py +6 -7
  1317. transformers/models/splinter/modeling_splinter.py +62 -59
  1318. transformers/models/splinter/tokenization_splinter.py +2 -4
  1319. transformers/models/squeezebert/configuration_squeezebert.py +14 -2
  1320. transformers/models/squeezebert/modeling_squeezebert.py +60 -62
  1321. transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
  1322. transformers/models/stablelm/configuration_stablelm.py +28 -29
  1323. transformers/models/stablelm/modeling_stablelm.py +44 -47
  1324. transformers/models/starcoder2/configuration_starcoder2.py +30 -27
  1325. transformers/models/starcoder2/modeling_starcoder2.py +38 -41
  1326. transformers/models/starcoder2/modular_starcoder2.py +17 -19
  1327. transformers/models/superglue/configuration_superglue.py +7 -3
  1328. transformers/models/superglue/image_processing_superglue.py +15 -15
  1329. transformers/models/superglue/image_processing_superglue_fast.py +8 -8
  1330. transformers/models/superglue/modeling_superglue.py +41 -37
  1331. transformers/models/superpoint/image_processing_superpoint.py +15 -15
  1332. transformers/models/superpoint/image_processing_superpoint_fast.py +7 -9
  1333. transformers/models/superpoint/modeling_superpoint.py +17 -16
  1334. transformers/models/swiftformer/configuration_swiftformer.py +0 -1
  1335. transformers/models/swiftformer/modeling_swiftformer.py +12 -14
  1336. transformers/models/swin/configuration_swin.py +2 -5
  1337. transformers/models/swin/modeling_swin.py +69 -78
  1338. transformers/models/swin2sr/configuration_swin2sr.py +0 -1
  1339. transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
  1340. transformers/models/swin2sr/image_processing_swin2sr_fast.py +4 -7
  1341. transformers/models/swin2sr/modeling_swin2sr.py +30 -30
  1342. transformers/models/swinv2/configuration_swinv2.py +2 -5
  1343. transformers/models/swinv2/modeling_swinv2.py +65 -74
  1344. transformers/models/switch_transformers/configuration_switch_transformers.py +11 -7
  1345. transformers/models/switch_transformers/modeling_switch_transformers.py +35 -36
  1346. transformers/models/switch_transformers/modular_switch_transformers.py +32 -33
  1347. transformers/models/t5/configuration_t5.py +9 -9
  1348. transformers/models/t5/modeling_t5.py +80 -85
  1349. transformers/models/t5/tokenization_t5.py +1 -3
  1350. transformers/models/t5gemma/configuration_t5gemma.py +43 -59
  1351. transformers/models/t5gemma/modeling_t5gemma.py +105 -108
  1352. transformers/models/t5gemma/modular_t5gemma.py +128 -142
  1353. transformers/models/t5gemma2/configuration_t5gemma2.py +86 -100
  1354. transformers/models/t5gemma2/modeling_t5gemma2.py +234 -194
  1355. transformers/models/t5gemma2/modular_t5gemma2.py +279 -264
  1356. transformers/models/table_transformer/configuration_table_transformer.py +18 -50
  1357. transformers/models/table_transformer/modeling_table_transformer.py +73 -101
  1358. transformers/models/tapas/configuration_tapas.py +12 -2
  1359. transformers/models/tapas/modeling_tapas.py +65 -67
  1360. transformers/models/tapas/tokenization_tapas.py +116 -153
  1361. transformers/models/textnet/configuration_textnet.py +4 -7
  1362. transformers/models/textnet/image_processing_textnet.py +22 -25
  1363. transformers/models/textnet/image_processing_textnet_fast.py +8 -9
  1364. transformers/models/textnet/modeling_textnet.py +28 -28
  1365. transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
  1366. transformers/models/time_series_transformer/modeling_time_series_transformer.py +82 -84
  1367. transformers/models/timesfm/configuration_timesfm.py +0 -1
  1368. transformers/models/timesfm/modeling_timesfm.py +22 -25
  1369. transformers/models/timesfm/modular_timesfm.py +21 -24
  1370. transformers/models/timesformer/configuration_timesformer.py +0 -1
  1371. transformers/models/timesformer/modeling_timesformer.py +13 -16
  1372. transformers/models/timm_backbone/configuration_timm_backbone.py +33 -8
  1373. transformers/models/timm_backbone/modeling_timm_backbone.py +25 -30
  1374. transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
  1375. transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
  1376. transformers/models/timm_wrapper/modeling_timm_wrapper.py +22 -19
  1377. transformers/models/trocr/configuration_trocr.py +11 -8
  1378. transformers/models/trocr/modeling_trocr.py +42 -42
  1379. transformers/models/trocr/processing_trocr.py +5 -25
  1380. transformers/models/tvp/configuration_tvp.py +10 -36
  1381. transformers/models/tvp/image_processing_tvp.py +50 -52
  1382. transformers/models/tvp/image_processing_tvp_fast.py +15 -15
  1383. transformers/models/tvp/modeling_tvp.py +26 -28
  1384. transformers/models/tvp/processing_tvp.py +2 -14
  1385. transformers/models/udop/configuration_udop.py +16 -8
  1386. transformers/models/udop/modeling_udop.py +73 -72
  1387. transformers/models/udop/processing_udop.py +7 -26
  1388. transformers/models/udop/tokenization_udop.py +80 -93
  1389. transformers/models/umt5/configuration_umt5.py +8 -7
  1390. transformers/models/umt5/modeling_umt5.py +87 -84
  1391. transformers/models/unispeech/configuration_unispeech.py +4 -2
  1392. transformers/models/unispeech/modeling_unispeech.py +54 -53
  1393. transformers/models/unispeech/modular_unispeech.py +20 -22
  1394. transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -2
  1395. transformers/models/unispeech_sat/modeling_unispeech_sat.py +70 -69
  1396. transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
  1397. transformers/models/univnet/feature_extraction_univnet.py +14 -14
  1398. transformers/models/univnet/modeling_univnet.py +7 -8
  1399. transformers/models/upernet/configuration_upernet.py +8 -36
  1400. transformers/models/upernet/modeling_upernet.py +11 -14
  1401. transformers/models/vaultgemma/__init__.py +0 -1
  1402. transformers/models/vaultgemma/configuration_vaultgemma.py +29 -33
  1403. transformers/models/vaultgemma/modeling_vaultgemma.py +38 -40
  1404. transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
  1405. transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
  1406. transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
  1407. transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +12 -14
  1408. transformers/models/video_llama_3/modeling_video_llama_3.py +149 -112
  1409. transformers/models/video_llama_3/modular_video_llama_3.py +152 -150
  1410. transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
  1411. transformers/models/video_llama_3/video_processing_video_llama_3.py +45 -24
  1412. transformers/models/video_llava/configuration_video_llava.py +4 -1
  1413. transformers/models/video_llava/image_processing_video_llava.py +35 -38
  1414. transformers/models/video_llava/modeling_video_llava.py +139 -143
  1415. transformers/models/video_llava/processing_video_llava.py +38 -78
  1416. transformers/models/video_llava/video_processing_video_llava.py +0 -1
  1417. transformers/models/videomae/configuration_videomae.py +0 -1
  1418. transformers/models/videomae/image_processing_videomae.py +31 -34
  1419. transformers/models/videomae/modeling_videomae.py +17 -20
  1420. transformers/models/videomae/video_processing_videomae.py +0 -1
  1421. transformers/models/vilt/configuration_vilt.py +4 -2
  1422. transformers/models/vilt/image_processing_vilt.py +29 -30
  1423. transformers/models/vilt/image_processing_vilt_fast.py +15 -16
  1424. transformers/models/vilt/modeling_vilt.py +103 -90
  1425. transformers/models/vilt/processing_vilt.py +2 -14
  1426. transformers/models/vipllava/configuration_vipllava.py +4 -1
  1427. transformers/models/vipllava/modeling_vipllava.py +92 -67
  1428. transformers/models/vipllava/modular_vipllava.py +78 -54
  1429. transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
  1430. transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +28 -27
  1431. transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
  1432. transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +45 -41
  1433. transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
  1434. transformers/models/visual_bert/configuration_visual_bert.py +6 -2
  1435. transformers/models/visual_bert/modeling_visual_bert.py +90 -92
  1436. transformers/models/vit/configuration_vit.py +2 -3
  1437. transformers/models/vit/image_processing_vit.py +19 -22
  1438. transformers/models/vit/image_processing_vit_fast.py +0 -1
  1439. transformers/models/vit/modeling_vit.py +20 -20
  1440. transformers/models/vit_mae/configuration_vit_mae.py +0 -1
  1441. transformers/models/vit_mae/modeling_vit_mae.py +32 -30
  1442. transformers/models/vit_msn/configuration_vit_msn.py +0 -1
  1443. transformers/models/vit_msn/modeling_vit_msn.py +21 -19
  1444. transformers/models/vitdet/configuration_vitdet.py +2 -5
  1445. transformers/models/vitdet/modeling_vitdet.py +14 -17
  1446. transformers/models/vitmatte/configuration_vitmatte.py +7 -39
  1447. transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
  1448. transformers/models/vitmatte/image_processing_vitmatte_fast.py +16 -17
  1449. transformers/models/vitmatte/modeling_vitmatte.py +10 -12
  1450. transformers/models/vitpose/configuration_vitpose.py +7 -47
  1451. transformers/models/vitpose/image_processing_vitpose.py +24 -25
  1452. transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
  1453. transformers/models/vitpose/modeling_vitpose.py +15 -15
  1454. transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -5
  1455. transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +13 -16
  1456. transformers/models/vits/configuration_vits.py +4 -1
  1457. transformers/models/vits/modeling_vits.py +43 -42
  1458. transformers/models/vits/tokenization_vits.py +3 -4
  1459. transformers/models/vivit/configuration_vivit.py +0 -1
  1460. transformers/models/vivit/image_processing_vivit.py +36 -39
  1461. transformers/models/vivit/modeling_vivit.py +9 -11
  1462. transformers/models/vjepa2/__init__.py +0 -1
  1463. transformers/models/vjepa2/configuration_vjepa2.py +0 -1
  1464. transformers/models/vjepa2/modeling_vjepa2.py +39 -41
  1465. transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
  1466. transformers/models/voxtral/__init__.py +0 -1
  1467. transformers/models/voxtral/configuration_voxtral.py +0 -2
  1468. transformers/models/voxtral/modeling_voxtral.py +41 -48
  1469. transformers/models/voxtral/modular_voxtral.py +35 -38
  1470. transformers/models/voxtral/processing_voxtral.py +25 -48
  1471. transformers/models/wav2vec2/configuration_wav2vec2.py +4 -2
  1472. transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
  1473. transformers/models/wav2vec2/modeling_wav2vec2.py +74 -126
  1474. transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
  1475. transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
  1476. transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -2
  1477. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
  1478. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
  1479. transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
  1480. transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -2
  1481. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
  1482. transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
  1483. transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
  1484. transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
  1485. transformers/models/wavlm/configuration_wavlm.py +4 -2
  1486. transformers/models/wavlm/modeling_wavlm.py +49 -49
  1487. transformers/models/wavlm/modular_wavlm.py +4 -5
  1488. transformers/models/whisper/configuration_whisper.py +6 -5
  1489. transformers/models/whisper/english_normalizer.py +3 -4
  1490. transformers/models/whisper/feature_extraction_whisper.py +9 -24
  1491. transformers/models/whisper/generation_whisper.py +26 -49
  1492. transformers/models/whisper/modeling_whisper.py +71 -73
  1493. transformers/models/whisper/processing_whisper.py +3 -20
  1494. transformers/models/whisper/tokenization_whisper.py +9 -30
  1495. transformers/models/x_clip/configuration_x_clip.py +4 -2
  1496. transformers/models/x_clip/modeling_x_clip.py +94 -96
  1497. transformers/models/x_clip/processing_x_clip.py +2 -14
  1498. transformers/models/xcodec/configuration_xcodec.py +4 -6
  1499. transformers/models/xcodec/modeling_xcodec.py +15 -17
  1500. transformers/models/xglm/configuration_xglm.py +9 -8
  1501. transformers/models/xglm/modeling_xglm.py +49 -55
  1502. transformers/models/xglm/tokenization_xglm.py +1 -4
  1503. transformers/models/xlm/configuration_xlm.py +10 -8
  1504. transformers/models/xlm/modeling_xlm.py +127 -131
  1505. transformers/models/xlm/tokenization_xlm.py +3 -5
  1506. transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -3
  1507. transformers/models/xlm_roberta/modeling_xlm_roberta.py +96 -98
  1508. transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
  1509. transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
  1510. transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -2
  1511. transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +97 -99
  1512. transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
  1513. transformers/models/xlnet/configuration_xlnet.py +3 -12
  1514. transformers/models/xlnet/modeling_xlnet.py +149 -162
  1515. transformers/models/xlnet/tokenization_xlnet.py +1 -4
  1516. transformers/models/xlstm/configuration_xlstm.py +8 -12
  1517. transformers/models/xlstm/modeling_xlstm.py +61 -96
  1518. transformers/models/xmod/configuration_xmod.py +11 -3
  1519. transformers/models/xmod/modeling_xmod.py +111 -116
  1520. transformers/models/yolos/configuration_yolos.py +0 -1
  1521. transformers/models/yolos/image_processing_yolos.py +60 -62
  1522. transformers/models/yolos/image_processing_yolos_fast.py +42 -45
  1523. transformers/models/yolos/modeling_yolos.py +19 -21
  1524. transformers/models/yolos/modular_yolos.py +17 -19
  1525. transformers/models/yoso/configuration_yoso.py +8 -2
  1526. transformers/models/yoso/modeling_yoso.py +60 -62
  1527. transformers/models/youtu/__init__.py +27 -0
  1528. transformers/models/youtu/configuration_youtu.py +194 -0
  1529. transformers/models/youtu/modeling_youtu.py +619 -0
  1530. transformers/models/youtu/modular_youtu.py +254 -0
  1531. transformers/models/zamba/configuration_zamba.py +5 -8
  1532. transformers/models/zamba/modeling_zamba.py +93 -125
  1533. transformers/models/zamba2/configuration_zamba2.py +44 -50
  1534. transformers/models/zamba2/modeling_zamba2.py +137 -165
  1535. transformers/models/zamba2/modular_zamba2.py +79 -74
  1536. transformers/models/zoedepth/configuration_zoedepth.py +17 -41
  1537. transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
  1538. transformers/models/zoedepth/image_processing_zoedepth_fast.py +20 -21
  1539. transformers/models/zoedepth/modeling_zoedepth.py +19 -19
  1540. transformers/pipelines/__init__.py +47 -106
  1541. transformers/pipelines/any_to_any.py +15 -23
  1542. transformers/pipelines/audio_utils.py +1 -2
  1543. transformers/pipelines/automatic_speech_recognition.py +0 -2
  1544. transformers/pipelines/base.py +13 -17
  1545. transformers/pipelines/image_text_to_text.py +1 -2
  1546. transformers/pipelines/question_answering.py +4 -43
  1547. transformers/pipelines/text_classification.py +1 -14
  1548. transformers/pipelines/text_to_audio.py +5 -1
  1549. transformers/pipelines/token_classification.py +1 -22
  1550. transformers/pipelines/video_classification.py +1 -9
  1551. transformers/pipelines/zero_shot_audio_classification.py +0 -1
  1552. transformers/pipelines/zero_shot_classification.py +0 -6
  1553. transformers/pipelines/zero_shot_image_classification.py +0 -7
  1554. transformers/processing_utils.py +128 -137
  1555. transformers/pytorch_utils.py +2 -26
  1556. transformers/quantizers/base.py +10 -0
  1557. transformers/quantizers/quantizer_compressed_tensors.py +7 -5
  1558. transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
  1559. transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
  1560. transformers/quantizers/quantizer_mxfp4.py +1 -1
  1561. transformers/quantizers/quantizer_quark.py +0 -1
  1562. transformers/quantizers/quantizer_torchao.py +3 -19
  1563. transformers/safetensors_conversion.py +11 -4
  1564. transformers/testing_utils.py +6 -65
  1565. transformers/tokenization_mistral_common.py +563 -903
  1566. transformers/tokenization_python.py +6 -4
  1567. transformers/tokenization_utils_base.py +228 -341
  1568. transformers/tokenization_utils_sentencepiece.py +5 -6
  1569. transformers/tokenization_utils_tokenizers.py +36 -7
  1570. transformers/trainer.py +30 -41
  1571. transformers/trainer_jit_checkpoint.py +1 -2
  1572. transformers/trainer_seq2seq.py +1 -1
  1573. transformers/training_args.py +414 -420
  1574. transformers/utils/__init__.py +1 -4
  1575. transformers/utils/attention_visualizer.py +1 -1
  1576. transformers/utils/auto_docstring.py +567 -18
  1577. transformers/utils/backbone_utils.py +13 -373
  1578. transformers/utils/doc.py +4 -36
  1579. transformers/utils/dummy_pt_objects.py +0 -42
  1580. transformers/utils/generic.py +70 -34
  1581. transformers/utils/import_utils.py +72 -75
  1582. transformers/utils/loading_report.py +135 -107
  1583. transformers/utils/quantization_config.py +8 -31
  1584. transformers/video_processing_utils.py +24 -25
  1585. transformers/video_utils.py +21 -23
  1586. {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/METADATA +120 -239
  1587. transformers-5.1.0.dist-info/RECORD +2092 -0
  1588. {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
  1589. transformers/pipelines/deprecated/text2text_generation.py +0 -408
  1590. transformers/pipelines/image_to_text.py +0 -229
  1591. transformers-5.0.0rc2.dist-info/RECORD +0 -2042
  1592. {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
  1593. {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
  1594. {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
@@ -194,179 +194,370 @@ def _convert_str_dict(passed_value: dict):
194
194
  return passed_value
195
195
 
