transformers 5.0.0rc2__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +11 -37
- transformers/activations.py +2 -2
- transformers/audio_utils.py +32 -32
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +26 -126
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +13 -10
- transformers/cli/transformers.py +2 -1
- transformers/configuration_utils.py +22 -92
- transformers/conversion_mapping.py +150 -26
- transformers/convert_slow_tokenizer.py +9 -12
- transformers/core_model_loading.py +217 -129
- transformers/data/processors/glue.py +0 -1
- transformers/data/processors/utils.py +0 -1
- transformers/data/processors/xnli.py +0 -1
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +10 -11
- transformers/distributed/configuration_utils.py +1 -2
- transformers/dynamic_module_utils.py +23 -23
- transformers/feature_extraction_sequence_utils.py +19 -23
- transformers/feature_extraction_utils.py +14 -14
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +2 -4
- transformers/generation/configuration_utils.py +54 -39
- transformers/generation/continuous_batching/__init__.py +0 -1
- transformers/generation/continuous_batching/cache.py +74 -44
- transformers/generation/continuous_batching/cache_manager.py +28 -28
- transformers/generation/continuous_batching/continuous_api.py +133 -414
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +77 -19
- transformers/generation/continuous_batching/scheduler.py +154 -104
- transformers/generation/logits_process.py +10 -133
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/streamers.py +0 -1
- transformers/generation/utils.py +91 -121
- transformers/generation/watermarking.py +2 -3
- transformers/hf_argparser.py +9 -13
- transformers/hyperparameter_search.py +1 -2
- transformers/image_processing_base.py +9 -9
- transformers/image_processing_utils.py +11 -15
- transformers/image_processing_utils_fast.py +70 -71
- transformers/image_transforms.py +73 -42
- transformers/image_utils.py +30 -37
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/awq.py +1 -3
- transformers/integrations/deepspeed.py +146 -4
- transformers/integrations/eetq.py +0 -1
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/fbgemm_fp8.py +1 -2
- transformers/integrations/finegrained_fp8.py +149 -13
- transformers/integrations/flash_attention.py +3 -8
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +4 -6
- transformers/integrations/ggml.py +0 -1
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/integration_utils.py +2 -3
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +52 -40
- transformers/integrations/peft.py +488 -176
- transformers/integrations/quark.py +2 -4
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/integrations/torchao.py +4 -6
- transformers/loss/loss_lw_detr.py +356 -0
- transformers/loss/loss_utils.py +2 -0
- transformers/masking_utils.py +199 -59
- transformers/model_debugging_utils.py +4 -5
- transformers/modelcard.py +14 -192
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +28 -29
- transformers/modeling_gguf_pytorch_utils.py +5 -5
- transformers/modeling_layers.py +21 -22
- transformers/modeling_outputs.py +242 -253
- transformers/modeling_rope_utils.py +32 -32
- transformers/modeling_utils.py +416 -438
- transformers/models/__init__.py +10 -0
- transformers/models/afmoe/configuration_afmoe.py +40 -33
- transformers/models/afmoe/modeling_afmoe.py +38 -41
- transformers/models/afmoe/modular_afmoe.py +23 -25
- transformers/models/aimv2/configuration_aimv2.py +2 -10
- transformers/models/aimv2/modeling_aimv2.py +46 -45
- transformers/models/aimv2/modular_aimv2.py +13 -19
- transformers/models/albert/configuration_albert.py +8 -2
- transformers/models/albert/modeling_albert.py +70 -72
- transformers/models/albert/tokenization_albert.py +1 -4
- transformers/models/align/configuration_align.py +8 -6
- transformers/models/align/modeling_align.py +83 -86
- transformers/models/align/processing_align.py +2 -30
- transformers/models/altclip/configuration_altclip.py +4 -7
- transformers/models/altclip/modeling_altclip.py +106 -103
- transformers/models/altclip/processing_altclip.py +2 -15
- transformers/models/apertus/__init__.py +0 -1
- transformers/models/apertus/configuration_apertus.py +23 -28
- transformers/models/apertus/modeling_apertus.py +35 -38
- transformers/models/apertus/modular_apertus.py +36 -40
- transformers/models/arcee/configuration_arcee.py +25 -30
- transformers/models/arcee/modeling_arcee.py +35 -38
- transformers/models/arcee/modular_arcee.py +20 -23
- transformers/models/aria/configuration_aria.py +31 -44
- transformers/models/aria/image_processing_aria.py +25 -27
- transformers/models/aria/modeling_aria.py +102 -102
- transformers/models/aria/modular_aria.py +111 -124
- transformers/models/aria/processing_aria.py +28 -35
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +9 -11
- transformers/models/audioflamingo3/__init__.py +0 -1
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +60 -52
- transformers/models/audioflamingo3/modular_audioflamingo3.py +52 -43
- transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
- transformers/models/auto/auto_factory.py +12 -11
- transformers/models/auto/configuration_auto.py +48 -5
- transformers/models/auto/feature_extraction_auto.py +5 -7
- transformers/models/auto/image_processing_auto.py +30 -39
- transformers/models/auto/modeling_auto.py +33 -199
- transformers/models/auto/processing_auto.py +11 -19
- transformers/models/auto/tokenization_auto.py +38 -37
- transformers/models/auto/video_processing_auto.py +7 -8
- transformers/models/autoformer/configuration_autoformer.py +4 -7
- transformers/models/autoformer/modeling_autoformer.py +100 -101
- transformers/models/aya_vision/configuration_aya_vision.py +4 -1
- transformers/models/aya_vision/modeling_aya_vision.py +64 -99
- transformers/models/aya_vision/modular_aya_vision.py +46 -74
- transformers/models/aya_vision/processing_aya_vision.py +25 -53
- transformers/models/bamba/configuration_bamba.py +46 -39
- transformers/models/bamba/modeling_bamba.py +83 -119
- transformers/models/bamba/modular_bamba.py +70 -109
- transformers/models/bark/configuration_bark.py +6 -8
- transformers/models/bark/generation_configuration_bark.py +3 -5
- transformers/models/bark/modeling_bark.py +64 -65
- transformers/models/bark/processing_bark.py +19 -41
- transformers/models/bart/configuration_bart.py +9 -5
- transformers/models/bart/modeling_bart.py +124 -129
- transformers/models/barthez/tokenization_barthez.py +1 -4
- transformers/models/bartpho/tokenization_bartpho.py +6 -7
- transformers/models/beit/configuration_beit.py +2 -15
- transformers/models/beit/image_processing_beit.py +53 -56
- transformers/models/beit/image_processing_beit_fast.py +11 -12
- transformers/models/beit/modeling_beit.py +65 -62
- transformers/models/bert/configuration_bert.py +12 -2
- transformers/models/bert/modeling_bert.py +117 -152
- transformers/models/bert/tokenization_bert.py +2 -4
- transformers/models/bert/tokenization_bert_legacy.py +3 -5
- transformers/models/bert_generation/configuration_bert_generation.py +17 -2
- transformers/models/bert_generation/modeling_bert_generation.py +53 -55
- transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
- transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
- transformers/models/bertweet/tokenization_bertweet.py +1 -3
- transformers/models/big_bird/configuration_big_bird.py +12 -9
- transformers/models/big_bird/modeling_big_bird.py +107 -124
- transformers/models/big_bird/tokenization_big_bird.py +1 -4
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +118 -118
- transformers/models/biogpt/configuration_biogpt.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +73 -79
- transformers/models/biogpt/modular_biogpt.py +60 -66
- transformers/models/biogpt/tokenization_biogpt.py +3 -5
- transformers/models/bit/configuration_bit.py +2 -5
- transformers/models/bit/image_processing_bit.py +21 -24
- transformers/models/bit/image_processing_bit_fast.py +0 -1
- transformers/models/bit/modeling_bit.py +15 -16
- transformers/models/bitnet/configuration_bitnet.py +23 -28
- transformers/models/bitnet/modeling_bitnet.py +34 -38
- transformers/models/bitnet/modular_bitnet.py +7 -10
- transformers/models/blenderbot/configuration_blenderbot.py +8 -5
- transformers/models/blenderbot/modeling_blenderbot.py +68 -99
- transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -5
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +70 -72
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
- transformers/models/blip/configuration_blip.py +9 -10
- transformers/models/blip/image_processing_blip.py +17 -20
- transformers/models/blip/image_processing_blip_fast.py +0 -1
- transformers/models/blip/modeling_blip.py +115 -108
- transformers/models/blip/modeling_blip_text.py +63 -65
- transformers/models/blip/processing_blip.py +5 -36
- transformers/models/blip_2/configuration_blip_2.py +2 -2
- transformers/models/blip_2/modeling_blip_2.py +145 -121
- transformers/models/blip_2/processing_blip_2.py +8 -38
- transformers/models/bloom/configuration_bloom.py +5 -2
- transformers/models/bloom/modeling_bloom.py +60 -60
- transformers/models/blt/configuration_blt.py +94 -86
- transformers/models/blt/modeling_blt.py +93 -90
- transformers/models/blt/modular_blt.py +127 -69
- transformers/models/bridgetower/configuration_bridgetower.py +7 -2
- transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +13 -14
- transformers/models/bridgetower/modeling_bridgetower.py +136 -124
- transformers/models/bridgetower/processing_bridgetower.py +2 -16
- transformers/models/bros/configuration_bros.py +24 -18
- transformers/models/bros/modeling_bros.py +78 -80
- transformers/models/bros/processing_bros.py +2 -12
- transformers/models/byt5/tokenization_byt5.py +4 -6
- transformers/models/camembert/configuration_camembert.py +8 -2
- transformers/models/camembert/modeling_camembert.py +97 -99
- transformers/models/camembert/modular_camembert.py +51 -54
- transformers/models/camembert/tokenization_camembert.py +1 -4
- transformers/models/canine/configuration_canine.py +4 -2
- transformers/models/canine/modeling_canine.py +73 -75
- transformers/models/canine/tokenization_canine.py +0 -1
- transformers/models/chameleon/configuration_chameleon.py +29 -34
- transformers/models/chameleon/image_processing_chameleon.py +21 -24
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -6
- transformers/models/chameleon/modeling_chameleon.py +135 -92
- transformers/models/chameleon/processing_chameleon.py +16 -41
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -8
- transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +93 -95
- transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
- transformers/models/clap/configuration_clap.py +4 -9
- transformers/models/clap/feature_extraction_clap.py +9 -10
- transformers/models/clap/modeling_clap.py +109 -111
- transformers/models/clap/processing_clap.py +2 -15
- transformers/models/clip/configuration_clip.py +4 -2
- transformers/models/clip/image_processing_clip.py +21 -24
- transformers/models/clip/image_processing_clip_fast.py +9 -1
- transformers/models/clip/modeling_clip.py +70 -68
- transformers/models/clip/processing_clip.py +2 -14
- transformers/models/clip/tokenization_clip.py +2 -5
- transformers/models/clipseg/configuration_clipseg.py +4 -2
- transformers/models/clipseg/modeling_clipseg.py +113 -112
- transformers/models/clipseg/processing_clipseg.py +19 -42
- transformers/models/clvp/configuration_clvp.py +15 -5
- transformers/models/clvp/feature_extraction_clvp.py +7 -10
- transformers/models/clvp/modeling_clvp.py +138 -145
- transformers/models/clvp/number_normalizer.py +1 -2
- transformers/models/clvp/processing_clvp.py +3 -20
- transformers/models/clvp/tokenization_clvp.py +0 -1
- transformers/models/code_llama/tokenization_code_llama.py +3 -6
- transformers/models/codegen/configuration_codegen.py +4 -4
- transformers/models/codegen/modeling_codegen.py +50 -49
- transformers/models/codegen/tokenization_codegen.py +5 -6
- transformers/models/cohere/configuration_cohere.py +25 -30
- transformers/models/cohere/modeling_cohere.py +39 -42
- transformers/models/cohere/modular_cohere.py +27 -31
- transformers/models/cohere/tokenization_cohere.py +5 -6
- transformers/models/cohere2/configuration_cohere2.py +27 -32
- transformers/models/cohere2/modeling_cohere2.py +38 -41
- transformers/models/cohere2/modular_cohere2.py +48 -52
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +9 -10
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +52 -55
- transformers/models/cohere2_vision/modular_cohere2_vision.py +41 -43
- transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
- transformers/models/colpali/configuration_colpali.py +0 -1
- transformers/models/colpali/modeling_colpali.py +14 -16
- transformers/models/colpali/modular_colpali.py +11 -51
- transformers/models/colpali/processing_colpali.py +14 -52
- transformers/models/colqwen2/modeling_colqwen2.py +27 -28
- transformers/models/colqwen2/modular_colqwen2.py +36 -74
- transformers/models/colqwen2/processing_colqwen2.py +16 -52
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -47
- transformers/models/conditional_detr/image_processing_conditional_detr.py +67 -70
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +50 -36
- transformers/models/conditional_detr/modeling_conditional_detr.py +851 -1001
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -5
- transformers/models/convbert/configuration_convbert.py +11 -8
- transformers/models/convbert/modeling_convbert.py +85 -87
- transformers/models/convbert/tokenization_convbert.py +0 -1
- transformers/models/convnext/configuration_convnext.py +2 -5
- transformers/models/convnext/image_processing_convnext.py +18 -21
- transformers/models/convnext/image_processing_convnext_fast.py +7 -8
- transformers/models/convnext/modeling_convnext.py +12 -14
- transformers/models/convnextv2/configuration_convnextv2.py +2 -5
- transformers/models/convnextv2/modeling_convnextv2.py +12 -14
- transformers/models/cpm/tokenization_cpm.py +6 -7
- transformers/models/cpm/tokenization_cpm_fast.py +3 -5
- transformers/models/cpmant/configuration_cpmant.py +4 -1
- transformers/models/cpmant/modeling_cpmant.py +38 -40
- transformers/models/cpmant/tokenization_cpmant.py +1 -3
- transformers/models/csm/configuration_csm.py +58 -66
- transformers/models/csm/generation_csm.py +13 -14
- transformers/models/csm/modeling_csm.py +81 -84
- transformers/models/csm/modular_csm.py +56 -58
- transformers/models/csm/processing_csm.py +25 -68
- transformers/models/ctrl/configuration_ctrl.py +16 -1
- transformers/models/ctrl/modeling_ctrl.py +51 -66
- transformers/models/ctrl/tokenization_ctrl.py +0 -1
- transformers/models/cvt/configuration_cvt.py +0 -1
- transformers/models/cvt/modeling_cvt.py +13 -15
- transformers/models/cwm/__init__.py +0 -1
- transformers/models/cwm/configuration_cwm.py +8 -12
- transformers/models/cwm/modeling_cwm.py +36 -38
- transformers/models/cwm/modular_cwm.py +10 -12
- transformers/models/d_fine/configuration_d_fine.py +10 -57
- transformers/models/d_fine/modeling_d_fine.py +786 -927
- transformers/models/d_fine/modular_d_fine.py +339 -417
- transformers/models/dab_detr/configuration_dab_detr.py +22 -49
- transformers/models/dab_detr/modeling_dab_detr.py +79 -77
- transformers/models/dac/configuration_dac.py +0 -1
- transformers/models/dac/feature_extraction_dac.py +6 -9
- transformers/models/dac/modeling_dac.py +22 -24
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -2
- transformers/models/data2vec/configuration_data2vec_text.py +11 -3
- transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
- transformers/models/data2vec/modeling_data2vec_audio.py +55 -59
- transformers/models/data2vec/modeling_data2vec_text.py +97 -99
- transformers/models/data2vec/modeling_data2vec_vision.py +45 -44
- transformers/models/data2vec/modular_data2vec_audio.py +6 -1
- transformers/models/data2vec/modular_data2vec_text.py +51 -54
- transformers/models/dbrx/configuration_dbrx.py +29 -22
- transformers/models/dbrx/modeling_dbrx.py +45 -48
- transformers/models/dbrx/modular_dbrx.py +37 -39
- transformers/models/deberta/configuration_deberta.py +6 -1
- transformers/models/deberta/modeling_deberta.py +57 -60
- transformers/models/deberta/tokenization_deberta.py +2 -5
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -1
- transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
- transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -2
- transformers/models/decision_transformer/modeling_decision_transformer.py +51 -53
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +41 -47
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -41
- transformers/models/deepseek_v2/modular_deepseek_v2.py +48 -52
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +42 -48
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +38 -40
- transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -10
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +6 -3
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +27 -28
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +12 -11
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -43
- transformers/models/deepseek_vl/modular_deepseek_vl.py +15 -43
- transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +7 -5
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +37 -37
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +22 -22
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +100 -56
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +141 -109
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -46
- transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +42 -28
- transformers/models/deformable_detr/modeling_deformable_detr.py +454 -652
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -5
- transformers/models/deit/configuration_deit.py +0 -1
- transformers/models/deit/image_processing_deit.py +18 -21
- transformers/models/deit/image_processing_deit_fast.py +0 -1
- transformers/models/deit/modeling_deit.py +27 -25
- transformers/models/depth_anything/configuration_depth_anything.py +12 -43
- transformers/models/depth_anything/modeling_depth_anything.py +10 -11
- transformers/models/depth_pro/configuration_depth_pro.py +0 -1
- transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +8 -9
- transformers/models/depth_pro/modeling_depth_pro.py +29 -27
- transformers/models/detr/configuration_detr.py +18 -50
- transformers/models/detr/image_processing_detr.py +64 -66
- transformers/models/detr/image_processing_detr_fast.py +33 -34
- transformers/models/detr/modeling_detr.py +748 -789
- transformers/models/dia/configuration_dia.py +9 -15
- transformers/models/dia/feature_extraction_dia.py +6 -9
- transformers/models/dia/generation_dia.py +48 -53
- transformers/models/dia/modeling_dia.py +68 -71
- transformers/models/dia/modular_dia.py +56 -58
- transformers/models/dia/processing_dia.py +39 -29
- transformers/models/dia/tokenization_dia.py +3 -6
- transformers/models/diffllama/configuration_diffllama.py +25 -30
- transformers/models/diffllama/modeling_diffllama.py +45 -53
- transformers/models/diffllama/modular_diffllama.py +18 -25
- transformers/models/dinat/configuration_dinat.py +2 -5
- transformers/models/dinat/modeling_dinat.py +47 -48
- transformers/models/dinov2/configuration_dinov2.py +2 -5
- transformers/models/dinov2/modeling_dinov2.py +20 -21
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +3 -5
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +21 -21
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +11 -14
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +6 -11
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +5 -9
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +7 -12
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +7 -8
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +19 -22
- transformers/models/dinov3_vit/modular_dinov3_vit.py +16 -19
- transformers/models/distilbert/configuration_distilbert.py +8 -2
- transformers/models/distilbert/modeling_distilbert.py +47 -49
- transformers/models/distilbert/tokenization_distilbert.py +0 -1
- transformers/models/doge/__init__.py +0 -1
- transformers/models/doge/configuration_doge.py +42 -35
- transformers/models/doge/modeling_doge.py +46 -49
- transformers/models/doge/modular_doge.py +77 -68
- transformers/models/donut/configuration_donut_swin.py +0 -1
- transformers/models/donut/image_processing_donut.py +26 -29
- transformers/models/donut/image_processing_donut_fast.py +9 -14
- transformers/models/donut/modeling_donut_swin.py +44 -46
- transformers/models/donut/processing_donut.py +5 -26
- transformers/models/dots1/configuration_dots1.py +43 -36
- transformers/models/dots1/modeling_dots1.py +35 -38
- transformers/models/dots1/modular_dots1.py +0 -1
- transformers/models/dpr/configuration_dpr.py +19 -2
- transformers/models/dpr/modeling_dpr.py +37 -39
- transformers/models/dpr/tokenization_dpr.py +7 -9
- transformers/models/dpr/tokenization_dpr_fast.py +7 -9
- transformers/models/dpt/configuration_dpt.py +23 -66
- transformers/models/dpt/image_processing_dpt.py +65 -66
