transformers 5.0.0rc2__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +11 -37
- transformers/activations.py +2 -2
- transformers/audio_utils.py +32 -32
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +26 -126
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +13 -10
- transformers/cli/transformers.py +2 -1
- transformers/configuration_utils.py +22 -92
- transformers/conversion_mapping.py +150 -26
- transformers/convert_slow_tokenizer.py +9 -12
- transformers/core_model_loading.py +217 -129
- transformers/data/processors/glue.py +0 -1
- transformers/data/processors/utils.py +0 -1
- transformers/data/processors/xnli.py +0 -1
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +10 -11
- transformers/distributed/configuration_utils.py +1 -2
- transformers/dynamic_module_utils.py +23 -23
- transformers/feature_extraction_sequence_utils.py +19 -23
- transformers/feature_extraction_utils.py +14 -14
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +2 -4
- transformers/generation/configuration_utils.py +54 -39
- transformers/generation/continuous_batching/__init__.py +0 -1
- transformers/generation/continuous_batching/cache.py +74 -44
- transformers/generation/continuous_batching/cache_manager.py +28 -28
- transformers/generation/continuous_batching/continuous_api.py +133 -414
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +77 -19
- transformers/generation/continuous_batching/scheduler.py +154 -104
- transformers/generation/logits_process.py +10 -133
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/streamers.py +0 -1
- transformers/generation/utils.py +91 -121
- transformers/generation/watermarking.py +2 -3
- transformers/hf_argparser.py +9 -13
- transformers/hyperparameter_search.py +1 -2
- transformers/image_processing_base.py +9 -9
- transformers/image_processing_utils.py +11 -15
- transformers/image_processing_utils_fast.py +70 -71
- transformers/image_transforms.py +73 -42
- transformers/image_utils.py +30 -37
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/awq.py +1 -3
- transformers/integrations/deepspeed.py +146 -4
- transformers/integrations/eetq.py +0 -1
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/fbgemm_fp8.py +1 -2
- transformers/integrations/finegrained_fp8.py +149 -13
- transformers/integrations/flash_attention.py +3 -8
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +4 -6
- transformers/integrations/ggml.py +0 -1
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/integration_utils.py +2 -3
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +52 -40
- transformers/integrations/peft.py +488 -176
- transformers/integrations/quark.py +2 -4
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/integrations/torchao.py +4 -6
- transformers/loss/loss_lw_detr.py +356 -0
- transformers/loss/loss_utils.py +2 -0
- transformers/masking_utils.py +199 -59
- transformers/model_debugging_utils.py +4 -5
- transformers/modelcard.py +14 -192
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +28 -29
- transformers/modeling_gguf_pytorch_utils.py +5 -5
- transformers/modeling_layers.py +21 -22
- transformers/modeling_outputs.py +242 -253
- transformers/modeling_rope_utils.py +32 -32
- transformers/modeling_utils.py +416 -438
- transformers/models/__init__.py +10 -0
- transformers/models/afmoe/configuration_afmoe.py +40 -33
- transformers/models/afmoe/modeling_afmoe.py +38 -41
- transformers/models/afmoe/modular_afmoe.py +23 -25
- transformers/models/aimv2/configuration_aimv2.py +2 -10
- transformers/models/aimv2/modeling_aimv2.py +46 -45
- transformers/models/aimv2/modular_aimv2.py +13 -19
- transformers/models/albert/configuration_albert.py +8 -2
- transformers/models/albert/modeling_albert.py +70 -72
- transformers/models/albert/tokenization_albert.py +1 -4
- transformers/models/align/configuration_align.py +8 -6
- transformers/models/align/modeling_align.py +83 -86
- transformers/models/align/processing_align.py +2 -30
- transformers/models/altclip/configuration_altclip.py +4 -7
- transformers/models/altclip/modeling_altclip.py +106 -103
- transformers/models/altclip/processing_altclip.py +2 -15
- transformers/models/apertus/__init__.py +0 -1
- transformers/models/apertus/configuration_apertus.py +23 -28
- transformers/models/apertus/modeling_apertus.py +35 -38
- transformers/models/apertus/modular_apertus.py +36 -40
- transformers/models/arcee/configuration_arcee.py +25 -30
- transformers/models/arcee/modeling_arcee.py +35 -38
- transformers/models/arcee/modular_arcee.py +20 -23
- transformers/models/aria/configuration_aria.py +31 -44
- transformers/models/aria/image_processing_aria.py +25 -27
- transformers/models/aria/modeling_aria.py +102 -102
- transformers/models/aria/modular_aria.py +111 -124
- transformers/models/aria/processing_aria.py +28 -35
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +9 -11
- transformers/models/audioflamingo3/__init__.py +0 -1
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +60 -52
- transformers/models/audioflamingo3/modular_audioflamingo3.py +52 -43
- transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
- transformers/models/auto/auto_factory.py +12 -11
- transformers/models/auto/configuration_auto.py +48 -5
- transformers/models/auto/feature_extraction_auto.py +5 -7
- transformers/models/auto/image_processing_auto.py +30 -39
- transformers/models/auto/modeling_auto.py +33 -199
- transformers/models/auto/processing_auto.py +11 -19
- transformers/models/auto/tokenization_auto.py +38 -37
- transformers/models/auto/video_processing_auto.py +7 -8
- transformers/models/autoformer/configuration_autoformer.py +4 -7
- transformers/models/autoformer/modeling_autoformer.py +100 -101
- transformers/models/aya_vision/configuration_aya_vision.py +4 -1
- transformers/models/aya_vision/modeling_aya_vision.py +64 -99
- transformers/models/aya_vision/modular_aya_vision.py +46 -74
- transformers/models/aya_vision/processing_aya_vision.py +25 -53
- transformers/models/bamba/configuration_bamba.py +46 -39
- transformers/models/bamba/modeling_bamba.py +83 -119
- transformers/models/bamba/modular_bamba.py +70 -109
- transformers/models/bark/configuration_bark.py +6 -8
- transformers/models/bark/generation_configuration_bark.py +3 -5
- transformers/models/bark/modeling_bark.py +64 -65
- transformers/models/bark/processing_bark.py +19 -41
- transformers/models/bart/configuration_bart.py +9 -5
- transformers/models/bart/modeling_bart.py +124 -129
- transformers/models/barthez/tokenization_barthez.py +1 -4
- transformers/models/bartpho/tokenization_bartpho.py +6 -7
- transformers/models/beit/configuration_beit.py +2 -15
- transformers/models/beit/image_processing_beit.py +53 -56
- transformers/models/beit/image_processing_beit_fast.py +11 -12
- transformers/models/beit/modeling_beit.py +65 -62
- transformers/models/bert/configuration_bert.py +12 -2
- transformers/models/bert/modeling_bert.py +117 -152
- transformers/models/bert/tokenization_bert.py +2 -4
- transformers/models/bert/tokenization_bert_legacy.py +3 -5
- transformers/models/bert_generation/configuration_bert_generation.py +17 -2
- transformers/models/bert_generation/modeling_bert_generation.py +53 -55
- transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
- transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
- transformers/models/bertweet/tokenization_bertweet.py +1 -3
- transformers/models/big_bird/configuration_big_bird.py +12 -9
- transformers/models/big_bird/modeling_big_bird.py +107 -124
- transformers/models/big_bird/tokenization_big_bird.py +1 -4
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +118 -118
- transformers/models/biogpt/configuration_biogpt.py +8 -2
- transformers/models/biogpt/modeling_biogpt.py +73 -79
- transformers/models/biogpt/modular_biogpt.py +60 -66
- transformers/models/biogpt/tokenization_biogpt.py +3 -5
- transformers/models/bit/configuration_bit.py +2 -5
- transformers/models/bit/image_processing_bit.py +21 -24
- transformers/models/bit/image_processing_bit_fast.py +0 -1
- transformers/models/bit/modeling_bit.py +15 -16
- transformers/models/bitnet/configuration_bitnet.py +23 -28
- transformers/models/bitnet/modeling_bitnet.py +34 -38
- transformers/models/bitnet/modular_bitnet.py +7 -10
- transformers/models/blenderbot/configuration_blenderbot.py +8 -5
- transformers/models/blenderbot/modeling_blenderbot.py +68 -99
- transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -5
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +70 -72
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
- transformers/models/blip/configuration_blip.py +9 -10
- transformers/models/blip/image_processing_blip.py +17 -20
- transformers/models/blip/image_processing_blip_fast.py +0 -1
- transformers/models/blip/modeling_blip.py +115 -108
- transformers/models/blip/modeling_blip_text.py +63 -65
- transformers/models/blip/processing_blip.py +5 -36
- transformers/models/blip_2/configuration_blip_2.py +2 -2
- transformers/models/blip_2/modeling_blip_2.py +145 -121
- transformers/models/blip_2/processing_blip_2.py +8 -38
- transformers/models/bloom/configuration_bloom.py +5 -2
- transformers/models/bloom/modeling_bloom.py +60 -60
- transformers/models/blt/configuration_blt.py +94 -86
- transformers/models/blt/modeling_blt.py +93 -90
- transformers/models/blt/modular_blt.py +127 -69
- transformers/models/bridgetower/configuration_bridgetower.py +7 -2
- transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +13 -14
- transformers/models/bridgetower/modeling_bridgetower.py +136 -124
- transformers/models/bridgetower/processing_bridgetower.py +2 -16
- transformers/models/bros/configuration_bros.py +24 -18
- transformers/models/bros/modeling_bros.py +78 -80
- transformers/models/bros/processing_bros.py +2 -12
- transformers/models/byt5/tokenization_byt5.py +4 -6
- transformers/models/camembert/configuration_camembert.py +8 -2
- transformers/models/camembert/modeling_camembert.py +97 -99
- transformers/models/camembert/modular_camembert.py +51 -54
- transformers/models/camembert/tokenization_camembert.py +1 -4
- transformers/models/canine/configuration_canine.py +4 -2
