transformers 5.0.0rc2__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +11 -37
- transformers/activations.py +2 -2
- transformers/audio_utils.py +32 -32
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +26 -126
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +13 -10
- transformers/cli/transformers.py +2 -1
- transformers/configuration_utils.py +22 -92
- transformers/conversion_mapping.py +150 -26
- transformers/convert_slow_tokenizer.py +9 -12
- transformers/core_model_loading.py +217 -129
- transformers/data/processors/glue.py +0 -1
- transformers/data/processors/utils.py +0 -1
- transformers/data/processors/xnli.py +0 -1
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +10 -11
- transformers/distributed/configuration_utils.py +1 -2
- transformers/dynamic_module_utils.py +23 -23
- transformers/feature_extraction_sequence_utils.py +19 -23
- transformers/feature_extraction_utils.py +14 -14
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +2 -4
- transformers/generation/configuration_utils.py +54 -39
- transformers/generation/continuous_batching/__init__.py +0 -1
- transformers/generation/continuous_batching/cache.py +74 -44
- transformers/generation/continuous_batching/cache_manager.py +28 -28
- transformers/generation/continuous_batching/continuous_api.py +133 -414
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +77 -19
- transformers/generation/continuous_batching/scheduler.py +154 -104
- transformers/generation/logits_process.py +10 -133
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/streamers.py +0 -1
- transformers/generation/utils.py +91 -121
- transformers/generation/watermarking.py +2 -3
- transformers/hf_argparser.py +9 -13
- transformers/hyperparameter_search.py +1 -2
- transformers/image_processing_base.py +9 -9
- transformers/image_processing_utils.py +11 -15
- transformers/image_processing_utils_fast.py +70 -71
- transformers/image_transforms.py +73 -42
- transformers/image_utils.py +30 -37
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/awq.py +1 -3
- transformers/integrations/deepspeed.py +146 -4
- transformers/integrations/eetq.py +0 -1
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/fbgemm_fp8.py +1 -2
- transformers/integrations/finegrained_fp8.py +149 -13
- transformers/integrations/flash_attention.py +3 -8
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +4 -6
- transformers/integrations/ggml.py +0 -1
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/integration_utils.py +2 -3
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +52 -40
- transformers/integrations/peft.py +488 -176
- transformers/integrations/quark.py +2 -4
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/integrations/torchao.py +4 -6
- transformers/loss/loss_lw_detr.py +356 -0
- transformers/loss/loss_utils.py +2 -0
- transformers/masking_utils.py +199 -59
- transformers/model_debugging_utils.py +4 -5
- transformers/modelcard.py +14 -192
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +28 -29
- transformers/modeling_gguf_pytorch_utils.py +5 -5
- transformers/modeling_layers.py +21 -22
- transformers/modeling_outputs.py +242 -253
- transformers/modeling_rope_utils.py +32 -32
- transformers/modeling_utils.py +416 -438
- transformers/models/__init__.py +10 -0
- transformers/models/afmoe/configuration_afmoe.py +40 -33
- transformers/models/afmoe/modeling_afmoe.py +38 -41
- transformers/models/afmoe/modular_afmoe.py +23 -25
- transformers/models/aimv2/configuration_aimv2.py +2 -10
- transformers/models/aimv2/modeling_aimv2.py +46 -45
- transformers/models/aimv2/modular_aimv2.py +13 -19
- transformers/models/albert/configuration_albert.py +8 -2
- transformers/models/albert/modeling_albert.py +70 -72
- transformers/models/albert/tokenization_albert.py +1 -4
- transformers/models/align/configuration_align.py +8 -6
- transformers/models/align/modeling_align.py +83 -86
- transformers/models/align/processing_align.py +2 -30
- transformers/models/altclip/configuration_altclip.py +4 -7
- transformers/models/altclip/modeling_altclip.py +106 -103
- transformers/models/altclip/processing_altclip.py +2 -15
- transformers/models/apertus/__init__.py +0 -1
- transformers/models/apertus/configuration_apertus.py +23 -28
- transformers/models/apertus/modeling_apertus.py +35 -38
- transformers/models/apertus/modular_apertus.py +36 -40
- transformers/models/arcee/configuration_arcee.py +25 -30
- transformers/models/arcee/modeling_arcee.py +35 -38
- transformers/models/arcee/modular_arcee.py +20 -23
- transformers/models/aria/configuration_aria.py +31 -44
- transformers/models/aria/image_processing_aria.py +25 -27
- transformers/models/aria/modeling_aria.py +102 -102
- transformers/models/aria/modular_aria.py +111 -124
- transformers/models/aria/processing_aria.py +28 -35
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +9 -11
- transformers/models/audioflamingo3/__init__.py +0 -1
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +60 -52
- transformers/models/audioflamingo3/modular_audioflamingo3.py +52 -43
- transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
- transformers/models/auto/auto_factory.py +12 -11
- transformers/models/auto/configuration_auto.py +48 -5
- transformers/models/auto/feature_extraction_auto.py +5 -7
- transformers/models/auto/image_processing_auto.py +30 -39
- transformers/models/auto/modeling_auto.py +33 -199
- transformers/models/auto/processing_auto.py +11 -19
- transformers/models/auto/tokenization_auto.py +38 -37
- transformers/models/auto/video_processing_auto.py +7 -8
- transformers/models/autoformer/configuration_autoformer.py +4 -7
- transformers/models/autoformer/modeling_autoformer.py +100 -101
- transformers/models/aya_vision/configuration_aya_vision.py +4 -1
- transformers/models/aya_vision/modeling_aya_vision.py +64 -99
- transformers/models/aya_vision/modular_aya_vision.py +46 -74
- transformers/models/aya_vision/processing_aya_vision.py +25 -53
- transformers/models/bamba/configuration_bamba.py +46 -39
- transformers/models/bamba/modeling_bamba.py +83 -119
- transformers/models/bamba/modular_bamba.py +70 -109
- transformers/models/bark/configuration_bark.py +6 -8
- transformers/models/bark/generation_configuration_bark.py +3 -5
- transformers/models/bark/modeling_bark.py +64 -65
- transformers/models/bark/processing_bark.py +19 -41
- transformers/models/bart/configuration_bart.py +9 -5
- transformers/models/bart/modeling_bart.py +124 -129
- transformers/models/barthez/tokenization_barthez.py +1 -4
- transformers/models/bartpho/tokenization_bartpho.py +6 -7
- transformers/models/beit/configuration_beit.py +2 -15
- transformers/models/beit/image_processing_beit.py +53 -56
- transformers/models/beit/image_processing_beit_fast.py +11 -12
- transformers/models/beit/modeling_beit.py +65 -62
- transformers/models/bert/configuration_bert.py +12 -2
- transformers/models/bert/modeling_bert.py +117 -152
- transformers/models/bert/tokenization_bert.py +2 -4
- transformers/models/bert/tokenization_bert_legacy.py +3 -5
- transformers/models/bert_generation/configuration_bert_generation.py +17 -2
- transformers/models/bert_generation/modeling_bert_generation.py +53 -55
- transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
- transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
- transformers/models/bertweet/tokenization_bertweet.py +1 -3
- transformers/models/big_bird/configuration_big_bird.py +12 -9
- transformers/models/big_bird/modeling_big_bird.py +107 -124
- transformers/models/big_bird/tokenization_big_bird.py +1 -4
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +118 -118
- transformers/models/biogpt/configuration_biogpt.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +73 -79
- transformers/models/biogpt/modular_biogpt.py +60 -66
- transformers/models/biogpt/tokenization_biogpt.py +3 -5
- transformers/models/bit/configuration_bit.py +2 -5
- transformers/models/bit/image_processing_bit.py +21 -24
- transformers/models/bit/image_processing_bit_fast.py +0 -1
- transformers/models/bit/modeling_bit.py +15 -16
- transformers/models/bitnet/configuration_bitnet.py +23 -28
- transformers/models/bitnet/modeling_bitnet.py +34 -38
- transformers/models/bitnet/modular_bitnet.py +7 -10
- transformers/models/blenderbot/configuration_blenderbot.py +8 -5
- transformers/models/blenderbot/modeling_blenderbot.py +68 -99
- transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -5
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +70 -72
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
- transformers/models/blip/configuration_blip.py +9 -10
- transformers/models/blip/image_processing_blip.py +17 -20
- transformers/models/blip/image_processing_blip_fast.py +0 -1
- transformers/models/blip/modeling_blip.py +115 -108
- transformers/models/blip/modeling_blip_text.py +63 -65
- transformers/models/blip/processing_blip.py +5 -36
- transformers/models/blip_2/configuration_blip_2.py +2 -2
- transformers/models/blip_2/modeling_blip_2.py +145 -121
- transformers/models/blip_2/processing_blip_2.py +8 -38
- transformers/models/bloom/configuration_bloom.py +5 -2
- transformers/models/bloom/modeling_bloom.py +60 -60
- transformers/models/blt/configuration_blt.py +94 -86
- transformers/models/blt/modeling_blt.py +93 -90
- transformers/models/blt/modular_blt.py +127 -69
- transformers/models/bridgetower/configuration_bridgetower.py +7 -2
- transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +13 -14
- transformers/models/bridgetower/modeling_bridgetower.py +136 -124
- transformers/models/bridgetower/processing_bridgetower.py +2 -16
- transformers/models/bros/configuration_bros.py +24 -18
- transformers/models/bros/modeling_bros.py +78 -80
- transformers/models/bros/processing_bros.py +2 -12
- transformers/models/byt5/tokenization_byt5.py +4 -6
- transformers/models/camembert/configuration_camembert.py +8 -2
- transformers/models/camembert/modeling_camembert.py +97 -99
- transformers/models/camembert/modular_camembert.py +51 -54
- transformers/models/camembert/tokenization_camembert.py +1 -4
- transformers/models/canine/configuration_canine.py +4 -2
- transformers/models/canine/modeling_canine.py +73 -75
- transformers/models/canine/tokenization_canine.py +0 -1
- transformers/models/chameleon/configuration_chameleon.py +29 -34
- transformers/models/chameleon/image_processing_chameleon.py +21 -24
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -6
- transformers/models/chameleon/modeling_chameleon.py +135 -92
- transformers/models/chameleon/processing_chameleon.py +16 -41
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -8
- transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +93 -95
- transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
- transformers/models/clap/configuration_clap.py +4 -9
- transformers/models/clap/feature_extraction_clap.py +9 -10
- transformers/models/clap/modeling_clap.py +109 -111
- transformers/models/clap/processing_clap.py +2 -15
- transformers/models/clip/configuration_clip.py +4 -2
- transformers/models/clip/image_processing_clip.py +21 -24
- transformers/models/clip/image_processing_clip_fast.py +9 -1
- transformers/models/clip/modeling_clip.py +70 -68
- transformers/models/clip/processing_clip.py +2 -14
- transformers/models/clip/tokenization_clip.py +2 -5
- transformers/models/clipseg/configuration_clipseg.py +4 -2
- transformers/models/clipseg/modeling_clipseg.py +113 -112
- transformers/models/clipseg/processing_clipseg.py +19 -42
- transformers/models/clvp/configuration_clvp.py +15 -5
- transformers/models/clvp/feature_extraction_clvp.py +7 -10
- transformers/models/clvp/modeling_clvp.py +138 -145
- transformers/models/clvp/number_normalizer.py +1 -2
- transformers/models/clvp/processing_clvp.py +3 -20
- transformers/models/clvp/tokenization_clvp.py +0 -1
- transformers/models/code_llama/tokenization_code_llama.py +3 -6
- transformers/models/codegen/configuration_codegen.py +4 -4
- transformers/models/codegen/modeling_codegen.py +50 -49
- transformers/models/codegen/tokenization_codegen.py +5 -6
- transformers/models/cohere/configuration_cohere.py +25 -30
- transformers/models/cohere/modeling_cohere.py +39 -42
- transformers/models/cohere/modular_cohere.py +27 -31
- transformers/models/cohere/tokenization_cohere.py +5 -6
- transformers/models/cohere2/configuration_cohere2.py +27 -32
- transformers/models/cohere2/modeling_cohere2.py +38 -41
- transformers/models/cohere2/modular_cohere2.py +48 -52
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +9 -10
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +52 -55
- transformers/models/cohere2_vision/modular_cohere2_vision.py +41 -43
- transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
- transformers/models/colpali/configuration_colpali.py +0 -1
- transformers/models/colpali/modeling_colpali.py +14 -16
- transformers/models/colpali/modular_colpali.py +11 -51
- transformers/models/colpali/processing_colpali.py +14 -52
- transformers/models/colqwen2/modeling_colqwen2.py +27 -28
- transformers/models/colqwen2/modular_colqwen2.py +36 -74
- transformers/models/colqwen2/processing_colqwen2.py +16 -52
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -47
- transformers/models/conditional_detr/image_processing_conditional_detr.py +67 -70
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +50 -36
- transformers/models/conditional_detr/modeling_conditional_detr.py +851 -1001
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -5
- transformers/models/convbert/configuration_convbert.py +11 -8
- transformers/models/convbert/modeling_convbert.py +85 -87
- transformers/models/convbert/tokenization_convbert.py +0 -1
- transformers/models/convnext/configuration_convnext.py +2 -5
- transformers/models/convnext/image_processing_convnext.py +18 -21
- transformers/models/convnext/image_processing_convnext_fast.py +7 -8
- transformers/models/convnext/modeling_convnext.py +12 -14
- transformers/models/convnextv2/configuration_convnextv2.py +2 -5
- transformers/models/convnextv2/modeling_convnextv2.py +12 -14
- transformers/models/cpm/tokenization_cpm.py +6 -7
- transformers/models/cpm/tokenization_cpm_fast.py +3 -5
- transformers/models/cpmant/configuration_cpmant.py +4 -1
- transformers/models/cpmant/modeling_cpmant.py +38 -40
- transformers/models/cpmant/tokenization_cpmant.py +1 -3
- transformers/models/csm/configuration_csm.py +58 -66
- transformers/models/csm/generation_csm.py +13 -14
- transformers/models/csm/modeling_csm.py +81 -84
- transformers/models/csm/modular_csm.py +56 -58
- transformers/models/csm/processing_csm.py +25 -68
- transformers/models/ctrl/configuration_ctrl.py +16 -1
- transformers/models/ctrl/modeling_ctrl.py +51 -66
- transformers/models/ctrl/tokenization_ctrl.py +0 -1
- transformers/models/cvt/configuration_cvt.py +0 -1
- transformers/models/cvt/modeling_cvt.py +13 -15
- transformers/models/cwm/__init__.py +0 -1
- transformers/models/cwm/configuration_cwm.py +8 -12
- transformers/models/cwm/modeling_cwm.py +36 -38
- transformers/models/cwm/modular_cwm.py +10 -12
- transformers/models/d_fine/configuration_d_fine.py +10 -57
- transformers/models/d_fine/modeling_d_fine.py +786 -927
- transformers/models/d_fine/modular_d_fine.py +339 -417
- transformers/models/dab_detr/configuration_dab_detr.py +22 -49
- transformers/models/dab_detr/modeling_dab_detr.py +79 -77
- transformers/models/dac/configuration_dac.py +0 -1
- transformers/models/dac/feature_extraction_dac.py +6 -9
- transformers/models/dac/modeling_dac.py +22 -24
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -2
- transformers/models/data2vec/configuration_data2vec_text.py +11 -3
- transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
- transformers/models/data2vec/modeling_data2vec_audio.py +55 -59
- transformers/models/data2vec/modeling_data2vec_text.py +97 -99
- transformers/models/data2vec/modeling_data2vec_vision.py +45 -44
- transformers/models/data2vec/modular_data2vec_audio.py +6 -1
- transformers/models/data2vec/modular_data2vec_text.py +51 -54
- transformers/models/dbrx/configuration_dbrx.py +29 -22
- transformers/models/dbrx/modeling_dbrx.py +45 -48
- transformers/models/dbrx/modular_dbrx.py +37 -39
- transformers/models/deberta/configuration_deberta.py +6 -1
- transformers/models/deberta/modeling_deberta.py +57 -60
- transformers/models/deberta/tokenization_deberta.py +2 -5
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -1
- transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
- transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -2
- transformers/models/decision_transformer/modeling_decision_transformer.py +51 -53
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +41 -47
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -41
- transformers/models/deepseek_v2/modular_deepseek_v2.py +48 -52
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +42 -48
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +38 -40
- transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -10
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +6 -3
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +27 -28
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +12 -11
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -43
- transformers/models/deepseek_vl/modular_deepseek_vl.py +15 -43
- transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +7 -5