- transformers/models/dpt/image_processing_dpt_fast.py +18 -19
- transformers/models/dpt/modeling_dpt.py +38 -36
- transformers/models/dpt/modular_dpt.py +14 -15
- transformers/models/edgetam/configuration_edgetam.py +1 -2
- transformers/models/edgetam/modeling_edgetam.py +87 -89
- transformers/models/edgetam/modular_edgetam.py +7 -13
- transformers/models/edgetam_video/__init__.py +0 -1
- transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +126 -128
- transformers/models/edgetam_video/modular_edgetam_video.py +25 -27
- transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
- transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +8 -7
- transformers/models/efficientloftr/modeling_efficientloftr.py +46 -38
- transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
- transformers/models/efficientnet/configuration_efficientnet.py +0 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +16 -17
- transformers/models/efficientnet/modeling_efficientnet.py +12 -14
- transformers/models/electra/configuration_electra.py +13 -3
- transformers/models/electra/modeling_electra.py +107 -109
- transformers/models/emu3/configuration_emu3.py +17 -17
- transformers/models/emu3/image_processing_emu3.py +44 -39
- transformers/models/emu3/modeling_emu3.py +143 -109
- transformers/models/emu3/modular_emu3.py +109 -73
- transformers/models/emu3/processing_emu3.py +18 -43
- transformers/models/encodec/configuration_encodec.py +2 -4
- transformers/models/encodec/feature_extraction_encodec.py +10 -13
- transformers/models/encodec/modeling_encodec.py +25 -29
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -2
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +37 -43
- transformers/models/eomt/configuration_eomt.py +12 -14
- transformers/models/eomt/image_processing_eomt.py +53 -55
- transformers/models/eomt/image_processing_eomt_fast.py +18 -19
- transformers/models/eomt/modeling_eomt.py +19 -21
- transformers/models/eomt/modular_eomt.py +28 -30
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -3
- transformers/models/ernie/modeling_ernie.py +127 -162
- transformers/models/ernie/modular_ernie.py +91 -103
- transformers/models/ernie4_5/configuration_ernie4_5.py +23 -27
- transformers/models/ernie4_5/modeling_ernie4_5.py +35 -37
- transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +34 -39
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +40 -42
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -7
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +305 -267
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +163 -142
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
- transformers/models/esm/configuration_esm.py +11 -15
- transformers/models/esm/modeling_esm.py +35 -37
- transformers/models/esm/modeling_esmfold.py +43 -50
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +1 -2
- transformers/models/esm/openfold_utils/protein.py +15 -16
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +2 -4
- transformers/models/evolla/configuration_evolla.py +50 -40
- transformers/models/evolla/modeling_evolla.py +69 -68
- transformers/models/evolla/modular_evolla.py +50 -48
- transformers/models/evolla/processing_evolla.py +23 -35
- transformers/models/exaone4/configuration_exaone4.py +27 -27
- transformers/models/exaone4/modeling_exaone4.py +36 -39
- transformers/models/exaone4/modular_exaone4.py +51 -50
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +31 -26
- transformers/models/falcon/modeling_falcon.py +76 -84
- transformers/models/falcon_h1/configuration_falcon_h1.py +57 -51
- transformers/models/falcon_h1/modeling_falcon_h1.py +74 -109
- transformers/models/falcon_h1/modular_falcon_h1.py +68 -100
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +64 -73
- transformers/models/falcon_mamba/modular_falcon_mamba.py +14 -13
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +70 -97
- transformers/models/fast_vlm/modular_fast_vlm.py +148 -38
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -6
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
- transformers/models/flaubert/configuration_flaubert.py +10 -5
- transformers/models/flaubert/modeling_flaubert.py +125 -129
- transformers/models/flaubert/tokenization_flaubert.py +3 -5
- transformers/models/flava/configuration_flava.py +9 -9
- transformers/models/flava/image_processing_flava.py +66 -67
- transformers/models/flava/image_processing_flava_fast.py +46 -47
- transformers/models/flava/modeling_flava.py +144 -135
- transformers/models/flava/processing_flava.py +2 -12
- transformers/models/flex_olmo/__init__.py +0 -1
- transformers/models/flex_olmo/configuration_flex_olmo.py +34 -39
- transformers/models/flex_olmo/modeling_flex_olmo.py +41 -43
- transformers/models/flex_olmo/modular_flex_olmo.py +46 -51
- transformers/models/florence2/configuration_florence2.py +4 -1
- transformers/models/florence2/modeling_florence2.py +96 -72
- transformers/models/florence2/modular_florence2.py +100 -107
- transformers/models/florence2/processing_florence2.py +18 -47
- transformers/models/fnet/configuration_fnet.py +6 -2
- transformers/models/fnet/modeling_fnet.py +69 -80
- transformers/models/fnet/tokenization_fnet.py +0 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -5
- transformers/models/focalnet/modeling_focalnet.py +49 -48
- transformers/models/fsmt/configuration_fsmt.py +12 -17
- transformers/models/fsmt/modeling_fsmt.py +47 -48
- transformers/models/fsmt/tokenization_fsmt.py +3 -5
- transformers/models/funnel/configuration_funnel.py +8 -1
- transformers/models/funnel/modeling_funnel.py +91 -93
- transformers/models/funnel/tokenization_funnel.py +2 -5
- transformers/models/fuyu/configuration_fuyu.py +28 -34
- transformers/models/fuyu/image_processing_fuyu.py +29 -31
- transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
- transformers/models/fuyu/modeling_fuyu.py +50 -52
- transformers/models/fuyu/processing_fuyu.py +9 -36
- transformers/models/gemma/configuration_gemma.py +25 -30
- transformers/models/gemma/modeling_gemma.py +36 -38
- transformers/models/gemma/modular_gemma.py +33 -36
- transformers/models/gemma/tokenization_gemma.py +3 -6
- transformers/models/gemma2/configuration_gemma2.py +30 -35
- transformers/models/gemma2/modeling_gemma2.py +38 -41
- transformers/models/gemma2/modular_gemma2.py +63 -67
- transformers/models/gemma3/configuration_gemma3.py +53 -48
- transformers/models/gemma3/image_processing_gemma3.py +29 -31
- transformers/models/gemma3/image_processing_gemma3_fast.py +11 -12
- transformers/models/gemma3/modeling_gemma3.py +123 -122
- transformers/models/gemma3/modular_gemma3.py +128 -125
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +42 -30
- transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
- transformers/models/gemma3n/modeling_gemma3n.py +166 -147
- transformers/models/gemma3n/modular_gemma3n.py +176 -148
- transformers/models/gemma3n/processing_gemma3n.py +12 -26
- transformers/models/git/configuration_git.py +5 -8
- transformers/models/git/modeling_git.py +115 -127
- transformers/models/git/processing_git.py +2 -14
- transformers/models/glm/configuration_glm.py +26 -30
- transformers/models/glm/modeling_glm.py +36 -39
- transformers/models/glm/modular_glm.py +4 -7
- transformers/models/glm4/configuration_glm4.py +26 -30
- transformers/models/glm4/modeling_glm4.py +39 -41
- transformers/models/glm4/modular_glm4.py +8 -10
- transformers/models/glm46v/configuration_glm46v.py +4 -1
- transformers/models/glm46v/image_processing_glm46v.py +40 -38
- transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
- transformers/models/glm46v/modeling_glm46v.py +138 -93
- transformers/models/glm46v/modular_glm46v.py +5 -3
- transformers/models/glm46v/processing_glm46v.py +7 -41
- transformers/models/glm46v/video_processing_glm46v.py +9 -11
- transformers/models/glm4_moe/configuration_glm4_moe.py +42 -35
- transformers/models/glm4_moe/modeling_glm4_moe.py +36 -39
- transformers/models/glm4_moe/modular_glm4_moe.py +43 -36
- transformers/models/glm4_moe_lite/__init__.py +28 -0
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +233 -0
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +302 -0
- transformers/models/glm4v/configuration_glm4v.py +25 -24
- transformers/models/glm4v/image_processing_glm4v.py +39 -38
- transformers/models/glm4v/image_processing_glm4v_fast.py +8 -9
- transformers/models/glm4v/modeling_glm4v.py +249 -210
- transformers/models/glm4v/modular_glm4v.py +211 -230
- transformers/models/glm4v/processing_glm4v.py +7 -41
- transformers/models/glm4v/video_processing_glm4v.py +9 -11
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +136 -127
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +348 -356
- transformers/models/glm4v_moe/modular_glm4v_moe.py +76 -174
- transformers/models/glm_image/__init__.py +31 -0
- transformers/models/glm_image/configuration_glm_image.py +358 -0
- transformers/models/glm_image/image_processing_glm_image.py +503 -0
- transformers/models/glm_image/image_processing_glm_image_fast.py +294 -0
- transformers/models/glm_image/modeling_glm_image.py +1691 -0
- transformers/models/glm_image/modular_glm_image.py +1640 -0
- transformers/models/glm_image/processing_glm_image.py +265 -0
- transformers/models/glm_ocr/__init__.py +28 -0
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/__init__.py +0 -1
- transformers/models/glmasr/configuration_glmasr.py +0 -1
- transformers/models/glmasr/modeling_glmasr.py +51 -46
- transformers/models/glmasr/modular_glmasr.py +39 -29
- transformers/models/glmasr/processing_glmasr.py +7 -8
- transformers/models/glpn/configuration_glpn.py +0 -1
- transformers/models/glpn/image_processing_glpn.py +11 -12
- transformers/models/glpn/image_processing_glpn_fast.py +11 -12
- transformers/models/glpn/modeling_glpn.py +14 -14
- transformers/models/got_ocr2/configuration_got_ocr2.py +10 -13
- transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +9 -10
- transformers/models/got_ocr2/modeling_got_ocr2.py +69 -77
- transformers/models/got_ocr2/modular_got_ocr2.py +60 -52
- transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
- transformers/models/gpt2/configuration_gpt2.py +13 -2
- transformers/models/gpt2/modeling_gpt2.py +111 -113
- transformers/models/gpt2/tokenization_gpt2.py +6 -9
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -2
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +78 -84
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -2
- transformers/models/gpt_neo/modeling_gpt_neo.py +66 -71
- transformers/models/gpt_neox/configuration_gpt_neox.py +27 -25
- transformers/models/gpt_neox/modeling_gpt_neox.py +74 -76
- transformers/models/gpt_neox/modular_gpt_neox.py +68 -70
- transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +24 -19
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +43 -46
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
- transformers/models/gpt_oss/configuration_gpt_oss.py +31 -30
- transformers/models/gpt_oss/modeling_gpt_oss.py +80 -114
- transformers/models/gpt_oss/modular_gpt_oss.py +62 -97
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +4 -5
- transformers/models/gptj/modeling_gptj.py +85 -88
- transformers/models/granite/configuration_granite.py +28 -33
- transformers/models/granite/modeling_granite.py +43 -45
- transformers/models/granite/modular_granite.py +29 -31
- transformers/models/granite_speech/configuration_granite_speech.py +0 -1
- transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
- transformers/models/granite_speech/modeling_granite_speech.py +84 -60
- transformers/models/granite_speech/processing_granite_speech.py +11 -4
- transformers/models/granitemoe/configuration_granitemoe.py +31 -36
- transformers/models/granitemoe/modeling_granitemoe.py +39 -41
- transformers/models/granitemoe/modular_granitemoe.py +21 -23
- transformers/models/granitemoehybrid/__init__.py +0 -1
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +55 -48
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +82 -118
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +57 -65
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +33 -37
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +52 -56
- transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -46
- transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +28 -29
- transformers/models/grounding_dino/modeling_grounding_dino.py +161 -181
- transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
- transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
- transformers/models/groupvit/configuration_groupvit.py +4 -2
- transformers/models/groupvit/modeling_groupvit.py +98 -92
- transformers/models/helium/configuration_helium.py +25 -29
- transformers/models/helium/modeling_helium.py +37 -40
- transformers/models/helium/modular_helium.py +3 -7
- transformers/models/herbert/tokenization_herbert.py +4 -6
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -5
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +12 -14
- transformers/models/hgnet_v2/modular_hgnet_v2.py +13 -17
- transformers/models/hiera/configuration_hiera.py +2 -5
- transformers/models/hiera/modeling_hiera.py +71 -70
- transformers/models/hubert/configuration_hubert.py +4 -2
- transformers/models/hubert/modeling_hubert.py +42 -41
- transformers/models/hubert/modular_hubert.py +8 -11
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +26 -31
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +58 -37
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +31 -11
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +31 -36
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +54 -44
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +27 -15
- transformers/models/ibert/configuration_ibert.py +4 -2
- transformers/models/ibert/modeling_ibert.py +60 -62
- transformers/models/ibert/quant_modules.py +0 -1
- transformers/models/idefics/configuration_idefics.py +5 -8
- transformers/models/idefics/image_processing_idefics.py +13 -15
- transformers/models/idefics/modeling_idefics.py +63 -65
- transformers/models/idefics/perceiver.py +1 -3
- transformers/models/idefics/processing_idefics.py +32 -48
- transformers/models/idefics/vision.py +27 -28
- transformers/models/idefics2/configuration_idefics2.py +1 -3
- transformers/models/idefics2/image_processing_idefics2.py +31 -32
- transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
- transformers/models/idefics2/modeling_idefics2.py +126 -106
- transformers/models/idefics2/processing_idefics2.py +10 -68
- transformers/models/idefics3/configuration_idefics3.py +1 -4
- transformers/models/idefics3/image_processing_idefics3.py +42 -43
- transformers/models/idefics3/image_processing_idefics3_fast.py +40 -15
- transformers/models/idefics3/modeling_idefics3.py +113 -92
- transformers/models/idefics3/processing_idefics3.py +15 -69
- transformers/models/ijepa/configuration_ijepa.py +0 -1
- transformers/models/ijepa/modeling_ijepa.py +13 -14
- transformers/models/ijepa/modular_ijepa.py +5 -7
- transformers/models/imagegpt/configuration_imagegpt.py +9 -2
- transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +10 -11
- transformers/models/imagegpt/modeling_imagegpt.py +65 -62
- transformers/models/informer/configuration_informer.py +6 -9
- transformers/models/informer/modeling_informer.py +87 -89
- transformers/models/informer/modular_informer.py +13 -16
- transformers/models/instructblip/configuration_instructblip.py +2 -2
- transformers/models/instructblip/modeling_instructblip.py +104 -79
- transformers/models/instructblip/processing_instructblip.py +10 -36
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +108 -105
- transformers/models/instructblipvideo/modular_instructblipvideo.py +73 -64
- transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +6 -7
- transformers/models/internvl/configuration_internvl.py +5 -1
- transformers/models/internvl/modeling_internvl.py +76 -98
- transformers/models/internvl/modular_internvl.py +45 -59
- transformers/models/internvl/processing_internvl.py +12 -45
- transformers/models/internvl/video_processing_internvl.py +10 -11
- transformers/models/jais2/configuration_jais2.py +25 -29
- transformers/models/jais2/modeling_jais2.py +36 -38
- transformers/models/jais2/modular_jais2.py +20 -22
- transformers/models/jamba/configuration_jamba.py +5 -8
- transformers/models/jamba/modeling_jamba.py +47 -50
- transformers/models/jamba/modular_jamba.py +40 -41
- transformers/models/janus/configuration_janus.py +0 -1
- transformers/models/janus/image_processing_janus.py +37 -39
- transformers/models/janus/image_processing_janus_fast.py +20 -21
- transformers/models/janus/modeling_janus.py +103 -188
- transformers/models/janus/modular_janus.py +122 -83
- transformers/models/janus/processing_janus.py +17 -43
- transformers/models/jetmoe/configuration_jetmoe.py +26 -27
- transformers/models/jetmoe/modeling_jetmoe.py +42 -45
- transformers/models/jetmoe/modular_jetmoe.py +33 -36
- transformers/models/kosmos2/configuration_kosmos2.py +10 -9
- transformers/models/kosmos2/modeling_kosmos2.py +199 -178
- transformers/models/kosmos2/processing_kosmos2.py +40 -55
- transformers/models/kosmos2_5/__init__.py +0 -1
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -9
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +162 -172
- transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +31 -28
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +103 -106
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +20 -22
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
- transformers/models/lasr/configuration_lasr.py +3 -7
- transformers/models/lasr/feature_extraction_lasr.py +10 -12
- transformers/models/lasr/modeling_lasr.py +21 -24
- transformers/models/lasr/modular_lasr.py +11 -13
- transformers/models/lasr/processing_lasr.py +12 -6
- transformers/models/lasr/tokenization_lasr.py +2 -4
- transformers/models/layoutlm/configuration_layoutlm.py +14 -2
- transformers/models/layoutlm/modeling_layoutlm.py +70 -72
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -17
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +7 -8
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
- transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -19
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +9 -10
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
- transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -17
- transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
- transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
- transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
- transformers/models/led/configuration_led.py +8 -12
- transformers/models/led/modeling_led.py +113 -267
- transformers/models/levit/configuration_levit.py +0 -1
- transformers/models/levit/image_processing_levit.py +19 -21
- transformers/models/levit/image_processing_levit_fast.py +4 -5
- transformers/models/levit/modeling_levit.py +17 -19
- transformers/models/lfm2/configuration_lfm2.py +27 -30
- transformers/models/lfm2/modeling_lfm2.py +46 -48
- transformers/models/lfm2/modular_lfm2.py +32 -32
- transformers/models/lfm2_moe/__init__.py +0 -1
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +6 -9
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +48 -49
- transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +43 -20
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +73 -61
- transformers/models/lfm2_vl/modular_lfm2_vl.py +66 -54
- transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
- transformers/models/lightglue/image_processing_lightglue.py +16 -15
- transformers/models/lightglue/image_processing_lightglue_fast.py +8 -7
- transformers/models/lightglue/modeling_lightglue.py +31 -33
- transformers/models/lightglue/modular_lightglue.py +31 -31
- transformers/models/lighton_ocr/__init__.py +28 -0
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +463 -0
- transformers/models/lighton_ocr/modular_lighton_ocr.py +404 -0
- transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
- transformers/models/lilt/configuration_lilt.py +6 -2
- transformers/models/lilt/modeling_lilt.py +53 -55
- transformers/models/llama/configuration_llama.py +26 -31
- transformers/models/llama/modeling_llama.py +35 -38
- transformers/models/llama/tokenization_llama.py +2 -4
- transformers/models/llama4/configuration_llama4.py +87 -69
- transformers/models/llama4/image_processing_llama4_fast.py +11 -12
- transformers/models/llama4/modeling_llama4.py +116 -115
- transformers/models/llama4/processing_llama4.py +33 -57
- transformers/models/llava/configuration_llava.py +10 -1
- transformers/models/llava/image_processing_llava.py +25 -28
- transformers/models/llava/image_processing_llava_fast.py +9 -10
- transformers/models/llava/modeling_llava.py +73 -102
- transformers/models/llava/processing_llava.py +18 -51
- transformers/models/llava_next/configuration_llava_next.py +2 -2
- transformers/models/llava_next/image_processing_llava_next.py +43 -45
- transformers/models/llava_next/image_processing_llava_next_fast.py +11 -12
- transformers/models/llava_next/modeling_llava_next.py +103 -104