- transformers/models/canine/modeling_canine.py +73 -75
- transformers/models/canine/tokenization_canine.py +0 -1
- transformers/models/chameleon/configuration_chameleon.py +29 -34
- transformers/models/chameleon/image_processing_chameleon.py +21 -24
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -6
- transformers/models/chameleon/modeling_chameleon.py +135 -92
- transformers/models/chameleon/processing_chameleon.py +16 -41
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -8
- transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +93 -95
- transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
- transformers/models/clap/configuration_clap.py +4 -9
- transformers/models/clap/feature_extraction_clap.py +9 -10
- transformers/models/clap/modeling_clap.py +109 -111
- transformers/models/clap/processing_clap.py +2 -15
- transformers/models/clip/configuration_clip.py +4 -2
- transformers/models/clip/image_processing_clip.py +21 -24
- transformers/models/clip/image_processing_clip_fast.py +9 -1
- transformers/models/clip/modeling_clip.py +70 -68
- transformers/models/clip/processing_clip.py +2 -14
- transformers/models/clip/tokenization_clip.py +2 -5
- transformers/models/clipseg/configuration_clipseg.py +4 -2
- transformers/models/clipseg/modeling_clipseg.py +113 -112
- transformers/models/clipseg/processing_clipseg.py +19 -42
- transformers/models/clvp/configuration_clvp.py +15 -5
- transformers/models/clvp/feature_extraction_clvp.py +7 -10
- transformers/models/clvp/modeling_clvp.py +138 -145
- transformers/models/clvp/number_normalizer.py +1 -2
- transformers/models/clvp/processing_clvp.py +3 -20
- transformers/models/clvp/tokenization_clvp.py +0 -1
- transformers/models/code_llama/tokenization_code_llama.py +3 -6
- transformers/models/codegen/configuration_codegen.py +4 -4
- transformers/models/codegen/modeling_codegen.py +50 -49
- transformers/models/codegen/tokenization_codegen.py +5 -6
- transformers/models/cohere/configuration_cohere.py +25 -30
- transformers/models/cohere/modeling_cohere.py +39 -42
- transformers/models/cohere/modular_cohere.py +27 -31
- transformers/models/cohere/tokenization_cohere.py +5 -6
- transformers/models/cohere2/configuration_cohere2.py +27 -32
- transformers/models/cohere2/modeling_cohere2.py +38 -41
- transformers/models/cohere2/modular_cohere2.py +48 -52
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +9 -10
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +52 -55
- transformers/models/cohere2_vision/modular_cohere2_vision.py +41 -43
- transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
- transformers/models/colpali/configuration_colpali.py +0 -1
- transformers/models/colpali/modeling_colpali.py +14 -16
- transformers/models/colpali/modular_colpali.py +11 -51
- transformers/models/colpali/processing_colpali.py +14 -52
- transformers/models/colqwen2/modeling_colqwen2.py +27 -28
- transformers/models/colqwen2/modular_colqwen2.py +36 -74
- transformers/models/colqwen2/processing_colqwen2.py +16 -52
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -47
- transformers/models/conditional_detr/image_processing_conditional_detr.py +67 -70
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +50 -36
- transformers/models/conditional_detr/modeling_conditional_detr.py +851 -1001
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -5
- transformers/models/convbert/configuration_convbert.py +11 -8
- transformers/models/convbert/modeling_convbert.py +85 -87
- transformers/models/convbert/tokenization_convbert.py +0 -1
- transformers/models/convnext/configuration_convnext.py +2 -5
- transformers/models/convnext/image_processing_convnext.py +18 -21
- transformers/models/convnext/image_processing_convnext_fast.py +7 -8
- transformers/models/convnext/modeling_convnext.py +12 -14
- transformers/models/convnextv2/configuration_convnextv2.py +2 -5
- transformers/models/convnextv2/modeling_convnextv2.py +12 -14
- transformers/models/cpm/tokenization_cpm.py +6 -7
- transformers/models/cpm/tokenization_cpm_fast.py +3 -5
- transformers/models/cpmant/configuration_cpmant.py +4 -1
- transformers/models/cpmant/modeling_cpmant.py +38 -40
- transformers/models/cpmant/tokenization_cpmant.py +1 -3
- transformers/models/csm/configuration_csm.py +58 -66
- transformers/models/csm/generation_csm.py +13 -14
- transformers/models/csm/modeling_csm.py +81 -84
- transformers/models/csm/modular_csm.py +56 -58
- transformers/models/csm/processing_csm.py +25 -68
- transformers/models/ctrl/configuration_ctrl.py +16 -1
- transformers/models/ctrl/modeling_ctrl.py +51 -66
- transformers/models/ctrl/tokenization_ctrl.py +0 -1
- transformers/models/cvt/configuration_cvt.py +0 -1
- transformers/models/cvt/modeling_cvt.py +13 -15
- transformers/models/cwm/__init__.py +0 -1
- transformers/models/cwm/configuration_cwm.py +8 -12
- transformers/models/cwm/modeling_cwm.py +36 -38
- transformers/models/cwm/modular_cwm.py +10 -12
- transformers/models/d_fine/configuration_d_fine.py +10 -57
- transformers/models/d_fine/modeling_d_fine.py +786 -927
- transformers/models/d_fine/modular_d_fine.py +339 -417
- transformers/models/dab_detr/configuration_dab_detr.py +22 -49
- transformers/models/dab_detr/modeling_dab_detr.py +79 -77
- transformers/models/dac/configuration_dac.py +0 -1
- transformers/models/dac/feature_extraction_dac.py +6 -9
- transformers/models/dac/modeling_dac.py +22 -24
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -2
- transformers/models/data2vec/configuration_data2vec_text.py +11 -3
- transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
- transformers/models/data2vec/modeling_data2vec_audio.py +55 -59
- transformers/models/data2vec/modeling_data2vec_text.py +97 -99
- transformers/models/data2vec/modeling_data2vec_vision.py +45 -44
- transformers/models/data2vec/modular_data2vec_audio.py +6 -1
- transformers/models/data2vec/modular_data2vec_text.py +51 -54
- transformers/models/dbrx/configuration_dbrx.py +29 -22
- transformers/models/dbrx/modeling_dbrx.py +45 -48
- transformers/models/dbrx/modular_dbrx.py +37 -39
- transformers/models/deberta/configuration_deberta.py +6 -1
- transformers/models/deberta/modeling_deberta.py +57 -60
- transformers/models/deberta/tokenization_deberta.py +2 -5
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -1
- transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
- transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -2
- transformers/models/decision_transformer/modeling_decision_transformer.py +51 -53
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +41 -47
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -41
- transformers/models/deepseek_v2/modular_deepseek_v2.py +48 -52
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +42 -48
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +38 -40
- transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -10
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +6 -3
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +27 -28
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +12 -11
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -43
- transformers/models/deepseek_vl/modular_deepseek_vl.py +15 -43
- transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +7 -5
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +37 -37
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +22 -22
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +100 -56
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +141 -109
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -46
- transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +42 -28
- transformers/models/deformable_detr/modeling_deformable_detr.py +454 -652
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -5
- transformers/models/deit/configuration_deit.py +0 -1
- transformers/models/deit/image_processing_deit.py +18 -21
- transformers/models/deit/image_processing_deit_fast.py +0 -1
- transformers/models/deit/modeling_deit.py +27 -25
- transformers/models/depth_anything/configuration_depth_anything.py +12 -43
- transformers/models/depth_anything/modeling_depth_anything.py +10 -11
- transformers/models/depth_pro/configuration_depth_pro.py +0 -1
- transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +8 -9
- transformers/models/depth_pro/modeling_depth_pro.py +29 -27
- transformers/models/detr/configuration_detr.py +18 -50
- transformers/models/detr/image_processing_detr.py +64 -66
- transformers/models/detr/image_processing_detr_fast.py +33 -34
- transformers/models/detr/modeling_detr.py +748 -789
- transformers/models/dia/configuration_dia.py +9 -15
- transformers/models/dia/feature_extraction_dia.py +6 -9
- transformers/models/dia/generation_dia.py +48 -53
- transformers/models/dia/modeling_dia.py +68 -71
- transformers/models/dia/modular_dia.py +56 -58
- transformers/models/dia/processing_dia.py +39 -29
- transformers/models/dia/tokenization_dia.py +3 -6
- transformers/models/diffllama/configuration_diffllama.py +25 -30
- transformers/models/diffllama/modeling_diffllama.py +45 -53
- transformers/models/diffllama/modular_diffllama.py +18 -25
- transformers/models/dinat/configuration_dinat.py +2 -5
- transformers/models/dinat/modeling_dinat.py +47 -48
- transformers/models/dinov2/configuration_dinov2.py +2 -5
- transformers/models/dinov2/modeling_dinov2.py +20 -21
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +3 -5
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +21 -21
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +11 -14
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +6 -11
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +5 -9
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +7 -12
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +7 -8
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +19 -22
- transformers/models/dinov3_vit/modular_dinov3_vit.py +16 -19
- transformers/models/distilbert/configuration_distilbert.py +8 -2
- transformers/models/distilbert/modeling_distilbert.py +47 -49
- transformers/models/distilbert/tokenization_distilbert.py +0 -1