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +37 -37
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +22 -22
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +100 -56
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +141 -109
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -46
- transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +42 -28
- transformers/models/deformable_detr/modeling_deformable_detr.py +454 -652
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -5
- transformers/models/deit/configuration_deit.py +0 -1
- transformers/models/deit/image_processing_deit.py +18 -21
- transformers/models/deit/image_processing_deit_fast.py +0 -1
- transformers/models/deit/modeling_deit.py +27 -25
- transformers/models/depth_anything/configuration_depth_anything.py +12 -43
- transformers/models/depth_anything/modeling_depth_anything.py +10 -11
- transformers/models/depth_pro/configuration_depth_pro.py +0 -1
- transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +8 -9
- transformers/models/depth_pro/modeling_depth_pro.py +29 -27
- transformers/models/detr/configuration_detr.py +18 -50
- transformers/models/detr/image_processing_detr.py +64 -66
- transformers/models/detr/image_processing_detr_fast.py +33 -34
- transformers/models/detr/modeling_detr.py +748 -789
- transformers/models/dia/configuration_dia.py +9 -15
- transformers/models/dia/feature_extraction_dia.py +6 -9
- transformers/models/dia/generation_dia.py +48 -53
- transformers/models/dia/modeling_dia.py +68 -71
- transformers/models/dia/modular_dia.py +56 -58
- transformers/models/dia/processing_dia.py +39 -29
- transformers/models/dia/tokenization_dia.py +3 -6
- transformers/models/diffllama/configuration_diffllama.py +25 -30
- transformers/models/diffllama/modeling_diffllama.py +45 -53
- transformers/models/diffllama/modular_diffllama.py +18 -25
- transformers/models/dinat/configuration_dinat.py +2 -5
- transformers/models/dinat/modeling_dinat.py +47 -48
- transformers/models/dinov2/configuration_dinov2.py +2 -5
- transformers/models/dinov2/modeling_dinov2.py +20 -21
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +3 -5
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +21 -21
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +11 -14
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +6 -11
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +5 -9
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +7 -12
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +7 -8
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +19 -22
- transformers/models/dinov3_vit/modular_dinov3_vit.py +16 -19
- transformers/models/distilbert/configuration_distilbert.py +8 -2
- transformers/models/distilbert/modeling_distilbert.py +47 -49
- transformers/models/distilbert/tokenization_distilbert.py +0 -1
- transformers/models/doge/__init__.py +0 -1
- transformers/models/doge/configuration_doge.py +42 -35
- transformers/models/doge/modeling_doge.py +46 -49
- transformers/models/doge/modular_doge.py +77 -68
- transformers/models/donut/configuration_donut_swin.py +0 -1
- transformers/models/donut/image_processing_donut.py +26 -29
- transformers/models/donut/image_processing_donut_fast.py +9 -14
- transformers/models/donut/modeling_donut_swin.py +44 -46
- transformers/models/donut/processing_donut.py +5 -26
- transformers/models/dots1/configuration_dots1.py +43 -36
- transformers/models/dots1/modeling_dots1.py +35 -38
- transformers/models/dots1/modular_dots1.py +0 -1
- transformers/models/dpr/configuration_dpr.py +19 -2
- transformers/models/dpr/modeling_dpr.py +37 -39
- transformers/models/dpr/tokenization_dpr.py +7 -9
- transformers/models/dpr/tokenization_dpr_fast.py +7 -9
- transformers/models/dpt/configuration_dpt.py +23 -66
- transformers/models/dpt/image_processing_dpt.py +65 -66
- transformers/models/dpt/image_processing_dpt_fast.py +18 -19
- transformers/models/dpt/modeling_dpt.py +38 -36
- transformers/models/dpt/modular_dpt.py +14 -15
- transformers/models/edgetam/configuration_edgetam.py +1 -2
- transformers/models/edgetam/modeling_edgetam.py +87 -89
- transformers/models/edgetam/modular_edgetam.py +7 -13
- transformers/models/edgetam_video/__init__.py +0 -1
- transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +126 -128
- transformers/models/edgetam_video/modular_edgetam_video.py +25 -27
- transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
- transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +8 -7
- transformers/models/efficientloftr/modeling_efficientloftr.py +46 -38
- transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
- transformers/models/efficientnet/configuration_efficientnet.py +0 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +16 -17
- transformers/models/efficientnet/modeling_efficientnet.py +12 -14
- transformers/models/electra/configuration_electra.py +13 -3
- transformers/models/electra/modeling_electra.py +107 -109
- transformers/models/emu3/configuration_emu3.py +17 -17
- transformers/models/emu3/image_processing_emu3.py +44 -39
- transformers/models/emu3/modeling_emu3.py +143 -109
- transformers/models/emu3/modular_emu3.py +109 -73
- transformers/models/emu3/processing_emu3.py +18 -43
- transformers/models/encodec/configuration_encodec.py +2 -4
- transformers/models/encodec/feature_extraction_encodec.py +10 -13
- transformers/models/encodec/modeling_encodec.py +25 -29
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -2
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +37 -43
- transformers/models/eomt/configuration_eomt.py +12 -14
- transformers/models/eomt/image_processing_eomt.py +53 -55
- transformers/models/eomt/image_processing_eomt_fast.py +18 -19
- transformers/models/eomt/modeling_eomt.py +19 -21
- transformers/models/eomt/modular_eomt.py +28 -30
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -3
- transformers/models/ernie/modeling_ernie.py +127 -162
- transformers/models/ernie/modular_ernie.py +91 -103
- transformers/models/ernie4_5/configuration_ernie4_5.py +23 -27
- transformers/models/ernie4_5/modeling_ernie4_5.py +35 -37
- transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +34 -39
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +40 -42
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -7
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +305 -267
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +163 -142
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
- transformers/models/esm/configuration_esm.py +11 -15
- transformers/models/esm/modeling_esm.py +35 -37
- transformers/models/esm/modeling_esmfold.py +43 -50
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +1 -2
- transformers/models/esm/openfold_utils/protein.py +15 -16
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +2 -4
- transformers/models/evolla/configuration_evolla.py +50 -40
- transformers/models/evolla/modeling_evolla.py +69 -68
- transformers/models/evolla/modular_evolla.py +50 -48
- transformers/models/evolla/processing_evolla.py +23 -35
- transformers/models/exaone4/configuration_exaone4.py +27 -27
- transformers/models/exaone4/modeling_exaone4.py +36 -39
- transformers/models/exaone4/modular_exaone4.py +51 -50
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +31 -26
- transformers/models/falcon/modeling_falcon.py +76 -84
- transformers/models/falcon_h1/configuration_falcon_h1.py +57 -51
- transformers/models/falcon_h1/modeling_falcon_h1.py +74 -109
- transformers/models/falcon_h1/modular_falcon_h1.py +68 -100
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +64 -73
- transformers/models/falcon_mamba/modular_falcon_mamba.py +14 -13
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +70 -97
- transformers/models/fast_vlm/modular_fast_vlm.py +148 -38
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -6
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
- transformers/models/flaubert/configuration_flaubert.py +10 -5
- transformers/models/flaubert/modeling_flaubert.py +125 -129
- transformers/models/flaubert/tokenization_flaubert.py +3 -5
- transformers/models/flava/configuration_flava.py +9 -9
- transformers/models/flava/image_processing_flava.py +66 -67
- transformers/models/flava/image_processing_flava_fast.py +46 -47
- transformers/models/flava/modeling_flava.py +144 -135
- transformers/models/flava/processing_flava.py +2 -12
- transformers/models/flex_olmo/__init__.py +0 -1
- transformers/models/flex_olmo/configuration_flex_olmo.py +34 -39
- transformers/models/flex_olmo/modeling_flex_olmo.py +41 -43
- transformers/models/flex_olmo/modular_flex_olmo.py +46 -51
- transformers/models/florence2/configuration_florence2.py +4 -1
- transformers/models/florence2/modeling_florence2.py +96 -72
- transformers/models/florence2/modular_florence2.py +100 -107
- transformers/models/florence2/processing_florence2.py +18 -47
- transformers/models/fnet/configuration_fnet.py +6 -2
- transformers/models/fnet/modeling_fnet.py +69 -80
- transformers/models/fnet/tokenization_fnet.py +0 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -5
- transformers/models/focalnet/modeling_focalnet.py +49 -48
- transformers/models/fsmt/configuration_fsmt.py +12 -17
- transformers/models/fsmt/modeling_fsmt.py +47 -48
- transformers/models/fsmt/tokenization_fsmt.py +3 -5
- transformers/models/funnel/configuration_funnel.py +8 -1
- transformers/models/funnel/modeling_funnel.py +91 -93
- transformers/models/funnel/tokenization_funnel.py +2 -5
- transformers/models/fuyu/configuration_fuyu.py +28 -34
- transformers/models/fuyu/image_processing_fuyu.py +29 -31
- transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
- transformers/models/fuyu/modeling_fuyu.py +50 -52
- transformers/models/fuyu/processing_fuyu.py +9 -36
- transformers/models/gemma/configuration_gemma.py +25 -30
- transformers/models/gemma/modeling_gemma.py +36 -38
- transformers/models/gemma/modular_gemma.py +33 -36
- transformers/models/gemma/tokenization_gemma.py +3 -6
- transformers/models/gemma2/configuration_gemma2.py +30 -35
- transformers/models/gemma2/modeling_gemma2.py +38 -41
- transformers/models/gemma2/modular_gemma2.py +63 -67
- transformers/models/gemma3/configuration_gemma3.py +53 -48
- transformers/models/gemma3/image_processing_gemma3.py +29 -31
- transformers/models/gemma3/image_processing_gemma3_fast.py +11 -12
- transformers/models/gemma3/modeling_gemma3.py +123 -122
- transformers/models/gemma3/modular_gemma3.py +128 -125
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +42 -30
- transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
- transformers/models/gemma3n/modeling_gemma3n.py +166 -147
- transformers/models/gemma3n/modular_gemma3n.py +176 -148
- transformers/models/gemma3n/processing_gemma3n.py +12 -26
- transformers/models/git/configuration_git.py +5 -8
- transformers/models/git/modeling_git.py +115 -127
- transformers/models/git/processing_git.py +2 -14
- transformers/models/glm/configuration_glm.py +26 -30
- transformers/models/glm/modeling_glm.py +36 -39
- transformers/models/glm/modular_glm.py +4 -7
- transformers/models/glm4/configuration_glm4.py +26 -30
- transformers/models/glm4/modeling_glm4.py +39 -41
- transformers/models/glm4/modular_glm4.py +8 -10
- transformers/models/glm46v/configuration_glm46v.py +4 -1
- transformers/models/glm46v/image_processing_glm46v.py +40 -38
- transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
- transformers/models/glm46v/modeling_glm46v.py +138 -93
- transformers/models/glm46v/modular_glm46v.py +5 -3
- transformers/models/glm46v/processing_glm46v.py +7 -41
- transformers/models/glm46v/video_processing_glm46v.py +9 -11
- transformers/models/glm4_moe/configuration_glm4_moe.py +42 -35
- transformers/models/glm4_moe/modeling_glm4_moe.py +36 -39
- transformers/models/glm4_moe/modular_glm4_moe.py +43 -36
- transformers/models/glm4_moe_lite/__init__.py +28 -0
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +233 -0
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +302 -0
- transformers/models/glm4v/configuration_glm4v.py +25 -24
- transformers/models/glm4v/image_processing_glm4v.py +39 -38
- transformers/models/glm4v/image_processing_glm4v_fast.py +8 -9
- transformers/models/glm4v/modeling_glm4v.py +249 -210
- transformers/models/glm4v/modular_glm4v.py +211 -230
- transformers/models/glm4v/processing_glm4v.py +7 -41
- transformers/models/glm4v/video_processing_glm4v.py +9 -11
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +136 -127
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +348 -356
- transformers/models/glm4v_moe/modular_glm4v_moe.py +76 -174
- transformers/models/glm_image/__init__.py +31 -0
- transformers/models/glm_image/configuration_glm_image.py +358 -0
- transformers/models/glm_image/image_processing_glm_image.py +503 -0
- transformers/models/glm_image/image_processing_glm_image_fast.py +294 -0
- transformers/models/glm_image/modeling_glm_image.py +1691 -0
- transformers/models/glm_image/modular_glm_image.py +1640 -0
- transformers/models/glm_image/processing_glm_image.py +265 -0
- transformers/models/glm_ocr/__init__.py +28 -0
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/__init__.py +0 -1
- transformers/models/glmasr/configuration_glmasr.py +0 -1
- transformers/models/glmasr/modeling_glmasr.py +51 -46
- transformers/models/glmasr/modular_glmasr.py +39 -29
- transformers/models/glmasr/processing_glmasr.py +7 -8
- transformers/models/glpn/configuration_glpn.py +0 -1
- transformers/models/glpn/image_processing_glpn.py +11 -12
- transformers/models/glpn/image_processing_glpn_fast.py +11 -12
- transformers/models/glpn/modeling_glpn.py +14 -14
- transformers/models/got_ocr2/configuration_got_ocr2.py +10 -13
- transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +9 -10
- transformers/models/got_ocr2/modeling_got_ocr2.py +69 -77
- transformers/models/got_ocr2/modular_got_ocr2.py +60 -52
- transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
- transformers/models/gpt2/configuration_gpt2.py +13 -2
- transformers/models/gpt2/modeling_gpt2.py +111 -113
- transformers/models/gpt2/tokenization_gpt2.py +6 -9
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -2
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +78 -84
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -2
- transformers/models/gpt_neo/modeling_gpt_neo.py +66 -71
- transformers/models/gpt_neox/configuration_gpt_neox.py +27 -25
- transformers/models/gpt_neox/modeling_gpt_neox.py +74 -76
- transformers/models/gpt_neox/modular_gpt_neox.py +68 -70
- transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +24 -19
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +43 -46
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
- transformers/models/gpt_oss/configuration_gpt_oss.py +31 -30
- transformers/models/gpt_oss/modeling_gpt_oss.py +80 -114
- transformers/models/gpt_oss/modular_gpt_oss.py +62 -97
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +4 -5
- transformers/models/gptj/modeling_gptj.py +85 -88
- transformers/models/granite/configuration_granite.py +28 -33
- transformers/models/granite/modeling_granite.py +43 -45
- transformers/models/granite/modular_granite.py +29 -31
- transformers/models/granite_speech/configuration_granite_speech.py +0 -1
- transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
- transformers/models/granite_speech/modeling_granite_speech.py +84 -60
- transformers/models/granite_speech/processing_granite_speech.py +11 -4
- transformers/models/granitemoe/configuration_granitemoe.py +31 -36
- transformers/models/granitemoe/modeling_granitemoe.py +39 -41
- transformers/models/granitemoe/modular_granitemoe.py +21 -23
- transformers/models/granitemoehybrid/__init__.py +0 -1
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +55 -48
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +82 -118
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +57 -65
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +33 -37
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +52 -56
- transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -46
- transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +28 -29
- transformers/models/grounding_dino/modeling_grounding_dino.py +161 -181
- transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
- transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
- transformers/models/groupvit/configuration_groupvit.py +4 -2
- transformers/models/groupvit/modeling_groupvit.py +98 -92
- transformers/models/helium/configuration_helium.py +25 -29
- transformers/models/helium/modeling_helium.py +37 -40
- transformers/models/helium/modular_helium.py +3 -7
- transformers/models/herbert/tokenization_herbert.py +4 -6
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -5
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +12 -14
- transformers/models/hgnet_v2/modular_hgnet_v2.py +13 -17
- transformers/models/hiera/configuration_hiera.py +2 -5
- transformers/models/hiera/modeling_hiera.py +71 -70
- transformers/models/hubert/configuration_hubert.py +4 -2
- transformers/models/hubert/modeling_hubert.py +42 -41
- transformers/models/hubert/modular_hubert.py +8 -11
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +26 -31
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +58 -37
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +31 -11
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +31 -36