- transformers/models/llava_next/processing_llava_next.py +18 -47
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -7
- transformers/models/llava_next_video/modeling_llava_next_video.py +168 -155
- transformers/models/llava_next_video/modular_llava_next_video.py +154 -147
- transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
- transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -7
- transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +14 -14
- transformers/models/llava_onevision/modeling_llava_onevision.py +170 -166
- transformers/models/llava_onevision/modular_llava_onevision.py +156 -152
- transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
- transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
- transformers/models/longcat_flash/__init__.py +0 -1
- transformers/models/longcat_flash/configuration_longcat_flash.py +39 -45
- transformers/models/longcat_flash/modeling_longcat_flash.py +37 -38
- transformers/models/longcat_flash/modular_longcat_flash.py +23 -24
- transformers/models/longformer/configuration_longformer.py +5 -5
- transformers/models/longformer/modeling_longformer.py +99 -101
- transformers/models/longt5/configuration_longt5.py +9 -7
- transformers/models/longt5/modeling_longt5.py +45 -45
- transformers/models/luke/configuration_luke.py +8 -2
- transformers/models/luke/modeling_luke.py +179 -181
- transformers/models/luke/tokenization_luke.py +99 -105
- transformers/{pipelines/deprecated → models/lw_detr}/__init__.py +14 -3
- transformers/models/lw_detr/configuration_lw_detr.py +362 -0
- transformers/models/lw_detr/modeling_lw_detr.py +1697 -0
- transformers/models/lw_detr/modular_lw_detr.py +1609 -0
- transformers/models/lxmert/configuration_lxmert.py +16 -1
- transformers/models/lxmert/modeling_lxmert.py +63 -74
- transformers/models/m2m_100/configuration_m2m_100.py +7 -9
- transformers/models/m2m_100/modeling_m2m_100.py +72 -74
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +5 -3
- transformers/models/mamba/modeling_mamba.py +61 -70
- transformers/models/mamba2/configuration_mamba2.py +5 -8
- transformers/models/mamba2/modeling_mamba2.py +66 -79
- transformers/models/marian/configuration_marian.py +10 -5
- transformers/models/marian/modeling_marian.py +88 -90
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +4 -7
- transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
- transformers/models/markuplm/modeling_markuplm.py +63 -65
- transformers/models/markuplm/processing_markuplm.py +31 -38
- transformers/models/markuplm/tokenization_markuplm.py +67 -77
- transformers/models/mask2former/configuration_mask2former.py +14 -52
- transformers/models/mask2former/image_processing_mask2former.py +84 -85
- transformers/models/mask2former/image_processing_mask2former_fast.py +36 -36
- transformers/models/mask2former/modeling_mask2former.py +108 -104
- transformers/models/mask2former/modular_mask2former.py +6 -8
- transformers/models/maskformer/configuration_maskformer.py +17 -51
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -5
- transformers/models/maskformer/image_processing_maskformer.py +84 -85
- transformers/models/maskformer/image_processing_maskformer_fast.py +35 -36
- transformers/models/maskformer/modeling_maskformer.py +71 -67
- transformers/models/maskformer/modeling_maskformer_swin.py +20 -23
- transformers/models/mbart/configuration_mbart.py +9 -5
- transformers/models/mbart/modeling_mbart.py +120 -119
- transformers/models/mbart/tokenization_mbart.py +2 -4
- transformers/models/mbart50/tokenization_mbart50.py +3 -5
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -3
- transformers/models/megatron_bert/modeling_megatron_bert.py +139 -165
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +94 -87
- transformers/models/metaclip_2/modular_metaclip_2.py +59 -45
- transformers/models/mgp_str/configuration_mgp_str.py +0 -1
- transformers/models/mgp_str/modeling_mgp_str.py +18 -18
- transformers/models/mgp_str/processing_mgp_str.py +3 -20
- transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
- transformers/models/mimi/configuration_mimi.py +42 -40
- transformers/models/mimi/modeling_mimi.py +116 -115
- transformers/models/minimax/__init__.py +0 -1
- transformers/models/minimax/configuration_minimax.py +40 -47
- transformers/models/minimax/modeling_minimax.py +46 -49
- transformers/models/minimax/modular_minimax.py +59 -65
- transformers/models/minimax_m2/__init__.py +28 -0
- transformers/models/minimax_m2/configuration_minimax_m2.py +188 -0
- transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
- transformers/models/minimax_m2/modular_minimax_m2.py +346 -0
- transformers/models/ministral/configuration_ministral.py +25 -29
- transformers/models/ministral/modeling_ministral.py +35 -37
- transformers/models/ministral/modular_ministral.py +32 -37
- transformers/models/ministral3/configuration_ministral3.py +23 -26
- transformers/models/ministral3/modeling_ministral3.py +35 -37
- transformers/models/ministral3/modular_ministral3.py +7 -8
- transformers/models/mistral/configuration_mistral.py +24 -29
- transformers/models/mistral/modeling_mistral.py +35 -37
- transformers/models/mistral/modular_mistral.py +14 -15
- transformers/models/mistral3/configuration_mistral3.py +4 -1
- transformers/models/mistral3/modeling_mistral3.py +79 -82
- transformers/models/mistral3/modular_mistral3.py +66 -67
- transformers/models/mixtral/configuration_mixtral.py +32 -38
- transformers/models/mixtral/modeling_mixtral.py +39 -42
- transformers/models/mixtral/modular_mixtral.py +26 -29
- transformers/models/mlcd/configuration_mlcd.py +0 -1
- transformers/models/mlcd/modeling_mlcd.py +17 -17
- transformers/models/mlcd/modular_mlcd.py +16 -16
- transformers/models/mllama/configuration_mllama.py +10 -15
- transformers/models/mllama/image_processing_mllama.py +23 -25
- transformers/models/mllama/image_processing_mllama_fast.py +11 -11
- transformers/models/mllama/modeling_mllama.py +100 -103
- transformers/models/mllama/processing_mllama.py +6 -55
- transformers/models/mluke/tokenization_mluke.py +97 -103
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -46
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +159 -179
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -46
- transformers/models/mobilebert/configuration_mobilebert.py +4 -2
- transformers/models/mobilebert/modeling_mobilebert.py +78 -88
- transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +14 -15
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +21 -22
- transformers/models/mobilevit/configuration_mobilevit.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +12 -13
- transformers/models/mobilevit/modeling_mobilevit.py +21 -21
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -22
- transformers/models/modernbert/configuration_modernbert.py +76 -51
- transformers/models/modernbert/modeling_modernbert.py +188 -943
- transformers/models/modernbert/modular_modernbert.py +255 -978
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +50 -44
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -64
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +92 -92
- transformers/models/moonshine/configuration_moonshine.py +34 -31
- transformers/models/moonshine/modeling_moonshine.py +70 -72
- transformers/models/moonshine/modular_moonshine.py +91 -86
- transformers/models/moshi/configuration_moshi.py +46 -23
- transformers/models/moshi/modeling_moshi.py +134 -142
- transformers/models/mpnet/configuration_mpnet.py +6 -2
- transformers/models/mpnet/modeling_mpnet.py +55 -57
- transformers/models/mpnet/tokenization_mpnet.py +1 -4
- transformers/models/mpt/configuration_mpt.py +17 -9
- transformers/models/mpt/modeling_mpt.py +58 -60
- transformers/models/mra/configuration_mra.py +8 -2
- transformers/models/mra/modeling_mra.py +54 -56
- transformers/models/mt5/configuration_mt5.py +9 -6
- transformers/models/mt5/modeling_mt5.py +80 -85
- transformers/models/musicgen/configuration_musicgen.py +12 -8
- transformers/models/musicgen/modeling_musicgen.py +114 -116
- transformers/models/musicgen/processing_musicgen.py +3 -21
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -8
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +113 -126
- transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
- transformers/models/mvp/configuration_mvp.py +8 -5
- transformers/models/mvp/modeling_mvp.py +121 -123
- transformers/models/myt5/tokenization_myt5.py +8 -10
- transformers/models/nanochat/configuration_nanochat.py +5 -8
- transformers/models/nanochat/modeling_nanochat.py +36 -39
- transformers/models/nanochat/modular_nanochat.py +16 -18
- transformers/models/nemotron/configuration_nemotron.py +25 -30
- transformers/models/nemotron/modeling_nemotron.py +53 -66
- transformers/models/nllb/tokenization_nllb.py +14 -14
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -10
- transformers/models/nllb_moe/modeling_nllb_moe.py +70 -72
- transformers/models/nougat/image_processing_nougat.py +29 -32
- transformers/models/nougat/image_processing_nougat_fast.py +12 -13
- transformers/models/nougat/processing_nougat.py +37 -39
- transformers/models/nougat/tokenization_nougat.py +5 -7
- transformers/models/nystromformer/configuration_nystromformer.py +8 -2
- transformers/models/nystromformer/modeling_nystromformer.py +61 -63
- transformers/models/olmo/configuration_olmo.py +23 -28
- transformers/models/olmo/modeling_olmo.py +35 -38
- transformers/models/olmo/modular_olmo.py +8 -12
- transformers/models/olmo2/configuration_olmo2.py +27 -32
- transformers/models/olmo2/modeling_olmo2.py +36 -39
- transformers/models/olmo2/modular_olmo2.py +36 -38
- transformers/models/olmo3/__init__.py +0 -1
- transformers/models/olmo3/configuration_olmo3.py +30 -34
- transformers/models/olmo3/modeling_olmo3.py +35 -38
- transformers/models/olmo3/modular_olmo3.py +44 -47
- transformers/models/olmoe/configuration_olmoe.py +29 -33
- transformers/models/olmoe/modeling_olmoe.py +41 -43
- transformers/models/olmoe/modular_olmoe.py +15 -16
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -50
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +59 -57
- transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
- transformers/models/oneformer/configuration_oneformer.py +11 -51
- transformers/models/oneformer/image_processing_oneformer.py +83 -84
- transformers/models/oneformer/image_processing_oneformer_fast.py +41 -42
- transformers/models/oneformer/modeling_oneformer.py +137 -133
- transformers/models/oneformer/processing_oneformer.py +28 -43
- transformers/models/openai/configuration_openai.py +16 -1
- transformers/models/openai/modeling_openai.py +50 -51
- transformers/models/openai/tokenization_openai.py +2 -5
- transformers/models/opt/configuration_opt.py +6 -7
- transformers/models/opt/modeling_opt.py +79 -80
- transformers/models/ovis2/__init__.py +0 -1
- transformers/models/ovis2/configuration_ovis2.py +4 -1
- transformers/models/ovis2/image_processing_ovis2.py +22 -24
- transformers/models/ovis2/image_processing_ovis2_fast.py +9 -10
- transformers/models/ovis2/modeling_ovis2.py +99 -142
- transformers/models/ovis2/modular_ovis2.py +82 -45
- transformers/models/ovis2/processing_ovis2.py +12 -40
- transformers/models/owlv2/configuration_owlv2.py +4 -2
- transformers/models/owlv2/image_processing_owlv2.py +20 -21
- transformers/models/owlv2/image_processing_owlv2_fast.py +12 -13
- transformers/models/owlv2/modeling_owlv2.py +122 -114
- transformers/models/owlv2/modular_owlv2.py +11 -12
- transformers/models/owlv2/processing_owlv2.py +20 -49
- transformers/models/owlvit/configuration_owlvit.py +4 -2
- transformers/models/owlvit/image_processing_owlvit.py +21 -22
- transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
- transformers/models/owlvit/modeling_owlvit.py +121 -113
- transformers/models/owlvit/processing_owlvit.py +20 -48
- transformers/models/paddleocr_vl/__init__.py +0 -1
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +28 -29
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +159 -158
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +148 -119
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
- transformers/models/paligemma/configuration_paligemma.py +4 -1
- transformers/models/paligemma/modeling_paligemma.py +81 -79
- transformers/models/paligemma/processing_paligemma.py +13 -66
- transformers/models/parakeet/configuration_parakeet.py +3 -8
- transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
- transformers/models/parakeet/modeling_parakeet.py +21 -25
- transformers/models/parakeet/modular_parakeet.py +19 -21
- transformers/models/parakeet/processing_parakeet.py +12 -5
- transformers/models/parakeet/tokenization_parakeet.py +2 -4
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +63 -65
- transformers/models/patchtst/configuration_patchtst.py +6 -9
- transformers/models/patchtst/modeling_patchtst.py +75 -77
- transformers/models/pe_audio/__init__.py +0 -1
- transformers/models/pe_audio/configuration_pe_audio.py +14 -16
- transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
- transformers/models/pe_audio/modeling_pe_audio.py +30 -31
- transformers/models/pe_audio/modular_pe_audio.py +17 -18
- transformers/models/pe_audio/processing_pe_audio.py +0 -1
- transformers/models/pe_audio_video/__init__.py +0 -1
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +64 -65
- transformers/models/pe_audio_video/modular_pe_audio_video.py +56 -57
- transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
- transformers/models/pe_video/__init__.py +0 -1
- transformers/models/pe_video/configuration_pe_video.py +14 -16
- transformers/models/pe_video/modeling_pe_video.py +57 -46
- transformers/models/pe_video/modular_pe_video.py +47 -35
- transformers/models/pe_video/video_processing_pe_video.py +2 -4
- transformers/models/pegasus/configuration_pegasus.py +8 -6
- transformers/models/pegasus/modeling_pegasus.py +67 -69
- transformers/models/pegasus/tokenization_pegasus.py +1 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -4
- transformers/models/pegasus_x/modeling_pegasus_x.py +53 -55
- transformers/models/perceiver/configuration_perceiver.py +0 -1
- transformers/models/perceiver/image_processing_perceiver.py +22 -25
- transformers/models/perceiver/image_processing_perceiver_fast.py +7 -8
- transformers/models/perceiver/modeling_perceiver.py +152 -145
- transformers/models/perceiver/tokenization_perceiver.py +3 -6
- transformers/models/perception_lm/configuration_perception_lm.py +0 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
- transformers/models/perception_lm/modeling_perception_lm.py +64 -67
- transformers/models/perception_lm/modular_perception_lm.py +58 -58
- transformers/models/perception_lm/processing_perception_lm.py +13 -47
- transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
- transformers/models/persimmon/configuration_persimmon.py +23 -28
- transformers/models/persimmon/modeling_persimmon.py +44 -47
- transformers/models/phi/configuration_phi.py +27 -28
- transformers/models/phi/modeling_phi.py +39 -41
- transformers/models/phi/modular_phi.py +26 -26
- transformers/models/phi3/configuration_phi3.py +32 -37
- transformers/models/phi3/modeling_phi3.py +37 -40
- transformers/models/phi3/modular_phi3.py +16 -20
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +36 -39
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +100 -117
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +103 -90
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
- transformers/models/phimoe/configuration_phimoe.py +31 -36
- transformers/models/phimoe/modeling_phimoe.py +50 -77
- transformers/models/phimoe/modular_phimoe.py +12 -8
- transformers/models/phobert/tokenization_phobert.py +4 -6
- transformers/models/pix2struct/configuration_pix2struct.py +12 -10
- transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +12 -15
- transformers/models/pix2struct/modeling_pix2struct.py +56 -52
- transformers/models/pix2struct/processing_pix2struct.py +5 -26
- transformers/models/pixio/__init__.py +0 -1
- transformers/models/pixio/configuration_pixio.py +2 -5
- transformers/models/pixio/modeling_pixio.py +16 -17
- transformers/models/pixio/modular_pixio.py +7 -8
- transformers/models/pixtral/configuration_pixtral.py +11 -14
- transformers/models/pixtral/image_processing_pixtral.py +26 -28
- transformers/models/pixtral/image_processing_pixtral_fast.py +10 -11
- transformers/models/pixtral/modeling_pixtral.py +31 -37
- transformers/models/pixtral/processing_pixtral.py +18 -52
- transformers/models/plbart/configuration_plbart.py +8 -6
- transformers/models/plbart/modeling_plbart.py +109 -109
- transformers/models/plbart/modular_plbart.py +31 -33
- transformers/models/plbart/tokenization_plbart.py +4 -5
- transformers/models/poolformer/configuration_poolformer.py +0 -1
- transformers/models/poolformer/image_processing_poolformer.py +21 -24
- transformers/models/poolformer/image_processing_poolformer_fast.py +13 -14
- transformers/models/poolformer/modeling_poolformer.py +10 -12
- transformers/models/pop2piano/configuration_pop2piano.py +7 -7
- transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
- transformers/models/pop2piano/modeling_pop2piano.py +24 -24
- transformers/models/pop2piano/processing_pop2piano.py +25 -33
- transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +13 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +20 -21
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +17 -16
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +21 -20
- transformers/models/prophetnet/configuration_prophetnet.py +37 -38
- transformers/models/prophetnet/modeling_prophetnet.py +121 -153
- transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
- transformers/models/pvt/configuration_pvt.py +0 -1
- transformers/models/pvt/image_processing_pvt.py +24 -27
- transformers/models/pvt/image_processing_pvt_fast.py +1 -2
- transformers/models/pvt/modeling_pvt.py +19 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +4 -8
- transformers/models/pvt_v2/modeling_pvt_v2.py +27 -28
- transformers/models/qwen2/configuration_qwen2.py +32 -25
- transformers/models/qwen2/modeling_qwen2.py +35 -37
- transformers/models/qwen2/modular_qwen2.py +14 -15
- transformers/models/qwen2/tokenization_qwen2.py +2 -9
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +36 -27
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +241 -214
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +228 -193
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +28 -34
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +188 -145
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +64 -91
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +39 -41
- transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +42 -35
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +40 -43
- transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -13
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +28 -33
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +12 -15
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +184 -141
- transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +38 -18
- transformers/models/qwen3/configuration_qwen3.py +34 -27
- transformers/models/qwen3/modeling_qwen3.py +35 -38
- transformers/models/qwen3/modular_qwen3.py +7 -9
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +45 -35
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +40 -43
- transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
- transformers/models/qwen3_next/configuration_qwen3_next.py +47 -38
- transformers/models/qwen3_next/modeling_qwen3_next.py +44 -47
- transformers/models/qwen3_next/modular_qwen3_next.py +37 -38
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +139 -106
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +266 -206
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +228 -181
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +22 -24
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +185 -122
- transformers/models/qwen3_vl/modular_qwen3_vl.py +153 -139
- transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +27 -30
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +249 -178
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +55 -42
- transformers/models/rag/configuration_rag.py +6 -7
- transformers/models/rag/modeling_rag.py +119 -121
- transformers/models/rag/retrieval_rag.py +3 -5
- transformers/models/rag/tokenization_rag.py +0 -50
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +29 -30
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +35 -39
- transformers/models/reformer/configuration_reformer.py +7 -8
- transformers/models/reformer/modeling_reformer.py +67 -68
- transformers/models/reformer/tokenization_reformer.py +3 -6
- transformers/models/regnet/configuration_regnet.py +0 -1
- transformers/models/regnet/modeling_regnet.py +7 -9
- transformers/models/rembert/configuration_rembert.py +8 -2
- transformers/models/rembert/modeling_rembert.py +108 -132
- transformers/models/rembert/tokenization_rembert.py +1 -4
- transformers/models/resnet/configuration_resnet.py +2 -5
- transformers/models/resnet/modeling_resnet.py +14 -15