- transformers/models/doge/__init__.py +0 -1
- transformers/models/doge/configuration_doge.py +42 -35
- transformers/models/doge/modeling_doge.py +46 -49
- transformers/models/doge/modular_doge.py +77 -68
- transformers/models/donut/configuration_donut_swin.py +0 -1
- transformers/models/donut/image_processing_donut.py +26 -29
- transformers/models/donut/image_processing_donut_fast.py +9 -14
- transformers/models/donut/modeling_donut_swin.py +44 -46
- transformers/models/donut/processing_donut.py +5 -26
- transformers/models/dots1/configuration_dots1.py +43 -36
- transformers/models/dots1/modeling_dots1.py +35 -38
- transformers/models/dots1/modular_dots1.py +0 -1
- transformers/models/dpr/configuration_dpr.py +19 -2
- transformers/models/dpr/modeling_dpr.py +37 -39
- transformers/models/dpr/tokenization_dpr.py +7 -9
- transformers/models/dpr/tokenization_dpr_fast.py +7 -9
- transformers/models/dpt/configuration_dpt.py +23 -66
- transformers/models/dpt/image_processing_dpt.py +65 -66
- transformers/models/dpt/image_processing_dpt_fast.py +18 -19
- transformers/models/dpt/modeling_dpt.py +38 -36
- transformers/models/dpt/modular_dpt.py +14 -15
- transformers/models/edgetam/configuration_edgetam.py +1 -2
- transformers/models/edgetam/modeling_edgetam.py +87 -89
- transformers/models/edgetam/modular_edgetam.py +7 -13
- transformers/models/edgetam_video/__init__.py +0 -1
- transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +126 -128
- transformers/models/edgetam_video/modular_edgetam_video.py +25 -27
- transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
- transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +8 -7
- transformers/models/efficientloftr/modeling_efficientloftr.py +46 -38
- transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
- transformers/models/efficientnet/configuration_efficientnet.py +0 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +16 -17
- transformers/models/efficientnet/modeling_efficientnet.py +12 -14
- transformers/models/electra/configuration_electra.py +13 -3
- transformers/models/electra/modeling_electra.py +107 -109
- transformers/models/emu3/configuration_emu3.py +17 -17
- transformers/models/emu3/image_processing_emu3.py +44 -39
- transformers/models/emu3/modeling_emu3.py +143 -109
- transformers/models/emu3/modular_emu3.py +109 -73
- transformers/models/emu3/processing_emu3.py +18 -43
- transformers/models/encodec/configuration_encodec.py +2 -4
- transformers/models/encodec/feature_extraction_encodec.py +10 -13
- transformers/models/encodec/modeling_encodec.py +25 -29
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -2
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +37 -43
- transformers/models/eomt/configuration_eomt.py +12 -14
- transformers/models/eomt/image_processing_eomt.py +53 -55
- transformers/models/eomt/image_processing_eomt_fast.py +18 -19
- transformers/models/eomt/modeling_eomt.py +19 -21
- transformers/models/eomt/modular_eomt.py +28 -30
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -3
- transformers/models/ernie/modeling_ernie.py +127 -162
- transformers/models/ernie/modular_ernie.py +91 -103
- transformers/models/ernie4_5/configuration_ernie4_5.py +23 -27
- transformers/models/ernie4_5/modeling_ernie4_5.py +35 -37
- transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +34 -39
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +40 -42
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -7
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +305 -267
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +163 -142
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
- transformers/models/esm/configuration_esm.py +11 -15
- transformers/models/esm/modeling_esm.py +35 -37
- transformers/models/esm/modeling_esmfold.py +43 -50
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +1 -2
- transformers/models/esm/openfold_utils/protein.py +15 -16
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +2 -4
- transformers/models/evolla/configuration_evolla.py +50 -40
- transformers/models/evolla/modeling_evolla.py +69 -68
- transformers/models/evolla/modular_evolla.py +50 -48
- transformers/models/evolla/processing_evolla.py +23 -35
- transformers/models/exaone4/configuration_exaone4.py +27 -27
- transformers/models/exaone4/modeling_exaone4.py +36 -39
- transformers/models/exaone4/modular_exaone4.py +51 -50
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +31 -26
- transformers/models/falcon/modeling_falcon.py +76 -84
- transformers/models/falcon_h1/configuration_falcon_h1.py +57 -51
- transformers/models/falcon_h1/modeling_falcon_h1.py +74 -109
- transformers/models/falcon_h1/modular_falcon_h1.py +68 -100
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +64 -73
- transformers/models/falcon_mamba/modular_falcon_mamba.py +14 -13
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +70 -97
- transformers/models/fast_vlm/modular_fast_vlm.py +148 -38
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -6
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
- transformers/models/flaubert/configuration_flaubert.py +10 -5
- transformers/models/flaubert/modeling_flaubert.py +125 -129
- transformers/models/flaubert/tokenization_flaubert.py +3 -5
- transformers/models/flava/configuration_flava.py +9 -9
- transformers/models/flava/image_processing_flava.py +66 -67
- transformers/models/flava/image_processing_flava_fast.py +46 -47
- transformers/models/flava/modeling_flava.py +144 -135
- transformers/models/flava/processing_flava.py +2 -12
- transformers/models/flex_olmo/__init__.py +0 -1
- transformers/models/flex_olmo/configuration_flex_olmo.py +34 -39
- transformers/models/flex_olmo/modeling_flex_olmo.py +41 -43
- transformers/models/flex_olmo/modular_flex_olmo.py +46 -51
- transformers/models/florence2/configuration_florence2.py +4 -1
- transformers/models/florence2/modeling_florence2.py +96 -72
- transformers/models/florence2/modular_florence2.py +100 -107
- transformers/models/florence2/processing_florence2.py +18 -47
- transformers/models/fnet/configuration_fnet.py +6 -2
- transformers/models/fnet/modeling_fnet.py +69 -80
- transformers/models/fnet/tokenization_fnet.py +0 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -5
- transformers/models/focalnet/modeling_focalnet.py +49 -48
- transformers/models/fsmt/configuration_fsmt.py +12 -17
- transformers/models/fsmt/modeling_fsmt.py +47 -48
- transformers/models/fsmt/tokenization_fsmt.py +3 -5
- transformers/models/funnel/configuration_funnel.py +8 -1
- transformers/models/funnel/modeling_funnel.py +91 -93
- transformers/models/funnel/tokenization_funnel.py +2 -5
- transformers/models/fuyu/configuration_fuyu.py +28 -34
- transformers/models/fuyu/image_processing_fuyu.py +29 -31
- transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
- transformers/models/fuyu/modeling_fuyu.py +50 -52
- transformers/models/fuyu/processing_fuyu.py +9 -36
- transformers/models/gemma/configuration_gemma.py +25 -30
- transformers/models/gemma/modeling_gemma.py +36 -38
- transformers/models/gemma/modular_gemma.py +33 -36
- transformers/models/gemma/tokenization_gemma.py +3 -6
- transformers/models/gemma2/configuration_gemma2.py +30 -35
- transformers/models/gemma2/modeling_gemma2.py +38 -41
- transformers/models/gemma2/modular_gemma2.py +63 -67
- transformers/models/gemma3/configuration_gemma3.py +53 -48
- transformers/models/gemma3/image_processing_gemma3.py +29 -31
- transformers/models/gemma3/image_processing_gemma3_fast.py +11 -12
- transformers/models/gemma3/modeling_gemma3.py +123 -122
- transformers/models/gemma3/modular_gemma3.py +128 -125
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +42 -30
- transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
- transformers/models/gemma3n/modeling_gemma3n.py +166 -147
- transformers/models/gemma3n/modular_gemma3n.py +176 -148
- transformers/models/gemma3n/processing_gemma3n.py +12 -26
- transformers/models/git/configuration_git.py +5 -8
- transformers/models/git/modeling_git.py +115 -127
- transformers/models/git/processing_git.py +2 -14
- transformers/models/glm/configuration_glm.py +26 -30
- transformers/models/glm/modeling_glm.py +36 -39
- transformers/models/glm/modular_glm.py +4 -7
- transformers/models/glm4/configuration_glm4.py +26 -30
- transformers/models/glm4/modeling_glm4.py +39 -41
- transformers/models/glm4/modular_glm4.py +8 -10
- transformers/models/glm46v/configuration_glm46v.py +4 -1
- transformers/models/glm46v/image_processing_glm46v.py +40 -38
- transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
- transformers/models/glm46v/modeling_glm46v.py +138 -93
- transformers/models/glm46v/modular_glm46v.py +5 -3
- transformers/models/glm46v/processing_glm46v.py +7 -41
- transformers/models/glm46v/video_processing_glm46v.py +9 -11
- transformers/models/glm4_moe/configuration_glm4_moe.py +42 -35
- transformers/models/glm4_moe/modeling_glm4_moe.py +36 -39
- transformers/models/glm4_moe/modular_glm4_moe.py +43 -36
- transformers/models/glm4_moe_lite/__init__.py +28 -0
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +233 -0
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +302 -0
- transformers/models/glm4v/configuration_glm4v.py +25 -24
- transformers/models/glm4v/image_processing_glm4v.py +39 -38
- transformers/models/glm4v/image_processing_glm4v_fast.py +8 -9
- transformers/models/glm4v/modeling_glm4v.py +249 -210
- transformers/models/glm4v/modular_glm4v.py +211 -230
- transformers/models/glm4v/processing_glm4v.py +7 -41
- transformers/models/glm4v/video_processing_glm4v.py +9 -11
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +136 -127
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +348 -356
- transformers/models/glm4v_moe/modular_glm4v_moe.py +76 -174
- transformers/models/glm_image/__init__.py +31 -0
- transformers/models/glm_image/configuration_glm_image.py +358 -0
- transformers/models/glm_image/image_processing_glm_image.py +503 -0
- transformers/models/glm_image/image_processing_glm_image_fast.py +294 -0
- transformers/models/glm_image/modeling_glm_image.py +1691 -0