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +54 -44
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +27 -15
- transformers/models/ibert/configuration_ibert.py +4 -2
- transformers/models/ibert/modeling_ibert.py +60 -62
- transformers/models/ibert/quant_modules.py +0 -1
- transformers/models/idefics/configuration_idefics.py +5 -8
- transformers/models/idefics/image_processing_idefics.py +13 -15
- transformers/models/idefics/modeling_idefics.py +63 -65
- transformers/models/idefics/perceiver.py +1 -3
- transformers/models/idefics/processing_idefics.py +32 -48
- transformers/models/idefics/vision.py +27 -28
- transformers/models/idefics2/configuration_idefics2.py +1 -3
- transformers/models/idefics2/image_processing_idefics2.py +31 -32
- transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
- transformers/models/idefics2/modeling_idefics2.py +126 -106
- transformers/models/idefics2/processing_idefics2.py +10 -68
- transformers/models/idefics3/configuration_idefics3.py +1 -4
- transformers/models/idefics3/image_processing_idefics3.py +42 -43
- transformers/models/idefics3/image_processing_idefics3_fast.py +40 -15
- transformers/models/idefics3/modeling_idefics3.py +113 -92
- transformers/models/idefics3/processing_idefics3.py +15 -69
- transformers/models/ijepa/configuration_ijepa.py +0 -1
- transformers/models/ijepa/modeling_ijepa.py +13 -14
- transformers/models/ijepa/modular_ijepa.py +5 -7
- transformers/models/imagegpt/configuration_imagegpt.py +9 -2
- transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +10 -11
- transformers/models/imagegpt/modeling_imagegpt.py +65 -62
- transformers/models/informer/configuration_informer.py +6 -9
- transformers/models/informer/modeling_informer.py +87 -89
- transformers/models/informer/modular_informer.py +13 -16
- transformers/models/instructblip/configuration_instructblip.py +2 -2
- transformers/models/instructblip/modeling_instructblip.py +104 -79
- transformers/models/instructblip/processing_instructblip.py +10 -36
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +108 -105
- transformers/models/instructblipvideo/modular_instructblipvideo.py +73 -64
- transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +6 -7
- transformers/models/internvl/configuration_internvl.py +5 -1
- transformers/models/internvl/modeling_internvl.py +76 -98
- transformers/models/internvl/modular_internvl.py +45 -59
- transformers/models/internvl/processing_internvl.py +12 -45
- transformers/models/internvl/video_processing_internvl.py +10 -11
- transformers/models/jais2/configuration_jais2.py +25 -29
- transformers/models/jais2/modeling_jais2.py +36 -38
- transformers/models/jais2/modular_jais2.py +20 -22
- transformers/models/jamba/configuration_jamba.py +5 -8
- transformers/models/jamba/modeling_jamba.py +47 -50
- transformers/models/jamba/modular_jamba.py +40 -41
- transformers/models/janus/configuration_janus.py +0 -1
- transformers/models/janus/image_processing_janus.py +37 -39
- transformers/models/janus/image_processing_janus_fast.py +20 -21
- transformers/models/janus/modeling_janus.py +103 -188
- transformers/models/janus/modular_janus.py +122 -83
- transformers/models/janus/processing_janus.py +17 -43
- transformers/models/jetmoe/configuration_jetmoe.py +26 -27
- transformers/models/jetmoe/modeling_jetmoe.py +42 -45
- transformers/models/jetmoe/modular_jetmoe.py +33 -36
- transformers/models/kosmos2/configuration_kosmos2.py +10 -9
- transformers/models/kosmos2/modeling_kosmos2.py +199 -178
- transformers/models/kosmos2/processing_kosmos2.py +40 -55
- transformers/models/kosmos2_5/__init__.py +0 -1
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -9
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +162 -172
- transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +31 -28
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +103 -106
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +20 -22
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
- transformers/models/lasr/configuration_lasr.py +3 -7
- transformers/models/lasr/feature_extraction_lasr.py +10 -12
- transformers/models/lasr/modeling_lasr.py +21 -24
- transformers/models/lasr/modular_lasr.py +11 -13
- transformers/models/lasr/processing_lasr.py +12 -6
- transformers/models/lasr/tokenization_lasr.py +2 -4
- transformers/models/layoutlm/configuration_layoutlm.py +14 -2
- transformers/models/layoutlm/modeling_layoutlm.py +70 -72
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -17
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +7 -8
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
- transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -19
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +9 -10
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
- transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -17
- transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
- transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
- transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
- transformers/models/led/configuration_led.py +8 -12
- transformers/models/led/modeling_led.py +113 -267
- transformers/models/levit/configuration_levit.py +0 -1
- transformers/models/levit/image_processing_levit.py +19 -21
- transformers/models/levit/image_processing_levit_fast.py +4 -5
- transformers/models/levit/modeling_levit.py +17 -19
- transformers/models/lfm2/configuration_lfm2.py +27 -30
- transformers/models/lfm2/modeling_lfm2.py +46 -48
- transformers/models/lfm2/modular_lfm2.py +32 -32
- transformers/models/lfm2_moe/__init__.py +0 -1
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +6 -9
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +48 -49
- transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +43 -20
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +73 -61
- transformers/models/lfm2_vl/modular_lfm2_vl.py +66 -54
- transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
- transformers/models/lightglue/image_processing_lightglue.py +16 -15
- transformers/models/lightglue/image_processing_lightglue_fast.py +8 -7
- transformers/models/lightglue/modeling_lightglue.py +31 -33
- transformers/models/lightglue/modular_lightglue.py +31 -31
- transformers/models/lighton_ocr/__init__.py +28 -0
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +463 -0
- transformers/models/lighton_ocr/modular_lighton_ocr.py +404 -0
- transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
- transformers/models/lilt/configuration_lilt.py +6 -2
- transformers/models/lilt/modeling_lilt.py +53 -55
- transformers/models/llama/configuration_llama.py +26 -31
- transformers/models/llama/modeling_llama.py +35 -38
- transformers/models/llama/tokenization_llama.py +2 -4
- transformers/models/llama4/configuration_llama4.py +87 -69
- transformers/models/llama4/image_processing_llama4_fast.py +11 -12
- transformers/models/llama4/modeling_llama4.py +116 -115
- transformers/models/llama4/processing_llama4.py +33 -57
- transformers/models/llava/configuration_llava.py +10 -1
- transformers/models/llava/image_processing_llava.py +25 -28
- transformers/models/llava/image_processing_llava_fast.py +9 -10
- transformers/models/llava/modeling_llava.py +73 -102
- transformers/models/llava/processing_llava.py +18 -51
- transformers/models/llava_next/configuration_llava_next.py +2 -2
- transformers/models/llava_next/image_processing_llava_next.py +43 -45
- transformers/models/llava_next/image_processing_llava_next_fast.py +11 -12
- transformers/models/llava_next/modeling_llava_next.py +103 -104
- transformers/models/llava_next/processing_llava_next.py +18 -47
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -7
- transformers/models/llava_next_video/modeling_llava_next_video.py +168 -155
- transformers/models/llava_next_video/modular_llava_next_video.py +154 -147
- transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
- transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -7
- transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +14 -14
- transformers/models/llava_onevision/modeling_llava_onevision.py +170 -166
- transformers/models/llava_onevision/modular_llava_onevision.py +156 -152
- transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
- transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
- transformers/models/longcat_flash/__init__.py +0 -1
- transformers/models/longcat_flash/configuration_longcat_flash.py +39 -45
- transformers/models/longcat_flash/modeling_longcat_flash.py +37 -38
- transformers/models/longcat_flash/modular_longcat_flash.py +23 -24
- transformers/models/longformer/configuration_longformer.py +5 -5
- transformers/models/longformer/modeling_longformer.py +99 -101
- transformers/models/longt5/configuration_longt5.py +9 -7
- transformers/models/longt5/modeling_longt5.py +45 -45
- transformers/models/luke/configuration_luke.py +8 -2
- transformers/models/luke/modeling_luke.py +179 -181
- transformers/models/luke/tokenization_luke.py +99 -105
- transformers/{pipelines/deprecated → models/lw_detr}/__init__.py +14 -3
- transformers/models/lw_detr/configuration_lw_detr.py +362 -0
- transformers/models/lw_detr/modeling_lw_detr.py +1697 -0
- transformers/models/lw_detr/modular_lw_detr.py +1609 -0
- transformers/models/lxmert/configuration_lxmert.py +16 -1
- transformers/models/lxmert/modeling_lxmert.py +63 -74
- transformers/models/m2m_100/configuration_m2m_100.py +7 -9
- transformers/models/m2m_100/modeling_m2m_100.py +72 -74
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +5 -3
- transformers/models/mamba/modeling_mamba.py +61 -70
- transformers/models/mamba2/configuration_mamba2.py +5 -8
- transformers/models/mamba2/modeling_mamba2.py +66 -79
- transformers/models/marian/configuration_marian.py +10 -5
- transformers/models/marian/modeling_marian.py +88 -90
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +4 -7
- transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
- transformers/models/markuplm/modeling_markuplm.py +63 -65
- transformers/models/markuplm/processing_markuplm.py +31 -38
- transformers/models/markuplm/tokenization_markuplm.py +67 -77
- transformers/models/mask2former/configuration_mask2former.py +14 -52
- transformers/models/mask2former/image_processing_mask2former.py +84 -85
- transformers/models/mask2former/image_processing_mask2former_fast.py +36 -36
- transformers/models/mask2former/modeling_mask2former.py +108 -104
- transformers/models/mask2former/modular_mask2former.py +6 -8
- transformers/models/maskformer/configuration_maskformer.py +17 -51
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -5
- transformers/models/maskformer/image_processing_maskformer.py +84 -85
- transformers/models/maskformer/image_processing_maskformer_fast.py +35 -36
- transformers/models/maskformer/modeling_maskformer.py +71 -67
- transformers/models/maskformer/modeling_maskformer_swin.py +20 -23
- transformers/models/mbart/configuration_mbart.py +9 -5
- transformers/models/mbart/modeling_mbart.py +120 -119
- transformers/models/mbart/tokenization_mbart.py +2 -4
- transformers/models/mbart50/tokenization_mbart50.py +3 -5
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -3
- transformers/models/megatron_bert/modeling_megatron_bert.py +139 -165
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +94 -87
- transformers/models/metaclip_2/modular_metaclip_2.py +59 -45
- transformers/models/mgp_str/configuration_mgp_str.py +0 -1
- transformers/models/mgp_str/modeling_mgp_str.py +18 -18
- transformers/models/mgp_str/processing_mgp_str.py +3 -20
- transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
- transformers/models/mimi/configuration_mimi.py +42 -40
- transformers/models/mimi/modeling_mimi.py +116 -115
- transformers/models/minimax/__init__.py +0 -1
- transformers/models/minimax/configuration_minimax.py +40 -47
- transformers/models/minimax/modeling_minimax.py +46 -49
- transformers/models/minimax/modular_minimax.py +59 -65
- transformers/models/minimax_m2/__init__.py +28 -0
- transformers/models/minimax_m2/configuration_minimax_m2.py +188 -0
- transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
- transformers/models/minimax_m2/modular_minimax_m2.py +346 -0
- transformers/models/ministral/configuration_ministral.py +25 -29
- transformers/models/ministral/modeling_ministral.py +35 -37
- transformers/models/ministral/modular_ministral.py +32 -37
- transformers/models/ministral3/configuration_ministral3.py +23 -26
- transformers/models/ministral3/modeling_ministral3.py +35 -37
- transformers/models/ministral3/modular_ministral3.py +7 -8
- transformers/models/mistral/configuration_mistral.py +24 -29
- transformers/models/mistral/modeling_mistral.py +35 -37
- transformers/models/mistral/modular_mistral.py +14 -15
- transformers/models/mistral3/configuration_mistral3.py +4 -1
- transformers/models/mistral3/modeling_mistral3.py +79 -82
- transformers/models/mistral3/modular_mistral3.py +66 -67
- transformers/models/mixtral/configuration_mixtral.py +32 -38
- transformers/models/mixtral/modeling_mixtral.py +39 -42
- transformers/models/mixtral/modular_mixtral.py +26 -29
- transformers/models/mlcd/configuration_mlcd.py +0 -1
- transformers/models/mlcd/modeling_mlcd.py +17 -17
- transformers/models/mlcd/modular_mlcd.py +16 -16
- transformers/models/mllama/configuration_mllama.py +10 -15
- transformers/models/mllama/image_processing_mllama.py +23 -25
- transformers/models/mllama/image_processing_mllama_fast.py +11 -11
- transformers/models/mllama/modeling_mllama.py +100 -103
- transformers/models/mllama/processing_mllama.py +6 -55
- transformers/models/mluke/tokenization_mluke.py +97 -103
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -46
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +159 -179
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -46
- transformers/models/mobilebert/configuration_mobilebert.py +4 -2
- transformers/models/mobilebert/modeling_mobilebert.py +78 -88
- transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +14 -15
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +21 -22
- transformers/models/mobilevit/configuration_mobilevit.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +12 -13
- transformers/models/mobilevit/modeling_mobilevit.py +21 -21
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -22
- transformers/models/modernbert/configuration_modernbert.py +76 -51
- transformers/models/modernbert/modeling_modernbert.py +188 -943
- transformers/models/modernbert/modular_modernbert.py +255 -978
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +50 -44
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -64
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +92 -92
- transformers/models/moonshine/configuration_moonshine.py +34 -31
- transformers/models/moonshine/modeling_moonshine.py +70 -72
- transformers/models/moonshine/modular_moonshine.py +91 -86
- transformers/models/moshi/configuration_moshi.py +46 -23
- transformers/models/moshi/modeling_moshi.py +134 -142
- transformers/models/mpnet/configuration_mpnet.py +6 -2
- transformers/models/mpnet/modeling_mpnet.py +55 -57
- transformers/models/mpnet/tokenization_mpnet.py +1 -4
- transformers/models/mpt/configuration_mpt.py +17 -9
- transformers/models/mpt/modeling_mpt.py +58 -60
- transformers/models/mra/configuration_mra.py +8 -2
- transformers/models/mra/modeling_mra.py +54 -56
- transformers/models/mt5/configuration_mt5.py +9 -6
- transformers/models/mt5/modeling_mt5.py +80 -85
- transformers/models/musicgen/configuration_musicgen.py +12 -8
- transformers/models/musicgen/modeling_musicgen.py +114 -116
- transformers/models/musicgen/processing_musicgen.py +3 -21
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -8
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +113 -126
- transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
- transformers/models/mvp/configuration_mvp.py +8 -5
- transformers/models/mvp/modeling_mvp.py +121 -123
- transformers/models/myt5/tokenization_myt5.py +8 -10
- transformers/models/nanochat/configuration_nanochat.py +5 -8
- transformers/models/nanochat/modeling_nanochat.py +36 -39
- transformers/models/nanochat/modular_nanochat.py +16 -18
- transformers/models/nemotron/configuration_nemotron.py +25 -30
- transformers/models/nemotron/modeling_nemotron.py +53 -66
- transformers/models/nllb/tokenization_nllb.py +14 -14
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -10
- transformers/models/nllb_moe/modeling_nllb_moe.py +70 -72
- transformers/models/nougat/image_processing_nougat.py +29 -32
- transformers/models/nougat/image_processing_nougat_fast.py +12 -13
- transformers/models/nougat/processing_nougat.py +37 -39
- transformers/models/nougat/tokenization_nougat.py +5 -7
- transformers/models/nystromformer/configuration_nystromformer.py +8 -2
- transformers/models/nystromformer/modeling_nystromformer.py +61 -63
- transformers/models/olmo/configuration_olmo.py +23 -28
- transformers/models/olmo/modeling_olmo.py +35 -38
- transformers/models/olmo/modular_olmo.py +8 -12
- transformers/models/olmo2/configuration_olmo2.py +27 -32
- transformers/models/olmo2/modeling_olmo2.py +36 -39
- transformers/models/olmo2/modular_olmo2.py +36 -38
- transformers/models/olmo3/__init__.py +0 -1
- transformers/models/olmo3/configuration_olmo3.py +30 -34
- transformers/models/olmo3/modeling_olmo3.py +35 -38
- transformers/models/olmo3/modular_olmo3.py +44 -47