196
196
 
197
- # TODO: `TrainingArguments` users rely on it being fully mutable. In the future see if we can narrow this to a few keys: https://github.com/huggingface/transformers/pull/25903
198
197
  @dataclass
199
198
  class TrainingArguments:
200
199
  """
201
- TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
202
- itself**.
200
+ Configuration class for controlling all aspects of model training with the Trainer.
201
+ TrainingArguments centralizes all hyperparameters, optimization settings, logging preferences, and infrastructure choices needed for training.
203
202
 
204
- Using [`HfArgumentParser`] we can turn this class into
203
+ [`HfArgumentParser`] can turn this class into
205
204
  [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
206
205
  command line.
207
206
 
208
207
  Parameters:
209
208
  output_dir (`str`, *optional*, defaults to `"trainer_output"`):
210
209
  The output directory where the model predictions and checkpoints will be written.
211
- do_train (`bool`, *optional*, defaults to `False`):
212
- Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
213
- by your training/evaluation scripts instead. See the [example
214
- scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
215
- do_eval (`bool`, *optional*):
216
- Whether to run evaluation on the validation set or not. Will be set to `True` if `eval_strategy` is
217
- different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
218
- training/evaluation scripts instead. See the [example
219
- scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
220
- do_predict (`bool`, *optional*, defaults to `False`):
221
- Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
222
- intended to be used by your training/evaluation scripts instead. See the [example
223
- scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
224
- eval_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
225
- The evaluation strategy to adopt during training. Possible values are:
226
210
 