- transformers/models/glm_image/modular_glm_image.py +1640 -0
- transformers/models/glm_image/processing_glm_image.py +265 -0
- transformers/models/glm_ocr/__init__.py +28 -0
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/__init__.py +0 -1
- transformers/models/glmasr/configuration_glmasr.py +0 -1
- transformers/models/glmasr/modeling_glmasr.py +51 -46
- transformers/models/glmasr/modular_glmasr.py +39 -29
- transformers/models/glmasr/processing_glmasr.py +7 -8
- transformers/models/glpn/configuration_glpn.py +0 -1
- transformers/models/glpn/image_processing_glpn.py +11 -12
- transformers/models/glpn/image_processing_glpn_fast.py +11 -12
- transformers/models/glpn/modeling_glpn.py +14 -14
- transformers/models/got_ocr2/configuration_got_ocr2.py +10 -13
- transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +9 -10
- transformers/models/got_ocr2/modeling_got_ocr2.py +69 -77
- transformers/models/got_ocr2/modular_got_ocr2.py +60 -52
- transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
- transformers/models/gpt2/configuration_gpt2.py +13 -2
- transformers/models/gpt2/modeling_gpt2.py +111 -113
- transformers/models/gpt2/tokenization_gpt2.py +6 -9
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -2
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +78 -84
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -2
- transformers/models/gpt_neo/modeling_gpt_neo.py +66 -71
- transformers/models/gpt_neox/configuration_gpt_neox.py +27 -25
- transformers/models/gpt_neox/modeling_gpt_neox.py +74 -76
- transformers/models/gpt_neox/modular_gpt_neox.py +68 -70
- transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +24 -19
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +43 -46
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
- transformers/models/gpt_oss/configuration_gpt_oss.py +31 -30
- transformers/models/gpt_oss/modeling_gpt_oss.py +80 -114
- transformers/models/gpt_oss/modular_gpt_oss.py +62 -97
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +4 -5
- transformers/models/gptj/modeling_gptj.py +85 -88
- transformers/models/granite/configuration_granite.py +28 -33
- transformers/models/granite/modeling_granite.py +43 -45
- transformers/models/granite/modular_granite.py +29 -31
- transformers/models/granite_speech/configuration_granite_speech.py +0 -1
- transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
- transformers/models/granite_speech/modeling_granite_speech.py +84 -60
- transformers/models/granite_speech/processing_granite_speech.py +11 -4
- transformers/models/granitemoe/configuration_granitemoe.py +31 -36
- transformers/models/granitemoe/modeling_granitemoe.py +39 -41
- transformers/models/granitemoe/modular_granitemoe.py +21 -23
- transformers/models/granitemoehybrid/__init__.py +0 -1
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +55 -48
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +82 -118
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +57 -65
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +33 -37
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +52 -56
- transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -46
- transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +28 -29
- transformers/models/grounding_dino/modeling_grounding_dino.py +161 -181
- transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
- transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
- transformers/models/groupvit/configuration_groupvit.py +4 -2
- transformers/models/groupvit/modeling_groupvit.py +98 -92
- transformers/models/helium/configuration_helium.py +25 -29
- transformers/models/helium/modeling_helium.py +37 -40
- transformers/models/helium/modular_helium.py +3 -7
- transformers/models/herbert/tokenization_herbert.py +4 -6
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -5
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +12 -14
- transformers/models/hgnet_v2/modular_hgnet_v2.py +13 -17
- transformers/models/hiera/configuration_hiera.py +2 -5
- transformers/models/hiera/modeling_hiera.py +71 -70
- transformers/models/hubert/configuration_hubert.py +4 -2
- transformers/models/hubert/modeling_hubert.py +42 -41
- transformers/models/hubert/modular_hubert.py +8 -11
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +26 -31
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +58 -37
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +31 -11
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +31 -36
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +54 -44
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +27 -15
- transformers/models/ibert/configuration_ibert.py +4 -2
- transformers/models/ibert/modeling_ibert.py +60 -62
- transformers/models/ibert/quant_modules.py +0 -1
- transformers/models/idefics/configuration_idefics.py +5 -8
- transformers/models/idefics/image_processing_idefics.py +13 -15
- transformers/models/idefics/modeling_idefics.py +63 -65
- transformers/models/idefics/perceiver.py +1 -3
- transformers/models/idefics/processing_idefics.py +32 -48
- transformers/models/idefics/vision.py +27 -28
- transformers/models/idefics2/configuration_idefics2.py +1 -3
- transformers/models/idefics2/image_processing_idefics2.py +31 -32
- transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
- transformers/models/idefics2/modeling_idefics2.py +126 -106
- transformers/models/idefics2/processing_idefics2.py +10 -68
- transformers/models/idefics3/configuration_idefics3.py +1 -4
- transformers/models/idefics3/image_processing_idefics3.py +42 -43
- transformers/models/idefics3/image_processing_idefics3_fast.py +40 -15
- transformers/models/idefics3/modeling_idefics3.py +113 -92
- transformers/models/idefics3/processing_idefics3.py +15 -69
- transformers/models/ijepa/configuration_ijepa.py +0 -1
- transformers/models/ijepa/modeling_ijepa.py +13 -14
- transformers/models/ijepa/modular_ijepa.py +5 -7
- transformers/models/imagegpt/configuration_imagegpt.py +9 -2
- transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +10 -11
- transformers/models/imagegpt/modeling_imagegpt.py +65 -62
- transformers/models/informer/configuration_informer.py +6 -9
- transformers/models/informer/modeling_informer.py +87 -89
- transformers/models/informer/modular_informer.py +13 -16
- transformers/models/instructblip/configuration_instructblip.py +2 -2
- transformers/models/instructblip/modeling_instructblip.py +104 -79
- transformers/models/instructblip/processing_instructblip.py +10 -36
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +108 -105
- transformers/models/instructblipvideo/modular_instructblipvideo.py +73 -64
- transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +6 -7
- transformers/models/internvl/configuration_internvl.py +5 -1
- transformers/models/internvl/modeling_internvl.py +76 -98
- transformers/models/internvl/modular_internvl.py +45 -59
- transformers/models/internvl/processing_internvl.py +12 -45
- transformers/models/internvl/video_processing_internvl.py +10 -11
- transformers/models/jais2/configuration_jais2.py +25 -29
- transformers/models/jais2/modeling_jais2.py +36 -38
- transformers/models/jais2/modular_jais2.py +20 -22
- transformers/models/jamba/configuration_jamba.py +5 -8
- transformers/models/jamba/modeling_jamba.py +47 -50
- transformers/models/jamba/modular_jamba.py +40 -41
- transformers/models/janus/configuration_janus.py +0 -1
- transformers/models/janus/image_processing_janus.py +37 -39
- transformers/models/janus/image_processing_janus_fast.py +20 -21
- transformers/models/janus/modeling_janus.py +103 -188
- transformers/models/janus/modular_janus.py +122 -83
- transformers/models/janus/processing_janus.py +17 -43
- transformers/models/jetmoe/configuration_jetmoe.py +26 -27
- transformers/models/jetmoe/modeling_jetmoe.py +42 -45
- transformers/models/jetmoe/modular_jetmoe.py +33 -36
- transformers/models/kosmos2/configuration_kosmos2.py +10 -9
- transformers/models/kosmos2/modeling_kosmos2.py +199 -178
- transformers/models/kosmos2/processing_kosmos2.py +40 -55
- transformers/models/kosmos2_5/__init__.py +0 -1
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -9
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +162 -172
- transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +31 -28
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +103 -106
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +20 -22
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
- transformers/models/lasr/configuration_lasr.py +3 -7
- transformers/models/lasr/feature_extraction_lasr.py +10 -12
- transformers/models/lasr/modeling_lasr.py +21 -24
- transformers/models/lasr/modular_lasr.py +11 -13
- transformers/models/lasr/processing_lasr.py +12 -6
- transformers/models/lasr/tokenization_lasr.py +2 -4
- transformers/models/layoutlm/configuration_layoutlm.py +14 -2
- transformers/models/layoutlm/modeling_layoutlm.py +70 -72
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -17
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +7 -8
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
- transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -19
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +9 -10
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
- transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -17
- transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
- transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
- transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
- transformers/models/led/configuration_led.py +8 -12
- transformers/models/led/modeling_led.py +113 -267
- transformers/models/levit/configuration_levit.py +0 -1
- transformers/models/levit/image_processing_levit.py +19 -21
- transformers/models/levit/image_processing_levit_fast.py +4 -5
- transformers/models/levit/modeling_levit.py +17 -19
- transformers/models/lfm2/configuration_lfm2.py +27 -30
- transformers/models/lfm2/modeling_lfm2.py +46 -48
- transformers/models/lfm2/modular_lfm2.py +32 -32
- transformers/models/lfm2_moe/__init__.py +0 -1
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +6 -9