- transformers/models/roberta/configuration_roberta.py +11 -3
- transformers/models/roberta/modeling_roberta.py +97 -99
- transformers/models/roberta/modular_roberta.py +55 -58
- transformers/models/roberta/tokenization_roberta.py +2 -5
- transformers/models/roberta/tokenization_roberta_old.py +2 -4
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -3
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +97 -99
- transformers/models/roc_bert/configuration_roc_bert.py +8 -2
- transformers/models/roc_bert/modeling_roc_bert.py +125 -162
- transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
- transformers/models/roformer/configuration_roformer.py +13 -3
- transformers/models/roformer/modeling_roformer.py +79 -95
- transformers/models/roformer/tokenization_roformer.py +3 -6
- transformers/models/roformer/tokenization_utils.py +0 -1
- transformers/models/rt_detr/configuration_rt_detr.py +8 -50
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -5
- transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +39 -26
- transformers/models/rt_detr/modeling_rt_detr.py +643 -804
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +4 -7
- transformers/models/rt_detr/modular_rt_detr.py +1522 -20
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -58
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +384 -521
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +27 -70
- transformers/models/rwkv/configuration_rwkv.py +2 -4
- transformers/models/rwkv/modeling_rwkv.py +29 -54
- transformers/models/sam/configuration_sam.py +2 -1
- transformers/models/sam/image_processing_sam.py +59 -60
- transformers/models/sam/image_processing_sam_fast.py +25 -26
- transformers/models/sam/modeling_sam.py +46 -43
- transformers/models/sam/processing_sam.py +39 -27
- transformers/models/sam2/configuration_sam2.py +1 -2
- transformers/models/sam2/image_processing_sam2_fast.py +14 -15
- transformers/models/sam2/modeling_sam2.py +96 -94
- transformers/models/sam2/modular_sam2.py +85 -94
- transformers/models/sam2/processing_sam2.py +31 -47
- transformers/models/sam2_video/configuration_sam2_video.py +0 -1
- transformers/models/sam2_video/modeling_sam2_video.py +114 -116
- transformers/models/sam2_video/modular_sam2_video.py +72 -89
- transformers/models/sam2_video/processing_sam2_video.py +49 -66
- transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
- transformers/models/sam3/configuration_sam3.py +0 -1
- transformers/models/sam3/image_processing_sam3_fast.py +17 -20
- transformers/models/sam3/modeling_sam3.py +94 -100
- transformers/models/sam3/modular_sam3.py +3 -8
- transformers/models/sam3/processing_sam3.py +37 -52
- transformers/models/sam3_tracker/__init__.py +0 -1
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -3
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +79 -80
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -2
- transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -48
- transformers/models/sam3_tracker_video/__init__.py +0 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +115 -114
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -24
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
- transformers/models/sam3_video/configuration_sam3_video.py +0 -1
- transformers/models/sam3_video/modeling_sam3_video.py +56 -45
- transformers/models/sam3_video/processing_sam3_video.py +25 -45
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +2 -1
- transformers/models/sam_hq/modeling_sam_hq.py +52 -50
- transformers/models/sam_hq/modular_sam_hq.py +23 -25
- transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +41 -29
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -10
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
- transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -10
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
- transformers/models/seed_oss/configuration_seed_oss.py +30 -34
- transformers/models/seed_oss/modeling_seed_oss.py +34 -36
- transformers/models/seed_oss/modular_seed_oss.py +6 -7
- transformers/models/segformer/configuration_segformer.py +0 -10
- transformers/models/segformer/image_processing_segformer.py +39 -42
- transformers/models/segformer/image_processing_segformer_fast.py +11 -12
- transformers/models/segformer/modeling_segformer.py +28 -28
- transformers/models/segformer/modular_segformer.py +8 -9
- transformers/models/seggpt/configuration_seggpt.py +0 -1
- transformers/models/seggpt/image_processing_seggpt.py +38 -41
- transformers/models/seggpt/modeling_seggpt.py +48 -38
- transformers/models/sew/configuration_sew.py +4 -2
- transformers/models/sew/modeling_sew.py +42 -40
- transformers/models/sew/modular_sew.py +12 -13
- transformers/models/sew_d/configuration_sew_d.py +4 -2
- transformers/models/sew_d/modeling_sew_d.py +32 -31
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +19 -21
- transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
- transformers/models/siglip/configuration_siglip.py +4 -2
- transformers/models/siglip/image_processing_siglip.py +17 -20
- transformers/models/siglip/image_processing_siglip_fast.py +0 -1
- transformers/models/siglip/modeling_siglip.py +65 -110
- transformers/models/siglip/processing_siglip.py +2 -14
- transformers/models/siglip/tokenization_siglip.py +6 -7
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2.py +15 -16
- transformers/models/siglip2/image_processing_siglip2_fast.py +6 -7
- transformers/models/siglip2/modeling_siglip2.py +89 -130
- transformers/models/siglip2/modular_siglip2.py +95 -48
- transformers/models/siglip2/processing_siglip2.py +2 -14
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +29 -32
- transformers/models/smollm3/modeling_smollm3.py +35 -38
- transformers/models/smollm3/modular_smollm3.py +36 -38
- transformers/models/smolvlm/configuration_smolvlm.py +2 -4
- transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +41 -15
- transformers/models/smolvlm/modeling_smolvlm.py +124 -96
- transformers/models/smolvlm/modular_smolvlm.py +50 -39
- transformers/models/smolvlm/processing_smolvlm.py +15 -76
- transformers/models/smolvlm/video_processing_smolvlm.py +16 -17
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +26 -27
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
- transformers/models/speech_to_text/modeling_speech_to_text.py +55 -57
- transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
- transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
- transformers/models/speecht5/configuration_speecht5.py +7 -9
- transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
- transformers/models/speecht5/modeling_speecht5.py +172 -174
- transformers/models/speecht5/number_normalizer.py +0 -1
- transformers/models/speecht5/processing_speecht5.py +3 -37
- transformers/models/speecht5/tokenization_speecht5.py +4 -5
- transformers/models/splinter/configuration_splinter.py +6 -7
- transformers/models/splinter/modeling_splinter.py +62 -59
- transformers/models/splinter/tokenization_splinter.py +2 -4
- transformers/models/squeezebert/configuration_squeezebert.py +14 -2
- transformers/models/squeezebert/modeling_squeezebert.py +60 -62
- transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
- transformers/models/stablelm/configuration_stablelm.py +28 -29
- transformers/models/stablelm/modeling_stablelm.py +44 -47
- transformers/models/starcoder2/configuration_starcoder2.py +30 -27
- transformers/models/starcoder2/modeling_starcoder2.py +38 -41
- transformers/models/starcoder2/modular_starcoder2.py +17 -19
- transformers/models/superglue/configuration_superglue.py +7 -3
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +8 -8
- transformers/models/superglue/modeling_superglue.py +41 -37
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +7 -9
- transformers/models/superpoint/modeling_superpoint.py +17 -16
- transformers/models/swiftformer/configuration_swiftformer.py +0 -1
- transformers/models/swiftformer/modeling_swiftformer.py +12 -14
- transformers/models/swin/configuration_swin.py +2 -5
- transformers/models/swin/modeling_swin.py +69 -78
- transformers/models/swin2sr/configuration_swin2sr.py +0 -1
- transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +4 -7
- transformers/models/swin2sr/modeling_swin2sr.py +30 -30
- transformers/models/swinv2/configuration_swinv2.py +2 -5
- transformers/models/swinv2/modeling_swinv2.py +65 -74
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -7
- transformers/models/switch_transformers/modeling_switch_transformers.py +35 -36
- transformers/models/switch_transformers/modular_switch_transformers.py +32 -33
- transformers/models/t5/configuration_t5.py +9 -9
- transformers/models/t5/modeling_t5.py +80 -85
- transformers/models/t5/tokenization_t5.py +1 -3
- transformers/models/t5gemma/configuration_t5gemma.py +43 -59
- transformers/models/t5gemma/modeling_t5gemma.py +105 -108
- transformers/models/t5gemma/modular_t5gemma.py +128 -142
- transformers/models/t5gemma2/configuration_t5gemma2.py +86 -100
- transformers/models/t5gemma2/modeling_t5gemma2.py +234 -194
- transformers/models/t5gemma2/modular_t5gemma2.py +279 -264
- transformers/models/table_transformer/configuration_table_transformer.py +18 -50
- transformers/models/table_transformer/modeling_table_transformer.py +73 -101
- transformers/models/tapas/configuration_tapas.py +12 -2
- transformers/models/tapas/modeling_tapas.py +65 -67
- transformers/models/tapas/tokenization_tapas.py +116 -153
- transformers/models/textnet/configuration_textnet.py +4 -7
- transformers/models/textnet/image_processing_textnet.py +22 -25
- transformers/models/textnet/image_processing_textnet_fast.py +8 -9
- transformers/models/textnet/modeling_textnet.py +28 -28
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +82 -84
- transformers/models/timesfm/configuration_timesfm.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +22 -25
- transformers/models/timesfm/modular_timesfm.py +21 -24
- transformers/models/timesformer/configuration_timesformer.py +0 -1
- transformers/models/timesformer/modeling_timesformer.py +13 -16
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -8
- transformers/models/timm_backbone/modeling_timm_backbone.py +25 -30
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +22 -19
- transformers/models/trocr/configuration_trocr.py +11 -8
- transformers/models/trocr/modeling_trocr.py +42 -42
- transformers/models/trocr/processing_trocr.py +5 -25
- transformers/models/tvp/configuration_tvp.py +10 -36
- transformers/models/tvp/image_processing_tvp.py +50 -52
- transformers/models/tvp/image_processing_tvp_fast.py +15 -15
- transformers/models/tvp/modeling_tvp.py +26 -28
- transformers/models/tvp/processing_tvp.py +2 -14
- transformers/models/udop/configuration_udop.py +16 -8
- transformers/models/udop/modeling_udop.py +73 -72
- transformers/models/udop/processing_udop.py +7 -26
- transformers/models/udop/tokenization_udop.py +80 -93
- transformers/models/umt5/configuration_umt5.py +8 -7
- transformers/models/umt5/modeling_umt5.py +87 -84
- transformers/models/unispeech/configuration_unispeech.py +4 -2
- transformers/models/unispeech/modeling_unispeech.py +54 -53
- transformers/models/unispeech/modular_unispeech.py +20 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -2
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +70 -69
- transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +7 -8
- transformers/models/upernet/configuration_upernet.py +8 -36
- transformers/models/upernet/modeling_upernet.py +11 -14
- transformers/models/vaultgemma/__init__.py +0 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +29 -33
- transformers/models/vaultgemma/modeling_vaultgemma.py +38 -40
- transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +12 -14
- transformers/models/video_llama_3/modeling_video_llama_3.py +149 -112
- transformers/models/video_llama_3/modular_video_llama_3.py +152 -150
- transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
- transformers/models/video_llama_3/video_processing_video_llama_3.py +45 -24
- transformers/models/video_llava/configuration_video_llava.py +4 -1
- transformers/models/video_llava/image_processing_video_llava.py +35 -38
- transformers/models/video_llava/modeling_video_llava.py +139 -143
- transformers/models/video_llava/processing_video_llava.py +38 -78
- transformers/models/video_llava/video_processing_video_llava.py +0 -1
- transformers/models/videomae/configuration_videomae.py +0 -1
- transformers/models/videomae/image_processing_videomae.py +31 -34
- transformers/models/videomae/modeling_videomae.py +17 -20
- transformers/models/videomae/video_processing_videomae.py +0 -1
- transformers/models/vilt/configuration_vilt.py +4 -2
- transformers/models/vilt/image_processing_vilt.py +29 -30
- transformers/models/vilt/image_processing_vilt_fast.py +15 -16
- transformers/models/vilt/modeling_vilt.py +103 -90
- transformers/models/vilt/processing_vilt.py +2 -14
- transformers/models/vipllava/configuration_vipllava.py +4 -1
- transformers/models/vipllava/modeling_vipllava.py +92 -67
- transformers/models/vipllava/modular_vipllava.py +78 -54
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +28 -27
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +45 -41
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
- transformers/models/visual_bert/configuration_visual_bert.py +6 -2
- transformers/models/visual_bert/modeling_visual_bert.py +90 -92
- transformers/models/vit/configuration_vit.py +2 -3
- transformers/models/vit/image_processing_vit.py +19 -22
- transformers/models/vit/image_processing_vit_fast.py +0 -1
- transformers/models/vit/modeling_vit.py +20 -20
- transformers/models/vit_mae/configuration_vit_mae.py +0 -1
- transformers/models/vit_mae/modeling_vit_mae.py +32 -30
- transformers/models/vit_msn/configuration_vit_msn.py +0 -1
- transformers/models/vit_msn/modeling_vit_msn.py +21 -19
- transformers/models/vitdet/configuration_vitdet.py +2 -5
- transformers/models/vitdet/modeling_vitdet.py +14 -17
- transformers/models/vitmatte/configuration_vitmatte.py +7 -39
- transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +16 -17
- transformers/models/vitmatte/modeling_vitmatte.py +10 -12
- transformers/models/vitpose/configuration_vitpose.py +7 -47
- transformers/models/vitpose/image_processing_vitpose.py +24 -25
- transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
- transformers/models/vitpose/modeling_vitpose.py +15 -15
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -5
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +13 -16
- transformers/models/vits/configuration_vits.py +4 -1
- transformers/models/vits/modeling_vits.py +43 -42
- transformers/models/vits/tokenization_vits.py +3 -4
- transformers/models/vivit/configuration_vivit.py +0 -1
- transformers/models/vivit/image_processing_vivit.py +36 -39
- transformers/models/vivit/modeling_vivit.py +9 -11
- transformers/models/vjepa2/__init__.py +0 -1
- transformers/models/vjepa2/configuration_vjepa2.py +0 -1
- transformers/models/vjepa2/modeling_vjepa2.py +39 -41
- transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
- transformers/models/voxtral/__init__.py +0 -1
- transformers/models/voxtral/configuration_voxtral.py +0 -2
- transformers/models/voxtral/modeling_voxtral.py +41 -48
- transformers/models/voxtral/modular_voxtral.py +35 -38
- transformers/models/voxtral/processing_voxtral.py +25 -48
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -2
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
- transformers/models/wav2vec2/modeling_wav2vec2.py +74 -126
- transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
- transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -2
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
- transformers/models/wavlm/configuration_wavlm.py +4 -2
- transformers/models/wavlm/modeling_wavlm.py +49 -49
- transformers/models/wavlm/modular_wavlm.py +4 -5
- transformers/models/whisper/configuration_whisper.py +6 -5
- transformers/models/whisper/english_normalizer.py +3 -4
- transformers/models/whisper/feature_extraction_whisper.py +9 -24
- transformers/models/whisper/generation_whisper.py +26 -49
- transformers/models/whisper/modeling_whisper.py +71 -73
- transformers/models/whisper/processing_whisper.py +3 -20
- transformers/models/whisper/tokenization_whisper.py +9 -30
- transformers/models/x_clip/configuration_x_clip.py +4 -2
- transformers/models/x_clip/modeling_x_clip.py +94 -96
- transformers/models/x_clip/processing_x_clip.py +2 -14
- transformers/models/xcodec/configuration_xcodec.py +4 -6
- transformers/models/xcodec/modeling_xcodec.py +15 -17
- transformers/models/xglm/configuration_xglm.py +9 -8
- transformers/models/xglm/modeling_xglm.py +49 -55
- transformers/models/xglm/tokenization_xglm.py +1 -4
- transformers/models/xlm/configuration_xlm.py +10 -8
- transformers/models/xlm/modeling_xlm.py +127 -131
- transformers/models/xlm/tokenization_xlm.py +3 -5
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -3
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +96 -98
- transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -2
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +97 -99
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
- transformers/models/xlnet/configuration_xlnet.py +3 -12
- transformers/models/xlnet/modeling_xlnet.py +149 -162
- transformers/models/xlnet/tokenization_xlnet.py +1 -4
- transformers/models/xlstm/configuration_xlstm.py +8 -12
- transformers/models/xlstm/modeling_xlstm.py +61 -96
- transformers/models/xmod/configuration_xmod.py +11 -3
- transformers/models/xmod/modeling_xmod.py +111 -116
- transformers/models/yolos/configuration_yolos.py +0 -1
- transformers/models/yolos/image_processing_yolos.py +60 -62
- transformers/models/yolos/image_processing_yolos_fast.py +42 -45
- transformers/models/yolos/modeling_yolos.py +19 -21
- transformers/models/yolos/modular_yolos.py +17 -19
- transformers/models/yoso/configuration_yoso.py +8 -2
- transformers/models/yoso/modeling_yoso.py +60 -62
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -8
- transformers/models/zamba/modeling_zamba.py +93 -125
- transformers/models/zamba2/configuration_zamba2.py +44 -50
- transformers/models/zamba2/modeling_zamba2.py +137 -165
- transformers/models/zamba2/modular_zamba2.py +79 -74
- transformers/models/zoedepth/configuration_zoedepth.py +17 -41
- transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +20 -21
- transformers/models/zoedepth/modeling_zoedepth.py +19 -19
- transformers/pipelines/__init__.py +47 -106
- transformers/pipelines/any_to_any.py +15 -23
- transformers/pipelines/audio_utils.py +1 -2
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +13 -17
- transformers/pipelines/image_text_to_text.py +1 -2
- transformers/pipelines/question_answering.py +4 -43
- transformers/pipelines/text_classification.py +1 -14
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/pipelines/token_classification.py +1 -22
- transformers/pipelines/video_classification.py +1 -9
- transformers/pipelines/zero_shot_audio_classification.py +0 -1
- transformers/pipelines/zero_shot_classification.py +0 -6
- transformers/pipelines/zero_shot_image_classification.py +0 -7
- transformers/processing_utils.py +128 -137
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/base.py +10 -0
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_quark.py +0 -1
- transformers/quantizers/quantizer_torchao.py +3 -19
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +6 -65
- transformers/tokenization_mistral_common.py +563 -903
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +228 -341
- transformers/tokenization_utils_sentencepiece.py +5 -6
- transformers/tokenization_utils_tokenizers.py +36 -7
- transformers/trainer.py +30 -41
- transformers/trainer_jit_checkpoint.py +1 -2
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +414 -420
- transformers/utils/__init__.py +1 -4
- transformers/utils/attention_visualizer.py +1 -1
- transformers/utils/auto_docstring.py +567 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/dummy_pt_objects.py +0 -42
- transformers/utils/generic.py +70 -34
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +135 -107
- transformers/utils/quantization_config.py +8 -31
- transformers/video_processing_utils.py +24 -25
- transformers/video_utils.py +21 -23
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/METADATA +120 -239
- transformers-5.1.0.dist-info/RECORD +2092 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -229
- transformers-5.0.0rc2.dist-info/RECORD +0 -2042
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -21,18 +21,16 @@
|
|
|
21
21
|
|
|
22
22
|
import math
|
|
23
23
|
from collections.abc import Callable
|
|
24
|
-
from
|
|
25
|
-
from typing import Optional, Union
|
|
24
|
+
from typing import Optional
|
|
26
25
|
|
|
27
26
|
import torch
|
|
28
|
-
import torch.nn.functional as F
|
|
29
27
|
from torch import nn
|
|
30
28
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
31
29
|
|
|
32
30
|
from ... import initialization as init
|
|
33
31
|
from ...activations import ACT2FN
|
|
34
|
-
from ...integrations import use_kernel_func_from_hub
|
|
35
|
-
from ...