227
- - `"no"`: No evaluation is done during training.
228
- - `"steps"`: Evaluation is done (and logged) every `eval_steps`.
229
- - `"epoch"`: Evaluation is done at the end of each epoch.
211
+ > Training Duration and Batch Size
230
212
 
231
- prediction_loss_only (`bool`, *optional*, defaults to `False`):
232
- When performing evaluation and generating predictions, only returns the loss.
233
213
  per_device_train_batch_size (`int`, *optional*, defaults to 8):
234
214
  The batch size *per device*. The **global batch size** is computed as:
235
215
  `per_device_train_batch_size * number_of_devices` in multi-GPU or distributed setups.
236
- per_device_eval_batch_size (`int`, *optional*, defaults to 8):
237
- The batch size per device accelerator core/CPU for evaluation.
238
- gradient_accumulation_steps (`int`, *optional*, defaults to 1):
239
- Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
240
-
241
- <Tip warning={true}>
242
-
243
- When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging,
244
- evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples.
245
-
246
- </Tip>
247
-
248
- eval_accumulation_steps (`int`, *optional*):
249
- Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
250
- left unset, the whole predictions are accumulated on the device accelerator before being moved to the CPU (faster but
251
- requires more memory).
252
- eval_delay (`float`, *optional*):
253
- Number of epochs or steps to wait for before the first evaluation can be performed, depending on the
254
- eval_strategy.
255
- torch_empty_cache_steps (`int`, *optional*):
256
- Number of steps to wait before calling `torch.<device>.empty_cache()`. If left unset or set to None, cache will not be emptied.
257
-
258
- <Tip>
259
-
260
- This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372).
261
-
262
- </Tip>
263
-
264
- learning_rate (`float`, *optional*, defaults to 5e-5):
265
- The initial learning rate for [`AdamW`] optimizer.
266
- weight_decay (`float`, *optional*, defaults to 0):
267
- The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in [`AdamW`]
268
- optimizer.
269
- adam_beta1 (`float`, *optional*, defaults to 0.9):
270
- The beta1 hyperparameter for the [`AdamW`] optimizer.
271
- adam_beta2 (`float`, *optional*, defaults to 0.999):
272
- The beta2 hyperparameter for the [`AdamW`] optimizer.
273
- adam_epsilon (`float`, *optional*, defaults to 1e-8):
274
- The epsilon hyperparameter for the [`AdamW`] optimizer.
275
- max_grad_norm (`float`, *optional*, defaults to 1.0):
276
- Maximum gradient norm (for gradient clipping).
277
216
  num_train_epochs(`float`, *optional*, defaults to 3.0):
278
217
  Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
279
218
  the last epoch before stopping training).
280
219
  max_steps (`int`, *optional*, defaults to -1):
281
- If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`.
220
+ Overrides `num_train_epochs`. If set to a positive number, the total number of training steps to perform.
282
221
  For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until
283
222
  `max_steps` is reached.
223
+
224
+ > Learning Rate & Scheduler
225
+
226
+ learning_rate (`float`, *optional*, defaults to 5e-5):
227
+ The initial learning rate for the optimizer. This is typically the peak learning rate when using a scheduler with warmup.
284
228
  lr_scheduler_type (`str` or [`SchedulerType`], *optional*, defaults to `"linear"`):
285
- The scheduler type to use. See the documentation of [`SchedulerType`] for all possible values.
229
+ The learning rate scheduler type to use. See [`SchedulerType`] for all possible values. Common choices:
230
+ - "linear" = [`get_linear_schedule_with_warmup`]
231
+ - "cosine" = [`get_cosine_schedule_with_warmup`]
232
+ - "constant" = [`get_constant_schedule`]
233
+ - "constant_with_warmup" = [`get_constant_schedule_with_warmup`]
286
234
  lr_scheduler_kwargs (`dict` or `str`, *optional*, defaults to `None`):
287
235
  The extra arguments for the lr_scheduler. See the documentation of each scheduler for possible values.
288
236
  warmup_steps (`int` or `float`, *optional*, defaults to 0):
289
- Number of steps used for a linear warmup from 0 to `learning_rate`. Should be an integer or a float in range `[0,1)`.
290
- If smaller than 1, will be interpreted as ratio of steps used for a linear warmup from 0 to `learning_rate`.
291
- log_level (`str`, *optional*, defaults to `passive`):
292
- Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug',
293
- 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and keeps the
294
- current log level for the Transformers library (which will be `"warning"` by default).
295
- log_level_replica (`str`, *optional*, defaults to `"warning"`):
296
- Logger log level to use on replicas. Same choices as `log_level`"
297
- log_on_each_node (`bool`, *optional*, defaults to `True`):
298
- In multinode distributed training, whether to log using `log_level` once per node, or only on the main
299
- node.
237
+ Number of steps for a linear warmup from 0 to `learning_rate`. Warmup helps stabilize training in the initial phase. Can be:
238
+ - An integer: exact number of warmup steps
239
+ - A float in range [0, 1): interpreted as ratio of total training steps
240
+
241
+ > Optimizer
242
+
243
+ optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"` (for torch>=2.8 `"adamw_torch_fused"`)):
244
+ The optimizer to use. Common options:
245
+ - `"adamw_torch"`: PyTorch's AdamW (recommended default)
246
+ - `"adamw_torch_fused"`: Fused AdamW kernel
247
+ - `"adamw_hf"`: HuggingFace's AdamW implementation
248
+ - `"sgd"`: Stochastic Gradient Descent with momentum
249
+ - `"adafactor"`: Memory-efficient optimizer for large models
250
+ - `"adamw_8bit"`: 8-bit AdamW (requires bitsandbytes)
251
+ See [`OptimizerNames`] for the complete list.
252
+ optim_args (`str`, *optional*):
253
+ Optional arguments that are supplied to optimizers such as AnyPrecisionAdamW, AdEMAMix, and GaLore.
254
+ weight_decay (`float`, *optional*, defaults to 0):
255
+ Weight decay coefficient applied by the optimizer (not the loss function). Adds L2
256
+ regularization to prevent overfitting by penalizing large weights. Automatically
257
+ excluded from bias and LayerNorm parameters. Typical values: 0.01 (standard), 0.1
258
+ (stronger regularization), 0.0 (no regularization).
259
+ adam_beta1 (`float`, *optional*, defaults to 0.9):
260
+ The exponential decay rate for the first moment estimates (momentum) in Adam-based
261
+ optimizers. Controls how much history of gradients to retain.
262
+ adam_beta2 (`float`, *optional*, defaults to 0.999):
263
+ The exponential decay rate for the second moment estimates (variance) in Adam-based
264
+ optimizers. Controls adaptive learning rate scaling.
265
+ adam_epsilon (`float`, *optional*, defaults to 1e-8):
266
+ Epsilon value for numerical stability in Adam-based optimizers. Prevents division by
267
+ zero in the denominator of the update rule.
268
+ optim_target_modules (`Union[str, list[str]]`, *optional*):
269
+ The target modules to optimize, i.e. the module names that you would like to train.
270
+ Currently used for the [GaLore algorithm](https://huggingface.co/papers/2403.03507) and [APOLLO algorithm](https://huggingface.co/papers/2412.05270).
271
+ See [GaLore implementation](https://github.com/jiaweizzhao/GaLore) and [APOLLO implementation](https://github.com/zhuhanqing/APOLLO) for more details.
272
+ You need to make sure to pass a valid GaLore or APOLLO optimizer, e.g., one of: "apollo_adamw", "galore_adamw", "galore_adamw_8bit", "galore_adafactor" and make sure that the target modules are `nn.Linear` modules only.
273
+
274
+ > Regularization & Training Stability
275
+
276
+ gradient_accumulation_steps (`int`, *optional*, defaults to 1):
277
+ Number of update steps to accumulate gradients before performing a backward/update pass.
278
+ Simulates larger batch sizes without additional memory. Effective batch size =
279
+ `per_device_train_batch_size × num_devices × gradient_accumulation_steps`.
280
+ > [!TIP]
281
+ > When using gradient accumulation, one "step" is counted as one step with a backward pass. Therefore, logging, evaluation, and saving will occur every `gradient_accumulation_steps × xxx_step` training examples.
282
+ average_tokens_across_devices (`bool`, *optional*, defaults to `True`):
283
+ Whether or not to average tokens across devices. If enabled, will use all_reduce to synchronize
284
+ num_tokens_in_batch for precise loss calculation. Reference:
285
+ https://github.com/huggingface/transformers/issues/34242
286
+ max_grad_norm (`float`, *optional*, defaults to 1.0):
287
+ Maximum gradient norm for gradient clipping. Applied after backward pass, before
288
+ optimizer step. Prevents gradient explosion by scaling down gradients when their global
289
+ norm exceeds this threshold. Set to 0 to disable clipping. Typical values:
290
+ 1.0 (standard), 0.5 (more conservative), 5.0 (less aggressive).
291
+ label_smoothing_factor (`float`, *optional*, defaults to 0.0):
292
+ Label smoothing factor to prevent overconfidence. Replaces hard 0/1 targets with soft
293
+ targets: 0 becomes `ε/num_labels` and 1 becomes `1 - ε + ε/num_labels`, where
294
+ ε = `label_smoothing_factor`. Zero means no smoothing. Typical range: 0.0 to 0.1.
295
+
296
+ > Mixed Precision Training
297
+
298
+ bf16 (`bool`, *optional*, defaults to `False`):
299
+ Enable bfloat16 (BF16) mixed precision training
300
+ Generally preferred over FP16 due to better numerical stability and no loss scaling required.
301
+ fp16 (`bool`, *optional*, defaults to `False`):
302
+ Enable float16 (FP16) mixed precision training.
303
+ Consider using BF16 instead if your hardware supports it.
304
+ bf16_full_eval (`bool`, *optional*, defaults to `False`):
305
+ Use full BF16 precision for evaluation (not just mixed precision). Faster and saves
306
+ memory but may affect metric values slightly. Only applies during evaluation.
307
+ fp16_full_eval (`bool`, *optional*, defaults to `False`):
308
+ Use full FP16 precision for evaluation (not just mixed precision). Faster and saves
309
+ memory but may affect metric values slightly. Only applies during evaluation.
310
+ tf32 (`bool`, *optional*):
311
+ Enable TensorFloat-32 (TF32) mode on Ampere and newer GPUs. TF32 uses 19-bit precision
312
+ for matrix multiplications (instead of FP32's 23-bit), providing up to 8x speedup with
313
+ negligible accuracy loss. Default depends on PyTorch version. See
314
+ [TF32 docs](https://huggingface.co/docs/transformers/perf_train_gpu_one#tf32).
315
+
316
+ > Gradient Checkpointing
317
+
318
+ gradient_checkpointing (`bool`, *optional*, defaults to `False`):
319
+ Enable gradient checkpointing to trade compute for memory. Reduces memory usage by
320
+ clearing activations during forward pass and recomputing them during backward pass.
321
+ Enables training larger models or batch sizes at the cost of ~20% slower training.
322
+ gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`):
323
+ Keyword arguments passed to `gradient_checkpointing_enable()`.
324
+
325
+ > Compilation
326
+
327
+ torch_compile (`bool`, *optional*, defaults to `False`):
328
+ Compile the model using PyTorch 2.0's `torch.compile()` for faster training. Can provide
329
+ 20-50% speedup with no code changes. Uses default compilation settings unless
330
+ `torch_compile_backend` or `torch_compile_mode` are specified.
331
+ torch_compile_backend (`str`, *optional*):
332
+ Backend for `torch.compile()`. If set, automatically enables `torch_compile`. Options
333
+ include `"inductor"` (default), `"aot_eager"`, `"cudagraphs"`. Backends vary by PyTorch
334
+ version - see PyTorch docs for available options.
335
+ torch_compile_mode (`str`, *optional*):
336
+ Compilation mode for `torch.compile()`. If set, automatically enables `torch_compile`.
337
+ Options: `"default"`, `"reduce-overhead"` (minimize Python overhead), `"max-autotune"`
338
+ (aggressive optimization, slower compile time).
339
+
340
+ > Kernels
341
+
342
+ use_liger_kernel (`bool`, *optional*, defaults to `False`):
343
+ Enable [Liger Kernel](https://github.com/linkedin/Liger-Kernel) optimizations. Increases
344
+ multi-GPU throughput by ~20% and reduces memory usage by ~60%. Works with Flash Attention,
345
+ FSDP, and DeepSpeed. Currently supports Llama, Mistral, Mixtral, and Gemma models.
346
+ liger_kernel_config (`Optional[dict]`, *optional*):
347
+ Configuration for Liger Kernel. Passed as kwargs to `_apply_liger_kernel_to_instance()`.
348
+ Options typically include: `"rope"`, `"swiglu"`, `"cross_entropy"`,
349
+ `"fused_linear_cross_entropy"`, `"rms_norm"`. If `None`, uses default configuration.
350
+
351
+ > Additional Optimizations
352
+
353
+ use_cache (`bool`, *optional*, defaults to `False`):
354
+ Whether or not to enable cache for the model. For training, this is usually not needed apart from some PEFT methods that uses `past_key_values`.
355
+ neftune_noise_alpha (`Optional[float]`):
356
+ If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance
357
+ for instruction fine-tuning. Check out the [original paper](https://huggingface.co/papers/2310.05914) and the
358
+ [original code](https://github.com/neelsjain/NEFTune). Support transformers `PreTrainedModel` and also
359
+ `PeftModel` from peft. The original paper used values in the range [5.0, 15.0].
360
+ torch_empty_cache_steps (`int`, *optional*):
361
+ Number of steps to wait before calling `torch.<device>.empty_cache()`. If left unset or set to None, cache will not be emptied.
362
+ This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372).
363
+ auto_find_batch_size (`bool`, *optional*, defaults to `False`)
364
+ Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding
365
+ CUDA Out-of-Memory errors.
366
+
367
+ > Logging & Monitoring Training
368
+
300
369
  logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
301
370
  The logging strategy to adopt during training. Possible values are:
302
-
303
371
  - `"no"`: No logging is done during training.
304
372
  - `"epoch"`: Logging is done at the end of each epoch.
305
373
  - `"steps"`: Logging is done every `logging_steps`.
306
-
307
- logging_first_step (`bool`, *optional*, defaults to `False`):
308
- Whether to log the first `global_step` or not.
309
374
  logging_steps (`int` or `float`, *optional*, defaults to 500):
310
375
  Number of update steps between two logs if `logging_strategy="steps"`. Should be an integer or a float in
311
376
  range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.
377
+ logging_first_step (`bool`, *optional*, defaults to `False`):
378
+ Whether to log the first `global_step` or not.
379
+ log_on_each_node (`bool`, *optional*, defaults to `True`):
380
+ In multinode distributed training, whether to log using `log_level` once per node, or only on the main
381
+ node.
312
382
  logging_nan_inf_filter (`bool`, *optional*, defaults to `True`):
313
- Whether to filter `nan` and `inf` losses for logging. If set to `True` the loss of every step that is `nan`
314
- or `inf` is filtered and the average loss of the current logging window is taken instead.
383
+ Filter out NaN and Inf losses when logging. If `True`, replaces NaN/Inf losses with the
384
+ average of recent valid losses. Does not affect gradient computation, only logging.
385
+ include_num_input_tokens_seen (`Optional[Union[str, bool]]`, *optional*, defaults to "no"):
386
+ Whether to track the number of input tokens seen. Must be one of ["all", "non_padding", "no"] or a boolean value which map to "all" or "no".
387
+ May be slower in distributed training as gather operations must be called.
315
388
 