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +48 -49
- transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +43 -20
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +73 -61
- transformers/models/lfm2_vl/modular_lfm2_vl.py +66 -54
- transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
- transformers/models/lightglue/image_processing_lightglue.py +16 -15
- transformers/models/lightglue/image_processing_lightglue_fast.py +8 -7
- transformers/models/lightglue/modeling_lightglue.py +31 -33
- transformers/models/lightglue/modular_lightglue.py +31 -31
- transformers/models/lighton_ocr/__init__.py +28 -0
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +463 -0
- transformers/models/lighton_ocr/modular_lighton_ocr.py +404 -0
- transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
- transformers/models/lilt/configuration_lilt.py +6 -2
- transformers/models/lilt/modeling_lilt.py +53 -55
- transformers/models/llama/configuration_llama.py +26 -31
- transformers/models/llama/modeling_llama.py +35 -38
- transformers/models/llama/tokenization_llama.py +2 -4
- transformers/models/llama4/configuration_llama4.py +87 -69
- transformers/models/llama4/image_processing_llama4_fast.py +11 -12
- transformers/models/llama4/modeling_llama4.py +116 -115
- transformers/models/llama4/processing_llama4.py +33 -57
- transformers/models/llava/configuration_llava.py +10 -1
- transformers/models/llava/image_processing_llava.py +25 -28
- transformers/models/llava/image_processing_llava_fast.py +9 -10
- transformers/models/llava/modeling_llava.py +73 -102
- transformers/models/llava/processing_llava.py +18 -51
- transformers/models/llava_next/configuration_llava_next.py +2 -2
- transformers/models/llava_next/image_processing_llava_next.py +43 -45
- transformers/models/llava_next/image_processing_llava_next_fast.py +11 -12
- transformers/models/llava_next/modeling_llava_next.py +103 -104
- transformers/models/llava_next/processing_llava_next.py +18 -47
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -7
- transformers/models/llava_next_video/modeling_llava_next_video.py +168 -155
- transformers/models/llava_next_video/modular_llava_next_video.py +154 -147
- transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
- transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -7
- transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +14 -14
- transformers/models/llava_onevision/modeling_llava_onevision.py +170 -166
- transformers/models/llava_onevision/modular_llava_onevision.py +156 -152
- transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
- transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
- transformers/models/longcat_flash/__init__.py +0 -1
- transformers/models/longcat_flash/configuration_longcat_flash.py +39 -45
- transformers/models/longcat_flash/modeling_longcat_flash.py +37 -38
- transformers/models/longcat_flash/modular_longcat_flash.py +23 -24
- transformers/models/longformer/configuration_longformer.py +5 -5
- transformers/models/longformer/modeling_longformer.py +99 -101
- transformers/models/longt5/configuration_longt5.py +9 -7
- transformers/models/longt5/modeling_longt5.py +45 -45
- transformers/models/luke/configuration_luke.py +8 -2
- transformers/models/luke/modeling_luke.py +179 -181
- transformers/models/luke/tokenization_luke.py +99 -105
- transformers/{pipelines/deprecated → models/lw_detr}/__init__.py +14 -3
- transformers/models/lw_detr/configuration_lw_detr.py +362 -0
- transformers/models/lw_detr/modeling_lw_detr.py +1697 -0
- transformers/models/lw_detr/modular_lw_detr.py +1609 -0
- transformers/models/lxmert/configuration_lxmert.py +16 -1
- transformers/models/lxmert/modeling_lxmert.py +63 -74
- transformers/models/m2m_100/configuration_m2m_100.py +7 -9
- transformers/models/m2m_100/modeling_m2m_100.py +72 -74
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +5 -3
- transformers/models/mamba/modeling_mamba.py +61 -70
- transformers/models/mamba2/configuration_mamba2.py +5 -8
- transformers/models/mamba2/modeling_mamba2.py +66 -79
- transformers/models/marian/configuration_marian.py +10 -5
- transformers/models/marian/modeling_marian.py +88 -90
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +4 -7
- transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
- transformers/models/markuplm/modeling_markuplm.py +63 -65
- transformers/models/markuplm/processing_markuplm.py +31 -38
- transformers/models/markuplm/tokenization_markuplm.py +67 -77
- transformers/models/mask2former/configuration_mask2former.py +14 -52
- transformers/models/mask2former/image_processing_mask2former.py +84 -85
- transformers/models/mask2former/image_processing_mask2former_fast.py +36 -36
- transformers/models/mask2former/modeling_mask2former.py +108 -104
- transformers/models/mask2former/modular_mask2former.py +6 -8
- transformers/models/maskformer/configuration_maskformer.py +17 -51
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -5
- transformers/models/maskformer/image_processing_maskformer.py +84 -85
- transformers/models/maskformer/image_processing_maskformer_fast.py +35 -36
- transformers/models/maskformer/modeling_maskformer.py +71 -67
- transformers/models/maskformer/modeling_maskformer_swin.py +20 -23
- transformers/models/mbart/configuration_mbart.py +9 -5
- transformers/models/mbart/modeling_mbart.py +120 -119
- transformers/models/mbart/tokenization_mbart.py +2 -4
- transformers/models/mbart50/tokenization_mbart50.py +3 -5
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -3
- transformers/models/megatron_bert/modeling_megatron_bert.py +139 -165
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +94 -87
- transformers/models/metaclip_2/modular_metaclip_2.py +59 -45
- transformers/models/mgp_str/configuration_mgp_str.py +0 -1
- transformers/models/mgp_str/modeling_mgp_str.py +18 -18
- transformers/models/mgp_str/processing_mgp_str.py +3 -20
- transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
- transformers/models/mimi/configuration_mimi.py +42 -40
- transformers/models/mimi/modeling_mimi.py +116 -115
- transformers/models/minimax/__init__.py +0 -1
- transformers/models/minimax/configuration_minimax.py +40 -47
- transformers/models/minimax/modeling_minimax.py +46 -49
- transformers/models/minimax/modular_minimax.py +59 -65
- transformers/models/minimax_m2/__init__.py +28 -0
- transformers/models/minimax_m2/configuration_minimax_m2.py +188 -0
- transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
- transformers/models/minimax_m2/modular_minimax_m2.py +346 -0
- transformers/models/ministral/configuration_ministral.py +25 -29
- transformers/models/ministral/modeling_ministral.py +35 -37
- transformers/models/ministral/modular_ministral.py +32 -37
- transformers/models/ministral3/configuration_ministral3.py +23 -26
- transformers/models/ministral3/modeling_ministral3.py +35 -37
- transformers/models/ministral3/modular_ministral3.py +7 -8
- transformers/models/mistral/configuration_mistral.py +24 -29
- transformers/models/mistral/modeling_mistral.py +35 -37
- transformers/models/mistral/modular_mistral.py +14 -15
- transformers/models/mistral3/configuration_mistral3.py +4 -1
- transformers/models/mistral3/modeling_mistral3.py +79 -82
- transformers/models/mistral3/modular_mistral3.py +66 -67
- transformers/models/mixtral/configuration_mixtral.py +32 -38
- transformers/models/mixtral/modeling_mixtral.py +39 -42
- transformers/models/mixtral/modular_mixtral.py +26 -29
- transformers/models/mlcd/configuration_mlcd.py +0 -1
- transformers/models/mlcd/modeling_mlcd.py +17 -17
- transformers/models/mlcd/modular_mlcd.py +16 -16
- transformers/models/mllama/configuration_mllama.py +10 -15
- transformers/models/mllama/image_processing_mllama.py +23 -25
- transformers/models/mllama/image_processing_mllama_fast.py +11 -11
- transformers/models/mllama/modeling_mllama.py +100 -103
- transformers/models/mllama/processing_mllama.py +6 -55
- transformers/models/mluke/tokenization_mluke.py +97 -103
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -46
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +159 -179
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -46
- transformers/models/mobilebert/configuration_mobilebert.py +4 -2
- transformers/models/mobilebert/modeling_mobilebert.py +78 -88
- transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +14 -15
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +21 -22
- transformers/models/mobilevit/configuration_mobilevit.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +12 -13
- transformers/models/mobilevit/modeling_mobilevit.py +21 -21
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -22
- transformers/models/modernbert/configuration_modernbert.py +76 -51
- transformers/models/modernbert/modeling_modernbert.py +188 -943
- transformers/models/modernbert/modular_modernbert.py +255 -978
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +50 -44
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -64
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +92 -92
- transformers/models/moonshine/configuration_moonshine.py +34 -31
- transformers/models/moonshine/modeling_moonshine.py +70 -72
- transformers/models/moonshine/modular_moonshine.py +91 -86
- transformers/models/moshi/configuration_moshi.py +46 -23
- transformers/models/moshi/modeling_moshi.py +134 -142
- transformers/models/mpnet/configuration_mpnet.py +6 -2
- transformers/models/mpnet/modeling_mpnet.py +55 -57
- transformers/models/mpnet/tokenization_mpnet.py +1 -4
- transformers/models/mpt/configuration_mpt.py +17 -9
- transformers/models/mpt/modeling_mpt.py +58 -60
- transformers/models/mra/configuration_mra.py +8 -2
- transformers/models/mra/modeling_mra.py +54 -56
- transformers/models/mt5/configuration_mt5.py +9 -6
- transformers/models/mt5/modeling_mt5.py +80 -85
- transformers/models/musicgen/configuration_musicgen.py +12 -8
- transformers/models/musicgen/modeling_musicgen.py +114 -116
- transformers/models/musicgen/processing_musicgen.py +3 -21
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -8