- transformers/models/olmoe/configuration_olmoe.py +29 -33
- transformers/models/olmoe/modeling_olmoe.py +41 -43
- transformers/models/olmoe/modular_olmoe.py +15 -16
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -50
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +59 -57
- transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
- transformers/models/oneformer/configuration_oneformer.py +11 -51
- transformers/models/oneformer/image_processing_oneformer.py +83 -84
- transformers/models/oneformer/image_processing_oneformer_fast.py +41 -42
- transformers/models/oneformer/modeling_oneformer.py +137 -133
- transformers/models/oneformer/processing_oneformer.py +28 -43
- transformers/models/openai/configuration_openai.py +16 -1
- transformers/models/openai/modeling_openai.py +50 -51
- transformers/models/openai/tokenization_openai.py +2 -5
- transformers/models/opt/configuration_opt.py +6 -7
- transformers/models/opt/modeling_opt.py +79 -80
- transformers/models/ovis2/__init__.py +0 -1
- transformers/models/ovis2/configuration_ovis2.py +4 -1
- transformers/models/ovis2/image_processing_ovis2.py +22 -24
- transformers/models/ovis2/image_processing_ovis2_fast.py +9 -10
- transformers/models/ovis2/modeling_ovis2.py +99 -142
- transformers/models/ovis2/modular_ovis2.py +82 -45
- transformers/models/ovis2/processing_ovis2.py +12 -40
- transformers/models/owlv2/configuration_owlv2.py +4 -2
- transformers/models/owlv2/image_processing_owlv2.py +20 -21
- transformers/models/owlv2/image_processing_owlv2_fast.py +12 -13
- transformers/models/owlv2/modeling_owlv2.py +122 -114
- transformers/models/owlv2/modular_owlv2.py +11 -12
- transformers/models/owlv2/processing_owlv2.py +20 -49
- transformers/models/owlvit/configuration_owlvit.py +4 -2
- transformers/models/owlvit/image_processing_owlvit.py +21 -22
- transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
- transformers/models/owlvit/modeling_owlvit.py +121 -113
- transformers/models/owlvit/processing_owlvit.py +20 -48
- transformers/models/paddleocr_vl/__init__.py +0 -1
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +28 -29
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +159 -158
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +148 -119
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
- transformers/models/paligemma/configuration_paligemma.py +4 -1
- transformers/models/paligemma/modeling_paligemma.py +81 -79
- transformers/models/paligemma/processing_paligemma.py +13 -66
- transformers/models/parakeet/configuration_parakeet.py +3 -8
- transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
- transformers/models/parakeet/modeling_parakeet.py +21 -25
- transformers/models/parakeet/modular_parakeet.py +19 -21
- transformers/models/parakeet/processing_parakeet.py +12 -5
- transformers/models/parakeet/tokenization_parakeet.py +2 -4
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +63 -65
- transformers/models/patchtst/configuration_patchtst.py +6 -9
- transformers/models/patchtst/modeling_patchtst.py +75 -77
- transformers/models/pe_audio/__init__.py +0 -1
- transformers/models/pe_audio/configuration_pe_audio.py +14 -16
- transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
- transformers/models/pe_audio/modeling_pe_audio.py +30 -31
- transformers/models/pe_audio/modular_pe_audio.py +17 -18
- transformers/models/pe_audio/processing_pe_audio.py +0 -1
- transformers/models/pe_audio_video/__init__.py +0 -1
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +64 -65
- transformers/models/pe_audio_video/modular_pe_audio_video.py +56 -57
- transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
- transformers/models/pe_video/__init__.py +0 -1
- transformers/models/pe_video/configuration_pe_video.py +14 -16
- transformers/models/pe_video/modeling_pe_video.py +57 -46
- transformers/models/pe_video/modular_pe_video.py +47 -35
- transformers/models/pe_video/video_processing_pe_video.py +2 -4
- transformers/models/pegasus/configuration_pegasus.py +8 -6
- transformers/models/pegasus/modeling_pegasus.py +67 -69
- transformers/models/pegasus/tokenization_pegasus.py +1 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -4
- transformers/models/pegasus_x/modeling_pegasus_x.py +53 -55
- transformers/models/perceiver/configuration_perceiver.py +0 -1
- transformers/models/perceiver/image_processing_perceiver.py +22 -25
- transformers/models/perceiver/image_processing_perceiver_fast.py +7 -8
- transformers/models/perceiver/modeling_perceiver.py +152 -145
- transformers/models/perceiver/tokenization_perceiver.py +3 -6
- transformers/models/perception_lm/configuration_perception_lm.py +0 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
- transformers/models/perception_lm/modeling_perception_lm.py +64 -67
- transformers/models/perception_lm/modular_perception_lm.py +58 -58
- transformers/models/perception_lm/processing_perception_lm.py +13 -47
- transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
- transformers/models/persimmon/configuration_persimmon.py +23 -28
- transformers/models/persimmon/modeling_persimmon.py +44 -47
- transformers/models/phi/configuration_phi.py +27 -28
- transformers/models/phi/modeling_phi.py +39 -41
- transformers/models/phi/modular_phi.py +26 -26
- transformers/models/phi3/configuration_phi3.py +32 -37
- transformers/models/phi3/modeling_phi3.py +37 -40
- transformers/models/phi3/modular_phi3.py +16 -20
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +36 -39
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +100 -117
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +103 -90
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
- transformers/models/phimoe/configuration_phimoe.py +31 -36
- transformers/models/phimoe/modeling_phimoe.py +50 -77
- transformers/models/phimoe/modular_phimoe.py +12 -8
- transformers/models/phobert/tokenization_phobert.py +4 -6
- transformers/models/pix2struct/configuration_pix2struct.py +12 -10
- transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +12 -15
- transformers/models/pix2struct/modeling_pix2struct.py +56 -52
- transformers/models/pix2struct/processing_pix2struct.py +5 -26
- transformers/models/pixio/__init__.py +0 -1
- transformers/models/pixio/configuration_pixio.py +2 -5
- transformers/models/pixio/modeling_pixio.py +16 -17
- transformers/models/pixio/modular_pixio.py +7 -8
- transformers/models/pixtral/configuration_pixtral.py +11 -14
- transformers/models/pixtral/image_processing_pixtral.py +26 -28
- transformers/models/pixtral/image_processing_pixtral_fast.py +10 -11
- transformers/models/pixtral/modeling_pixtral.py +31 -37
- transformers/models/pixtral/processing_pixtral.py +18 -52
- transformers/models/plbart/configuration_plbart.py +8 -6
- transformers/models/plbart/modeling_plbart.py +109 -109
- transformers/models/plbart/modular_plbart.py +31 -33
- transformers/models/plbart/tokenization_plbart.py +4 -5
- transformers/models/poolformer/configuration_poolformer.py +0 -1
- transformers/models/poolformer/image_processing_poolformer.py +21 -24
- transformers/models/poolformer/image_processing_poolformer_fast.py +13 -14
- transformers/models/poolformer/modeling_poolformer.py +10 -12
- transformers/models/pop2piano/configuration_pop2piano.py +7 -7
- transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
- transformers/models/pop2piano/modeling_pop2piano.py +24 -24
- transformers/models/pop2piano/processing_pop2piano.py +25 -33
- transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +13 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +20 -21
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +17 -16
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +21 -20
- transformers/models/prophetnet/configuration_prophetnet.py +37 -38
- transformers/models/prophetnet/modeling_prophetnet.py +121 -153
- transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
- transformers/models/pvt/configuration_pvt.py +0 -1
- transformers/models/pvt/image_processing_pvt.py +24 -27
- transformers/models/pvt/image_processing_pvt_fast.py +1 -2
- transformers/models/pvt/modeling_pvt.py +19 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +4 -8
- transformers/models/pvt_v2/modeling_pvt_v2.py +27 -28
- transformers/models/qwen2/configuration_qwen2.py +32 -25
- transformers/models/qwen2/modeling_qwen2.py +35 -37
- transformers/models/qwen2/modular_qwen2.py +14 -15
- transformers/models/qwen2/tokenization_qwen2.py +2 -9
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +36 -27
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +241 -214
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +228 -193
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +28 -34
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +188 -145
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +64 -91
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +39 -41
- transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +42 -35
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +40 -43
- transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -13
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +28 -33
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +12 -15
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +184 -141
- transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +38 -18
- transformers/models/qwen3/configuration_qwen3.py +34 -27
- transformers/models/qwen3/modeling_qwen3.py +35 -38
- transformers/models/qwen3/modular_qwen3.py +7 -9
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +45 -35
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +40 -43
- transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
- transformers/models/qwen3_next/configuration_qwen3_next.py +47 -38
- transformers/models/qwen3_next/modeling_qwen3_next.py +44 -47
- transformers/models/qwen3_next/modular_qwen3_next.py +37 -38
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +139 -106
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +266 -206
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +228 -181
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +22 -24
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +185 -122
- transformers/models/qwen3_vl/modular_qwen3_vl.py +153 -139
- transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +27 -30
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +249 -178
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +55 -42
- transformers/models/rag/configuration_rag.py +6 -7
- transformers/models/rag/modeling_rag.py +119 -121
- transformers/models/rag/retrieval_rag.py +3 -5
- transformers/models/rag/tokenization_rag.py +0 -50
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +29 -30
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +35 -39
- transformers/models/reformer/configuration_reformer.py +7 -8
- transformers/models/reformer/modeling_reformer.py +67 -68
- transformers/models/reformer/tokenization_reformer.py +3 -6
- transformers/models/regnet/configuration_regnet.py +0 -1
- transformers/models/regnet/modeling_regnet.py +7 -9
- transformers/models/rembert/configuration_rembert.py +8 -2
- transformers/models/rembert/modeling_rembert.py +108 -132
- transformers/models/rembert/tokenization_rembert.py +1 -4
- transformers/models/resnet/configuration_resnet.py +2 -5
- transformers/models/resnet/modeling_resnet.py +14 -15
- transformers/models/roberta/configuration_roberta.py +11 -3
- transformers/models/roberta/modeling_roberta.py +97 -99
- transformers/models/roberta/modular_roberta.py +55 -58
- transformers/models/roberta/tokenization_roberta.py +2 -5
- transformers/models/roberta/tokenization_roberta_old.py +2 -4
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -3
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +97 -99
- transformers/models/roc_bert/configuration_roc_bert.py +8 -2
- transformers/models/roc_bert/modeling_roc_bert.py +125 -162
- transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
- transformers/models/roformer/configuration_roformer.py +13 -3
- transformers/models/roformer/modeling_roformer.py +79 -95
- transformers/models/roformer/tokenization_roformer.py +3 -6
- transformers/models/roformer/tokenization_utils.py +0 -1
- transformers/models/rt_detr/configuration_rt_detr.py +8 -50
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -5
- transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +39 -26
- transformers/models/rt_detr/modeling_rt_detr.py +643 -804
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +4 -7
- transformers/models/rt_detr/modular_rt_detr.py +1522 -20
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -58
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +384 -521
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +27 -70
- transformers/models/rwkv/configuration_rwkv.py +2 -4
- transformers/models/rwkv/modeling_rwkv.py +29 -54
- transformers/models/sam/configuration_sam.py +2 -1
- transformers/models/sam/image_processing_sam.py +59 -60
- transformers/models/sam/image_processing_sam_fast.py +25 -26
- transformers/models/sam/modeling_sam.py +46 -43
- transformers/models/sam/processing_sam.py +39 -27
- transformers/models/sam2/configuration_sam2.py +1 -2
- transformers/models/sam2/image_processing_sam2_fast.py +14 -15
- transformers/models/sam2/modeling_sam2.py +96 -94
- transformers/models/sam2/modular_sam2.py +85 -94
- transformers/models/sam2/processing_sam2.py +31 -47
- transformers/models/sam2_video/configuration_sam2_video.py +0 -1
- transformers/models/sam2_video/modeling_sam2_video.py +114 -116
- transformers/models/sam2_video/modular_sam2_video.py +72 -89
- transformers/models/sam2_video/processing_sam2_video.py +49 -66
- transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
- transformers/models/sam3/configuration_sam3.py +0 -1
- transformers/models/sam3/image_processing_sam3_fast.py +17 -20
- transformers/models/sam3/modeling_sam3.py +94 -100
- transformers/models/sam3/modular_sam3.py +3 -8
- transformers/models/sam3/processing_sam3.py +37 -52
- transformers/models/sam3_tracker/__init__.py +0 -1
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -3
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +79 -80
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -2
- transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -48
- transformers/models/sam3_tracker_video/__init__.py +0 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +115 -114
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -24
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
- transformers/models/sam3_video/configuration_sam3_video.py +0 -1
- transformers/models/sam3_video/modeling_sam3_video.py +56 -45
- transformers/models/sam3_video/processing_sam3_video.py +25 -45
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +2 -1
- transformers/models/sam_hq/modeling_sam_hq.py +52 -50
- transformers/models/sam_hq/modular_sam_hq.py +23 -25
- transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +41 -29
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -10
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
- transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -10
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
- transformers/models/seed_oss/configuration_seed_oss.py +30 -34
- transformers/models/seed_oss/modeling_seed_oss.py +34 -36
- transformers/models/seed_oss/modular_seed_oss.py +6 -7
- transformers/models/segformer/configuration_segformer.py +0 -10
- transformers/models/segformer/image_processing_segformer.py +39 -42
- transformers/models/segformer/image_processing_segformer_fast.py +11 -12
- transformers/models/segformer/modeling_segformer.py +28 -28
- transformers/models/segformer/modular_segformer.py +8 -9
- transformers/models/seggpt/configuration_seggpt.py +0 -1
- transformers/models/seggpt/image_processing_seggpt.py +38 -41
- transformers/models/seggpt/modeling_seggpt.py +48 -38
- transformers/models/sew/configuration_sew.py +4 -2
- transformers/models/sew/modeling_sew.py +42 -40
- transformers/models/sew/modular_sew.py +12 -13
- transformers/models/sew_d/configuration_sew_d.py +4 -2
- transformers/models/sew_d/modeling_sew_d.py +32 -31
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +19 -21
- transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
- transformers/models/siglip/configuration_siglip.py +4 -2
- transformers/models/siglip/image_processing_siglip.py +17 -20
- transformers/models/siglip/image_processing_siglip_fast.py +0 -1
- transformers/models/siglip/modeling_siglip.py +65 -110
- transformers/models/siglip/processing_siglip.py +2 -14
- transformers/models/siglip/tokenization_siglip.py +6 -7
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2.py +15 -16
- transformers/models/siglip2/image_processing_siglip2_fast.py +6 -7
- transformers/models/siglip2/modeling_siglip2.py +89 -130
- transformers/models/siglip2/modular_siglip2.py +95 -48
- transformers/models/siglip2/processing_siglip2.py +2 -14
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +29 -32
- transformers/models/smollm3/modeling_smollm3.py +35 -38
- transformers/models/smollm3/modular_smollm3.py +36 -38
- transformers/models/smolvlm/configuration_smolvlm.py +2 -4
- transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +41 -15
- transformers/models/smolvlm/modeling_smolvlm.py +124 -96
- transformers/models/smolvlm/modular_smolvlm.py +50 -39