316
- <Tip>
389
+ > Logging
317
390
 
318
- `logging_nan_inf_filter` only influences the logging of loss values, it does not change the behavior the
319
- gradient is computed or applied to the model.
391
+ log_level (`str`, *optional*, defaults to `passive`):
392
+ Logging level for the main process. Options: `"debug"`, `"info"`, `"warning"`, `"error"`,
393
+ `"critical"`, or `"passive"` (doesn't change the current Transformers logging level,
394
+ which defaults to `"warning"`)
395
+ log_level_replica (`str`, *optional*, defaults to `"warning"`):
396
+ Logging level for replica processes in distributed training. Same options as `log_level`.
397
+ disable_tqdm (`bool`, *optional*):
398
+ Disable tqdm progress bars. Defaults to `True` if `log_level` is warning or lower, `False` otherwise.
320
399
 
321
- </Tip>
400
+ > Experiment Tracking Integration
401
+
402
+ report_to (`str` or `list[str]`, *optional*, defaults to `"none"`):
403
+ The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,
404
+ `"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"swanlab"`,
405
+ `"tensorboard"`, `"trackio"` and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"`
406
+ for no integrations.
407
+ run_name (`str`, *optional*):
408
+ A descriptor for the run. Typically used for [trackio](https://github.com/gradio-app/trackio),
409
+ [wandb](https://www.wandb.com/), [mlflow](https://www.mlflow.org/), [comet](https://www.comet.com/site) and
410
+ [swanlab](https://swanlab.cn) logging.
411
+ project (`str`, *optional*, defaults to `"huggingface"`):
412
+ The name of the project to use for logging. Currently, only used by Trackio.
413
+ trackio_space_id (`str` or `None`, *optional*, defaults to `"trackio"`):
414
+ The Hugging Face Space ID to deploy to when using Trackio. Should be a complete Space name like
415
+ `'username/reponame'` or `'orgname/reponame'`, or just `'reponame'` in which case the Space will be
416
+ created in the currently-logged-in Hugging Face user's namespace. If `None`, will log to a local directory.
417
+ Note that this Space will be public unless you set `hub_private_repo=True` or your organization's default
418
+ is to create private Spaces."
419
+
420
+ > Evaluation
421
+
422
+ eval_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
423
+ When to run evaluation. Options:
424
+ - `"no"`: No evaluation during training
425
+ - `"steps"`: Evaluate every `eval_steps`
426
+ - `"epoch"`: Evaluate at the end of each epoch
427
+ eval_steps (`int` or `float`, *optional*):
428
+ Number of update steps between two evaluations if `eval_strategy="steps"`. Will default to the same
429
+ value as `logging_steps` if not set. Should be an integer or a float in range `[0,1)`. If smaller than 1,
430
+ will be interpreted as ratio of total training steps.
431
+ eval_delay (`float`, *optional*):
432
+ Number of epochs or steps to wait for before the first evaluation can be performed, depending on the
433
+ eval_strategy.
434
+ per_device_eval_batch_size (`int`, *optional*, defaults to 8):
435
+ The batch size per device accelerator core/CPU for evaluation.
436
+ prediction_loss_only (`bool`, *optional*, defaults to `False`):
437
+ When performing evaluation and generating predictions, only returns the loss.
438
+ eval_on_start (`bool`, *optional*, defaults to `False`):
439
+ Whether to perform a evaluation step (sanity check) before the training to ensure the validation steps works correctly.
440
+ eval_do_concat_batches (`bool`, *optional*, defaults to `True`):
441
+ Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`,
442
+ will instead store them as lists, with each batch kept separate.
443
+ eval_use_gather_object (`bool`, *optional*, defaults to `False`):
444
+ Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices. This should only be enabled if users are not just returning tensors, and this is actively discouraged by PyTorch.
445
+ This is useful when the labels structure is non standard, like in computer vision tasks.
446
+ eval_accumulation_steps (`int`, *optional*):
447
+ Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
448
+ left unset, the whole predictions are accumulated on the device accelerator before being moved to the CPU (faster but
449
+ requires more memory).
450
+
451
+ > Metrics Computation
452
+
453
+ include_for_metrics (`list[str]`, *optional*, defaults to `[]`):
454
+ Include additional data in the `compute_metrics` function if needed for metrics computation.
455
+ Possible options to add to `include_for_metrics` list:
456
+ - `"inputs"`: Input data passed to the model, intended for calculating input dependent metrics.
457
+ - `"loss"`: Loss values computed during evaluation, intended for calculating loss dependent metrics.
458
+ batch_eval_metrics (`bool`, *optional*, defaults to `False`):
459
+ If set to `True`, evaluation will call compute_metrics at the end of each batch to accumulate statistics
460
+ rather than saving all eval logits in memory. When set to `True`, you must pass a compute_metrics function
461
+ that takes a boolean argument `compute_result`, which when passed `True`, will trigger the final global
462
+ summary statistics from the batch-level summary statistics you've accumulated over the evaluation set.
322
463
 