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +113 -126
- transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
- transformers/models/mvp/configuration_mvp.py +8 -5
- transformers/models/mvp/modeling_mvp.py +121 -123
- transformers/models/myt5/tokenization_myt5.py +8 -10
- transformers/models/nanochat/configuration_nanochat.py +5 -8
- transformers/models/nanochat/modeling_nanochat.py +36 -39
- transformers/models/nanochat/modular_nanochat.py +16 -18
- transformers/models/nemotron/configuration_nemotron.py +25 -30
- transformers/models/nemotron/modeling_nemotron.py +53 -66
- transformers/models/nllb/tokenization_nllb.py +14 -14
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -10
- transformers/models/nllb_moe/modeling_nllb_moe.py +70 -72
- transformers/models/nougat/image_processing_nougat.py +29 -32
- transformers/models/nougat/image_processing_nougat_fast.py +12 -13
- transformers/models/nougat/processing_nougat.py +37 -39
- transformers/models/nougat/tokenization_nougat.py +5 -7
- transformers/models/nystromformer/configuration_nystromformer.py +8 -2
- transformers/models/nystromformer/modeling_nystromformer.py +61 -63
- transformers/models/olmo/configuration_olmo.py +23 -28
- transformers/models/olmo/modeling_olmo.py +35 -38
- transformers/models/olmo/modular_olmo.py +8 -12
- transformers/models/olmo2/configuration_olmo2.py +27 -32
- transformers/models/olmo2/modeling_olmo2.py +36 -39
- transformers/models/olmo2/modular_olmo2.py +36 -38
- transformers/models/olmo3/__init__.py +0 -1
- transformers/models/olmo3/configuration_olmo3.py +30 -34
- transformers/models/olmo3/modeling_olmo3.py +35 -38
- transformers/models/olmo3/modular_olmo3.py +44 -47
- transformers/models/olmoe/configuration_olmoe.py +29 -33
- transformers/models/olmoe/modeling_olmoe.py +41 -43
- transformers/models/olmoe/modular_olmoe.py +15 -16
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -50
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +59 -57
- transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
- transformers/models/oneformer/configuration_oneformer.py +11 -51
- transformers/models/oneformer/image_processing_oneformer.py +83 -84
- transformers/models/oneformer/image_processing_oneformer_fast.py +41 -42
- transformers/models/oneformer/modeling_oneformer.py +137 -133
- transformers/models/oneformer/processing_oneformer.py +28 -43
- transformers/models/openai/configuration_openai.py +16 -1
- transformers/models/openai/modeling_openai.py +50 -51
- transformers/models/openai/tokenization_openai.py +2 -5
- transformers/models/opt/configuration_opt.py +6 -7
- transformers/models/opt/modeling_opt.py +79 -80
- transformers/models/ovis2/__init__.py +0 -1
- transformers/models/ovis2/configuration_ovis2.py +4 -1
- transformers/models/ovis2/image_processing_ovis2.py +22 -24
- transformers/models/ovis2/image_processing_ovis2_fast.py +9 -10
- transformers/models/ovis2/modeling_ovis2.py +99 -142
- transformers/models/ovis2/modular_ovis2.py +82 -45
- transformers/models/ovis2/processing_ovis2.py +12 -40
- transformers/models/owlv2/configuration_owlv2.py +4 -2
- transformers/models/owlv2/image_processing_owlv2.py +20 -21
- transformers/models/owlv2/image_processing_owlv2_fast.py +12 -13
- transformers/models/owlv2/modeling_owlv2.py +122 -114
- transformers/models/owlv2/modular_owlv2.py +11 -12
- transformers/models/owlv2/processing_owlv2.py +20 -49
- transformers/models/owlvit/configuration_owlvit.py +4 -2
- transformers/models/owlvit/image_processing_owlvit.py +21 -22
- transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
- transformers/models/owlvit/modeling_owlvit.py +121 -113
- transformers/models/owlvit/processing_owlvit.py +20 -48
- transformers/models/paddleocr_vl/__init__.py +0 -1
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +28 -29
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +159 -158
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +148 -119
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
- transformers/models/paligemma/configuration_paligemma.py +4 -1
- transformers/models/paligemma/modeling_paligemma.py +81 -79
- transformers/models/paligemma/processing_paligemma.py +13 -66
- transformers/models/parakeet/configuration_parakeet.py +3 -8
- transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
- transformers/models/parakeet/modeling_parakeet.py +21 -25
- transformers/models/parakeet/modular_parakeet.py +19 -21
- transformers/models/parakeet/processing_parakeet.py +12 -5
- transformers/models/parakeet/tokenization_parakeet.py +2 -4
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +63 -65
- transformers/models/patchtst/configuration_patchtst.py +6 -9
- transformers/models/patchtst/modeling_patchtst.py +75 -77
- transformers/models/pe_audio/__init__.py +0 -1
- transformers/models/pe_audio/configuration_pe_audio.py +14 -16
- transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
- transformers/models/pe_audio/modeling_pe_audio.py +30 -31
- transformers/models/pe_audio/modular_pe_audio.py +17 -18
- transformers/models/pe_audio/processing_pe_audio.py +0 -1
- transformers/models/pe_audio_video/__init__.py +0 -1
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +64 -65
- transformers/models/pe_audio_video/modular_pe_audio_video.py +56 -57
- transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
- transformers/models/pe_video/__init__.py +0 -1
- transformers/models/pe_video/configuration_pe_video.py +14 -16
- transformers/models/pe_video/modeling_pe_video.py +57 -46
- transformers/models/pe_video/modular_pe_video.py +47 -35
- transformers/models/pe_video/video_processing_pe_video.py +2 -4
- transformers/models/pegasus/configuration_pegasus.py +8 -6
- transformers/models/pegasus/modeling_pegasus.py +67 -69
- transformers/models/pegasus/tokenization_pegasus.py +1 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -4
- transformers/models/pegasus_x/modeling_pegasus_x.py +53 -55
- transformers/models/perceiver/configuration_perceiver.py +0 -1
- transformers/models/perceiver/image_processing_perceiver.py +22 -25
- transformers/models/perceiver/image_processing_perceiver_fast.py +7 -8
- transformers/models/perceiver/modeling_perceiver.py +152 -145
- transformers/models/perceiver/tokenization_perceiver.py +3 -6
- transformers/models/perception_lm/configuration_perception_lm.py +0 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
- transformers/models/perception_lm/modeling_perception_lm.py +64 -67
- transformers/models/perception_lm/modular_perception_lm.py +58 -58
- transformers/models/perception_lm/processing_perception_lm.py +13 -47
- transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
- transformers/models/persimmon/configuration_persimmon.py +23 -28
- transformers/models/persimmon/modeling_persimmon.py +44 -47
- transformers/models/phi/configuration_phi.py +27 -28
- transformers/models/phi/modeling_phi.py +39 -41
- transformers/models/phi/modular_phi.py +26 -26
- transformers/models/phi3/configuration_phi3.py +32 -37
- transformers/models/phi3/modeling_phi3.py +37 -40
- transformers/models/phi3/modular_phi3.py +16 -20
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +36 -39
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +100 -117
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +103 -90
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
- transformers/models/phimoe/configuration_phimoe.py +31 -36
- transformers/models/phimoe/modeling_phimoe.py +50 -77
- transformers/models/phimoe/modular_phimoe.py +12 -8
- transformers/models/phobert/tokenization_phobert.py +4 -6
- transformers/models/pix2struct/configuration_pix2struct.py +12 -10
- transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +12 -15
- transformers/models/pix2struct/modeling_pix2struct.py +56 -52
- transformers/models/pix2struct/processing_pix2struct.py +5 -26
- transformers/models/pixio/__init__.py +0 -1
- transformers/models/pixio/configuration_pixio.py +2 -5
- transformers/models/pixio/modeling_pixio.py +16 -17
- transformers/models/pixio/modular_pixio.py +7 -8
- transformers/models/pixtral/configuration_pixtral.py +11 -14
- transformers/models/pixtral/image_processing_pixtral.py +26 -28
- transformers/models/pixtral/image_processing_pixtral_fast.py +10 -11
- transformers/models/pixtral/modeling_pixtral.py +31 -37
- transformers/models/pixtral/processing_pixtral.py +18 -52
- transformers/models/plbart/configuration_plbart.py +8 -6
- transformers/models/plbart/modeling_plbart.py +109 -109
- transformers/models/plbart/modular_plbart.py +31 -33
- transformers/models/plbart/tokenization_plbart.py +4 -5
- transformers/models/poolformer/configuration_poolformer.py +0 -1
- transformers/models/poolformer/image_processing_poolformer.py +21 -24
- transformers/models/poolformer/image_processing_poolformer_fast.py +13 -14
- transformers/models/poolformer/modeling_poolformer.py +10 -12
- transformers/models/pop2piano/configuration_pop2piano.py +7 -7
- transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
- transformers/models/pop2piano/modeling_pop2piano.py +24 -24
- transformers/models/pop2piano/processing_pop2piano.py +25 -33
- transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +13 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +20 -21
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +17 -16
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +21 -20
- transformers/models/prophetnet/configuration_prophetnet.py +37 -38
- transformers/models/prophetnet/modeling_prophetnet.py +121 -153
- transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
- transformers/models/pvt/configuration_pvt.py +0 -1
- transformers/models/pvt/image_processing_pvt.py +24 -27
- transformers/models/pvt/image_processing_pvt_fast.py +1 -2
- transformers/models/pvt/modeling_pvt.py +19 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +4 -8
- transformers/models/pvt_v2/modeling_pvt_v2.py +27 -28
- transformers/models/qwen2/configuration_qwen2.py +32 -25
- transformers/models/qwen2/modeling_qwen2.py +35 -37
- transformers/models/qwen2/modular_qwen2.py +14 -15
- transformers/models/qwen2/tokenization_qwen2.py +2 -9