- transformers/models/smolvlm/processing_smolvlm.py +15 -76
- transformers/models/smolvlm/video_processing_smolvlm.py +16 -17
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +26 -27
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
- transformers/models/speech_to_text/modeling_speech_to_text.py +55 -57
- transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
- transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
- transformers/models/speecht5/configuration_speecht5.py +7 -9
- transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
- transformers/models/speecht5/modeling_speecht5.py +172 -174
- transformers/models/speecht5/number_normalizer.py +0 -1
- transformers/models/speecht5/processing_speecht5.py +3 -37
- transformers/models/speecht5/tokenization_speecht5.py +4 -5
- transformers/models/splinter/configuration_splinter.py +6 -7
- transformers/models/splinter/modeling_splinter.py +62 -59
- transformers/models/splinter/tokenization_splinter.py +2 -4
- transformers/models/squeezebert/configuration_squeezebert.py +14 -2
- transformers/models/squeezebert/modeling_squeezebert.py +60 -62
- transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
- transformers/models/stablelm/configuration_stablelm.py +28 -29
- transformers/models/stablelm/modeling_stablelm.py +44 -47
- transformers/models/starcoder2/configuration_starcoder2.py +30 -27
- transformers/models/starcoder2/modeling_starcoder2.py +38 -41
- transformers/models/starcoder2/modular_starcoder2.py +17 -19
- transformers/models/superglue/configuration_superglue.py +7 -3
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +8 -8
- transformers/models/superglue/modeling_superglue.py +41 -37
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +7 -9
- transformers/models/superpoint/modeling_superpoint.py +17 -16
- transformers/models/swiftformer/configuration_swiftformer.py +0 -1
- transformers/models/swiftformer/modeling_swiftformer.py +12 -14
- transformers/models/swin/configuration_swin.py +2 -5
- transformers/models/swin/modeling_swin.py +69 -78
- transformers/models/swin2sr/configuration_swin2sr.py +0 -1
- transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +4 -7
- transformers/models/swin2sr/modeling_swin2sr.py +30 -30
- transformers/models/swinv2/configuration_swinv2.py +2 -5
- transformers/models/swinv2/modeling_swinv2.py +65 -74
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -7
- transformers/models/switch_transformers/modeling_switch_transformers.py +35 -36
- transformers/models/switch_transformers/modular_switch_transformers.py +32 -33
- transformers/models/t5/configuration_t5.py +9 -9
- transformers/models/t5/modeling_t5.py +80 -85
- transformers/models/t5/tokenization_t5.py +1 -3
- transformers/models/t5gemma/configuration_t5gemma.py +43 -59
- transformers/models/t5gemma/modeling_t5gemma.py +105 -108
- transformers/models/t5gemma/modular_t5gemma.py +128 -142
- transformers/models/t5gemma2/configuration_t5gemma2.py +86 -100
- transformers/models/t5gemma2/modeling_t5gemma2.py +234 -194
- transformers/models/t5gemma2/modular_t5gemma2.py +279 -264
- transformers/models/table_transformer/configuration_table_transformer.py +18 -50
- transformers/models/table_transformer/modeling_table_transformer.py +73 -101
- transformers/models/tapas/configuration_tapas.py +12 -2
- transformers/models/tapas/modeling_tapas.py +65 -67
- transformers/models/tapas/tokenization_tapas.py +116 -153
- transformers/models/textnet/configuration_textnet.py +4 -7
- transformers/models/textnet/image_processing_textnet.py +22 -25
- transformers/models/textnet/image_processing_textnet_fast.py +8 -9
- transformers/models/textnet/modeling_textnet.py +28 -28
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +82 -84
- transformers/models/timesfm/configuration_timesfm.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +22 -25
- transformers/models/timesfm/modular_timesfm.py +21 -24
- transformers/models/timesformer/configuration_timesformer.py +0 -1
- transformers/models/timesformer/modeling_timesformer.py +13 -16
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -8
- transformers/models/timm_backbone/modeling_timm_backbone.py +25 -30
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +22 -19
- transformers/models/trocr/configuration_trocr.py +11 -8
- transformers/models/trocr/modeling_trocr.py +42 -42
- transformers/models/trocr/processing_trocr.py +5 -25
- transformers/models/tvp/configuration_tvp.py +10 -36
- transformers/models/tvp/image_processing_tvp.py +50 -52
- transformers/models/tvp/image_processing_tvp_fast.py +15 -15
- transformers/models/tvp/modeling_tvp.py +26 -28
- transformers/models/tvp/processing_tvp.py +2 -14
- transformers/models/udop/configuration_udop.py +16 -8
- transformers/models/udop/modeling_udop.py +73 -72
- transformers/models/udop/processing_udop.py +7 -26
- transformers/models/udop/tokenization_udop.py +80 -93
- transformers/models/umt5/configuration_umt5.py +8 -7
- transformers/models/umt5/modeling_umt5.py +87 -84
- transformers/models/unispeech/configuration_unispeech.py +4 -2
- transformers/models/unispeech/modeling_unispeech.py +54 -53
- transformers/models/unispeech/modular_unispeech.py +20 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -2
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +70 -69
- transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +7 -8
- transformers/models/upernet/configuration_upernet.py +8 -36
- transformers/models/upernet/modeling_upernet.py +11 -14
- transformers/models/vaultgemma/__init__.py +0 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +29 -33
- transformers/models/vaultgemma/modeling_vaultgemma.py +38 -40
- transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +12 -14
- transformers/models/video_llama_3/modeling_video_llama_3.py +149 -112
- transformers/models/video_llama_3/modular_video_llama_3.py +152 -150
- transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
- transformers/models/video_llama_3/video_processing_video_llama_3.py +45 -24
- transformers/models/video_llava/configuration_video_llava.py +4 -1
- transformers/models/video_llava/image_processing_video_llava.py +35 -38
- transformers/models/video_llava/modeling_video_llava.py +139 -143
- transformers/models/video_llava/processing_video_llava.py +38 -78
- transformers/models/video_llava/video_processing_video_llava.py +0 -1
- transformers/models/videomae/configuration_videomae.py +0 -1
- transformers/models/videomae/image_processing_videomae.py +31 -34
- transformers/models/videomae/modeling_videomae.py +17 -20
- transformers/models/videomae/video_processing_videomae.py +0 -1
- transformers/models/vilt/configuration_vilt.py +4 -2
- transformers/models/vilt/image_processing_vilt.py +29 -30
- transformers/models/vilt/image_processing_vilt_fast.py +15 -16
- transformers/models/vilt/modeling_vilt.py +103 -90
- transformers/models/vilt/processing_vilt.py +2 -14
- transformers/models/vipllava/configuration_vipllava.py +4 -1
- transformers/models/vipllava/modeling_vipllava.py +92 -67
- transformers/models/vipllava/modular_vipllava.py +78 -54
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +28 -27
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +45 -41
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
- transformers/models/visual_bert/configuration_visual_bert.py +6 -2
- transformers/models/visual_bert/modeling_visual_bert.py +90 -92
- transformers/models/vit/configuration_vit.py +2 -3
- transformers/models/vit/image_processing_vit.py +19 -22
- transformers/models/vit/image_processing_vit_fast.py +0 -1
- transformers/models/vit/modeling_vit.py +20 -20
- transformers/models/vit_mae/configuration_vit_mae.py +0 -1
- transformers/models/vit_mae/modeling_vit_mae.py +32 -30
- transformers/models/vit_msn/configuration_vit_msn.py +0 -1
- transformers/models/vit_msn/modeling_vit_msn.py +21 -19
- transformers/models/vitdet/configuration_vitdet.py +2 -5
- transformers/models/vitdet/modeling_vitdet.py +14 -17
- transformers/models/vitmatte/configuration_vitmatte.py +7 -39
- transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +16 -17
- transformers/models/vitmatte/modeling_vitmatte.py +10 -12
- transformers/models/vitpose/configuration_vitpose.py +7 -47
- transformers/models/vitpose/image_processing_vitpose.py +24 -25
- transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
- transformers/models/vitpose/modeling_vitpose.py +15 -15
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -5
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +13 -16
- transformers/models/vits/configuration_vits.py +4 -1
- transformers/models/vits/modeling_vits.py +43 -42
- transformers/models/vits/tokenization_vits.py +3 -4
- transformers/models/vivit/configuration_vivit.py +0 -1
- transformers/models/vivit/image_processing_vivit.py +36 -39
- transformers/models/vivit/modeling_vivit.py +9 -11
- transformers/models/vjepa2/__init__.py +0 -1
- transformers/models/vjepa2/configuration_vjepa2.py +0 -1
- transformers/models/vjepa2/modeling_vjepa2.py +39 -41
- transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
- transformers/models/voxtral/__init__.py +0 -1
- transformers/models/voxtral/configuration_voxtral.py +0 -2
- transformers/models/voxtral/modeling_voxtral.py +41 -48
- transformers/models/voxtral/modular_voxtral.py +35 -38
- transformers/models/voxtral/processing_voxtral.py +25 -48
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -2
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
- transformers/models/wav2vec2/modeling_wav2vec2.py +74 -126
- transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
- transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -2
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
- transformers/models/wavlm/configuration_wavlm.py +4 -2
- transformers/models/wavlm/modeling_wavlm.py +49 -49
- transformers/models/wavlm/modular_wavlm.py +4 -5
- transformers/models/whisper/configuration_whisper.py +6 -5
- transformers/models/whisper/english_normalizer.py +3 -4
- transformers/models/whisper/feature_extraction_whisper.py +9 -24
- transformers/models/whisper/generation_whisper.py +26 -49
- transformers/models/whisper/modeling_whisper.py +71 -73
- transformers/models/whisper/processing_whisper.py +3 -20
- transformers/models/whisper/tokenization_whisper.py +9 -30
- transformers/models/x_clip/configuration_x_clip.py +4 -2
- transformers/models/x_clip/modeling_x_clip.py +94 -96
- transformers/models/x_clip/processing_x_clip.py +2 -14
- transformers/models/xcodec/configuration_xcodec.py +4 -6
- transformers/models/xcodec/modeling_xcodec.py +15 -17
- transformers/models/xglm/configuration_xglm.py +9 -8
- transformers/models/xglm/modeling_xglm.py +49 -55
- transformers/models/xglm/tokenization_xglm.py +1 -4
- transformers/models/xlm/configuration_xlm.py +10 -8
- transformers/models/xlm/modeling_xlm.py +127 -131
- transformers/models/xlm/tokenization_xlm.py +3 -5
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -3
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +96 -98
- transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -2
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +97 -99
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
- transformers/models/xlnet/configuration_xlnet.py +3 -12
- transformers/models/xlnet/modeling_xlnet.py +149 -162
- transformers/models/xlnet/tokenization_xlnet.py +1 -4
- transformers/models/xlstm/configuration_xlstm.py +8 -12
- transformers/models/xlstm/modeling_xlstm.py +61 -96
- transformers/models/xmod/configuration_xmod.py +11 -3
- transformers/models/xmod/modeling_xmod.py +111 -116
- transformers/models/yolos/configuration_yolos.py +0 -1
- transformers/models/yolos/image_processing_yolos.py +60 -62
- transformers/models/yolos/image_processing_yolos_fast.py +42 -45
- transformers/models/yolos/modeling_yolos.py +19 -21
- transformers/models/yolos/modular_yolos.py +17 -19
- transformers/models/yoso/configuration_yoso.py +8 -2
- transformers/models/yoso/modeling_yoso.py +60 -62
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -8
- transformers/models/zamba/modeling_zamba.py +93 -125
- transformers/models/zamba2/configuration_zamba2.py +44 -50
- transformers/models/zamba2/modeling_zamba2.py +137 -165
- transformers/models/zamba2/modular_zamba2.py +79 -74
- transformers/models/zoedepth/configuration_zoedepth.py +17 -41
- transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +20 -21
- transformers/models/zoedepth/modeling_zoedepth.py +19 -19
- transformers/pipelines/__init__.py +47 -106
- transformers/pipelines/any_to_any.py +15 -23
- transformers/pipelines/audio_utils.py +1 -2
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +13 -17
- transformers/pipelines/image_text_to_text.py +1 -2
- transformers/pipelines/question_answering.py +4 -43
- transformers/pipelines/text_classification.py +1 -14
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/pipelines/token_classification.py +1 -22
- transformers/pipelines/video_classification.py +1 -9
- transformers/pipelines/zero_shot_audio_classification.py +0 -1
- transformers/pipelines/zero_shot_classification.py +0 -6
- transformers/pipelines/zero_shot_image_classification.py +0 -7
- transformers/processing_utils.py +128 -137
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/base.py +10 -0
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_quark.py +0 -1
- transformers/quantizers/quantizer_torchao.py +3 -19
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +6 -65
- transformers/tokenization_mistral_common.py +563 -903
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +228 -341
- transformers/tokenization_utils_sentencepiece.py +5 -6
- transformers/tokenization_utils_tokenizers.py +36 -7
- transformers/trainer.py +30 -41
- transformers/trainer_jit_checkpoint.py +1 -2
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +414 -420
- transformers/utils/__init__.py +1 -4
- transformers/utils/attention_visualizer.py +1 -1
- transformers/utils/auto_docstring.py +567 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/dummy_pt_objects.py +0 -42
- transformers/utils/generic.py +70 -34
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +135 -107
- transformers/utils/quantization_config.py +8 -31
- transformers/video_processing_utils.py +24 -25
- transformers/video_utils.py +21 -23
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/METADATA +120 -239
- transformers-5.1.0.dist-info/RECORD +2092 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -229
- transformers-5.0.0rc2.dist-info/RECORD +0 -2042
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
# coding=utf-8
|
|
2
1
|
# Copyright 2024 The HuggingFace Inc. team.
|
|
3
2
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
4
3
|
#
|
|
@@ -15,11 +14,9 @@
|
|
|
15
14
|
# limitations under the License.
|
|
16
15
|
import queue
|
|
17
16
|
import threading
|
|
17
|
+
from abc import abstractmethod
|
|
18
18
|
from collections.abc import Generator
|
|
19
19
|
from contextlib import contextmanager
|
|
20
|
-
from dataclasses import dataclass
|
|
21
|
-
from functools import partial
|
|
22
|
-
from itertools import count
|
|
23
20
|
from math import ceil
|
|
24
21
|
from time import perf_counter
|
|
25
22
|
|
|
@@ -30,11 +27,12 @@ from tqdm.contrib.logging import logging_redirect_tqdm
|
|
|
30
27
|
|
|
31
28
|
from ...configuration_utils import PretrainedConfig
|
|
32
29
|
from ...generation.configuration_utils import CompileConfig, GenerationConfig
|
|
33
|
-
from ...generation.logits_process import
|
|
30
|
+
from ...generation.logits_process import LogitsProcessorList
|
|
34
31
|
from ...utils.logging import logging
|
|
35
32
|
from ...utils.metrics import ContinuousBatchProcessorMetrics, attach_tracer, traced
|
|
36
33
|
from .cache import PagedAttentionCache
|
|
37
|
-
from .
|
|
34
|
+
from .input_ouputs import ContinuousBatchingIOs, attn_mask_is_needed
|
|
35
|
+
from .requests import GenerationOutput, RequestState, RequestStatus, logger
|
|
38
36
|
from .scheduler import SCHEDULER_MAPPING, FIFOScheduler, Scheduler
|
|
39
37
|
|
|
40
38
|
|
|
@@ -70,109 +68,19 @@ def pad_by_intervals(size: int, max_value: int, nb_intervals: int) -> int:
|
|
|
70
68
|
return min(padded, max_value)
|
|
71
69
|
|
|
72
70
|
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
71
|
+
# We cannot use `PreTrainedModel` for circular import reasons, so this helps keep track of the basic types
|
|
72
|
+
class ProtoPretrainedModel(nn.Module):
|
|
73
|
+
config: PretrainedConfig
|
|
74
|
+
dtype: torch.dtype
|
|
75
|
+
device: torch.device
|
|
76
76
|
|
|
77
|
+
@abstractmethod
|
|
78
|
+
def set_attn_implementation(self, attn_implementation: str) -> None:
|
|
79
|
+
pass
|
|
77
80
|
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
cumulative_seqlens_k: list[int],
|
|
82
|
-
sliding_window: int = 1,
|
|
83
|
-
) -> None:
|
|
84
|
-
"""Builds an attention mask inplace using the cumulative seqlens of the query and key. If given a sliding window, it
|
|
85
|
-
will also apply a sliding window mask on top. The attention mask is not boolean, it uses zeroes and -inf (or its
|
|
86
|
-
equivalent) so it's more of an attention score bias tensor.
|
|
87
|
-
The attention mask is a block-diagonal matrix, with each block an attention mask for a single query-key pair.
|
|
88
|
-
Each of those block is built from a causal mask and, if there is a sliding window, a sliding window mask.