464
+ > Checkpointing & Saving
465
+
466
+ save_only_model (`bool`, *optional*, defaults to `False`):
467
+ Save only model weights, not optimizer/scheduler/RNG state. Significantly reduces
468
+ checkpoint size but prevents resuming training from the checkpoint. Use when you only
469
+ need the trained model for inference, not continued training.
470
+ You can only load the model using `from_pretrained` with this option set to `True`.
323
471
  save_strategy (`str` or [`~trainer_utils.SaveStrategy`], *optional*, defaults to `"steps"`):
324
472
  The checkpoint save strategy to adopt during training. Possible values are:
325
-
326
473
  - `"no"`: No save is done during training.
327
474
  - `"epoch"`: Save is done at the end of each epoch.
328
475
  - `"steps"`: Save is done every `save_steps`.
329
476
  - `"best"`: Save is done whenever a new `best_metric` is achieved.
330
-
331
- If `"epoch"` or `"steps"` is chosen, saving will also be performed at the
332
- very end of training, always.
333
477
  save_steps (`int` or `float`, *optional*, defaults to 500):
334
478
  Number of updates steps before two checkpoint saves if `save_strategy="steps"`. Should be an integer or a
335
479
  float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.
336
- save_total_limit (`int`, *optional*):
337
- If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
338
- `output_dir`. When `load_best_model_at_end` is enabled, the "best" checkpoint according to
339
- `metric_for_best_model` will always be retained in addition to the most recent ones. For example, for
340
- `save_total_limit=5` and `load_best_model_at_end`, the four last checkpoints will always be retained
341
- alongside the best model. When `save_total_limit=1` and `load_best_model_at_end`, it is possible that two
342
- checkpoints are saved: the last one and the best one (if they are different).
343
- enable_jit_checkpoint (`bool`, *optional*, defaults to `False`):
344
- Whether to enable Just-In-Time (JIT) checkpointing on SIGTERM signal. When enabled, training will
345
- checkpoint upon receiving SIGTERM, allowing for graceful termination without losing
346
- progress. This is particularly useful for shared clusters with preemptible workloads (e.g., Kueue).
347
- **Important**: You must configure your orchestrator's graceful shutdown period to allow sufficient time
348
- for checkpoint completion. For Kubernetes, set `terminationGracePeriodSeconds` in your job definition
349
- (method varies by cloud-native trainer: Kubeflow, Ray, etc.). Note: the default is only 30 seconds,
350
- which is typically insufficient. For Slurm, use `--signal=USR1@<seconds>` in your sbatch script to send
351
- SIGTERM with adequate time before the job time limit. Calculate the required grace period as: longest
352
- possible iteration time + checkpoint saving time. For example, if an iteration takes 2 minutes and
353
- checkpoint saving takes 2 minutes, set at least 4 minutes (240 seconds) of grace time.
354
480
  save_on_each_node (`bool`, *optional*, defaults to `False`):
355
481
  When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
356
482
  the main one.
357
-
358
483
  This should not be activated when the different nodes use the same storage as the files will be saved with
359
484
  the same names for each node.
360
- save_only_model (`bool`, *optional*, defaults to `False`):
361
- When checkpointing, whether to only save the model, or also the optimizer, scheduler & rng state.
362
- Note that when this is true, you won't be able to resume training from checkpoint.
363
- This enables you to save storage by not storing the optimizer, scheduler & rng state.
364
- You can only load the model using `from_pretrained` with this option set to `True`.
485
+ save_total_limit (`int`, *optional*):
486
+ Maximum number of checkpoints to keep. Deletes older checkpoints in `output_dir`. When
487
+ `load_best_model_at_end=True`, the best checkpoint is always retained plus the most
488
+ recent ones. For example, `save_total_limit=5` keeps the 4 most recent plus the best
489
+ enable_jit_checkpoint (`bool`, *optional*, defaults to `False`):
490
+ Enable Just-In-Time checkpointing on SIGTERM signal for graceful termination on
491
+ preemptible workloads. **Important**: Configure your orchestrator's graceful shutdown
492
+ period to allow sufficient time. For Kubernetes, set `terminationGracePeriodSeconds`
493
+ (default 30s is usually insufficient). For Slurm, use `--signal=USR1@<seconds>`.
494
+ Required grace period ≥ longest iteration time + checkpoint save time.
495
+
496
+ > Hugging Face Hub Integration
497
+
498
+ push_to_hub (`bool`, *optional*, defaults to `False`):
499
+ Whether or not to push the model to the Hub every time the model is saved. If this is activated,
500
+ `output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content
501
+ will be pushed each time a save is triggered (depending on your `save_strategy`). Calling
502
+ [`~Trainer.save_model`] will also trigger a push.
503
+ hub_token (`str`, *optional*):
504
+ The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
505
+ `hf auth login`.
506
+ hub_private_repo (`bool`, *optional*):
507
+ Whether to make the repo private. If `None` (default), the repo will be public unless the organization's
508
+ default is private. This value is ignored if the repo already exists. If reporting to Trackio with
509
+ deployment to Hugging Face Spaces enabled, the same logic determines whether the Space is private.
510
+ hub_model_id (`str`, *optional*):
511
+ The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in
512
+ which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
513
+ for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
514
+ `"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the
515
+ name of `output_dir`.
516
+ hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`):
517
+ Defines what and when to push to Hub. Options:
518
+ - `"end"`: Push only at the end of training
519
+ - `"every_save"`: Push on each save (async to not block training)
520
+ - `"checkpoint"`: Like `"every_save"` plus push latest checkpoint to `"last-checkpoint"` subfolder for easy resuming
521
+ - `"all_checkpoints"`: Push all checkpoints as they appear
522
+ hub_always_push (`bool`, *optional*, defaults to `False`):
523
+ Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished.
524
+ hub_revision (`str`, *optional*):
525
+ The revision to use when pushing to the Hub. Can be a branch name, a tag, or a commit hash.
526
+
527
+ > Best Model Tracking
528
+
529
+ load_best_model_at_end (`bool`, *optional*, defaults to `False`):
530
+ Load the best checkpoint at the end of training. Requires `eval_strategy` to be set.
531
+ When enabled, the best checkpoint is always saved (see `save_total_limit`).
532
+ <Tip>
533
+ When `True`, `save_strategy` must match `eval_strategy`, and if using `"steps"`,
534
+ `save_steps` must be a multiple of `eval_steps`.
535
+ </Tip>
536
+ metric_for_best_model (`str`, *optional*):
537
+ Metric to use for comparing models when `load_best_model_at_end=True`. Must be a metric
538
+ name returned by evaluation, with or without the `"eval_"` prefix. Defaults to `"loss"`.
539
+ If you set this, `greater_is_better` will default to `True` unless the name ends with
540
+ `"loss"`. Examples: `"accuracy"`, `"f1"`, `"eval_bleu"`.
541
+ greater_is_better (`bool`, *optional*):
542
+ Whether higher metric values are better. Defaults based on `metric_for_best_model`:
543
+ `True` if the metric name doesn't end in `"loss"`, `False` otherwise.
544
+
545
+ > Resuming Training
546
+
547
+ ignore_data_skip (`bool`, *optional*, defaults to `False`):
548
+ When resuming training, skip fast-forwarding through the dataset to reach the previous
549
+ state. If `True`, training starts from the beginning of the dataset (faster resume but
550
+ results won't match interrupted training). If `False`, skips seen data (slower resume
551
+ but exact continuation).
365
552
  restore_callback_states_from_checkpoint (`bool`, *optional*, defaults to `False`):
366
- Whether to restore the callback states from the checkpoint. If `True`, will override
367
- callbacks passed to the `Trainer` if they exist in the checkpoint."
368
- use_cpu (`bool`, *optional*, defaults to `False`):
369
- Whether or not to use cpu. If set to False, we will use the available torch device/backend.
553
+ Restore callback states from checkpoint when resuming. If `True`, will override callbacks
554
+ passed to Trainer if they exist in the checkpoint.
555
+
556
+ > Reproducibility
557
+
558
+ full_determinism (`bool`, *optional*, defaults to `False`)
559
+ If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in
560
+ distributed training. Important: this will negatively impact the performance, so only use it for debugging.
370
561
  seed (`int`, *optional*, defaults to 42):
371
562
  Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
372
563
  [`~Trainer.model_init`] function to instantiate the model if it has some randomly initialized parameters.
@@ -374,96 +565,98 @@ class TrainingArguments:
374
565
  Random seed to be used with data samplers. If not set, random generators for data sampling will use the
375
566
  same seed as `seed`. This can be used to ensure reproducibility of data sampling, independent of the model
376
567
  seed.
377
- bf16 (`bool`, *optional*, defaults to `False`):
378
- Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training. Requires Ampere or higher
379
- NVIDIA architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU.
380
- fp16 (`bool`, *optional*, defaults to `False`):
381
- Whether to use fp16 16-bit (mixed) precision training instead of 32-bit training.
382
- bf16_full_eval (`bool`, *optional*, defaults to `False`):
383
- Whether to use full bfloat16 evaluation instead of 32-bit. This will be faster and save memory but can harm
384
- metric values.
385
- fp16_full_eval (`bool`, *optional*, defaults to `False`):
386
- Whether to use full float16 evaluation instead of 32-bit. This will be faster and save memory but can harm
387
- metric values.
388
- tf32 (`bool`, *optional*):
389
- Whether to enable the TF32 mode, available in Ampere and newer GPU architectures. The default value depends
390
- on PyTorch's version default of `torch.backends.cuda.matmul.allow_tf32` and For PyTorch 2.9+ torch.backends.cuda.matmul.fp32_precision. For more details please refer to
391
- the [TF32](https://huggingface.co/docs/transformers/perf_train_gpu_one#tf32) documentation. This is an
392
- experimental API and it may change.
393
- ddp_backend (`str`, *optional*):
394
- The backend to use for distributed training. Must be one of `"nccl"`, `"mpi"`, `"ccl"`, `"gloo"`, `"hccl"`.
568
+
569
+ > Hardware Configuration
570
+
571
+ use_cpu (`bool`, *optional*, defaults to `False`):
572
+ Whether or not to use cpu. If set to False, we will use the available torch device/backend.
573
+
574
+ > Accelerate Configuration
575
+
576
+ accelerator_config (`str`, `dict`, or `AcceleratorConfig`, *optional*):
577
+ Configuration for the internal Accelerate integration. Can be:
578
+ - Path to JSON config file: `"accelerator_config.json"`
579
+ - Dictionary with config options
580
+ - `AcceleratorConfig` instance
581
+ Key options:
582
+ - `split_batches` (`bool`, defaults to `False`): Whether to split batches across devices.
583
+ If `True`, actual batch size is the same on all devices (total must be divisible by
584
+ num_processes). If `False`, each device gets the specified batch size.
585
+ - `dispatch_batches` (`bool`): If `True`, only main process iterates through dataloader
586
+ and dispatches batches to devices. Defaults to `True` for `IterableDataset`, `False`
587
+ otherwise.
588
+ - `even_batches` (`bool`, defaults to `True`): Duplicate samples from dataset start to
589
+ ensure all workers get equal batch sizes.
590
+ - `use_seedable_sampler` (`bool`, defaults to `True`): Use fully seedable random sampler
591
+ for reproducibility.
592
+ - `use_configured_state` (`bool`, defaults to `False`): Use pre-initialized
593
+ `AcceleratorState`/`PartialState` instead of creating new one. May cause issues with
594
+ hyperparameter tuning.
595
+
596
+ parallelism_config (`ParallelismConfig`, *optional*):
597
+ Parallelism configuration for the training run. Requires Accelerate `1.10.1`
598
+
599
+ > Dataloader
600
+
395
601
  dataloader_drop_last (`bool`, *optional*, defaults to `False`):
396
602
  Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
397
603
  or not.
398
- eval_steps (`int` or `float`, *optional*):
399
- Number of update steps between two evaluations if `eval_strategy="steps"`. Will default to the same
400
- value as `logging_steps` if not set. Should be an integer or a float in range `[0,1)`. If smaller than 1,
401
- will be interpreted as ratio of total training steps.
402
604
  dataloader_num_workers (`int`, *optional*, defaults to 0):
403
605
  Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
404
606
  main process.
405
- run_name (`str`, *optional*):
406
- A descriptor for the run. Typically used for [trackio](https://github.com/gradio-app/trackio),
407
- [wandb](https://www.wandb.com/), [mlflow](https://www.mlflow.org/), [comet](https://www.comet.com/site) and
408
- [swanlab](https://swanlab.cn) logging.
409
- disable_tqdm (`bool`, *optional*):
410
- Whether or not to disable the tqdm progress bars and table of metrics produced by
411
- [`~notebook.NotebookTrainingTracker`] in Jupyter Notebooks. Will default to `True` if the logging level is
412
- set to warn or lower (default), `False` otherwise.
607
+ dataloader_pin_memory (`bool`, *optional*, defaults to `True`):
608
+ Whether you want to pin memory in data loaders or not. Will default to `True`.
609
+ dataloader_persistent_workers (`bool`, *optional*, defaults to `False`):
610
+ If True, the data loader will not shut down the worker processes after a dataset has been consumed once.
611
+ This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will
612
+ increase RAM usage. Will default to `False`.
613
+ dataloader_prefetch_factor (`int`, *optional*):
614
+ Number of batches loaded in advance by each worker.
615
+ 2 means there will be a total of 2 * num_workers batches prefetched across all workers.
413
616
  remove_unused_columns (`bool`, *optional*, defaults to `True`):
414
617
  Whether or not to automatically remove the columns unused by the model forward method.
415
618
  label_names (`list[str]`, *optional*):
416
619
  The list of keys in your dictionary of inputs that correspond to the labels.
417
-
418
620
  Will eventually default to the list of argument names accepted by the model that contain the word "label",
419
621
  except if the model used is one of the `XxxForQuestionAnswering` in which case it will also include the
420
622
  `["start_positions", "end_positions"]` keys.
421
-
422
623
  You should only specify `label_names` if you're using custom label names or if your model's `forward` consumes multiple label tensors (e.g., extractive QA).
423
- load_best_model_at_end (`bool`, *optional*, defaults to `False`):
424
- Whether or not to load the best model found during training at the end of training. When this option is
425
- enabled, the best checkpoint will always be saved. See
426
- [`save_total_limit`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.save_total_limit)
427
- for more.
428
-
429
- <Tip>
430
-
431
- When set to `True`, the parameters `save_strategy` needs to be the same as `eval_strategy`, and in
432
- the case it is "steps", `save_steps` must be a round multiple of `eval_steps`.
624
+ group_by_length (`bool`, *optional*, defaults to `False`):
625
+ Whether or not to group together samples of roughly the same length in the training dataset (to minimize
626
+ padding applied and be more efficient). Only useful if applying dynamic padding.
627
+ length_column_name (`str`, *optional*, defaults to `"length"`):
628
+ Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
629
+ than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an
630
+ instance of `Dataset`.
433
631
 