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +36 -27
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +241 -214
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +228 -193
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +28 -34
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +188 -145
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +64 -91
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +39 -41
- transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +42 -35
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +40 -43
- transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -13
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +28 -33
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +12 -15
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +184 -141
- transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +38 -18
- transformers/models/qwen3/configuration_qwen3.py +34 -27
- transformers/models/qwen3/modeling_qwen3.py +35 -38
- transformers/models/qwen3/modular_qwen3.py +7 -9
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +45 -35
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +40 -43
- transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
- transformers/models/qwen3_next/configuration_qwen3_next.py +47 -38
- transformers/models/qwen3_next/modeling_qwen3_next.py +44 -47
- transformers/models/qwen3_next/modular_qwen3_next.py +37 -38
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +139 -106
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +266 -206
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +228 -181
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +22 -24
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +185 -122
- transformers/models/qwen3_vl/modular_qwen3_vl.py +153 -139
- transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +27 -30
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +249 -178
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +55 -42
- transformers/models/rag/configuration_rag.py +6 -7
- transformers/models/rag/modeling_rag.py +119 -121
- transformers/models/rag/retrieval_rag.py +3 -5
- transformers/models/rag/tokenization_rag.py +0 -50
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +29 -30
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +35 -39
- transformers/models/reformer/configuration_reformer.py +7 -8
- transformers/models/reformer/modeling_reformer.py +67 -68
- transformers/models/reformer/tokenization_reformer.py +3 -6
- transformers/models/regnet/configuration_regnet.py +0 -1
- transformers/models/regnet/modeling_regnet.py +7 -9
- transformers/models/rembert/configuration_rembert.py +8 -2
- transformers/models/rembert/modeling_rembert.py +108 -132
- transformers/models/rembert/tokenization_rembert.py +1 -4
- transformers/models/resnet/configuration_resnet.py +2 -5
- transformers/models/resnet/modeling_resnet.py +14 -15
- transformers/models/roberta/configuration_roberta.py +11 -3
- transformers/models/roberta/modeling_roberta.py +97 -99
- transformers/models/roberta/modular_roberta.py +55 -58
- transformers/models/roberta/tokenization_roberta.py +2 -5
- transformers/models/roberta/tokenization_roberta_old.py +2 -4
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -3
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +97 -99
- transformers/models/roc_bert/configuration_roc_bert.py +8 -2
- transformers/models/roc_bert/modeling_roc_bert.py +125 -162
- transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
- transformers/models/roformer/configuration_roformer.py +13 -3
- transformers/models/roformer/modeling_roformer.py +79 -95
- transformers/models/roformer/tokenization_roformer.py +3 -6
- transformers/models/roformer/tokenization_utils.py +0 -1
- transformers/models/rt_detr/configuration_rt_detr.py +8 -50
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -5
- transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +39 -26
- transformers/models/rt_detr/modeling_rt_detr.py +643 -804
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +4 -7
- transformers/models/rt_detr/modular_rt_detr.py +1522 -20
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -58
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +384 -521
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +27 -70
- transformers/models/rwkv/configuration_rwkv.py +2 -4
- transformers/models/rwkv/modeling_rwkv.py +29 -54
- transformers/models/sam/configuration_sam.py +2 -1
- transformers/models/sam/image_processing_sam.py +59 -60
- transformers/models/sam/image_processing_sam_fast.py +25 -26
- transformers/models/sam/modeling_sam.py +46 -43
- transformers/models/sam/processing_sam.py +39 -27
- transformers/models/sam2/configuration_sam2.py +1 -2
- transformers/models/sam2/image_processing_sam2_fast.py +14 -15
- transformers/models/sam2/modeling_sam2.py +96 -94
- transformers/models/sam2/modular_sam2.py +85 -94
- transformers/models/sam2/processing_sam2.py +31 -47
- transformers/models/sam2_video/configuration_sam2_video.py +0 -1
- transformers/models/sam2_video/modeling_sam2_video.py +114 -116
- transformers/models/sam2_video/modular_sam2_video.py +72 -89
- transformers/models/sam2_video/processing_sam2_video.py +49 -66
- transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
- transformers/models/sam3/configuration_sam3.py +0 -1
- transformers/models/sam3/image_processing_sam3_fast.py +17 -20
- transformers/models/sam3/modeling_sam3.py +94 -100
- transformers/models/sam3/modular_sam3.py +3 -8
- transformers/models/sam3/processing_sam3.py +37 -52
- transformers/models/sam3_tracker/__init__.py +0 -1
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -3
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +79 -80
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -2
- transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -48
- transformers/models/sam3_tracker_video/__init__.py +0 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +115 -114
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -24
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
- transformers/models/sam3_video/configuration_sam3_video.py +0 -1
- transformers/models/sam3_video/modeling_sam3_video.py +56 -45
- transformers/models/sam3_video/processing_sam3_video.py +25 -45
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +2 -1
- transformers/models/sam_hq/modeling_sam_hq.py +52 -50
- transformers/models/sam_hq/modular_sam_hq.py +23 -25
- transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +41 -29
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -10
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
- transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -10
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
- transformers/models/seed_oss/configuration_seed_oss.py +30 -34
- transformers/models/seed_oss/modeling_seed_oss.py +34 -36
- transformers/models/seed_oss/modular_seed_oss.py +6 -7
- transformers/models/segformer/configuration_segformer.py +0 -10
- transformers/models/segformer/image_processing_segformer.py +39 -42
- transformers/models/segformer/image_processing_segformer_fast.py +11 -12
- transformers/models/segformer/modeling_segformer.py +28 -28
- transformers/models/segformer/modular_segformer.py +8 -9
- transformers/models/seggpt/configuration_seggpt.py +0 -1
- transformers/models/seggpt/image_processing_seggpt.py +38 -41
- transformers/models/seggpt/modeling_seggpt.py +48 -38
- transformers/models/sew/configuration_sew.py +4 -2
- transformers/models/sew/modeling_sew.py +42 -40
- transformers/models/sew/modular_sew.py +12 -13
- transformers/models/sew_d/configuration_sew_d.py +4 -2
- transformers/models/sew_d/modeling_sew_d.py +32 -31
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +19 -21
- transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
- transformers/models/siglip/configuration_siglip.py +4 -2
- transformers/models/siglip/image_processing_siglip.py +17 -20
- transformers/models/siglip/image_processing_siglip_fast.py +0 -1
- transformers/models/siglip/modeling_siglip.py +65 -110
- transformers/models/siglip/processing_siglip.py +2 -14
- transformers/models/siglip/tokenization_siglip.py +6 -7
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2.py +15 -16
- transformers/models/siglip2/image_processing_siglip2_fast.py +6 -7
- transformers/models/siglip2/modeling_siglip2.py +89 -130
- transformers/models/siglip2/modular_siglip2.py +95 -48
- transformers/models/siglip2/processing_siglip2.py +2 -14
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +29 -32
- transformers/models/smollm3/modeling_smollm3.py +35 -38
- transformers/models/smollm3/modular_smollm3.py +36 -38
- transformers/models/smolvlm/configuration_smolvlm.py +2 -4
- transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +41 -15
- transformers/models/smolvlm/modeling_smolvlm.py +124 -96
- transformers/models/smolvlm/modular_smolvlm.py +50 -39
- transformers/models/smolvlm/processing_smolvlm.py +15 -76
- transformers/models/smolvlm/video_processing_smolvlm.py +16 -17
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +26 -27
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
- transformers/models/speech_to_text/modeling_speech_to_text.py +55 -57
- transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
- transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
- transformers/models/speecht5/configuration_speecht5.py +7 -9
- transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
- transformers/models/speecht5/modeling_speecht5.py +172 -174
- transformers/models/speecht5/number_normalizer.py +0 -1
- transformers/models/speecht5/processing_speecht5.py +3 -37
- transformers/models/speecht5/tokenization_speecht5.py +4 -5
- transformers/models/splinter/configuration_splinter.py +6 -7
- transformers/models/splinter/modeling_splinter.py +62 -59
- transformers/models/splinter/tokenization_splinter.py +2 -4
- transformers/models/squeezebert/configuration_squeezebert.py +14 -2
- transformers/models/squeezebert/modeling_squeezebert.py +60 -62
- transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