|
|
32
|
+
from ...integrations import use_kernel_func_from_hub, use_kernelized_func
|
|
33
|
+
from ...masking_utils import create_bidirectional_mask, create_bidirectional_sliding_window_mask
|
|
36
34
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
37
35
|
from ...modeling_outputs import (
|
|
38
36
|
BaseModelOutput,
|
|
@@ -43,158 +41,13 @@ from ...modeling_outputs import (
|
|
|
43
41
|
TokenClassifierOutput,
|
|
44
42
|
)
|
|
45
43
|
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
46
|
-
from ...modeling_utils import PreTrainedModel
|
|
47
|
-
from ...
|
|
48
|
-
from ...utils
|
|
49
|
-
from ...utils.
|
|
44
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
45
|
+
from ...processing_utils import Unpack
|
|
46
|
+
from ...utils import TransformersKwargs, auto_docstring
|
|
47
|
+
from ...utils.generic import can_return_tuple, check_model_inputs, maybe_autocast
|
|
50
48
|
from .configuration_modernbert import ModernBertConfig
|
|
51
49
|
|
|
52
50
|
|
|
53
|
-
if is_flash_attn_2_available():
|
|
54
|
-
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
|
|
55
|
-
from flash_attn.layers.rotary import RotaryEmbedding
|
|
56
|
-
from flash_attn.ops.triton.rotary import apply_rotary
|
|
57
|
-
else:
|
|
58
|
-
RotaryEmbedding = object
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
logger = logging.get_logger(__name__)
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
|
65
|
-
@staticmethod
|
|
66
|
-
def forward(
|
|
67
|
-
ctx,
|
|
68
|
-
qkv,
|
|
69
|
-
cos,
|
|
70
|
-
sin,
|
|
71
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
72
|
-
max_seqlen: Optional[int] = None,
|
|
73
|
-
):
|
|
74
|
-
# (total_nnz, 3, nheads, headdim)
|
|
75
|
-
qkv = qkv.contiguous()
|
|
76
|
-
total_nnz, _three, _nheads, headdim = qkv.shape
|
|
77
|
-
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
|
78
|
-
# we get the same tensor
|
|
79
|
-
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
|
|
80
|
-
qk = qkv[:, :2].view(total_nnz, -1, headdim)
|
|
81
|
-
apply_rotary(
|
|
82
|
-
qk,
|
|
83
|
-
cos,
|
|
84
|
-
sin,
|
|
85
|
-
seqlen_offsets=0,
|
|
86
|
-
cu_seqlens=cu_seqlens,
|
|
87
|
-
max_seqlen=max_seqlen,
|
|
88
|
-
interleaved=False,
|
|
89
|
-
inplace=True,
|
|
90
|
-
)
|
|
91
|
-
|
|
92
|
-
ctx.save_for_backward(cos, sin, cu_seqlens)
|
|
93
|
-
ctx.max_seqlen = max_seqlen
|
|
94
|
-
return qkv
|
|
95
|
-
|
|
96
|
-
@staticmethod
|
|
97
|
-
def backward(ctx, do):
|
|
98
|
-
cos, sin, cu_seqlens = ctx.saved_tensors
|
|
99
|
-
do = do.contiguous()
|
|
100
|
-
total_nnz, _three, _nheads, headdim = do.shape
|
|
101
|
-
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
|
102
|
-
# we get the same tensor
|
|
103
|
-
dqk = do[:, :2].view(total_nnz, -1, headdim)
|
|
104
|
-
apply_rotary(
|
|
105
|
-
dqk,
|
|
106
|
-
cos,
|
|
107
|
-
sin,
|
|
108
|
-
seqlen_offsets=0,
|
|
109
|
-
cu_seqlens=cu_seqlens,
|
|
110
|
-
max_seqlen=ctx.max_seqlen,
|
|
111
|
-
interleaved=False,
|
|
112
|
-
inplace=True,
|
|
113
|
-
conjugate=True,
|
|
114
|
-
)
|
|
115
|
-
|
|
116
|
-
return do, None, None, None, None, None, None
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
def apply_rotary_unpadded(
|
|
120
|
-
qkv,
|
|
121
|
-
cos,
|
|
122
|
-
sin,
|
|
123
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
124
|
-
max_seqlen: Optional[int] = None,
|
|
125
|
-
):
|
|
126
|
-
"""
|
|
127
|
-
Arguments:
|
|
128
|
-
qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
|
|
129
|
-
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
|
130
|
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
|
131
|
-
of 1st half and 2nd half (GPT-NeoX style).
|
|
132
|
-
inplace: if True, apply rotary embedding in-place.
|
|
133
|
-
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
|
134
|
-
Most commonly used in inference when we have KV cache.
|
|
135
|
-
cu_seqlens: (batch + 1,) or None
|
|
136
|
-
max_seqlen: int
|
|
137
|
-
Return:
|
|
138
|
-
out: (total_nnz, dim)
|
|
139
|
-
rotary_dim must be <= headdim
|
|
140
|
-
Apply rotary embedding to the first rotary_dim of x.
|
|
141
|
-
"""
|
|
142
|
-
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding):
|
|
146
|
-
"""
|
|
147
|
-
The rotary position embeddings applied directly to unpadded sequences.
|
|
148
|
-
"""
|
|
149
|
-
|
|
150
|
-
def __init__(
|
|
151
|
-
self,
|
|
152
|
-
dim: int,
|
|
153
|
-
base: float = 10000.0,
|
|
154
|
-
max_seqlen: Optional[int] = None,
|
|
155
|
-
device: Optional[torch.device] = None,
|
|
156
|
-
dtype: Optional[torch.dtype] = None,
|
|
157
|
-
):
|
|
158
|
-
"""
|
|
159
|
-
max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
|
|
160
|
-
up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
|
|
161
|
-
the cos_sin_cache will be recomputed during the forward pass.
|
|
162
|
-
"""
|
|
163
|
-
super().__init__(dim=dim, base=base, device=device, interleaved=False)
|
|
164
|
-
self.max_seqlen = max_seqlen
|
|
165
|
-
|
|
166
|
-
if max_seqlen is not None and device is not None and dtype is not None:
|
|
167
|
-
self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)
|
|
168
|
-
|
|
169
|
-
def forward(
|
|
170
|
-
self,
|
|
171
|
-
qkv: torch.Tensor,
|
|
172
|
-
cu_seqlens: torch.Tensor,
|
|
173
|
-
max_seqlen: Optional[int] = None,
|
|
174
|
-
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
175
|
-
"""
|
|
176
|
-
Apply rotary embedding *inplace* to qkv.
|
|
177
|
-
qkv: (total_nnz, 3, nheads, headdim)
|
|
178
|
-
cu_seqlens: (batch + 1,) cumulative sequence lengths
|
|
179
|
-
max_seqlen: int max seq length in the batch
|
|
180
|
-
"""
|
|
181
|
-
if max_seqlen is not None:
|
|
182
|
-
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
|
183
|
-
|
|
184
|
-
qkv = apply_rotary_unpadded(
|
|
185
|
-
qkv,
|
|
186
|
-
self._cos_cached,
|
|
187
|
-
self._sin_cached,
|
|
188
|
-
cu_seqlens=cu_seqlens,
|
|
189
|
-
max_seqlen=max_seqlen,
|
|
190
|
-
)
|
|
191
|
-
|
|
192
|
-
return qkv
|
|
193
|
-
|
|
194
|
-
def extra_repr(self) -> str:
|
|
195
|
-
return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"
|
|
196
|
-
|
|
197
|
-
|
|
198
51
|
class ModernBertEmbeddings(nn.Module):
|
|
199
52
|
"""
|
|
200
53
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
|
@@ -207,21 +60,13 @@ class ModernBertEmbeddings(nn.Module):
|
|
|
207
60
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
|
208
61
|
self.drop = nn.Dropout(config.embedding_dropout)
|
|
209
62
|
|
|
210
|
-
@torch.compile(dynamic=True)
|
|
211
|
-
def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
|
|
212
|
-
return self.drop(self.norm(self.tok_embeddings(input_ids)))
|
|
213
|
-
|
|
214
63
|
def forward(
|
|
215
|
-
self, input_ids:
|
|
64
|
+
self, input_ids: torch.LongTensor | None = None, inputs_embeds: torch.Tensor | None = None
|
|
216
65
|
) -> torch.Tensor:
|
|
217
66
|
if inputs_embeds is not None:
|
|
218
67
|
hidden_states = self.drop(self.norm(inputs_embeds))
|
|
219
68
|
else:
|
|
220
|
-
hidden_states = (
|
|
221
|
-
self.compiled_embeddings(input_ids)
|
|
222
|
-
if self.config.reference_compile
|
|
223
|
-
else self.drop(self.norm(self.tok_embeddings(input_ids)))
|
|
224
|
-
)
|
|
69
|
+
hidden_states = self.drop(self.norm(self.tok_embeddings(input_ids)))
|
|
225
70
|
return hidden_states
|
|
226
71
|
|
|
227
72
|
|
|
@@ -273,10 +118,10 @@ class ModernBertRotaryEmbedding(nn.Module):
|
|
|
273
118
|
|
|
274
119
|
@staticmethod
|
|
275
120
|
def compute_default_rope_parameters(
|
|
276
|
-
config:
|
|
121
|
+
config: ModernBertConfig | None = None,
|
|
277
122
|
device: Optional["torch.device"] = None,
|
|
278
|
-
seq_len:
|
|
279
|
-
layer_type:
|
|
123
|
+
seq_len: int | None = None,
|
|
124
|
+
layer_type: str | None = None,
|
|
280
125
|
) -> tuple["torch.Tensor", float]:
|
|
281
126
|
"""
|
|
282
127
|
Computes the inverse frequencies according to the original RoPE implementation
|
|
@@ -326,6 +171,29 @@ class ModernBertRotaryEmbedding(nn.Module):
|
|
|
326
171
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
327
172
|
|
|
328
173
|
|
|
174
|
+
def eager_attention_forward(
|
|
175
|
+
module: nn.Module,
|
|
176
|
+
query: torch.Tensor,
|
|
177
|
+
key: torch.Tensor,
|
|
178
|
+
value: torch.Tensor,
|
|
179
|
+
attention_mask: torch.Tensor | None,
|
|
180
|
+
scaling: float,
|
|
181
|
+
dropout: float = 0.0,
|
|
182
|
+
**kwargs,
|
|
183
|
+
):
|
|
184
|
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
|
|
185
|
+
if attention_mask is not None:
|
|
186
|
+
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
|
187
|
+
attn_weights = attn_weights + causal_mask
|
|
188
|
+
|
|
189
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
190
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
191
|
+
|
|
192
|
+
attn_output = torch.matmul(attn_weights, value)
|
|
193
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
194
|
+
return attn_output, attn_weights
|
|
195
|
+
|
|
196
|
+
|
|
329
197
|
def rotate_half(x):
|
|
330
198
|
"""Rotates half the hidden dims of the input."""
|
|
331
199
|
x1 = x[..., : x.shape[-1] // 2]
|
|
@@ -334,7 +202,7 @@ def rotate_half(x):
|
|
|
334
202
|
|
|
335
203
|
|
|
336
204
|
@use_kernel_func_from_hub("rotary_pos_emb")
|
|
337
|
-
def apply_rotary_pos_emb(q, k, cos, sin,
|
|
205
|
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
|
338
206
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
339
207
|
|
|
340
208
|
Args:
|
|
@@ -342,8 +210,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
|
342
210
|
k (`torch.Tensor`): The key tensor.
|
|
343
211
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
344
212
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
345
|
-
position_ids (`torch.Tensor`, *optional*):
|
|
346
|
-
Deprecated and unused.