434
- </Tip>
632
+ > DDP (DistributedDataParallel)
435
633
 
436
- metric_for_best_model (`str`, *optional*):
437
- Use in conjunction with `load_best_model_at_end` to specify the metric to use to compare two different
438
- models. Must be the name of a metric returned by the evaluation with or without the prefix `"eval_"`.
439
-
440
- If not specified, this will default to `"loss"` when either `load_best_model_at_end == True`
441
- or `lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU` (to use the evaluation loss).
634
+ ddp_find_unused_parameters (`bool`, *optional*):
635
+ When using distributed training, the value of the flag `find_unused_parameters` passed to
636
+ `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
637
+ ddp_bucket_cap_mb (`int`, *optional*):
638
+ When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`.
639
+ ddp_broadcast_buffers (`bool`, *optional*):
640
+ When using distributed training, the value of the flag `broadcast_buffers` passed to
641
+ `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
642
+ ddp_backend (`str`, *optional*):
643
+ The backend to use for distributed training. Must be one of `"nccl"`, `"mpi"`, `"xccl"`, `"gloo"`, `"hccl"`.
644
+ ddp_timeout (`int`, *optional*, defaults to 1800):
645
+ The timeout for `torch.distributed.init_process_group` calls, used to avoid GPU socket timeouts when
646
+ performing slow operations in distributed runnings. Please refer to the [PyTorch documentation](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
647
+ information.
442
648
 
443
- If you set this value, `greater_is_better` will default to `True` unless the name ends with "loss".
444
- Don't forget to set it to `False` if your metric is better when lower.
445
- greater_is_better (`bool`, *optional*):
446
- Use in conjunction with `load_best_model_at_end` and `metric_for_best_model` to specify if better models
447
- should have a greater metric or not. Will default to:
649
+ > FSDP (Fully Sharded Data Parallel)
448
650
 