|
|
89
|
-
|
|
90
|
-
An example is represented below, with seqlen_k = 8, seqlen_q = 4 and sliding_window = 6:
|
|
91
|
-
|
|
92
|
-
CAUSAL MASK:
|
|
93
|
-
|
|
94
|
-
█ █ █ █ █ ░ ░ ░
|
|
95
|
-
█ █ █ █ █ █ ░ ░
|
|
96
|
-
█ █ █ █ █ █ █ ░
|
|
97
|
-
█ █ █ █ █ █ █ █
|
|
98
|
-
|
|
99
|
-
SLIDING WINDOW MASK:
|
|
100
|
-
┌──────────────────────── seqlen_k - seqlen_q - sliding_window = 8 - 4 - 6 = -2 offset to the left
|
|
101
|
-
<─┴─>
|
|
102
|
-
░ █ | █ █ █ █ █ █ █ █
|
|
103
|
-
░ ░ | █ █ █ █ █ █ █ █
|
|
104
|
-
░ ░ | ░ █ █ █ █ █ █ █
|
|
105
|
-
░ ░ | ░ ░ █ █ █ █ █ █
|
|
106
|
-
|
|
107
|
-
ATTENTION MASK (sum of causal and sliding window masks):
|
|
108
|
-
|
|
109
|
-
█ █ █ █ █ ░ ░ ░
|
|
110
|
-
█ █ █ █ █ █ ░ ░
|
|
111
|
-
░ █ █ █ █ █ █ ░
|
|
112
|
-
░ ░ █ █ █ █ █ █
|
|
113
|
-
|
|
114
|
-
Another example with seqlen_k = 5, seqlen_q = 3 and sliding_window = 2:
|
|
115
|
-
|
|
116
|
-
CAUSAL MASK:
|
|
117
|
-
|
|
118
|
-
█ █ █ ░ ░
|
|
119
|
-
█ █ █ █ ░
|
|
120
|
-
█ █ █ █ █
|
|
121
|
-
|
|
122
|
-
SLIDING WINDOW MASK:
|
|
123
|
-
┌──────────────────────── seqlen_k - seqlen_q - sliding_window = 5 - 3 - 2 = 0 offset to the left
|
|
124
|
-
<┴>
|
|
125
|
-
| ░ █ █ █ █
|
|
126
|
-
| ░ ░ █ █ █
|
|
127
|
-
| ░ ░ ░ █ █
|
|
128
|
-
|
|
129
|
-
ATTENTION MASK (sum of causal and sliding window masks):
|
|
130
|
-
|
|
131
|
-
░ █ █ ░ ░
|
|
132
|
-
░ ░ █ █ ░
|
|
133
|
-
░ ░ ░ █ █
|
|
134
|
-
|
|
135
|
-
"""
|
|
136
|
-
min_value = torch.finfo(attention_mask.dtype).min
|
|
137
|
-
for i in range(len(cumulative_seqlens_q) - 1):
|
|
138
|
-
seqlen_q = cumulative_seqlens_q[i + 1] - cumulative_seqlens_q[i]
|
|
139
|
-
seqlen_k = cumulative_seqlens_k[i + 1] - cumulative_seqlens_k[i]
|
|
140
|
-
if seqlen_q < seqlen_k and seqlen_q >= 1:
|
|
141
|
-
causal_diagonal = seqlen_k - seqlen_q + 1
|
|
142
|
-
else:
|
|
143
|
-
causal_diagonal = 1
|
|
144
|
-
query_range = slice(cumulative_seqlens_q[i], cumulative_seqlens_q[i + 1])
|
|
145
|
-
key_range = slice(cumulative_seqlens_k[i], cumulative_seqlens_k[i + 1])
|
|
146
|
-
# Apply causal mask
|
|
147
|
-
minus_inf = torch.full(
|
|
148
|
-
attention_mask[..., query_range, key_range].shape,
|
|
149
|
-
min_value,
|
|
150
|
-
dtype=attention_mask.dtype,
|
|
151
|
-
device=attention_mask.device,
|
|
152
|
-
)
|
|
153
|
-
masked = torch.triu(minus_inf, diagonal=causal_diagonal)
|
|
154
|
-
# Apply sliding window mask if needed
|
|
155
|
-
if sliding_window > 1:
|
|
156
|
-
sliding_diagonal = seqlen_k - seqlen_q - sliding_window
|
|
157
|
-
masked += torch.tril(minus_inf, diagonal=sliding_diagonal)
|
|
158
|
-
# Replace in attention mask
|
|
159
|
-
attention_mask[..., query_range, key_range] = masked
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
@dataclass
|
|
163
|
-
class PagedAttentionArgs:
|
|
164
|
-
input_ids: torch.Tensor
|
|
165
|
-
attention_mask: torch.Tensor | None
|
|
166
|
-
position_ids: torch.Tensor
|
|
167
|
-
cumulative_seqlens_q: torch.Tensor
|
|
168
|
-
cumulative_seqlens_k: torch.Tensor
|
|
169
|
-
max_seqlen_q: int
|
|
170
|
-
max_seqlen_k: int
|
|
171
|
-
write_index: list[torch.Tensor]
|
|
172
|
-
read_index: list[torch.Tensor]
|
|
173
|
-
logits_indices: torch.Tensor
|
|
174
|
-
cache: PagedAttentionCache
|
|
175
|
-
use_cache: bool = False
|
|
81
|
+
@abstractmethod
|
|
82
|
+
def _get_logits_processor(self, generation_config: GenerationConfig) -> LogitsProcessorList:
|
|
83
|
+
pass
|
|
176
84
|
|
|
177
85
|
|
|
178
86
|
# Continuous Batch Processor (Internal Logic)
|
|
@@ -239,160 +147,14 @@ class ContinuousBatchProcessor:
|
|
|
239
147
|
self.max_batch_tokens = cache.max_batch_tokens
|
|
240
148
|
self.metrics = ContinuousBatchProcessorMetrics(cache.max_batch_tokens)
|
|
241
149
|
|
|
242
|
-
# Setup
|
|
243
|
-
self.
|
|
244
|
-
self.actual_key_length = 0 # This is the actual number of keys/values tokens in the batch
|
|
245
|
-
self.actual_batch_size = 0 # This is the actual number of requests in the batch
|
|
246
|
-
self.actual_index_sizes = [(0, 0) for _ in range(cache.num_groups)]
|
|
247
|
-
self.setup_static_tensors(cache.num_groups)
|
|
248
|
-
|
|
249
|
-
@traced(standalone=True)
|
|
250
|
-
def setup_static_tensors(self, num_groups: int) -> None:
|
|
251
|
-
"""Setup the static tensors that are used for storage during the generation step. No other tensor will be
|
|
252
|
-
allowed for the inputs or the outputs of the generation step."""
|
|
253
|
-
num_pages = self.cache.num_blocks * self.cache.block_size
|
|
254
|
-
self.tensor_metadata = {"dtype": torch.int32, "device": self.model_device}
|
|
255
|
-
|
|
256
|
-
# Some tensors always have the same shape regardless of the model
|
|
257
|
-
self.input_ids = torch.empty((1, self.max_batch_tokens), **self.tensor_metadata)
|
|
258
|
-
self.position_ids = torch.empty((1, self.max_batch_tokens), **self.tensor_metadata)
|
|
259
|
-
self.cumulative_seqlens_q = torch.empty((self.max_batch_tokens + 1,), **self.tensor_metadata)
|
|
260
|
-
self.max_seqlen_q = 0
|
|
261
|
-
self.logits_indices = torch.empty((self.max_batch_tokens,), **self.tensor_metadata)
|
|
262
|
-
self.output_ids = torch.empty((self.max_batch_tokens,), **self.tensor_metadata)
|
|
263
|
-
|
|
264
|
-
# For some kwargs, we have a dict of tensors with as many items as there are attention types
|
|
265
|
-
layer_types = getattr(self.config, "layer_types", None)
|
|
266
|
-
if layer_types is None:
|
|
267
|
-
sliding_window = getattr(self.config, "sliding_window", 1)
|
|
268
|
-
layer_types = ["full_attention"] if sliding_window in [1, None] else ["sliding_attention"]
|
|
269
|
-
layer_types = list(set(layer_types))
|
|
270
|
-
|
|
271
|
-
self.cumulative_seqlens_k = {
|
|
272
|
-
l_type: torch.empty((self.max_batch_tokens + 1), **self.tensor_metadata) for l_type in layer_types
|
|
273
|
-
}
|
|
274
|
-
self.max_seqlen_k = dict.fromkeys(layer_types, 0)
|
|
275
|
-
|
|
276
|
-
if attn_mask_is_needed(self.config):
|
|
277
|
-
attn_mask_kwargs = {
|
|
278
|
-
"size": (1, 1, self.max_batch_tokens, num_pages + self.max_batch_tokens),
|
|
279
|
-
"dtype": self.model_dtype,
|
|
280
|
-
"device": self.model_device,
|
|
281
|
-
}
|
|
282
|
-
self.attention_mask = {layer_type: torch.empty(**attn_mask_kwargs) for layer_type in layer_types}
|
|
283
|
-
else:
|
|
284
|
-
self.attention_mask = None
|
|
285
|
-
|
|
286
|
-
# For other kwargs, we need a list of tensors with as many tensors as there are groups
|
|
287
|
-
self.write_index_storage = [
|
|
288
|
-
torch.empty((self.max_batch_tokens,), **self.tensor_metadata) for _ in range(num_groups)
|
|
289
|
-
]
|
|
290
|
-
self.read_index_storage = [
|
|
291
|
-
torch.empty((num_pages + self.max_batch_tokens), **self.tensor_metadata) for _ in range(num_groups)
|
|
292
|
-
]
|
|
293
|
-
# For read index, the +T is because there are -1 for seqlen_q when model uses a sliding window
|
|
294
|
-
|
|
295
|
-
# After allocating empty tensors, we reset them to the right value
|
|
296
|
-
self.reset_static_tensors(full_reset=True)
|
|
297
|
-
|
|
298
|
-
@traced
|
|
299
|
-
@torch.no_grad()
|
|
300
|
-
def reset_static_tensors(self, full_reset: bool = False) -> None:
|
|
301
|
-
"""Reset static tensors for the next batch. In between batches, reset only the parts that were used in the last
|
|
302
|
-
batch, but for initialisation, we can reset everything using the (full_reset) flag."""
|
|
303
|
-
# Compute the slice to reset
|
|
304
|
-
q_len = self.write_index_storage[0].size(-1) if full_reset else self.actual_query_length
|
|
305
|
-
k_len = self.read_index_storage[0].size(-1) if full_reset else self.actual_key_length
|
|
306
|
-
b_size = self.write_index_storage[0].size(0) if full_reset else self.actual_batch_size
|
|
307
|
-
|
|
308
|
-
# Reset the attributes that always have the same shape
|
|
309
|
-
self.input_ids[:, :q_len].zero_()
|
|
310
|
-
self.position_ids[:, :q_len].zero_()
|
|
311
|
-
self.cumulative_seqlens_q[: b_size + 1].zero_()
|
|
312
|
-
self.max_seqlen_q = 0
|
|
313
|
-
self.logits_indices[:q_len].fill_(-1)
|
|
314
|
-
self.output_ids[:q_len].fill_(-1)
|
|
315
|
-
|
|
316
|
-
# Reset the attributes that are either tensors or dict of tensors
|
|
317
|
-
for layer_type in self.cumulative_seqlens_k:
|
|
318
|
-
self.cumulative_seqlens_k[layer_type][: b_size + 1].zero_()
|
|
319
|
-
self.max_seqlen_k[layer_type] = 0
|
|
320
|
-
if self.attention_mask is not None:
|
|
321
|
-
self.attention_mask[layer_type][:, :, :q_len, :k_len].fill_(torch.finfo(self.model_dtype).min)
|
|
322
|
-
|
|
323
|
-
# Reset the attributes that are lists of tensors
|
|
324
|
-
for i in range(self.cache.num_groups):
|
|
325
|
-
self.write_index_storage[i][:q_len].fill_(-2) # -1 is used to let the cache where new states go
|
|
326
|
-
self.read_index_storage[i][: q_len + k_len].fill_(-2) # same
|
|
327
|
-
|
|
328
|
-
def get_model_kwargs(self, padded_q_size: int = 0, padded_kv_cache_size: int = 0) -> PagedAttentionArgs:
|
|
329
|
-
"""Get model keyword arguments for the current batch, eventually padding the query dimension to (padded_q_size)
|
|
330
|
-
and the keys/values dimension to (padded_kv_cache_size). The padding is only useful if we want static shapes,
|
|
331
|
-
like when using cuda graphs AND only activated if both Q and KV are padded."""
|
|
332
|
-
# Compute the slice to return, with the given padding if we are using cuda graphs
|
|
333
|
-
use_padding = padded_q_size > 0 and padded_kv_cache_size > 0
|
|
334
|
-
q_len = padded_q_size if use_padding else self.actual_query_length
|
|
335
|
-
b_size = padded_q_size if use_padding else self.actual_batch_size
|
|
336
|
-
# If there is padding, the size of the KV is the nb of padded Q tokens + the size padded of the padded KV cache
|
|
337
|
-
padded_kv_size = padded_q_size + padded_kv_cache_size
|
|
338
|
-
|
|
339
|
-
# Prepare the kwargs, the attributes that are either tensors or dict of tensors are initialized to empty dicts
|
|
340
|
-
kwargs = {
|
|
341
|
-
"input_ids": self.input_ids[:, :q_len],
|
|
342
|
-
"position_ids": self.position_ids[:, :q_len],
|
|
343
|
-
"cu_seq_lens_q": self.cumulative_seqlens_q[: b_size + 1],
|
|
344
|
-
"max_seqlen_q": self.max_seqlen_q,
|
|
345
|
-
"logits_indices": self.logits_indices[:q_len],
|
|
346
|
-
"cu_seq_lens_k": {},
|
|
347
|
-
"max_seqlen_k": {},
|
|
348
|
-
"attention_mask": {},
|
|
349
|
-
"read_index": [],
|
|
350
|
-
"write_index": [],
|
|
351
|
-
"cache": self.cache,
|
|
352
|
-
"use_cache": False,
|
|
353
|
-
}
|
|
354
|
-
|
|
355
|
-
# If we use constant-sized slicing, there are some "padding" queries tokens which FA has some issues with. In
|
|
356
|
-
# some models like Qwen3-4B-Instruct-2507, if we don't include these tokens in cumulative_seqlens_q, there are
|
|
357
|
-
# some NaNs in the output logits even for non-padded tokens.
|
|
358
|
-
if use_padding:
|
|
359
|
-
self.max_seqlen_q = max(self.max_seqlen_q, q_len - self.total_seqlen_q)
|
|
360
|
-
self.cumulative_seqlens_q[self.actual_batch_size + 1 :] = q_len
|
|
361
|
-
# FIXME: is there another way to avoid this? It has a very slight impact on performance (~5 tok/s)
|
|
362
|
-
|
|
363
|
-
# For the attributes that are lists of tensors, we construct list of tensor references
|
|
364
|
-
for i, (read_index_size, write_index_size) in enumerate(self.actual_index_sizes):
|
|
365
|
-
read_index_size = padded_kv_size if use_padding else read_index_size
|
|
366
|
-
write_index_size = padded_q_size if use_padding else write_index_size
|
|
367
|
-
kwargs["read_index"].append(self.read_index_storage[i][:read_index_size])
|
|
368
|
-
kwargs["write_index"].append(self.write_index_storage[i][:write_index_size])
|
|
369
|
-
|
|
370
|
-
# For the attributes that are dict of tensors, we replace the dict with a tensor if there is only one entry
|
|
371
|
-
layer_types = list(self.cumulative_seqlens_k.keys())
|
|
372
|
-
if len(layer_types) > 1:
|
|
373
|
-
for layer_type, seqlens_k in self.cumulative_seqlens_k.items():
|
|
374
|
-
kwargs["cu_seq_lens_k"][layer_type] = seqlens_k[: b_size + 1]
|
|
375
|
-
kwargs["max_seqlen_k"][layer_type] = self.max_seqlen_k[layer_type]
|
|
376
|
-
if self.attention_mask is not None:
|
|
377
|
-
k_len = padded_kv_size if use_padding else seqlens_k[b_size]
|
|
378
|
-
kwargs["attention_mask"][layer_type] = self.attention_mask[layer_type][..., :q_len, :k_len]
|
|
379
|
-
else:
|
|
380
|
-
layer_type = layer_types[0]
|
|
381
|
-
kwargs["cu_seq_lens_k"] = self.cumulative_seqlens_k[layer_type][: b_size + 1]
|
|
382
|
-
kwargs["max_seqlen_k"] = self.max_seqlen_k[layer_type]
|
|
383
|
-
if self.attention_mask is not None:
|
|
384
|
-
k_len = padded_kv_size if use_padding else self.cumulative_seqlens_k[layer_type][b_size]
|
|
385
|
-
kwargs["attention_mask"] = self.attention_mask[layer_type][..., :q_len, :k_len]
|
|
386
|
-
|
|
387
|
-
if self.attention_mask is None:
|
|
388
|
-
kwargs["attention_mask"] = None
|
|
389
|
-
return kwargs
|
|
150
|
+
# Setup inputs and outputs
|
|
151
|
+
self.inputs_and_outputs = ContinuousBatchingIOs(cache, config, model_device, model_dtype)
|
|
390
152
|
|
|
391
153
|
def __repr__(self) -> str:
|
|
392
154
|
return (
|
|
393
155
|
f"ContinuousBatchProcessor(input_queue={self.input_queue}, output_queue={self.output_queue}, "
|
|
394
156
|
f"active_requests={self.scheduler.active_requests}, waiting_requests={self.scheduler.waiting_requests})"
|
|
395
|
-
+ self.get_model_kwargs().__repr__()
|
|
157
|
+
+ self.inputs_and_outputs.get_model_kwargs().__repr__()
|
|
396
158
|
)
|
|
397
159
|
|
|
398
160
|
@traced
|
|
@@ -409,7 +171,7 @@ class ContinuousBatchProcessor:
|
|
|
409
171
|
break
|
|
410
172
|
except Exception as e:
|
|
411
173
|
logger.error(f"Error processing new request: {e}", exc_info=True)
|
|
412
|
-
state: RequestState = locals().get("state")
|
|
174
|
+
state: RequestState = locals().get("state") # type:ignore
|
|
413
175
|
if state is not None:
|
|
414
176
|
self._handle_request_error(e, state)
|
|
415
177
|
|
|
@@ -428,6 +190,33 @@ class ContinuousBatchProcessor:
|
|
|
428
190
|
self.metrics.record_request_completion(state.created_time, state.request_id)
|
|
429
191
|
self.output_queue.put(state.to_generation_output())
|
|
430
192
|
|
|
193
|
+
# TODO: there should be a way to choose the offloading policy: biggest request, oldest request, etc.
|
|
194
|
+
# Including a policy to not allow offloading and crashing the generation
|
|
195
|
+
def soft_reset_one_request(self) -> None:
|
|
196
|
+
"""Soft resets one active request by removing it from active requests and re-adding it to the waiting queue.