|
|
347
213
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
348
214
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
349
215
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
@@ -354,137 +220,15 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
|
354
220
|
Returns:
|
|
355
221
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
356
222
|
"""
|
|
223
|
+
original_dtype = q.dtype
|
|
357
224
|
cos = cos.unsqueeze(unsqueeze_dim)
|
|
358
225
|
sin = sin.unsqueeze(unsqueeze_dim)
|
|
359
|
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
360
|
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
361
|
-
return q_embed, k_embed
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
def eager_attention_forward(
|
|
365
|
-
module: "ModernBertAttention",
|
|
366
|
-
qkv: torch.Tensor,
|
|
367
|
-
attention_mask: torch.Tensor,
|
|
368
|
-
sliding_window_mask: torch.Tensor,
|
|
369
|
-
position_ids: Optional[torch.LongTensor],
|
|
370
|
-
local_attention: tuple[int, int],
|
|
371
|
-
bs: int,
|
|
372
|
-
dim: int,
|
|
373
|
-
position_embeddings: torch.Tensor,
|
|
374
|
-
output_attentions: Optional[bool] = False,
|
|
375
|
-
**_kwargs,
|
|
376
|
-
) -> Union[tuple[torch.Tensor, torch.Tensor], tuple[torch.Tensor]]:
|
|
377
|
-
# qkv: [batch_size, seqlen, 3, nheads, headdim]
|
|
378
|
-
cos, sin = position_embeddings
|
|
379
|
-
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
|
|
380
|
-
# query, key, value: [batch_size, heads, seq_len, head_dim]
|
|
381
|
-
query, key = apply_rotary_pos_emb(query, key, cos, sin)
|
|
382
|
-
|
|
383
|
-
scale = module.head_dim**-0.5
|
|
384
|
-
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale
|
|
385
|
-
|
|
386
|
-
if local_attention != (-1, -1):
|
|
387
|
-
attention_mask = sliding_window_mask
|
|
388
|
-
|
|
389
|
-
attn_weights = attn_weights + attention_mask
|
|
390
|
-
|
|
391
|
-
# upcast attention to fp32
|
|
392
|
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
393
|
-
attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
|
|
394
|
-
attn_output = torch.matmul(attn_weights, value)
|
|
395
|
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
396
|
-
attn_output = attn_output.view(bs, -1, dim)
|
|
397
|
-
if output_attentions:
|
|
398
|
-
return (attn_output, attn_weights)
|
|
399
|
-
return (attn_output,)
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
def flash_attention_forward(
|
|
403
|
-
module: "ModernBertAttention",
|
|
404
|
-
qkv: torch.Tensor,
|
|
405
|
-
rotary_emb: ModernBertUnpaddedRotaryEmbedding,
|
|
406
|
-
cu_seqlens: torch.Tensor,
|
|
407
|
-
max_seqlen: int,
|
|
408
|
-
local_attention: tuple[int, int],
|
|
409
|
-
bs: int,
|
|
410
|
-
dim: int,
|
|
411
|
-
target_dtype: torch.dtype = torch.bfloat16,
|
|
412
|
-
**_kwargs,
|
|
413
|
-
) -> tuple[torch.Tensor]:
|
|
414
|
-
# (total_seqlen, 3, nheads, headdim)
|
|
415
|
-
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
|
416
|
-
|
|
417
|
-
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
|
418
|
-
if convert_dtype:
|
|
419
|
-
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
|
420
|
-
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
|
421
|
-
orig_dtype = qkv.dtype
|
|
422
|
-
qkv = qkv.to(target_dtype)
|
|
423
|
-
|
|
424
|
-
attn = flash_attn_varlen_qkvpacked_func(
|
|
425
|
-
qkv,
|
|
426
|
-
cu_seqlens=cu_seqlens,
|
|
427
|
-
max_seqlen=max_seqlen,
|
|
428
|
-
dropout_p=module.attention_dropout if module.training else 0.0,
|
|
429
|
-
deterministic=module.deterministic_flash_attn,
|
|
430
|
-
window_size=local_attention,
|
|
431
|
-
)
|
|
432
|
-
attn = attn.to(orig_dtype) # type: ignore
|
|
433
|
-
else:
|
|
434
|
-
attn = flash_attn_varlen_qkvpacked_func(
|
|
435
|
-
qkv,
|
|
436
|
-
cu_seqlens=cu_seqlens,
|
|
437
|
-
max_seqlen=max_seqlen,
|
|
438
|
-
dropout_p=module.attention_dropout if module.training else 0.0,
|
|
439
|
-
deterministic=module.deterministic_flash_attn,
|
|
440
|
-
window_size=local_attention,
|
|
441
|
-
)
|
|
442
|
-
return (attn.view(bs, dim),)
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
def sdpa_attention_forward(
|
|
446
|
-
module: "ModernBertAttention",
|
|
447
|
-
qkv: torch.Tensor,
|
|
448
|
-
attention_mask: torch.Tensor,
|
|
449
|
-
sliding_window_mask: torch.Tensor,
|
|
450
|
-
position_ids: Optional[torch.LongTensor],
|
|
451
|
-
local_attention: tuple[int, int],
|
|
452
|
-
bs: int,
|
|
453
|
-
dim: int,
|
|
454
|
-
position_embeddings: torch.Tensor,
|
|
455
|
-
**_kwargs,
|
|
456
|
-
) -> tuple[torch.Tensor]:
|
|
457
|
-
# qkv: [batch_size, seqlen, 3, nheads, headdim]
|
|
458
|
-
cos, sin = position_embeddings
|
|
459
|
-
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
|
|
460
|
-
# query, key, value: [batch_size, heads, seq_len, head_dim]
|
|
461
|
-
query, key = apply_rotary_pos_emb(query, key, cos, sin)
|
|
462
|
-
|
|
463
|
-
if local_attention != (-1, -1):
|
|
464
|
-
attention_mask = sliding_window_mask
|
|
465
|
-
|
|
466
|
-
attn_output = (
|
|
467
|
-
F.scaled_dot_product_attention(
|
|
468
|
-
query,
|
|
469
|
-
key,
|
|
470
|
-
value,
|
|
471
|
-
dropout_p=module.attention_dropout if module.training else 0.0,
|
|
472
|
-
attn_mask=attention_mask,
|
|
473
|
-
)
|
|
474
|
-
.transpose(1, 2)
|
|
475
|
-
.contiguous()
|
|
476
|
-
)
|
|
477
|
-
attn_output = attn_output.view(bs, -1, dim)
|
|
478
|
-
return (attn_output,)
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
MODERNBERT_ATTENTION_FUNCTION = {
|
|
482
|
-
"flash_attention_2": flash_attention_forward,
|
|
483
|
-
"eager": eager_attention_forward,
|
|
484
|
-
"sdpa": sdpa_attention_forward,
|
|
485
|
-
}
|
|
226
|
+
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
|
|
227
|
+
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
|
|
228
|
+
return q_embed.to(original_dtype), k_embed.to(original_dtype)
|
|
486
229
|
|
|
487
230
|
|
|
231
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
488
232
|
class ModernBertAttention(nn.Module):
|
|
489
233
|
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
|
490
234
|
|
|
@@ -495,10 +239,10 @@ class ModernBertAttention(nn.Module):
|
|
|
495
239
|
See `forward` method for additional details.
|
|
496
240
|
"""
|
|
497
241
|
|
|
498
|
-
def __init__(self, config: ModernBertConfig,
|
|
242
|
+
def __init__(self, config: ModernBertConfig, layer_idx: int | None = None):
|
|
499
243
|
super().__init__()
|
|
500
244
|
self.config = config
|
|
501
|
-
self.
|
|
245
|
+
self.layer_idx = layer_idx
|
|
502
246
|
|
|
503
247
|
if config.hidden_size % config.num_attention_heads != 0:
|
|
504
248
|
raise ValueError(
|
|
@@ -507,29 +251,19 @@ class ModernBertAttention(nn.Module):
|
|
|
507
251
|
|
|
508
252
|
self.attention_dropout = config.attention_dropout
|
|
509
253
|
self.deterministic_flash_attn = config.deterministic_flash_attn
|
|
510
|
-
self.num_heads = config.num_attention_heads
|
|
511
254
|
self.head_dim = config.hidden_size // config.num_attention_heads
|
|
512
|
-
self.
|
|
513
|
-
|
|
514
|
-
|
|
255
|
+
self.Wqkv = nn.Linear(
|
|
256
|
+
config.hidden_size, 3 * self.head_dim * config.num_attention_heads, bias=config.attention_bias
|
|
257
|
+
)
|
|
515
258
|
|
|
516
|
-
if
|
|
517
|
-
|
|
518
|
-
|
|
259
|
+
if config.layer_types[layer_idx] == "sliding_attention":
|
|
260
|
+
# config.sliding_window = local_attention // 2 (half-window size, e.g. 64 for local_attention=128)
|
|
261
|
+
# +1 is needed because flash attention sets inclusive boundaries (see modeling_flash_attention_utils.py)
|
|
262
|
+
self.sliding_window = config.sliding_window + 1
|
|
519
263
|
else:
|
|
520
|
-
self.
|
|
521
|
-
max_position_embeddings = config.max_position_embeddings
|
|
264
|
+
self.sliding_window = None
|
|
522
265
|
|
|
523
|
-
|
|
524
|
-
rope_parameters_dict = (
|
|
525
|
-
self.config.rope_parameters[layer_type] if layer_type is not None else self.config.rope_parameters
|
|
526
|
-
)
|
|
527
|
-
rope_theta = rope_parameters_dict["rope_theta"]
|
|
528
|
-
self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
|
|
529
|
-
dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
|
|
530
|
-
)
|
|
531
|
-
else:
|
|
532
|
-
self.rotary_emb = None
|
|
266
|
+
self.is_causal = False
|
|
533
267
|
|
|
534
268
|
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
|
535
269
|
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
|
|
@@ -537,82 +271,75 @@ class ModernBertAttention(nn.Module):
|
|
|
537
271
|
def forward(
|
|
538
272
|
self,
|
|
539
273
|
hidden_states: torch.Tensor,
|
|
540
|
-
position_embeddings:
|
|
541
|
-
|
|
542
|
-
**kwargs,
|
|
543
|
-
) -> torch.Tensor:
|
|
274
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
275
|
+
attention_mask: torch.Tensor | None = None,
|
|
276
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
277
|
+
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
|
278
|
+
input_shape = hidden_states.shape[:-1]
|
|
279
|
+
|
|
544
280
|
qkv = self.Wqkv(hidden_states)
|
|
281
|
+
qkv = qkv.view(*input_shape, 3, -1, self.head_dim)
|
|
282
|
+
query_states, key_states, value_states = qkv.unbind(dim=-3)
|
|
545
283
|
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
284
|
+
query_states = query_states.transpose(1, 2)
|
|
285
|
+
key_states = key_states.transpose(1, 2)
|
|
286
|
+
value_states = value_states.transpose(1, 2)
|
|
287
|
+
|
|
288
|
+
cos, sin = position_embeddings
|
|
289
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=1)
|
|
290
|
+
|
|
291
|
+
attention_interface = eager_attention_forward
|
|
292
|
+
if self.config._attn_implementation != "eager":
|
|
293
|
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
551
294
|
|
|
552
|
-
|
|
295
|
+
attn_output, attn_weights = attention_interface(
|
|
553
296
|
self,
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
|
|
297
|
+
query_states,
|
|
298
|
+
key_states,
|
|
299
|
+
value_states,
|
|
300
|
+
attention_mask,
|
|
301
|
+
dropout=self.attention_dropout if self.training else 0.0,
|
|
302
|
+
scaling=self.head_dim**-0.5,
|
|
303
|
+
sliding_window=self.sliding_window,
|
|
304
|
+
deterministic=self.deterministic_flash_attn,
|
|
561
305
|
**kwargs,
|
|
562
306
|
)
|
|
563
|
-
hidden_states = attn_outputs[0]
|
|
564
|
-
hidden_states = self.out_drop(self.Wo(hidden_states))
|
|
565
307
|
|
|
566
|
-
|
|
308
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
309
|
+
attn_output = self.out_drop(self.Wo(attn_output))
|
|
310
|
+
return attn_output, attn_weights
|
|
567
311
|
|
|
568
312
|
|
|
569
313
|
class ModernBertEncoderLayer(GradientCheckpointingLayer):
|
|
570
|
-
def __init__(self, config: ModernBertConfig,
|
|
314
|
+
def __init__(self, config: ModernBertConfig, layer_idx: int | None = None):
|
|
571
315
|
super().__init__()
|
|
572
316
|
self.config = config
|
|
573
|
-
|
|
317
|
+
self.layer_idx = layer_idx
|
|
318
|
+
if layer_idx == 0:
|
|
574
319
|
self.attn_norm = nn.Identity()
|
|
575
320
|
else:
|
|
576
321
|
self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
|
577
|
-
self.attn = ModernBertAttention(config=config,
|
|
322
|
+
self.attn = ModernBertAttention(config=config, layer_idx=layer_idx)
|
|
578
323
|
self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
|
579
324
|
self.mlp = ModernBertMLP(config)
|
|
580
|
-
self.attention_type = config.layer_types[
|
|
581
|
-
|
|
582
|
-
@torch.compile(dynamic=True)
|
|
583
|
-
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
584
|
-
return self.mlp(self.mlp_norm(hidden_states))
|
|
325
|
+
self.attention_type = config.layer_types[layer_idx]
|
|
585
326
|
|
|
586
327
|
def forward(
|
|
587
328
|
self,
|
|
588
329
|
hidden_states: torch.Tensor,
|
|
589
|
-
attention_mask:
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
593
|
-
max_seqlen: Optional[int] = None,
|
|
594
|
-
position_embeddings: Optional[torch.Tensor] = None,
|
|
595
|
-
output_attentions: Optional[bool] = False,
|
|
330
|
+
attention_mask: torch.Tensor | None = None,
|
|
331
|
+
position_embeddings: torch.Tensor | None = None,
|
|
332
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
596
333
|
) -> torch.Tensor:
|
|
597
|
-
|
|
334
|
+
attn_output, _ = self.attn(
|
|
598
335
|
self.attn_norm(hidden_states),
|
|
599
|
-
attention_mask=attention_mask,
|
|
600
|
-
sliding_window_mask=sliding_window_mask,
|
|
601
|
-
position_ids=position_ids,
|
|
602
|
-
cu_seqlens=cu_seqlens,
|
|
603
|
-
max_seqlen=max_seqlen,
|
|
604
336
|
position_embeddings=position_embeddings,
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
hidden_states = hidden_states + attn_outputs[0]
|
|
608
|
-
mlp_output = (
|
|
609
|
-
self.compiled_mlp(hidden_states)
|
|
610
|
-
if self.config.reference_compile
|
|
611
|
-
else self.mlp(self.mlp_norm(hidden_states))
|
|
337
|
+
attention_mask=attention_mask,
|
|
338
|
+
**kwargs,
|
|
612
339
|
)
|
|
613
|
-
hidden_states = hidden_states +
|
|
614
|
-
|
|
615
|
-
return
|
|
340
|
+
hidden_states = hidden_states + attn_output
|
|
341
|
+
hidden_states = hidden_states + self.mlp(self.mlp_norm(hidden_states))
|
|
342
|
+
return hidden_states
|
|
616
343
|
|
|
617
344
|
|
|
618
345
|
@auto_docstring
|
|
@@ -623,7 +350,13 @@ class ModernBertPreTrainedModel(PreTrainedModel):
|
|
|
623
350
|
_no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"]
|
|
624
351
|
_supports_flash_attn = True
|
|
625
352
|
_supports_sdpa = True
|
|
626
|
-
_supports_flex_attn =
|
|
353
|
+
_supports_flex_attn = True
|
|
354
|
+
_supports_attention_backend = True
|
|
355
|
+
|
|
356
|
+
_can_record_outputs = {
|
|
357
|
+
"hidden_states": ModernBertEncoderLayer,
|
|
358
|
+
"attentions": ModernBertAttention,
|
|
359
|
+
}
|
|
627
360
|
|
|
628
361
|
@torch.no_grad()
|
|
629
362
|
def _init_weights(self, module: nn.Module):
|
|
@@ -685,147 +418,24 @@ class ModernBertPreTrainedModel(PreTrainedModel):
|
|
|
685
418
|
curr_inv_freq, _ = rope_init_fn(module.config, layer_type=layer_type)
|
|
686
419
|
init.copy_(getattr(module, f"{layer_type}_inv_freq"), curr_inv_freq)
|
|
687
420
|
init.copy_(getattr(module, f"{layer_type}_original_inv_freq"), curr_inv_freq)
|
|
688
|
-
elif isinstance(module, ModernBertUnpaddedRotaryEmbedding):
|
|
689
|
-
inv_freq = module._compute_inv_freq()
|
|
690
|
-
init.copy_(module.inv_freq, inv_freq)
|
|
691
421
|
|
|
692
422
|
def _check_and_adjust_attn_implementation(
|
|
693
|
-
self, attn_implementation:
|
|
423
|
+
self, attn_implementation: str | None, is_init_check: bool = False
|
|
694
424
|
) -> str:
|
|
695
425
|
"""
|
|
696
426
|
Checks and dispatches to hhe requested attention implementation.
|
|
697
427
|
"""
|
|
698
|
-
# If the user didn't specify anything, try to use flash_attention_2
|
|
428
|
+
# If the user didn't specify anything, try to use flash_attention_2.
|
|
699
429
|
# Otherwise we fall back to the default SDPA -> Eager from the super() method.
|
|
700
|
-
# ModernBert's FA2 implementation correctly handles non-fp16/bf16 dtypes, we don't
|
|
701
|
-
# need the FA2 warning for non-fp16/bf16 dtypes so we set fp16 for the FA2 check.
|
|
702
|
-
|
|
703
430
|
try:
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
else attn_implementation
|
|
431
|
+
requested_attn_implementation = "flash_attention_2" if attn_implementation is None else attn_implementation
|
|
432
|
+
return super()._check_and_adjust_attn_implementation(
|
|
433
|
+
attn_implementation=requested_attn_implementation, is_init_check=is_init_check
|
|
708
434
|
)
|
|
709
435
|
except (ValueError, ImportError):
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
)
|
|
714
|
-
|
|
715
|
-
def _maybe_set_compile(self):
|
|
716
|
-
if self.config.reference_compile is False:
|
|
717
|
-
return
|
|
718
|
-
|
|
719
|
-
if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
|
|
720
|
-
if self.config.reference_compile:
|
|
721
|
-
logger.warning_once(
|
|
722
|
-
"If `accelerate` split the model across devices, `torch.compile` will not work. "
|
|
723
|
-
"Falling back to non-compiled mode."
|
|
724
|
-
)
|
|
725
|
-
self.config.reference_compile = False
|
|
726
|
-
|
|
727
|
-
if self.device.type == "mps":
|
|
728
|
-
if self.config.reference_compile:
|
|
729
|
-
logger.warning_once(
|
|
730
|
-
"Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
|
|
731
|
-
"Falling back to non-compiled mode."
|
|
732
|
-
)
|
|
733
|
-
self.config.reference_compile = False
|
|
734
|
-
|
|
735
|
-
if self.device.type == "cpu":
|
|
736
|
-
if self.config.reference_compile:
|
|
737
|
-
logger.warning_once(
|
|
738
|
-
"Compiling the model with `torch.compile` and using a `torch.cpu` device is not supported. "
|
|
739
|
-
"Falling back to non-compiled mode."
|
|
740
|
-
)
|
|
741
|
-
self.config.reference_compile = False
|
|
742
|
-
|
|
743
|
-
if self.config.reference_compile is None:
|
|
744
|
-
self.config.reference_compile = is_triton_available()
|
|
745
|
-
|
|
746
|
-
def resize_token_embeddings(self, *args, **kwargs):
|
|
747
|
-
model_embeds = super().resize_token_embeddings(*args, **kwargs)
|
|
748
|
-
|
|
749
|
-
if self.config.reference_compile in {True, None}:
|
|
750
|
-
if self.config.reference_compile:
|
|
751
|
-
logger.warning_once(
|
|
752
|
-
"Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
|
|
753
|
-
)
|
|
754
|
-
self.config.reference_compile = False
|
|
755
|
-
|
|
756
|
-
return model_embeds
|
|
757
|
-
|
|
758
|
-
|
|
759
|
-
def _unpad_modernbert_input(
|
|
760
|
-
inputs: torch.Tensor,
|
|
761
|
-
attention_mask: torch.Tensor,
|
|
762
|
-
position_ids: Optional[torch.Tensor] = None,
|
|
763
|
-
labels: Optional[torch.Tensor] = None,
|
|
764
|
-
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
765
|
-
"""
|
|
766
|
-
Remove padding from input sequences.