449
- - `True` if `metric_for_best_model` is set to a value that doesn't end in `"loss"`.
450
- - `False` if `metric_for_best_model` is not set, or set to a value that ends in `"loss"`.
451
- ignore_data_skip (`bool`, *optional*, defaults to `False`):
452
- When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
453
- stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step
454
- can take a long time) but will not yield the same results as the interrupted training would have.
455
651
  fsdp (`bool`, `str` or list of [`~trainer_utils.FSDPOption`], *optional*, defaults to `None`):
456
- Use PyTorch Distributed Parallel Training (in distributed training only).
457
-
458
- A list of options along the following:
459
-
460
- - `"full_shard"`: Shard parameters, gradients and optimizer states.
461
- - `"shard_grad_op"`: Shard optimizer states and gradients.
462
- - `"hybrid_shard"`: Apply `FULL_SHARD` within a node, and replicate parameters across nodes.
463
- - `"hybrid_shard_zero2"`: Apply `SHARD_GRAD_OP` within a node, and replicate parameters across nodes.
464
- - `"offload"`: Offload parameters and gradients to CPUs (only compatible with `"full_shard"` and
465
- `"shard_grad_op"`).
466
- - `"auto_wrap"`: Automatically recursively wrap layers with FSDP using `default_auto_wrap_policy`.
652
+ Enable PyTorch Fully Sharded Data Parallel (FSDP) for distributed training. Options:
653
+ - `"full_shard"`: Shard parameters, gradients, and optimizer states (most memory efficient)
654
+ - `"shard_grad_op"`: Shard only optimizer states and gradients (ZeRO-2)
655
+ - `"hybrid_shard"`: Full shard within nodes, replicate across nodes
656
+ - `"hybrid_shard_zero2"`: Shard gradients/optimizer within nodes, replicate across nodes
657
+ - `"offload"`: Offload parameters and gradients to CPU (only with `"full_shard"` or
658
+ `"shard_grad_op"`)
659
+ - `"auto_wrap"`: Automatically wrap layers using `default_auto_wrap_policy`
467
660
  fsdp_config (`str` or `dict`, *optional*):
468
661
  Config to be used with fsdp (Pytorch Distributed Parallel Training). The value is either a location of
469
662
  fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`.
@@ -524,247 +717,48 @@ class TrainingArguments:
524
717
  Will use gradient checkpointing over each nested XLA FSDP wrapped layer. This setting can only be
525
718
  used when the xla flag is set to true, and an auto wrapping policy is specified through
526
719
  fsdp_min_num_params or fsdp_transformer_layer_cls_to_wrap.
720
+
721
+ > DeepSpeed
722
+
527
723
  deepspeed (`str` or `dict`, *optional*):
528
- Use [Deepspeed](https://github.com/deepspeedai/DeepSpeed). This is an experimental feature and its API may
529
- evolve in the future. The value is either the location of DeepSpeed json config file (e.g.,
530
- `ds_config.json`) or an already loaded json file as a `dict`"
724
+ Enable [DeepSpeed](https://github.com/deepspeedai/DeepSpeed) integration. Value is either:
725
+ - Path to DeepSpeed JSON config file: `"ds_config.json"`
726
+ - Loaded config as dictionary
727
+ > [!TIP]
728
+ > If using ZeRO initialization, instantiate your model *after* initializing
729
+ `TrainingArguments`, otherwise ZeRO won't be applied.
531
730
 
532
- <Tip warning={true}>
533
- If enabling any Zero-init, make sure that your model is not initialized until
534
- *after* initializing the `TrainingArguments`, else it will not be applied.
535
- </Tip>
731
+ > Debugging & Profiling (Experimental)
536
732
 
537
- accelerator_config (`str`, `dict`, or `AcceleratorConfig`, *optional*):
538
- Config to be used with the internal `Accelerator` implementation. The value is either a location of
539
- accelerator json config file (e.g., `accelerator_config.json`), an already loaded json file as `dict`,
540
- or an instance of [`~trainer_pt_utils.AcceleratorConfig`].
541
-
542
- A list of config and its options:
543
- - split_batches (`bool`, *optional*, defaults to `False`):
544
- Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If
545
- `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a
546
- round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set
547
- in your script multiplied by the number of processes.
548
- - dispatch_batches (`bool`, *optional*):
549
- If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process
550
- and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose
551
- underlying dataset is an `IterableDataset`, `False` otherwise.
552
- - even_batches (`bool`, *optional*, defaults to `True`):
553
- If set to `True`, in cases where the total batch size across all processes does not exactly divide the
554
- dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
555
- all workers.
556
- - use_seedable_sampler (`bool`, *optional*, defaults to `True`):
557
- Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`]). Ensures
558
- training results are fully reproducible using a different sampling technique. While seed-to-seed results
559
- may differ, on average the differences are negligible when using multiple different seeds to compare. Should
560
- also be ran with [`~utils.set_seed`] for the best results.
561
- - use_configured_state (`bool`, *optional*, defaults to `False`):
562
- Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined before calling `TrainingArguments`.
563
- If `True`, an `Accelerator` or `PartialState` must be initialized. Note that by doing so, this could lead to issues
564
- with hyperparameter tuning.
565
- parallelism_config (`ParallelismConfig`, *optional*):
566
- Parallelism configuration for the training run. Requires Accelerate `1.10.1`
567
- label_smoothing_factor (`float`, *optional*, defaults to 0.0):
568
- The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
569
- labels are changed from 0s and 1s to `label_smoothing_factor/num_labels` and `1 - label_smoothing_factor +
570
- label_smoothing_factor/num_labels` respectively.
571
733
  debug (`str` or list of [`~debug_utils.DebugOption`], *optional*, defaults to `""`):
572
734
  Enable one or more debug features. This is an experimental feature.
573
-
574
735
  Possible options are:
575
-
576
- - `"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that led to
736
+ - "underflow_overflow": detects overflow in model's input/outputs and reports the last frames that led to
577
737
  the event
578
- - `"tpu_metrics_debug"`: print debug metrics on TPU
579
-
580
- The options should be separated by whitespaces.
581
- optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"` (for torch>=2.8 `"adamw_torch_fused"`)):
582
- The optimizer to use, such as "adamw_torch", "adamw_torch_fused", "adamw_anyprecision",
583
- "adafactor". See `OptimizerNames` in [training_args.py](https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py)
584
- for a full list of optimizers.
585
- optim_args (`str`, *optional*):
586
- Optional arguments that are supplied to optimizers such as AnyPrecisionAdamW, AdEMAMix, and GaLore.
587
- group_by_length (`bool`, *optional*, defaults to `False`):
588
- Whether or not to group together samples of roughly the same length in the training dataset (to minimize
589
- padding applied and be more efficient). Only useful if applying dynamic padding.
590
- length_column_name (`str`, *optional*, defaults to `"length"`):
591
- Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
592
- than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an
593
- instance of `Dataset`.
594
- report_to (`str` or `list[str]`, *optional*, defaults to `"none"`):
595
- The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,
596
- `"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"swanlab"`,
597
- `"tensorboard"`, `"trackio"` and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"`
598
- for no integrations.
599
- project (`str`, *optional*, defaults to `"huggingface"`):
600
- The name of the project to use for logging. Currently, only used by Trackio.
601
- trackio_space_id (`str` or `None`, *optional*, defaults to `"trackio"`):
602
- The Hugging Face Space ID to deploy to when using Trackio. Should be a complete Space name like
603
- `'username/reponame'` or `'orgname/reponame' `, or just `'reponame'` in which case the Space will be
604
- created in the currently-logged-in Hugging Face user's namespace. If `None`, will log to a local directory.
605
- Note that this Space will be public unless you set `hub_private_repo=True` or your organization's default
606
- is to create private Spaces."
607
- ddp_find_unused_parameters (`bool`, *optional*):
608
- When using distributed training, the value of the flag `find_unused_parameters` passed to
609
- `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
610
- ddp_bucket_cap_mb (`int`, *optional*):
611
- When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`.
612
- ddp_broadcast_buffers (`bool`, *optional*):
613
- When using distributed training, the value of the flag `broadcast_buffers` passed to
614
- `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
615
- dataloader_pin_memory (`bool`, *optional*, defaults to `True`):
616
- Whether you want to pin memory in data loaders or not. Will default to `True`.
617
- dataloader_persistent_workers (`bool`, *optional*, defaults to `False`):
618
- If True, the data loader will not shut down the worker processes after a dataset has been consumed once.
619
- This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will
620
- increase RAM usage. Will default to `False`.
621
- dataloader_prefetch_factor (`int`, *optional*):
622
- Number of batches loaded in advance by each worker.
623
- 2 means there will be a total of 2 * num_workers batches prefetched across all workers.
738
+ - "tpu_metrics_debug": print debug metrics on TPU
624
739
  skip_memory_metrics (`bool`, *optional*, defaults to `True`):
625
740
  Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
626
741
  down the training and evaluation speed.
627
- push_to_hub (`bool`, *optional*, defaults to `False`):
628
- Whether or not to push the model to the Hub every time the model is saved. If this is activated,
629
- `output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content
630
- will be pushed each time a save is triggered (depending on your `save_strategy`). Calling
631
- [`~Trainer.save_model`] will also trigger a push.
632
-
633
- <Tip warning={true}>
634
742
 
635
- If `output_dir` exists, it needs to be a local clone of the repository to which the [`Trainer`] will be
636
- pushed.
637
-
638
- </Tip>
743
+ > External Script Flags (not used by Trainer)
639
744
 