|
|
197
|
+
|
|
198
|
+
The generated tokens are kept as part of the new request's initial prompt. When `block_new_requests` is False,
|
|
199
|
+
the oldest request is offloaded; when True, the newest request is offloaded. This method also sets
|
|
200
|
+
`block_new_requests` to True to prevent infinite loops of offloading and re-scheduling requests.
|
|
201
|
+
"""
|
|
202
|
+
# The offloaded request is the newest (resp. oldest) if block_new_requests is True (resp. False)
|
|
203
|
+
if self.scheduler.block_new_requests:
|
|
204
|
+
request_id, state = self.scheduler.active_requests.popitem()
|
|
205
|
+
else:
|
|
206
|
+
request_id, state = next(iter(self.scheduler.active_requests.items()))
|
|
207
|
+
logger.info(
|
|
208
|
+
f"Soft resetting request {request_id} with {len(state.initial_tokens)} initial tokens and "
|
|
209
|
+
f"{len(state.generated_tokens)} generated tokens"
|
|
210
|
+
)
|
|
211
|
+
# Create a copy of the offloaded request keeping the generated tokens as addition to the initial prompt
|
|
212
|
+
new_state = state.create_equivalent_initial_request()
|
|
213
|
+
# Actual offloading of the request
|
|
214
|
+
self.scheduler.finish_request(request_id, evict_from_cache=True)
|
|
215
|
+
self.scheduler.add_waiting_request(new_state)
|
|
216
|
+
# This flag blocks any new requests from being scheduled until one request is finished. This ensures that we
|
|
217
|
+
# don't enter an offload / schedule loop
|
|
218
|
+
self.scheduler.block_new_requests = True
|
|
219
|
+
|
|
431
220
|
@traced
|
|
432
221
|
def prepare_next_batch(self) -> bool:
|
|
433
222
|
"""Prepare tensors and metadata for the next model forward pass. Returns True if there are requests to process,
|
|
@@ -441,74 +230,30 @@ class ContinuousBatchProcessor:
|
|
|
441
230
|
self.metrics.record_queue_metrics(len(self.scheduler.active_requests), len(self.scheduler.waiting_requests))
|
|
442
231
|
|
|
443
232
|
# Schedule the next batch of requests, stop if there are no requests in the batch
|
|
444
|
-
|
|
233
|
+
requests_in_batch = self.scheduler.schedule_batch(self.max_batch_tokens, self.cache.num_pages)
|
|
234
|
+
|
|
235
|
+
# If requests_in_batch is None, it means we need to offload some requests if possible
|
|
236
|
+
if requests_in_batch is None:
|
|
237
|
+
if len(self.scheduler.active_requests) > 1:
|
|
238
|
+
self.soft_reset_one_request()
|
|
239
|
+
return False
|
|
240
|
+
else:
|
|
241
|
+
raise RuntimeError("No requests can be scheduled and no request can be offloaded.")
|
|
242
|
+
# If it's an empty list, it means we have no requests to process
|
|
243
|
+
self.requests_in_batch = requests_in_batch
|
|
445
244
|
if not self.requests_in_batch:
|
|
446
245
|
return False
|
|
447
|
-
self.metrics.record_batch_metrics(self.requests_in_batch)
|
|
448
|
-
|
|
449
|
-
# Reset the static tensors used for storage
|
|
450
|
-
self.reset_static_tensors() # FIXME: why does this make the generation faster?
|
|
451
|
-
|
|
452
|
-
# Prepare accumulators
|
|
453
|
-
self.actual_query_length = 0
|
|
454
|
-
self.actual_key_length = 0
|
|
455
|
-
self.actual_batch_size = 0
|
|
456
246
|
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
logits_indices = []
|
|
461
|
-
|
|
462
|
-
cumulative_seqlens_k = {layer_type: [0] for layer_type in self.cumulative_seqlens_k}
|
|
463
|
-
|
|
464
|
-
read_index = [[] for _ in range(self.cache.num_groups)]
|
|
465
|
-
write_index = [[] for _ in range(self.cache.num_groups)]
|
|
247
|
+
# Otherwise, we can continue with the non-empty batch
|
|
248
|
+
self.metrics.record_batch_metrics(self.requests_in_batch)
|
|
249
|
+
self.inputs_and_outputs.prepare_batch_tensors(requests_in_batch)
|
|
466
250
|
|
|
467
|
-
#
|
|
468
|
-
for state in self.requests_in_batch:
|
|
469
|
-
# First we retrieve the lengths related to the request
|
|
470
|
-
past_length = state.position_offset
|
|
471
|
-
query_length = len(state.tokens_to_process)
|
|
472
|
-
seqlens_k = self.cache.get_seqlens_k(state.request_id, past_length, query_length)
|
|
473
|
-
|
|
474
|
-
# Then we update the total lengths that are used for slicing
|
|
475
|
-
self.actual_query_length += query_length
|
|
476
|
-
# total_key_length is used to slice the keys so we need to take the max of all the key lengths
|
|
477
|
-
self.actual_key_length += max(seqlens_k.values())
|
|
478
|
-
self.actual_batch_size += 1
|
|
479
|
-
# And the attribute tracking the position in the request object
|
|
480
|
-
state.position_offset += query_length
|
|
481
|
-
|
|
482
|
-
# Then we accumulate for the object used in the kwargs
|
|
483
|
-
input_ids.extend(state.tokens_to_process)
|
|
484
|
-
position_ids.extend(range(past_length, past_length + query_length))
|
|
485
|
-
cumulative_seqlens_q.append(cumulative_seqlens_q[-1] + query_length)
|
|
486
|
-
self.max_seqlen_q = max(self.max_seqlen_q, query_length)
|
|
487
|
-
|
|
488
|
-
if not state.remaining_prefill_tokens:
|
|
489
|
-
logits_indices.append(cumulative_seqlens_q[-1] - 1)
|
|
490
|
-
|
|
491
|
-
for layer_type, layer_type_seqlen_k in seqlens_k.items():
|
|
492
|
-
cumulative_seqlens_k[layer_type].append(cumulative_seqlens_k[layer_type][-1] + layer_type_seqlen_k)
|
|
493
|
-
self.max_seqlen_k[layer_type] = max(self.max_seqlen_k[layer_type], layer_type_seqlen_k)
|
|
494
|
-
|
|
495
|
-
self.cache.extend_read_indices(state.request_id, past_length, query_length, read_index)
|
|
496
|
-
self.cache.extend_write_indices(state.request_id, past_length, query_length, write_index)
|
|
497
|
-
|
|
498
|
-
# When looping over request is done, we can build the actual tensors
|
|
499
|
-
self._build_tensors(
|
|
500
|
-
input_ids,
|
|
501
|
-
position_ids,
|
|
502
|
-
read_index,
|
|
503
|
-
write_index,
|
|
504
|
-
cumulative_seqlens_q,
|
|
505
|
-
cumulative_seqlens_k,
|
|
506
|
-
logits_indices,
|
|
507
|
-
)
|
|
251
|
+
# Record the memory metrics of the KV cache
|
|
508
252
|
self.metrics.record_kv_cache_memory_metrics(self.cache)
|
|
509
|
-
|
|
510
253
|
if logger.isEnabledFor(logging.DEBUG):
|
|
511
|
-
|
|
254
|
+
cumulative_seqlens_q = self.inputs_and_outputs.cumulative_seqlens_q
|
|
255
|
+
cumulative_seqlens_k = self.inputs_and_outputs.cumulative_seqlens_k
|
|
256
|
+
ck = max(cumulative_seqlens_k[layer_type][-1] for layer_type in cumulative_seqlens_k)
|
|
512
257
|
logger.debug(
|
|
513
258
|
f"Scheduled: {len(self.requests_in_batch)}, Waiting: {len(self.scheduler.waiting_requests)}, "
|
|
514
259
|
f"Active: {len(self.scheduler.active_requests)}. cum Q: {cumulative_seqlens_q[-1]}. "
|
|
@@ -516,52 +261,6 @@ class ContinuousBatchProcessor:
|
|
|
516
261
|
)
|
|
517
262
|
return True
|
|
518
263
|
|
|
519
|
-
@traced
|
|
520
|
-
def _build_tensors(
|
|
521
|
-
self,
|
|
522
|
-
input_ids: list[int],
|
|
523
|
-
position_ids: list[int],
|
|
524
|
-
read_index: list[list[int]],
|
|
525
|
-
write_index: list[list[int]],
|
|
526
|
-
cumulative_seqlens_q: list[int],
|
|
527
|
-
cumulative_seqlens_k: dict[str, list[int]],
|
|
528
|
-
logits_indices: list[int],
|
|
529
|
-
) -> None:
|
|
530
|
-
"""Builds the actual tensors for the current batch, by modifying the already allocated tensors in place."""
|
|
531
|
-
to_tensor = partial(torch.tensor, **self.tensor_metadata)
|
|
532
|
-
|
|
533
|
-
# Those kwargs always have the same type regardless of the model
|
|
534
|
-
self.input_ids[:, : len(input_ids)] = to_tensor(input_ids)
|
|
535
|
-
self.position_ids[:, : len(position_ids)] = to_tensor(position_ids)
|
|
536
|
-
self.cumulative_seqlens_q[: len(cumulative_seqlens_q)] = to_tensor(cumulative_seqlens_q)
|
|
537
|
-
self.logits_indices[: len(logits_indices)] = to_tensor(logits_indices)
|
|
538
|
-
self.total_seqlen_q = cumulative_seqlens_q[-1]
|
|
539
|
-
|
|
540
|
-
# Those kwargs are either dict of tensors or tensors, so we need to handle both cases
|
|
541
|
-
for layer_type, layer_type_seqlens_k in cumulative_seqlens_k.items():
|
|
542
|
-
self.cumulative_seqlens_k[layer_type][: len(layer_type_seqlens_k)] = to_tensor(layer_type_seqlens_k)
|
|
543
|
-
if self.attention_mask is not None:
|
|
544
|
-
build_attention_mask(
|
|
545
|
-
attention_mask=self.attention_mask[layer_type],
|
|
546
|
-
cumulative_seqlens_q=cumulative_seqlens_q,
|
|
547
|
-
cumulative_seqlens_k=layer_type_seqlens_k,
|
|
548
|
-
sliding_window=self.sliding_window if layer_type == "sliding_attention" else 1,
|
|
549
|
-
)
|
|
550
|
-
|
|
551
|
-
# The index only contain references to the storage tensors, so we update the storage and their references
|
|
552
|
-
self.read_index = []
|
|
553
|
-
self.write_index = []
|
|
554
|
-
for i, group_read_indices, group_write_indices in zip(count(), read_index, write_index):
|
|
555
|
-
self.read_index_storage[i][: len(group_read_indices)] = to_tensor(group_read_indices)
|
|
556
|
-
self.write_index_storage[i][: len(group_write_indices)] = to_tensor(group_write_indices)
|
|
557
|
-
self.actual_index_sizes[i] = (len(group_read_indices), len(group_write_indices))
|
|
558
|
-
|
|
559
|
-
@traced
|
|
560
|
-
def _get_new_tokens(self, num_new_tokens: int) -> list[int]:
|
|
561
|
-
indices = self.logits_indices[:num_new_tokens]
|
|
562
|
-
new_tokens = self.output_ids[indices]
|
|
563
|
-
return new_tokens.tolist()
|
|
564
|
-
|
|
565
264
|
@traced
|
|
566
265
|
def _maybe_send_output(self, state: RequestState) -> None:
|
|
567
266
|
"""Send output to the queue based on streaming mode and request state."""
|
|
@@ -571,13 +270,13 @@ class ContinuousBatchProcessor:
|
|
|
571
270
|
@traced
|
|
572
271
|
def update_batch(self) -> None:
|
|
573
272
|
"""Update request states based on generated tokens."""
|
|
574
|
-
new_tokens = self.
|
|
273
|
+
new_tokens = self.inputs_and_outputs.output_ids[: len(self.requests_in_batch)].tolist()
|
|
575
274
|
current_logits_index = 0
|
|
576
275
|
for state in self.requests_in_batch:
|
|
577
276
|
# If the request has no remaining prompt ids, it means prefill has already ended or just finished
|
|
578
277
|
if len(state.remaining_prefill_tokens) == 0:
|
|
579
|
-
# If there
|
|
580
|
-
if state.generated_len() ==
|
|
278
|
+
# If there is just one temporary token, it means prefill just ended
|
|
279
|
+
if state.generated_len() == 1:
|
|
581
280
|
self.metrics.record_ttft_metric(state.created_time, state.request_id)
|
|
582
281
|
state.status = RequestStatus.DECODING
|
|
583
282
|
|
|
@@ -592,6 +291,7 @@ class ContinuousBatchProcessor:
|
|
|
592
291
|
if is_finished:
|
|
593
292
|
self.metrics.record_request_completion(state.created_time, state.request_id)
|
|
594
293
|
self.scheduler.finish_request(state.request_id, evict_from_cache=(not self.manual_eviction))
|
|
294
|
+
self.scheduler.block_new_requests = False
|
|
595
295
|
self._maybe_send_output(state)
|
|
596
296
|
# Otherwise, the request is still prefilling, but the prefill has been split
|
|
597
297
|
elif state.status == RequestStatus.PREFILLING_SPLIT:
|
|
@@ -604,15 +304,15 @@ class ContinuousBatchProcessor:
|
|
|
604
304
|
copy_source, copy_destination = [], []
|
|
605
305
|
while self.scheduler._requests_to_fork:
|
|
606
306
|
# Get the number of children and reset it so it's not forked again
|
|
607
|
-
|
|
608
|
-
num_children =
|
|
609
|
-
|
|
307
|
+
state_to_fork = self.scheduler._requests_to_fork.pop()
|
|
308
|
+
num_children = state_to_fork.num_children
|
|
309
|
+
state_to_fork.num_children = 0
|
|
610
310
|
# Create the new request and add them to the scheduler
|
|
611
|
-
new_request_ids = [f"{
|
|
311
|
+
new_request_ids = [f"{state_to_fork.request_id}__child#{i}" for i in range(num_children)]
|
|
612
312
|
for new_request_id in new_request_ids:
|
|
613
|
-
self.scheduler.active_requests[new_request_id] =
|
|
313
|
+
self.scheduler.active_requests[new_request_id] = state_to_fork.fork(new_request_id)
|
|
614
314
|
# Fork the cache
|
|
615
|
-
copy_src, copy_dst = self.cache.fork_request(
|
|
315
|
+
copy_src, copy_dst = self.cache.fork_request(state_to_fork.request_id, new_request_ids)
|
|
616
316
|
copy_source.extend(copy_src)
|
|
617
317
|
copy_destination.extend(copy_dst)
|
|
618
318
|
# FIXME: if fork cant be done, create a new pending request without forking instead of crashing everything
|
|
@@ -621,9 +321,6 @@ class ContinuousBatchProcessor:
|
|
|
621
321
|
if copy_source:
|
|
622
322
|
self.cache.copy_cache(copy_source, copy_destination)
|
|
623
323
|
|
|
624
|
-
if self.cache.get_num_free_blocks() == 0:
|
|
625
|
-
raise ValueError("No more free blocks")
|
|
626
|
-
|
|
627
324
|
@traced
|
|
628
325
|
def has_pending_requests(self) -> bool:
|
|
629
326
|
"""Check if there are any active or waiting requests."""