|
|
767
|
-
|
|
768
|
-
Args:
|
|
769
|
-
inputs: (batch, seqlen, ...) or (batch, seqlen)
|
|
770
|
-
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
|
771
|
-
position_ids: (batch, seqlen), int, position ids
|
|
772
|
-
labels: (batch, seqlen), int, labels
|
|
773
|
-
|
|
774
|
-
Returns:
|
|
775
|
-
unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
|
|
776
|
-
indices: (total_nnz)
|
|
777
|
-
cu_seqlens: (batch + 1), the cumulative sequence lengths
|
|
778
|
-
max_seqlen_in_batch: int
|
|
779
|
-
unpadded_position_ids: (total_nnz) or None
|
|
780
|
-
unpadded_labels: (total_nnz) or None
|
|
781
|
-
"""
|
|
782
|
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
783
|
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
784
|
-
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
|
785
|
-
cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
786
|
-
|
|
787
|
-
if inputs.dim() == 2:
|
|
788
|
-
unpadded_inputs = inputs.flatten()[indices]
|
|
789
|
-
else:
|
|
790
|
-
batch, seqlen, *rest = inputs.shape
|
|
791
|
-
shape = batch * seqlen
|
|
792
|
-
unpadded_inputs = inputs.view(shape, *rest)[indices]
|
|
793
|
-
|
|
794
|
-
unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
|
|
795
|
-
unpadded_labels = labels.flatten()[indices] if labels is not None else None
|
|
796
|
-
|
|
797
|
-
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
def _pad_modernbert_output(
|
|
801
|
-
inputs: torch.Tensor,
|
|
802
|
-
indices: torch.Tensor,
|
|
803
|
-
batch: int,
|
|
804
|
-
seqlen: int,
|
|
805
|
-
) -> torch.Tensor:
|
|
806
|
-
"""
|
|
807
|
-
Add padding to sequences.
|
|
808
|
-
|
|
809
|
-
Args:
|
|
810
|
-
inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
|
|
811
|
-
indices: (total_nnz)
|
|
812
|
-
batch: int, batch size
|
|
813
|
-
seqlen: int, max sequence length
|
|
814
|
-
|
|
815
|
-
Returns:
|
|
816
|
-
padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
|
|
817
|
-
"""
|
|
818
|
-
if inputs.dim() == 1:
|
|
819
|
-
output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
|
|
820
|
-
output[indices] = inputs
|
|
821
|
-
padded_inputs = output.view(batch, seqlen)
|
|
822
|
-
else:
|
|
823
|
-
_, *rest = inputs.shape
|
|
824
|
-
output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
|
|
825
|
-
output[indices] = inputs
|
|
826
|
-
padded_inputs = output.view(batch, seqlen, *rest)
|
|
827
|
-
|
|
828
|
-
return padded_inputs
|
|
436
|
+
return super()._check_and_adjust_attn_implementation(
|
|
437
|
+
attn_implementation=attn_implementation, is_init_check=is_init_check
|
|
438
|
+
)
|
|
829
439
|
|
|
830
440
|
|
|
831
441
|
@auto_docstring
|
|
@@ -835,7 +445,7 @@ class ModernBertModel(ModernBertPreTrainedModel):
|
|
|
835
445
|
self.config = config
|
|
836
446
|
self.embeddings = ModernBertEmbeddings(config)
|
|
837
447
|
self.layers = nn.ModuleList(
|
|
838
|
-
[ModernBertEncoderLayer(config,
|
|
448
|
+
[ModernBertEncoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
839
449
|
)
|
|
840
450
|
self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
|
841
451
|
self.rotary_emb = ModernBertRotaryEmbedding(config=config)
|
|
@@ -848,175 +458,53 @@ class ModernBertModel(ModernBertPreTrainedModel):
|
|
|
848
458
|
def set_input_embeddings(self, value):
|
|
849
459
|
self.embeddings.tok_embeddings = value
|
|
850
460
|
|
|
461
|
+
@check_model_inputs
|
|
851
462
|
@auto_docstring
|
|
852
463
|
def forward(
|
|
853
464
|
self,
|
|
854
|
-
input_ids:
|
|
855
|
-
attention_mask:
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
861
|
-
max_seqlen: Optional[int] = None,
|
|
862
|
-
batch_size: Optional[int] = None,
|
|
863
|
-
seq_len: Optional[int] = None,
|
|
864
|
-
output_attentions: Optional[bool] = None,
|
|
865
|
-
output_hidden_states: Optional[bool] = None,
|
|
866
|
-
return_dict: Optional[bool] = None,
|
|
867
|
-
**kwargs,
|
|
868
|
-
) -> Union[tuple[torch.Tensor, ...], BaseModelOutput]:
|
|
869
|
-
r"""
|
|
870
|
-
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
871
|
-
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
|
872
|
-
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
|
873
|
-
far-away tokens in the local attention layers when not using Flash Attention.
|
|
874
|
-
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
|
875
|
-
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
|
876
|
-
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
|
877
|
-
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
|
878
|
-
max_seqlen (`int`, *optional*):
|
|
879
|
-
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
|
880
|
-
batch_size (`int`, *optional*):
|
|
881
|
-
Batch size of the input sequences. Used to pad the output tensors.
|
|
882
|
-
seq_len (`int`, *optional*):
|
|
883
|
-
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
|
884
|
-
"""
|
|
885
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
886
|
-
output_hidden_states = (
|
|
887
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
888
|
-
)
|
|
889
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
890
|
-
|
|
465
|
+
input_ids: torch.LongTensor | None = None,
|
|
466
|
+
attention_mask: torch.Tensor | None = None,
|
|
467
|
+
position_ids: torch.LongTensor | None = None,
|
|
468
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
469
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
470
|
+
) -> BaseModelOutput:
|
|
891
471
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
892
472
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
893
473
|
|
|
894
|
-
|
|
895
|
-
all_self_attentions = () if output_attentions else None
|
|
896
|
-
|
|
897
|
-
self._maybe_set_compile()
|
|
898
|
-
|
|
899
|
-
if input_ids is not None:
|
|
900
|
-
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
901
|
-
|
|
902
|
-
if batch_size is None and seq_len is None:
|
|
903
|
-
if inputs_embeds is not None:
|
|
904
|
-
batch_size, seq_len = inputs_embeds.shape[:2]
|
|
905
|
-
else:
|
|
906
|
-
batch_size, seq_len = input_ids.shape[:2]
|
|
474
|
+
seq_len = inputs_embeds.shape[1] if inputs_embeds is not None else input_ids.shape[1]
|
|
907
475
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
908
476
|
|
|
909
|
-
if
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
repad = False
|
|
913
|
-
if self.config._attn_implementation == "flash_attention_2":
|
|
914
|
-
if indices is None and cu_seqlens is None and max_seqlen is None:
|
|
915
|
-
repad = True
|
|
916
|
-
if inputs_embeds is None:
|
|
917
|
-
with torch.no_grad():
|
|
918
|
-
input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
|
|
919
|
-
inputs=input_ids, attention_mask=attention_mask
|
|
920
|
-
)
|
|
921
|
-
else:
|
|
922
|
-
inputs_embeds, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
|
|
923
|
-
inputs=inputs_embeds, attention_mask=attention_mask
|
|
924
|
-
)
|
|
925
|
-
if position_ids is None:
|
|
926
|
-
position_ids = indices.unsqueeze(0)
|
|
927
|
-
else:
|
|
928
|
-
if position_ids is None:
|
|
929
|
-
position_ids = torch.arange(seq_len, device=device).unsqueeze(0)
|
|
930
|
-
|
|
931
|
-
attention_mask, sliding_window_mask = self._update_attention_mask(
|
|
932
|
-
attention_mask, output_attentions=output_attentions
|
|
933
|
-
)
|
|
477
|
+
if position_ids is None:
|
|
478
|
+
position_ids = torch.arange(seq_len, device=device).unsqueeze(0)
|
|
934
479
|
|
|
935
480
|
hidden_states = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds)
|
|
481
|
+
|
|
482
|
+
if not isinstance(attention_mask_mapping := attention_mask, dict):
|
|
483
|
+
mask_kwargs = {
|
|
484
|
+
"config": self.config,
|
|
485
|
+
"input_embeds": hidden_states,
|
|
486
|
+
"attention_mask": attention_mask,
|
|
487
|
+
}
|
|
488
|
+
attention_mask_mapping = {
|
|
489
|
+
"full_attention": create_bidirectional_mask(**mask_kwargs),
|
|
490
|
+
"sliding_attention": create_bidirectional_sliding_window_mask(**mask_kwargs),
|
|
491
|
+
}
|
|
492
|
+
|
|
936
493
|
position_embeddings = {}
|
|
937
494
|
for layer_type in self.config.layer_types:
|
|
938
495
|
position_embeddings[layer_type] = self.rotary_emb(hidden_states, position_ids, layer_type)
|
|
939
496
|
|
|
940
497
|
for encoder_layer in self.layers:
|
|
941
|
-
|
|
942
|
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
943
|
-
|
|
944
|
-
layer_outputs = encoder_layer(
|
|
498
|
+
hidden_states = encoder_layer(
|
|
945
499
|
hidden_states,
|
|
946
|
-
attention_mask=
|
|
947
|
-
sliding_window_mask=sliding_window_mask,
|
|
948
|
-
position_ids=position_ids,
|
|
949
|
-
cu_seqlens=cu_seqlens,
|
|
950
|
-
max_seqlen=max_seqlen,
|
|
500
|
+
attention_mask=attention_mask_mapping[encoder_layer.attention_type],
|
|
951
501
|
position_embeddings=position_embeddings[encoder_layer.attention_type],
|
|
952
|
-
|
|
502
|
+
**kwargs,
|
|
953
503
|
)
|
|
954
|
-
hidden_states = layer_outputs[0]
|
|
955
|
-
if output_attentions and len(layer_outputs) > 1:
|
|
956
|
-
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
957
|
-
|
|
958
|
-
if output_hidden_states:
|
|
959
|
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
960
504
|
|
|
961
505
|
hidden_states = self.final_norm(hidden_states)
|
|
962
506
|
|
|
963
|
-
|
|
964
|
-
hidden_states = _pad_modernbert_output(
|
|
965
|
-
inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
|
|
966
|
-
)
|
|
967
|
-
if all_hidden_states is not None:
|
|
968
|
-
all_hidden_states = tuple(
|
|
969
|
-
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
|
|
970
|
-
for hs in all_hidden_states
|
|
971
|
-
)
|
|
972
|
-
# If the attention implementation is FA2 and there is no need for repadding, there might still be the batch
|
|
973
|
-
# dimension missing
|
|
974
|
-
elif (
|
|
975
|
-
self.config._attn_implementation == "flash_attention_2"
|
|
976
|
-
and all_hidden_states is not None
|
|
977
|
-
and all_hidden_states[-1].dim() == 2
|
|
978
|
-
):
|
|
979
|
-
hidden_states = hidden_states.unsqueeze(0)
|
|
980
|
-
all_hidden_states = tuple(hs.unsqueeze(0) for hs in all_hidden_states)
|
|
981
|
-
|
|
982
|
-
if not return_dict:
|
|
983
|
-
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
|
984
|
-
return BaseModelOutput(
|
|
985
|
-
last_hidden_state=hidden_states,
|
|
986
|
-
hidden_states=all_hidden_states,
|
|
987
|
-
attentions=all_self_attentions,
|
|
988
|
-
)
|
|
989
|
-
|
|
990
|
-
def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
|
|
991
|
-
if output_attentions:
|
|
992
|
-
if self.config._attn_implementation == "sdpa":
|
|
993
|
-
logger.warning_once(
|
|
994
|
-
"Outputting attentions is only supported with the 'eager' attention implementation, "
|
|
995
|
-
'not with "sdpa". Falling back to `attn_implementation="eager"`.'
|
|
996
|
-
)
|
|
997
|
-
self.config._attn_implementation = "eager"
|
|
998
|
-
elif self.config._attn_implementation != "eager":
|
|
999
|
-
logger.warning_once(
|
|
1000
|
-
"Outputting attentions is only supported with the eager attention implementation, "
|
|
1001
|
-
f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
|
|
1002
|
-
" Setting `output_attentions=False`."
|
|
1003
|
-
)
|
|
1004
|
-
|
|
1005
|
-
global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)
|
|
1006
|
-
|
|
1007
|
-
# Create position indices
|
|
1008
|
-
rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
|
|
1009
|
-
# Calculate distance between positions
|
|
1010
|
-
distance = torch.abs(rows - rows.T)
|
|
1011
|
-
|
|
1012
|
-
# Create sliding window mask (1 for positions within window, 0 outside)
|
|
1013
|
-
window_mask = (
|
|
1014
|
-
(distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
|
|
1015
|
-
)
|
|
1016
|
-
# Combine with existing mask
|
|
1017
|
-
sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)
|
|
1018
|
-
|
|
1019
|
-
return global_attention_mask, sliding_window_mask
|
|
507
|
+
return BaseModelOutput(last_hidden_state=hidden_states)
|
|
1020
508
|
|
|
1021
509
|
|
|
1022
510
|
class ModernBertPredictionHead(nn.Module):
|
|
@@ -1058,84 +546,23 @@ class ModernBertForMaskedLM(ModernBertPreTrainedModel):
|
|
|
1058
546
|
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
|
1059
547
|
self.decoder = new_embeddings
|
|
1060
548
|
|
|
1061
|
-
@
|
|
1062
|
-
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
|
|
1063
|
-
return self.decoder(self.head(output))
|
|
1064
|
-
|
|
549
|
+
@can_return_tuple
|
|
1065
550
|
@auto_docstring
|
|
1066
551
|
def forward(
|
|
1067
552
|
self,
|
|
1068
|
-
input_ids:
|
|
1069
|
-
attention_mask:
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
1076
|
-
max_seqlen: Optional[int] = None,
|
|
1077
|
-
batch_size: Optional[int] = None,
|
|
1078
|
-
seq_len: Optional[int] = None,
|
|
1079
|
-
output_attentions: Optional[bool] = None,
|
|
1080
|
-
output_hidden_states: Optional[bool] = None,
|
|
1081
|
-
return_dict: Optional[bool] = None,
|
|
1082
|
-
**kwargs,
|
|
1083
|
-
) -> Union[tuple[torch.Tensor], MaskedLMOutput]:
|
|
1084
|
-
r"""
|
|
1085
|
-
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1086
|
-
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
|
1087
|
-
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
|
1088
|
-
far-away tokens in the local attention layers when not using Flash Attention.
|
|
1089
|
-
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
|
1090
|
-
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
|
1091
|
-
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
|
1092
|
-
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
|
1093
|
-
max_seqlen (`int`, *optional*):
|
|
1094
|
-
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
|
1095
|
-
batch_size (`int`, *optional*):
|
|
1096
|
-
Batch size of the input sequences. Used to pad the output tensors.
|
|
1097
|
-
seq_len (`int`, *optional*):
|
|
1098
|
-
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
|
1099
|
-
"""
|
|
1100
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1101
|
-
self._maybe_set_compile()
|
|
1102
|
-
|
|
1103
|
-
if self.config._attn_implementation == "flash_attention_2":
|
|
1104
|
-
if indices is None and cu_seqlens is None and max_seqlen is None:
|
|
1105
|
-
if batch_size is None and seq_len is None:
|
|
1106
|
-
if inputs_embeds is not None:
|
|
1107
|
-
batch_size, seq_len = inputs_embeds.shape[:2]
|
|
1108
|
-
else:
|
|
1109
|
-
batch_size, seq_len = input_ids.shape[:2]
|
|
1110
|
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
1111
|
-
|
|
1112
|
-
if attention_mask is None:
|
|
1113
|
-
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
|
|
1114
|
-
|
|
1115
|
-
if inputs_embeds is None:
|
|
1116
|
-
with torch.no_grad():
|
|
1117
|
-
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
|
|
1118
|
-
inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
|
|
1119
|
-
)
|
|
1120
|
-
else:
|
|
1121
|
-
inputs_embeds, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
|
|
1122
|
-
inputs=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, labels=labels
|
|
1123
|
-
)
|
|
1124
|
-
|
|
553
|
+
input_ids: torch.LongTensor | None = None,
|
|
554
|
+
attention_mask: torch.Tensor | None = None,
|
|
555
|
+
position_ids: torch.Tensor | None = None,
|
|
556
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
557
|
+
labels: torch.Tensor | None = None,
|
|
558
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
559
|
+
) -> tuple[torch.Tensor] | MaskedLMOutput:
|
|
1125
560
|
outputs = self.model(
|
|
1126
561
|
input_ids=input_ids,
|
|
1127
562
|
attention_mask=attention_mask,
|
|
1128
|
-
sliding_window_mask=sliding_window_mask,
|
|
1129
563
|
position_ids=position_ids,
|
|
1130
564
|
inputs_embeds=inputs_embeds,
|
|
1131
|
-
|
|
1132
|
-
cu_seqlens=cu_seqlens,
|
|
1133
|
-
max_seqlen=max_seqlen,
|
|
1134
|
-
batch_size=batch_size,
|
|
1135
|
-
seq_len=seq_len,
|
|
1136
|
-
output_attentions=output_attentions,
|
|
1137
|
-
output_hidden_states=output_hidden_states,
|
|
1138
|
-
return_dict=return_dict,
|
|
565
|
+
**kwargs,
|
|
1139
566
|
)
|
|
1140
567
|
last_hidden_state = outputs[0]
|
|
1141
568
|
|
|
@@ -1149,35 +576,12 @@ class ModernBertForMaskedLM(ModernBertPreTrainedModel):
|
|
|
1149
576
|
last_hidden_state = last_hidden_state[mask_tokens]
|
|
1150
577
|
labels = labels[mask_tokens]
|
|
1151
578
|
|
|
1152
|
-
logits = (
|
|
1153
|
-
self.compiled_head(last_hidden_state)
|
|
1154
|
-
if self.config.reference_compile
|
|
1155
|
-
else self.decoder(self.head(last_hidden_state))
|
|
1156
|
-
)
|
|
579
|
+
logits = self.decoder(self.head(last_hidden_state))
|
|
1157
580
|
|
|
1158
581
|
loss = None
|
|
1159
582
|
if labels is not None:
|
|
1160
583
|
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
1161
584
|
|
|
1162
|
-
if self.config._attn_implementation == "flash_attention_2":
|
|
1163
|
-
# Logits padding
|
|
1164
|
-
with nullcontext() if self.config.repad_logits_with_grad or labels is None else torch.no_grad():
|
|
1165
|
-
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
|
|
1166
|
-
# Hidden states padding
|
|
1167
|
-
if getattr(outputs, "hidden_states", None) is not None:
|
|
1168
|
-
padded_hidden_states = []
|
|
1169
|
-
for hs in outputs.hidden_states:
|
|
1170
|
-
if hs.dim() == 3 and hs.shape[0] == 1:
|
|
1171
|
-
hs = hs.squeeze(0)
|
|
1172
|
-
padded_hidden_states.append(
|
|
1173
|
-
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
|
|
1174
|
-
)
|
|
1175
|
-
outputs.hidden_states = tuple(padded_hidden_states)
|
|
1176
|
-
|
|
1177
|
-
if not return_dict:
|
|
1178
|
-
output = (logits,)
|
|
1179
|
-
return ((loss,) + output) if loss is not None else output
|
|
1180
|
-
|
|
1181
585
|
return MaskedLMOutput(
|
|
1182
586
|
loss=loss,
|
|
1183
587
|
logits=logits,
|
|
@@ -1205,81 +609,39 @@ class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
|
|
|
1205
609
|
# Initialize weights and apply final processing
|
|
1206
610
|
self.post_init()
|
|
1207
611
|
|
|
612
|
+
@can_return_tuple
|
|
1208
613
|
@auto_docstring
|
|
1209
614
|
def forward(
|
|
1210
615
|
self,
|
|
1211
|
-
input_ids:
|
|
1212
|
-
attention_mask:
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
|
|
1217
|
-
|
|
1218
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
1219
|
-
max_seqlen: Optional[int] = None,
|
|
1220
|
-
batch_size: Optional[int] = None,
|
|
1221
|
-
seq_len: Optional[int] = None,
|
|
1222
|
-
output_attentions: Optional[bool] = None,
|
|
1223
|
-
output_hidden_states: Optional[bool] = None,
|
|
1224
|
-
return_dict: Optional[bool] = None,
|
|
1225
|
-
**kwargs,
|
|
1226
|
-
) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
|
|
616
|
+
input_ids: torch.LongTensor | None = None,
|
|
617
|
+
attention_mask: torch.Tensor | None = None,
|
|
618
|
+
position_ids: torch.Tensor | None = None,
|
|
619
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
620
|
+
labels: torch.Tensor | None = None,
|
|
621
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
622
|
+
) -> tuple[torch.Tensor] | SequenceClassifierOutput:
|
|
1227
623
|
r"""
|
|
1228
|
-
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1229
|
-
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
|
1230
|
-
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
|
1231
|
-
far-away tokens in the local attention layers when not using Flash Attention.