745
+ do_train (`bool`, *optional*, defaults to `False`):
746
+ Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
747
+ by your training/evaluation scripts instead. See the [example
748
+ scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
749
+ do_eval (`bool`, *optional*):
750
+ Whether to run evaluation on the validation set or not. Will be set to `True` if `eval_strategy` is
751
+ different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
752
+ training/evaluation scripts instead. See the [example
753
+ scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
754
+ do_predict (`bool`, *optional*, defaults to `False`):
755
+ Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
756
+ intended to be used by your training/evaluation scripts instead. See the [example
757
+ scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
640
758
  resume_from_checkpoint (`str`, *optional*):
641
759
  The path to a folder with a valid checkpoint for your model. This argument is not directly used by
642
760
  [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example
643
761
  scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
644
- hub_model_id (`str`, *optional*):
645
- The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in
646
- which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
647
- for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
648
- `"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the
649
- name of `output_dir`.
650
-
651
- Will default to the name of `output_dir`.
652
- hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`):
653
- Defines the scope of what is pushed to the Hub and when. Possible values are:
654
-
655
- - `"end"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and a
656
- draft of a model card when the [`~Trainer.save_model`] method is called.
657
- - `"every_save"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and
658
- a draft of a model card each time there is a model save. The pushes are asynchronous to not block
659
- training, and in case the save are very frequent, a new push is only attempted if the previous one is
660
- finished. A last push is made with the final model at the end of training.
661
- - `"checkpoint"`: like `"every_save"` but the latest checkpoint is also pushed in a subfolder named
662
- last-checkpoint, allowing you to resume training easily with
663
- `trainer.train(resume_from_checkpoint="last-checkpoint")`.
664
- - `"all_checkpoints"`: like `"checkpoint"` but all checkpoints are pushed like they appear in the output
665
- folder (so you will get one checkpoint folder per folder in your final repository)
666
-
667
- hub_token (`str`, *optional*):
668
- The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
669
- `hf auth login`.
670
- hub_private_repo (`bool`, *optional*):
671
- Whether to make the repo private. If `None` (default), the repo will be public unless the organization's
672
- default is private. This value is ignored if the repo already exists. If reporting to Trackio with
673
- deployment to Hugging Face Spaces enabled, the same logic determines whether the Space is private.
674
- hub_always_push (`bool`, *optional*, defaults to `False`):
675
- Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished.
676
- hub_revision (`str`, *optional*):
677
- The revision to use when pushing to the Hub. Can be a branch name, a tag, or a commit hash.
678
- gradient_checkpointing (`bool`, *optional*, defaults to `False`):
679
- If True, use gradient checkpointing to save memory at the expense of slower backward pass.
680
- gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`):
681
- Key word arguments to be passed to the `gradient_checkpointing_enable` method.
682
- include_for_metrics (`list[str]`, *optional*, defaults to `[]`):
683
- Include additional data in the `compute_metrics` function if needed for metrics computation.
684
- Possible options to add to `include_for_metrics` list:
685
- - `"inputs"`: Input data passed to the model, intended for calculating input dependent metrics.
686
- - `"loss"`: Loss values computed during evaluation, intended for calculating loss dependent metrics.
687
- eval_do_concat_batches (`bool`, *optional*, defaults to `True`):
688
- Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`,
689
- will instead store them as lists, with each batch kept separate.
690
- auto_find_batch_size (`bool`, *optional*, defaults to `False`)
691
- Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding
692
- CUDA Out-of-Memory errors. Requires accelerate to be installed (`pip install accelerate`)
693
- full_determinism (`bool`, *optional*, defaults to `False`)
694
- If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in
695
- distributed training. Important: this will negatively impact the performance, so only use it for debugging.
696
- ddp_timeout (`int`, *optional*, defaults to 1800):
697
- The timeout for `torch.distributed.init_process_group` calls, used to avoid GPU socket timeouts when
698
- performing slow operations in distributed runnings. Please refer the [PyTorch documentation]
699
- (https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
700
- information.
701
- torch_compile (`bool`, *optional*, defaults to `False`):
702
- Whether or not to compile the model using PyTorch 2.0
703
- [`torch.compile`](https://pytorch.org/get-started/pytorch-2.0/).
704
-
705
- This will use the best defaults for the [`torch.compile`
706
- API](https://pytorch.org/docs/stable/generated/torch.compile.html?highlight=torch+compile#torch.compile).
707
- You can customize the defaults with the argument `torch_compile_backend` and `torch_compile_mode` but we
708
- don't guarantee any of them will work as the support is progressively rolled in in PyTorch.
709
-
710
- This flag and the whole compile API is experimental and subject to change in future releases.
711
- torch_compile_backend (`str`, *optional*):
712
- The backend to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`.
713
-
714
- Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions.
715
-
716
- This flag is experimental and subject to change in future releases.
717
- torch_compile_mode (`str`, *optional*):
718
- The mode to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`.
719
-
720
- Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions.
721
-
722
- This flag is experimental and subject to change in future releases.
723
- include_num_input_tokens_seen (`Optional[Union[str, bool]]`, *optional*, defaults to "no"):
724
- Whether to track the number of input tokens seen. Must be one of ["all", "non_padding", "no"] or a boolean value which map to "all" or "no".
725
- May be slower in distributed training as gather operations must be called.
726
-
727
- neftune_noise_alpha (`Optional[float]`):
728
- If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance
729
- for instruction fine-tuning. Check out the [original paper](https://huggingface.co/papers/2310.05914) and the
730
- [original code](https://github.com/neelsjain/NEFTune). Support transformers `PreTrainedModel` and also
731
- `PeftModel` from peft. The original paper used values in the range [5.0, 15.0].
732
- optim_target_modules (`Union[str, list[str]]`, *optional*):
733
- The target modules to optimize, i.e. the module names that you would like to train.
734
- Currently used for the GaLore algorithm (https://huggingface.co/papers/2403.03507) and APOLLO algorithm (https://huggingface.co/papers/2412.05270).
735
- See GaLore implementation (https://github.com/jiaweizzhao/GaLore) and APOLLO implementation (https://github.com/zhuhanqing/APOLLO) for more details.
736
- You need to make sure to pass a valid GaLore or APOLLO optimizer, e.g., one of: "apollo_adamw", "galore_adamw", "galore_adamw_8bit", "galore_adafactor" and make sure that the target modules are `nn.Linear` modules only.
737
-
738
- batch_eval_metrics (`bool`, *optional*, defaults to `False`):
739
- If set to `True`, evaluation will call compute_metrics at the end of each batch to accumulate statistics
740
- rather than saving all eval logits in memory. When set to `True`, you must pass a compute_metrics function
741
- that takes a boolean argument `compute_result`, which when passed `True`, will trigger the final global
742
- summary statistics from the batch-level summary statistics you've accumulated over the evaluation set.
743
-
744
- eval_on_start (`bool`, *optional*, defaults to `False`):
745
- Whether to perform a evaluation step (sanity check) before the training to ensure the validation steps works correctly.
746
-
747
- eval_use_gather_object (`bool`, *optional*, defaults to `False`):
748
- Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices. This should only be enabled if users are not just returning tensors, and this is actively discouraged by PyTorch.
749
-
750
- use_liger_kernel (`bool`, *optional*, defaults to `False`):
751
- Whether enable [Liger](https://github.com/linkedin/Liger-Kernel) Kernel for LLM model training.
752
- It can effectively increase multi-GPU training throughput by ~20% and reduces memory usage by ~60%, works out of the box with
753
- flash attention, PyTorch FSDP, and Microsoft DeepSpeed. Currently, it supports llama, mistral, mixtral and gemma models.
754
-
755
- liger_kernel_config (`Optional[dict]`, *optional*):
756
- Configuration to be used for Liger Kernel. When use_liger_kernel=True, this dict is passed as keyword arguments to the
757
- `_apply_liger_kernel_to_instance` function, which specifies which kernels to apply. Available options vary by model but typically
758
- include: 'rope', 'swiglu', 'cross_entropy', 'fused_linear_cross_entropy', 'rms_norm', etc. If `None`, use the default kernel configurations.
759
-
760
- average_tokens_across_devices (`bool`, *optional*, defaults to `True`):
761
- Whether or not to average tokens across devices. If enabled, will use all_reduce to synchronize
762
- num_tokens_in_batch for precise loss calculation. Reference:
763
- https://github.com/huggingface/transformers/issues/34242
764
-
765
- use_cache (`bool`, *optional*, defaults to `False`):
766
- Whether or not to enable cache for the model. For training, this is usually not needed apart from some PEFT methods that uses `past_key_values`.
767
-
768
762
  """
769
763
 
770
764
  # Sometimes users will pass in a `str` repr of a dict in the CLI
@@ -1037,7 +1031,7 @@ class TrainingArguments:
1037
1031
  default=None,
1038
1032
  metadata={
1039
1033
  "help": "The backend to be used for distributed training",
1040
- "choices": ["nccl", "gloo", "mpi", "ccl", "hccl", "cncl", "mccl"],
1034
+ "choices": ["nccl", "gloo", "mpi", "xccl", "hccl", "cncl", "mccl"],
1041
1035
  },
1042
1036
  )
1043
1037
  debug: str | list[DebugOption] = field(
@@ -1432,15 +1426,15 @@ class TrainingArguments:
1432
1426
  )
1433
1427
 
1434
1428
  # Parse in args that could be `dict` sent in from the CLI as a string
1435
- for field in self._VALID_DICT_FIELDS:
1436
- passed_value = getattr(self, field)
1429
+ for valid_field in self._VALID_DICT_FIELDS:
1430
+ passed_value = getattr(self, valid_field)
1437
1431
  # We only want to do this if the str starts with a bracket to indicate a `dict`
1438
1432
  # else its likely a filename if supported
1439
1433
  if isinstance(passed_value, str) and passed_value.startswith("{"):
1440
1434
  loaded_dict = json.loads(passed_value)
1441
1435
  # Convert str values to types if applicable
1442
1436
  loaded_dict = _convert_str_dict(loaded_dict)
1443
- setattr(self, field, loaded_dict)
1437
+ setattr(self, valid_field, loaded_dict)
1444
1438
 
1445
1439
  # expand paths, if not os.makedirs("~/bar") will make directory
1446
1440
  # in the current directory instead of the actual home