|
|
@@ -659,8 +356,8 @@ class ContinuousBatchProcessor:
|
|
|
659
356
|
self.scheduler.waiting_requests_order.clear()
|
|
660
357
|
|
|
661
358
|
@traced
|
|
662
|
-
@torch.no_grad
|
|
663
|
-
def _generation_step(self, model: nn.Module, logit_processor:
|
|
359
|
+
@torch.no_grad()
|
|
360
|
+
def _generation_step(self, model: nn.Module, logit_processor: LogitsProcessorList, do_sample: bool) -> None:
|
|
664
361
|
"""Perform a single generation step."""
|
|
665
362
|
|
|
666
363
|
# If a compile config is specified, we compile the forward pass once in a wrapper
|
|
@@ -677,17 +374,18 @@ class ContinuousBatchProcessor:
|
|
|
677
374
|
|
|
678
375
|
# If inputs are static sized, we find the padded sizes of the queries and keys/values
|
|
679
376
|
if self._pad_inputs:
|
|
680
|
-
|
|
681
|
-
|
|
377
|
+
actual_query_length = self.inputs_and_outputs.actual_query_length
|
|
378
|
+
actual_index_sizes = self.inputs_and_outputs.actual_index_sizes
|
|
379
|
+
padded_q = pad_by_intervals(actual_query_length, self.max_batch_tokens, self.q_padding_intervals)
|
|
380
|
+
max_read_index_size = max(actual_index_sizes[i][0] for i in range(self.cache.num_groups))
|
|
381
|
+
# The space planned for query tokens will be added later, so we remove it from the space planned for KV
|
|
682
382
|
padded_read_index_size = pad_by_intervals(
|
|
683
|
-
max_read_index_size
|
|
684
|
-
self.cache.num_blocks * self.cache.block_size,
|
|
685
|
-
self.kv_padding_intervals,
|
|
383
|
+
max_read_index_size, self.cache.num_pages, self.kv_padding_intervals
|
|
686
384
|
)
|
|
687
385
|
else:
|
|
688
386
|
padded_q, padded_read_index_size = 0, 0
|
|
689
387
|
# Retrieve the model kwargs with or without padding
|
|
690
|
-
batch_data = self.get_model_kwargs(padded_q, padded_read_index_size)
|
|
388
|
+
batch_data = self.inputs_and_outputs.get_model_kwargs(padded_q, padded_read_index_size)
|
|
691
389
|
|
|
692
390
|
# If we are not using cuda graphs, we perform the generation step and return
|
|
693
391
|
if self._graphs is None:
|
|
@@ -716,21 +414,23 @@ class ContinuousBatchProcessor:
|
|
|
716
414
|
|
|
717
415
|
@traced
|
|
718
416
|
def _forward_process_and_sample(
|
|
719
|
-
self, model: nn.Module, batch_data: dict, logit_processor:
|
|
417
|
+
self, model: nn.Module, batch_data: dict, logit_processor: LogitsProcessorList, do_sample: bool
|
|
720
418
|
) -> None:
|
|
721
419
|
"""This function performs the forward pass, logits processing, and sampling; which are broken down into smaller
|
|
722
420
|
function to be easier to trace with OpenTelemetry."""
|
|
723
421
|
logits = self._model_forward(model, batch_data)
|
|
724
422
|
# if self.log_prob_generation: batch_processor.output_probs.copy_(logits) # TODO
|
|
725
423
|
probs = self._process_logit(batch_data, logits, logit_processor)
|
|
726
|
-
self._sample(probs, do_sample)
|
|
424
|
+
self._sample(probs, batch_data, do_sample)
|
|
727
425
|
|
|
728
426
|
@traced(span_name="model_forward")
|
|
729
427
|
def _model_forward(self, model: nn.Module, batch_data: dict) -> torch.Tensor:
|
|
730
428
|
return model(**batch_data).logits
|
|
731
429
|
|
|
732
430
|
@traced(span_name="logit_processing")
|
|
733
|
-
def _process_logit(
|
|
431
|
+
def _process_logit(
|
|
432
|
+
self, batch_data: dict, logits: torch.Tensor, logit_processor: LogitsProcessorList
|
|
433
|
+
) -> torch.Tensor:
|
|
734
434
|
# Pass continuous batching context to logits processor if it supports it.
|
|
735
435
|
if hasattr(logit_processor, "set_continuous_batching_context"):
|
|
736
436
|
logit_processor.set_continuous_batching_context(batch_data["logits_indices"], batch_data["cu_seq_lens_q"])
|
|
@@ -740,13 +440,13 @@ class ContinuousBatchProcessor:
|
|
|
740
440
|
# NOTE: to be an exact match with generate, we should also convert logits2d to float32 here, but it's not needed in practice
|
|
741
441
|
logits_2d = logits.view(batch_size * seq_len, vocab_size)
|
|
742
442
|
input_ids_2d = batch_data["input_ids"].view(batch_size * seq_len)
|
|
743
|
-
# Process with 2D tensors
|
|
744
|
-
processed_logits_2d = logit_processor(input_ids_2d, logits_2d)
|
|
443
|
+
# Process with 2D tensors#
|
|
444
|
+
processed_logits_2d = logit_processor(input_ids_2d, logits_2d) # type: ignore[arg-type]
|
|
745
445
|
# Reshape back to 3D
|
|
746
446
|
return processed_logits_2d.view(batch_size, seq_len, vocab_size)
|
|
747
447
|
|
|
748
448
|
@traced(span_name="sampling")
|
|
749
|
-
def _sample(self, probs: torch.Tensor, do_sample: bool) -> None:
|
|
449
|
+
def _sample(self, probs: torch.Tensor, batch_data: dict, do_sample: bool) -> None:
|
|
750
450
|
if do_sample:
|
|
751
451
|
probs = nn.functional.softmax(probs, dim=-1)
|
|
752
452
|
# probs[0] has shape [seq_len, vocab_size], multinomial returns [seq_len, 1]
|
|
@@ -755,7 +455,10 @@ class ContinuousBatchProcessor:
|
|
|
755
455
|
next_tokens = torch.argmax(probs, dim=-1) # shape is [1, seq_len]
|
|
756
456
|
next_tokens = next_tokens.squeeze(0) # shape is [seq_len]
|
|
757
457
|
tokens = next_tokens.size(0) # Get seq_len dimension
|
|
758
|
-
|
|
458
|
+
#
|
|
459
|
+
indices = batch_data["logits_indices"][:tokens]
|
|
460
|
+
next_tokens = next_tokens[indices]
|
|
461
|
+
self.inputs_and_outputs.output_ids[:tokens].copy_(next_tokens)
|
|
759
462
|
|
|
760
463
|
|
|
761
464
|
# Manager Class (User Interface)
|
|
@@ -769,7 +472,7 @@ class ContinuousBatchingManager:
|
|
|
769
472
|
|
|
770
473
|
def __init__(
|
|
771
474
|
self,
|
|
772
|
-
model:
|
|
475
|
+
model: ProtoPretrainedModel,
|
|
773
476
|
generation_config: GenerationConfig,
|
|
774
477
|
manual_eviction: bool = False,
|
|
775
478
|
max_queue_size: int = 0,
|
|
@@ -810,8 +513,9 @@ class ContinuousBatchingManager:
|
|
|
810
513
|
self.generation_config = generation_config
|
|
811
514
|
self.log_prob_generation = getattr(generation_config, "log_prob_generation", False)
|
|
812
515
|
self.do_sample = getattr(generation_config, "do_sample", True)
|
|
813
|
-
self.logit_processor = self.model._get_logits_processor(generation_config)
|
|
814
|
-
|
|
516
|
+
self.logit_processor: LogitsProcessorList = self.model._get_logits_processor(generation_config)
|
|
517
|
+
num_return_sequences = getattr(generation_config, "num_return_sequences", None)
|
|
518
|
+
self.num_return_sequences = num_return_sequences if num_return_sequences is not None else 1
|
|
815
519
|
|
|
816
520
|
# self.model.generation_config.top_p = None NOTE: figure out why this was here
|
|
817
521
|
|
|
@@ -848,6 +552,11 @@ class ContinuousBatchingManager:
|
|
|
848
552
|
If none of the above criteria are met, we use a default heuristic based on the attention implementation: we turn
|
|
849
553
|
on cuda graphs if and only if no attention mask is needed.
|
|
850
554
|
"""
|
|
555
|
+
# If cuda is not available, we cannot use cuda graphs
|
|
556
|
+
if not torch.cuda.is_available():
|
|
557
|
+
if use_cuda_graph:
|
|
558
|
+
logger.warning(f"use_cuda_graph is True but {torch.cuda.is_available() = }: turning off cuda graphs.")
|
|
559
|
+
return False
|
|
851
560
|
# If use_cuda_graph is specified, we follow the user's choice
|
|
852
561
|
if use_cuda_graph is not None:
|
|
853
562
|
return use_cuda_graph
|
|
@@ -871,7 +580,7 @@ class ContinuousBatchingManager:
|
|
|
871
580
|
logger.warning(
|
|
872
581
|
f"No behavior specified for use_cuda_graph, defaulting to {use_cuda_graph = } because "
|
|
873
582
|
f"{self.model.config._attn_implementation = }. If you want to save memory, turn off cuda graphs, but "
|
|
874
|
-
"they
|
|
583
|
+
"they tend to improve performances by a lot."
|
|
875
584
|
)
|
|
876
585
|
return use_cuda_graph
|
|
877
586
|
|
|
@@ -982,14 +691,17 @@ class ContinuousBatchingManager:
|
|
|
982
691
|
streaming: bool = False,
|
|
983
692
|
record_timestamps: bool = False,
|
|
984
693
|
) -> None:
|
|
985
|
-
#
|
|
694
|
+
# Infer the request ids of all incoming requests
|
|
695
|
+
with self._request_lock:
|
|
696
|
+
request_ids = [f"req_{i}" for i in range(self._request_counter, self._request_counter + len(inputs))]
|
|
697
|
+
self._request_counter += len(inputs)
|
|
698
|
+
# If there is prefix sharing, we sort the inputs to maximize cache hits but keep the order of the requests
|
|
699
|
+
ids_and_inputs = list(zip(request_ids, inputs))
|
|
986
700
|
if self._use_prefix_sharing:
|
|
987
|
-
|
|
701
|
+
ids_and_inputs = sorted(ids_and_inputs, key=lambda x: x[1], reverse=True)
|
|
988
702
|
# Add requests in order
|
|
989
|
-
for input_ids in
|
|
990
|
-
self.add_request(
|
|
991
|
-
input_ids, max_new_tokens=max_new_tokens, streaming=streaming, record_timestamps=record_timestamps
|
|
992
|
-
)
|
|
703
|
+
for request_id, input_ids in ids_and_inputs:
|
|
704
|
+
self.add_request(input_ids, request_id, max_new_tokens, streaming, record_timestamps)
|
|
993
705
|
|
|
994
706
|
def cancel_request(self, request_id: str) -> None:
|
|
995
707
|
"""Cancel a request by its ID.
|
|
@@ -1042,7 +754,9 @@ class ContinuousBatchingManager:
|
|
|
1042
754
|
|
|
1043
755
|
@traced
|
|
1044
756
|
def _generation_step(self) -> None:
|
|
1045
|
-
"""Perform a single generation step. This is cuda graphed"""
|
|
757
|
+
"""Perform a single generation step. This is mostly cuda graphed"""
|
|
758
|
+
if self.batch_processor is None:
|
|
759
|
+
raise RuntimeError("Tried to perform a generation step before the batch processor was initialized.")
|
|
1046
760
|
self.batch_processor._generation_step(self.model, self.logit_processor, self.do_sample)
|
|
1047
761
|
|
|
1048
762
|
def _run_generation_loop(self) -> None:
|
|
@@ -1108,14 +822,6 @@ class ContinuousBatchingManager:
|
|
|
1108
822
|
# Loop body ends if there is no requests in the batch
|
|
1109
823
|
if not batch_processor.prepare_next_batch():
|
|
1110
824
|
return
|
|
1111
|
-
# Debug logging of the current memory usage
|
|
1112
|
-
if logger.level <= logging.DEBUG:
|
|
1113
|
-
device, total, reserved, allocated = get_device_and_memory_breakdown()
|
|
1114
|
-
available_memory = total - max(allocated, reserved)
|
|
1115
|
-
logger.debug(
|
|
1116
|
-
f"[Memory] Device: {device}, Total: {total}, Reserved: {reserved}, Allocated: {allocated}, Available: {available_memory}"
|
|
1117
|
-
)
|
|
1118
|
-
|
|
1119
825
|
self._generation_step()
|
|
1120
826
|
batch_processor.update_batch()
|
|
1121
827
|
|
|
@@ -1150,6 +856,8 @@ class ContinuousBatchingManager:
|
|
|
1150
856
|
class ContinuousMixin:
|
|
1151
857
|
"""Mixin class for models to add continuous batching capabilities."""
|
|
1152
858
|
|
|
859
|
+
generation_config: GenerationConfig
|
|
860
|
+
|
|
1153
861
|
@contextmanager
|
|
1154
862
|
def continuous_batching_context_manager(
|
|
1155
863
|
self,
|
|
@@ -1215,7 +923,7 @@ class ContinuousMixin:
|
|
|
1215
923
|
|
|
1216
924
|
# Create and return the manager
|
|
1217
925
|
return ContinuousBatchingManager(
|
|
1218
|
-
model=self,
|
|
926
|
+
model=self, # type: ignore
|
|
1219
927
|
generation_config=gen_config,
|
|
1220
928
|
manual_eviction=manual_eviction,
|
|
1221
929
|
max_queue_size=max_queue_size,
|
|
@@ -1262,7 +970,7 @@ class ContinuousMixin:
|
|
|
1262
970
|
# Initialize manager with the batch inputs
|
|
1263
971
|
results = {}
|
|
1264
972
|
gen_cfg = self.generation_config if generation_config is None else generation_config
|
|
1265
|
-
num_requests = len(inputs) * gen_cfg.num_return_sequences
|
|
973
|
+
num_requests = len(inputs) * (gen_cfg.num_return_sequences if gen_cfg.num_return_sequences is not None else 1)
|
|
1266
974
|
# Prepare context managers for the main loop
|
|
1267
975
|
manager_cm = self.continuous_batching_context_manager(
|
|
1268
976
|
generation_config=generation_config,
|
|
@@ -1297,8 +1005,19 @@ class ContinuousMixin:
|
|
|
1297
1005
|
else:
|
|
1298
1006
|
if not manager.is_running():
|
|
1299
1007
|
logger.error("Generation thread terminated unexpectedly.")
|
|
1008
|
+
# This helps get some information in stdout
|
|
1009
|
+
print("Returning results of generate_batch despite unexpected termination.")
|
|
1300
1010
|
break
|
|
1301
1011
|
|
|
1302
1012
|
except Exception as e:
|
|
1303
1013
|
logger.error(f"Error during batch generation: {e}", exc_info=True)
|
|
1304
|
-
|
|
1014
|
+
# Re-order requests to match the order of the inputs
|
|
1015
|
+
reordered_results = {}
|
|
1016
|
+
for i in range(len(inputs)):
|
|
1017
|
+
# We cannot guarantee that the generation succeeded for all requests, so we need to check if the request is in the results
|
|
1018
|
+
result = results.get(f"req_{i}")
|
|
1019
|
+
if result is not None:
|
|
1020
|
+
reordered_results[f"req_{i}"] = result
|
|
1021
|
+
else:
|
|
1022
|
+
logger.error(f"Request req_{i} not found in results.")
|
|
1023
|
+
return reordered_results
|