|
|
1232
624
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
1233
625
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
1234
626
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
1235
627
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
1236
|
-
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
|
1237
|
-
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
|
1238
|
-
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
|
1239
|
-
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
|
1240
|
-
max_seqlen (`int`, *optional*):
|
|
1241
|
-
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
|
1242
|
-
batch_size (`int`, *optional*):
|
|
1243
|
-
Batch size of the input sequences. Used to pad the output tensors.
|
|
1244
|
-
seq_len (`int`, *optional*):
|
|
1245
|
-
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
|
1246
628
|
"""
|
|
1247
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1248
|
-
self._maybe_set_compile()
|
|
1249
|
-
|
|
1250
|
-
if input_ids is not None:
|
|
1251
|
-
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
1252
|
-
|
|
1253
|
-
if batch_size is None and seq_len is None:
|
|
1254
|
-
if inputs_embeds is not None:
|
|
1255
|
-
batch_size, seq_len = inputs_embeds.shape[:2]
|
|
1256
|
-
else:
|
|
1257
|
-
batch_size, seq_len = input_ids.shape[:2]
|
|
1258
|
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
1259
|
-
|
|
1260
|
-
if attention_mask is None:
|
|
1261
|
-
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
|
|
1262
|
-
|
|
1263
629
|
outputs = self.model(
|
|
1264
630
|
input_ids=input_ids,
|
|
1265
631
|
attention_mask=attention_mask,
|
|
1266
|
-
sliding_window_mask=sliding_window_mask,
|
|
1267
632
|
position_ids=position_ids,
|
|
1268
633
|
inputs_embeds=inputs_embeds,
|
|
1269
|
-
|
|
1270
|
-
cu_seqlens=cu_seqlens,
|
|
1271
|
-
max_seqlen=max_seqlen,
|
|
1272
|
-
batch_size=batch_size,
|
|
1273
|
-
seq_len=seq_len,
|
|
1274
|
-
output_attentions=output_attentions,
|
|
1275
|
-
output_hidden_states=output_hidden_states,
|
|
1276
|
-
return_dict=return_dict,
|
|
634
|
+
**kwargs,
|
|
1277
635
|
)
|
|
1278
636
|
last_hidden_state = outputs[0]
|
|
1279
637
|
|
|
1280
638
|
if self.config.classifier_pooling == "cls":
|
|
1281
639
|
last_hidden_state = last_hidden_state[:, 0]
|
|
1282
640
|
elif self.config.classifier_pooling == "mean":
|
|
641
|
+
if attention_mask is None:
|
|
642
|
+
attention_mask = torch.ones(
|
|
643
|
+
last_hidden_state.shape[:2], device=last_hidden_state.device, dtype=torch.bool
|
|
644
|
+
)
|
|
1283
645
|
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
|
|
1284
646
|
dim=1, keepdim=True
|
|
1285
647
|
)
|
|
@@ -1311,10 +673,6 @@ class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
|
|
|
1311
673
|
loss_fct = BCEWithLogitsLoss()
|
|
1312
674
|
loss = loss_fct(logits, labels)
|
|
1313
675
|
|
|
1314
|
-
if not return_dict:
|
|
1315
|
-
output = (logits,)
|
|
1316
|
-
return ((loss,) + output) if loss is not None else output
|
|
1317
|
-
|
|
1318
676
|
return SequenceClassifierOutput(
|
|
1319
677
|
loss=loss,
|
|
1320
678
|
logits=logits,
|
|
@@ -1341,60 +699,27 @@ class ModernBertForTokenClassification(ModernBertPreTrainedModel):
|
|
|
1341
699
|
# Initialize weights and apply final processing
|
|
1342
700
|
self.post_init()
|
|
1343
701
|
|
|
702
|
+
@can_return_tuple
|
|
1344
703
|
@auto_docstring
|
|
1345
704
|
def forward(
|
|
1346
705
|
self,
|
|
1347
|
-
input_ids:
|
|
1348
|
-
attention_mask:
|
|
1349
|
-
|
|
1350
|
-
|
|
1351
|
-
|
|
1352
|
-
|
|
1353
|
-
|
|
1354
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
1355
|
-
max_seqlen: Optional[int] = None,
|
|
1356
|
-
batch_size: Optional[int] = None,
|
|
1357
|
-
seq_len: Optional[int] = None,
|
|
1358
|
-
output_attentions: Optional[bool] = None,
|
|
1359
|
-
output_hidden_states: Optional[bool] = None,
|
|
1360
|
-
return_dict: Optional[bool] = None,
|
|
1361
|
-
**kwargs,
|
|
1362
|
-
) -> Union[tuple[torch.Tensor], TokenClassifierOutput]:
|
|
706
|
+
input_ids: torch.LongTensor | None = None,
|
|
707
|
+
attention_mask: torch.Tensor | None = None,
|
|
708
|
+
position_ids: torch.Tensor | None = None,
|
|
709
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
710
|
+
labels: torch.Tensor | None = None,
|
|
711
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
712
|
+
) -> tuple[torch.Tensor] | TokenClassifierOutput:
|
|
1363
713
|
r"""
|
|
1364
|
-
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1365
|
-
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
|
1366
|
-
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
|
1367
|
-
far-away tokens in the local attention layers when not using Flash Attention.
|
|
1368
714
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1369
715
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
|
1370
|
-
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
|
1371
|
-
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
|
1372
|
-
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
|
1373
|
-
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
|
1374
|
-
max_seqlen (`int`, *optional*):
|
|
1375
|
-
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
|
1376
|
-
batch_size (`int`, *optional*):
|
|
1377
|
-
Batch size of the input sequences. Used to pad the output tensors.
|
|
1378
|
-
seq_len (`int`, *optional*):
|
|
1379
|
-
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
|
1380
716
|
"""
|
|
1381
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1382
|
-
self._maybe_set_compile()
|
|
1383
|
-
|
|
1384
717
|
outputs = self.model(
|
|
1385
718
|
input_ids=input_ids,
|
|
1386
719
|
attention_mask=attention_mask,
|
|
1387
|
-
sliding_window_mask=sliding_window_mask,
|
|
1388
720
|
position_ids=position_ids,
|
|
1389
721
|
inputs_embeds=inputs_embeds,
|
|
1390
|
-
|
|
1391
|
-
cu_seqlens=cu_seqlens,
|
|
1392
|
-
max_seqlen=max_seqlen,
|
|
1393
|
-
batch_size=batch_size,
|
|
1394
|
-
seq_len=seq_len,
|
|
1395
|
-
output_attentions=output_attentions,
|
|
1396
|
-
output_hidden_states=output_hidden_states,
|
|
1397
|
-
return_dict=return_dict,
|
|
722
|
+
**kwargs,
|
|
1398
723
|
)
|
|
1399
724
|
last_hidden_state = outputs[0]
|
|
1400
725
|
|
|
@@ -1407,10 +732,6 @@ class ModernBertForTokenClassification(ModernBertPreTrainedModel):
|
|
|
1407
732
|
loss_fct = CrossEntropyLoss()
|
|
1408
733
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
1409
734
|
|
|
1410
|
-
if not return_dict:
|
|
1411
|
-
output = (logits,) + outputs[1:]
|
|
1412
|
-
return ((loss,) + output) if loss is not None else output
|
|
1413
|
-
|
|
1414
735
|
return TokenClassifierOutput(
|
|
1415
736
|
loss=loss,
|
|
1416
737
|
logits=logits,
|
|
@@ -1432,57 +753,22 @@ class ModernBertForQuestionAnswering(ModernBertPreTrainedModel):
|
|
|
1432
753
|
|
|
1433
754
|
self.post_init()
|
|
1434
755
|
|
|
756
|
+
@can_return_tuple
|
|
1435
757
|
@auto_docstring
|
|
1436
758
|
def forward(
|
|
1437
759
|
self,
|
|
1438
|
-
input_ids:
|
|
1439
|
-
attention_mask:
|
|
1440
|
-
|
|
1441
|
-
|
|
1442
|
-
|
|
1443
|
-
|
|
1444
|
-
|
|
1445
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
1446
|
-
max_seqlen: Optional[int] = None,
|
|
1447
|
-
batch_size: Optional[int] = None,
|
|
1448
|
-
seq_len: Optional[int] = None,
|
|
1449
|
-
output_attentions: Optional[bool] = None,
|
|
1450
|
-
output_hidden_states: Optional[bool] = None,
|
|
1451
|
-
return_dict: Optional[bool] = None,
|
|
1452
|
-
**kwargs,
|
|
1453
|
-
) -> Union[tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
|
1454
|
-
r"""
|
|
1455
|
-
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1456
|
-
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
|
1457
|
-
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
|
1458
|
-
far-away tokens in the local attention layers when not using Flash Attention.
|
|
1459
|
-
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
|
1460
|
-
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
|
1461
|
-
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
|
1462
|
-
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
|
1463
|
-
max_seqlen (`int`, *optional*):
|
|
1464
|
-
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
|
1465
|
-
batch_size (`int`, *optional*):
|
|
1466
|
-
Batch size of the input sequences. Used to pad the output tensors.
|
|
1467
|
-
seq_len (`int`, *optional*):
|
|
1468
|
-
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
|
1469
|
-
"""
|
|
1470
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1471
|
-
self._maybe_set_compile()
|
|
1472
|
-
|
|
760
|
+
input_ids: torch.Tensor | None = None,
|
|
761
|
+
attention_mask: torch.Tensor | None = None,
|
|
762
|
+
position_ids: torch.Tensor | None = None,
|
|
763
|
+
start_positions: torch.Tensor | None = None,
|
|
764
|
+
end_positions: torch.Tensor | None = None,
|
|
765
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
766
|
+
) -> tuple[torch.Tensor] | QuestionAnsweringModelOutput:
|
|
1473
767
|
outputs = self.model(
|
|
1474
768
|
input_ids,
|
|
1475
769
|
attention_mask=attention_mask,
|
|
1476
|
-
sliding_window_mask=sliding_window_mask,
|
|
1477
770
|
position_ids=position_ids,
|
|
1478
|
-
|
|
1479
|
-
cu_seqlens=cu_seqlens,
|
|
1480
|
-
max_seqlen=max_seqlen,
|
|
1481
|
-
batch_size=batch_size,
|
|
1482
|
-
seq_len=seq_len,
|
|
1483
|
-
output_attentions=output_attentions,
|
|
1484
|
-
output_hidden_states=output_hidden_states,
|
|
1485
|
-
return_dict=return_dict,
|
|
771
|
+
**kwargs,
|
|
1486
772
|
)
|
|
1487
773
|
last_hidden_state = outputs[0]
|
|
1488
774
|
|
|
@@ -1498,10 +784,6 @@ class ModernBertForQuestionAnswering(ModernBertPreTrainedModel):
|
|
|
1498
784
|
if start_positions is not None and end_positions is not None:
|
|
1499
785
|
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
|
1500
786
|
|
|
1501
|
-
if not return_dict:
|
|
1502
|
-
output = (start_logits, end_logits) + outputs[1:]
|
|
1503
|
-
return ((loss,) + output) if loss is not None else output
|
|
1504
|
-
|
|
1505
787
|
return QuestionAnsweringModelOutput(
|
|
1506
788
|
loss=loss,
|
|
1507
789
|
start_logits=start_logits,
|
|
@@ -1529,45 +811,22 @@ class ModernBertForMultipleChoice(ModernBertPreTrainedModel):
|
|
|
1529
811
|
# Initialize weights and apply final processing
|
|
1530
812
|
self.post_init()
|
|
1531
813
|
|
|
814
|
+
@can_return_tuple
|
|
1532
815
|
@auto_docstring
|
|
1533
816
|
def forward(
|
|
1534
817
|
self,
|
|
1535
|
-
input_ids:
|
|
1536
|
-
attention_mask:
|
|
1537
|
-
|
|
1538
|
-
|
|
1539
|
-
|
|
1540
|
-
|
|
1541
|
-
|
|
1542
|
-
cu_seqlens: Optional[torch.Tensor] = None,
|
|
1543
|
-
max_seqlen: Optional[int] = None,
|
|
1544
|
-
batch_size: Optional[int] = None,
|
|
1545
|
-
seq_len: Optional[int] = None,
|
|
1546
|
-
output_attentions: Optional[bool] = None,
|
|
1547
|
-
output_hidden_states: Optional[bool] = None,
|
|
1548
|
-
return_dict: Optional[bool] = None,
|
|
1549
|
-
**kwargs,
|
|
1550
|
-
) -> Union[tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
|
818
|
+
input_ids: torch.LongTensor | None = None,
|
|
819
|
+
attention_mask: torch.Tensor | None = None,
|
|
820
|
+
position_ids: torch.Tensor | None = None,
|
|
821
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
822
|
+
labels: torch.Tensor | None = None,
|
|
823
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
824
|
+
) -> tuple[torch.Tensor] | MultipleChoiceModelOutput:
|
|
1551
825
|
r"""
|
|
1552
|
-
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1553
|
-
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
|
1554
|
-
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
|
1555
|
-
far-away tokens in the local attention layers when not using Flash Attention.
|
|
1556
826
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
1557
827
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
|
1558
828
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors.
|
|
1559
|
-
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
|
1560
|
-
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
|
1561
|
-
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
|
1562
|
-
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
|
1563
|
-
max_seqlen (`int`, *optional*):
|
|
1564
|
-
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
|
1565
|
-
batch_size (`int`, *optional*):
|
|
1566
|
-
Batch size of the input sequences. Used to pad the output tensors.
|
|
1567
|
-
seq_len (`int`, *optional*):
|
|
1568
|
-
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
|
1569
829
|
"""
|
|
1570
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1571
830
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
|
1572
831
|
|
|
1573
832
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
|
@@ -1579,22 +838,12 @@ class ModernBertForMultipleChoice(ModernBertPreTrainedModel):
|
|
|
1579
838
|
else None
|
|
1580
839
|
)
|
|
1581
840
|
|
|
1582
|
-
self._maybe_set_compile()
|
|
1583
|
-
|
|
1584
841
|
outputs = self.model(
|
|
1585
842
|
input_ids=input_ids,
|
|
1586
843
|
attention_mask=attention_mask,
|
|
1587
|
-
sliding_window_mask=sliding_window_mask,
|
|
1588
844
|
position_ids=position_ids,
|
|
1589
845
|
inputs_embeds=inputs_embeds,
|
|
1590
|
-
|
|
1591
|
-
cu_seqlens=cu_seqlens,
|
|
1592
|
-
max_seqlen=max_seqlen,
|
|
1593
|
-
batch_size=batch_size,
|
|
1594
|
-
seq_len=seq_len,
|
|
1595
|
-
output_attentions=output_attentions,
|
|
1596
|
-
output_hidden_states=output_hidden_states,
|
|
1597
|
-
return_dict=return_dict,
|
|
846
|
+
**kwargs,
|
|
1598
847
|
)
|
|
1599
848
|
last_hidden_state = outputs[0] # shape (num_choices, seq_len, hidden_size)
|
|
1600
849
|
|
|
@@ -1626,10 +875,6 @@ class ModernBertForMultipleChoice(ModernBertPreTrainedModel):
|
|
|
1626
875
|
loss_fct = nn.CrossEntropyLoss()
|
|
1627
876
|
loss = loss_fct(reshaped_logits, labels)
|
|
1628
877
|
|
|
1629
|
-
if not return_dict:
|
|
1630
|
-
output = (reshaped_logits,) + outputs[1:]
|
|
1631
|
-
return ((loss,) + output) if loss is not None else output
|
|
1632
|
-
|
|
1633
878
|
return MultipleChoiceModelOutput(
|
|
1634
879
|
loss=loss,
|
|
1635
880
|
logits=reshaped_logits,
|