- transformers/models/stablelm/configuration_stablelm.py +28 -29
- transformers/models/stablelm/modeling_stablelm.py +44 -47
- transformers/models/starcoder2/configuration_starcoder2.py +30 -27
- transformers/models/starcoder2/modeling_starcoder2.py +38 -41
- transformers/models/starcoder2/modular_starcoder2.py +17 -19
- transformers/models/superglue/configuration_superglue.py +7 -3
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +8 -8
- transformers/models/superglue/modeling_superglue.py +41 -37
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +7 -9
- transformers/models/superpoint/modeling_superpoint.py +17 -16
- transformers/models/swiftformer/configuration_swiftformer.py +0 -1
- transformers/models/swiftformer/modeling_swiftformer.py +12 -14
- transformers/models/swin/configuration_swin.py +2 -5
- transformers/models/swin/modeling_swin.py +69 -78
- transformers/models/swin2sr/configuration_swin2sr.py +0 -1
- transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +4 -7
- transformers/models/swin2sr/modeling_swin2sr.py +30 -30
- transformers/models/swinv2/configuration_swinv2.py +2 -5
- transformers/models/swinv2/modeling_swinv2.py +65 -74
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -7
- transformers/models/switch_transformers/modeling_switch_transformers.py +35 -36
- transformers/models/switch_transformers/modular_switch_transformers.py +32 -33
- transformers/models/t5/configuration_t5.py +9 -9
- transformers/models/t5/modeling_t5.py +80 -85
- transformers/models/t5/tokenization_t5.py +1 -3
- transformers/models/t5gemma/configuration_t5gemma.py +43 -59
- transformers/models/t5gemma/modeling_t5gemma.py +105 -108
- transformers/models/t5gemma/modular_t5gemma.py +128 -142
- transformers/models/t5gemma2/configuration_t5gemma2.py +86 -100
- transformers/models/t5gemma2/modeling_t5gemma2.py +234 -194
- transformers/models/t5gemma2/modular_t5gemma2.py +279 -264
- transformers/models/table_transformer/configuration_table_transformer.py +18 -50
- transformers/models/table_transformer/modeling_table_transformer.py +73 -101
- transformers/models/tapas/configuration_tapas.py +12 -2
- transformers/models/tapas/modeling_tapas.py +65 -67
- transformers/models/tapas/tokenization_tapas.py +116 -153
- transformers/models/textnet/configuration_textnet.py +4 -7
- transformers/models/textnet/image_processing_textnet.py +22 -25
- transformers/models/textnet/image_processing_textnet_fast.py +8 -9
- transformers/models/textnet/modeling_textnet.py +28 -28
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +82 -84
- transformers/models/timesfm/configuration_timesfm.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +22 -25
- transformers/models/timesfm/modular_timesfm.py +21 -24
- transformers/models/timesformer/configuration_timesformer.py +0 -1
- transformers/models/timesformer/modeling_timesformer.py +13 -16
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -8
- transformers/models/timm_backbone/modeling_timm_backbone.py +25 -30
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +22 -19
- transformers/models/trocr/configuration_trocr.py +11 -8
- transformers/models/trocr/modeling_trocr.py +42 -42
- transformers/models/trocr/processing_trocr.py +5 -25
- transformers/models/tvp/configuration_tvp.py +10 -36
- transformers/models/tvp/image_processing_tvp.py +50 -52
- transformers/models/tvp/image_processing_tvp_fast.py +15 -15
- transformers/models/tvp/modeling_tvp.py +26 -28
- transformers/models/tvp/processing_tvp.py +2 -14
- transformers/models/udop/configuration_udop.py +16 -8
- transformers/models/udop/modeling_udop.py +73 -72
- transformers/models/udop/processing_udop.py +7 -26
- transformers/models/udop/tokenization_udop.py +80 -93
- transformers/models/umt5/configuration_umt5.py +8 -7
- transformers/models/umt5/modeling_umt5.py +87 -84
- transformers/models/unispeech/configuration_unispeech.py +4 -2
- transformers/models/unispeech/modeling_unispeech.py +54 -53
- transformers/models/unispeech/modular_unispeech.py +20 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -2
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +70 -69
- transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +7 -8
- transformers/models/upernet/configuration_upernet.py +8 -36
- transformers/models/upernet/modeling_upernet.py +11 -14
- transformers/models/vaultgemma/__init__.py +0 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +29 -33
- transformers/models/vaultgemma/modeling_vaultgemma.py +38 -40
- transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +12 -14
- transformers/models/video_llama_3/modeling_video_llama_3.py +149 -112
- transformers/models/video_llama_3/modular_video_llama_3.py +152 -150
- transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
- transformers/models/video_llama_3/video_processing_video_llama_3.py +45 -24
- transformers/models/video_llava/configuration_video_llava.py +4 -1
- transformers/models/video_llava/image_processing_video_llava.py +35 -38
- transformers/models/video_llava/modeling_video_llava.py +139 -143
- transformers/models/video_llava/processing_video_llava.py +38 -78
- transformers/models/video_llava/video_processing_video_llava.py +0 -1
- transformers/models/videomae/configuration_videomae.py +0 -1
- transformers/models/videomae/image_processing_videomae.py +31 -34
- transformers/models/videomae/modeling_videomae.py +17 -20
- transformers/models/videomae/video_processing_videomae.py +0 -1
- transformers/models/vilt/configuration_vilt.py +4 -2
- transformers/models/vilt/image_processing_vilt.py +29 -30
- transformers/models/vilt/image_processing_vilt_fast.py +15 -16
- transformers/models/vilt/modeling_vilt.py +103 -90
- transformers/models/vilt/processing_vilt.py +2 -14
- transformers/models/vipllava/configuration_vipllava.py +4 -1
- transformers/models/vipllava/modeling_vipllava.py +92 -67
- transformers/models/vipllava/modular_vipllava.py +78 -54
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +28 -27
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +45 -41
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
- transformers/models/visual_bert/configuration_visual_bert.py +6 -2
- transformers/models/visual_bert/modeling_visual_bert.py +90 -92
- transformers/models/vit/configuration_vit.py +2 -3
- transformers/models/vit/image_processing_vit.py +19 -22
- transformers/models/vit/image_processing_vit_fast.py +0 -1
- transformers/models/vit/modeling_vit.py +20 -20
- transformers/models/vit_mae/configuration_vit_mae.py +0 -1
- transformers/models/vit_mae/modeling_vit_mae.py +32 -30
- transformers/models/vit_msn/configuration_vit_msn.py +0 -1
- transformers/models/vit_msn/modeling_vit_msn.py +21 -19
- transformers/models/vitdet/configuration_vitdet.py +2 -5
- transformers/models/vitdet/modeling_vitdet.py +14 -17
- transformers/models/vitmatte/configuration_vitmatte.py +7 -39
- transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +16 -17
- transformers/models/vitmatte/modeling_vitmatte.py +10 -12
- transformers/models/vitpose/configuration_vitpose.py +7 -47
- transformers/models/vitpose/image_processing_vitpose.py +24 -25
- transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
- transformers/models/vitpose/modeling_vitpose.py +15 -15
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -5
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +13 -16
- transformers/models/vits/configuration_vits.py +4 -1
- transformers/models/vits/modeling_vits.py +43 -42
- transformers/models/vits/tokenization_vits.py +3 -4
- transformers/models/vivit/configuration_vivit.py +0 -1
- transformers/models/vivit/image_processing_vivit.py +36 -39
- transformers/models/vivit/modeling_vivit.py +9 -11
- transformers/models/vjepa2/__init__.py +0 -1
- transformers/models/vjepa2/configuration_vjepa2.py +0 -1
- transformers/models/vjepa2/modeling_vjepa2.py +39 -41
- transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
- transformers/models/voxtral/__init__.py +0 -1
- transformers/models/voxtral/configuration_voxtral.py +0 -2
- transformers/models/voxtral/modeling_voxtral.py +41 -48
- transformers/models/voxtral/modular_voxtral.py +35 -38
- transformers/models/voxtral/processing_voxtral.py +25 -48
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -2
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
- transformers/models/wav2vec2/modeling_wav2vec2.py +74 -126
- transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
- transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -2
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
- transformers/models/wavlm/configuration_wavlm.py +4 -2
- transformers/models/wavlm/modeling_wavlm.py +49 -49
- transformers/models/wavlm/modular_wavlm.py +4 -5
- transformers/models/whisper/configuration_whisper.py +6 -5
- transformers/models/whisper/english_normalizer.py +3 -4
- transformers/models/whisper/feature_extraction_whisper.py +9 -24
- transformers/models/whisper/generation_whisper.py +26 -49
- transformers/models/whisper/modeling_whisper.py +71 -73
- transformers/models/whisper/processing_whisper.py +3 -20
- transformers/models/whisper/tokenization_whisper.py +9 -30
- transformers/models/x_clip/configuration_x_clip.py +4 -2
- transformers/models/x_clip/modeling_x_clip.py +94 -96
- transformers/models/x_clip/processing_x_clip.py +2 -14
- transformers/models/xcodec/configuration_xcodec.py +4 -6
- transformers/models/xcodec/modeling_xcodec.py +15 -17
- transformers/models/xglm/configuration_xglm.py +9 -8
- transformers/models/xglm/modeling_xglm.py +49 -55
- transformers/models/xglm/tokenization_xglm.py +1 -4
- transformers/models/xlm/configuration_xlm.py +10 -8
- transformers/models/xlm/modeling_xlm.py +127 -131
- transformers/models/xlm/tokenization_xlm.py +3 -5
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -3
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +96 -98
- transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -2
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +97 -99
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
- transformers/models/xlnet/configuration_xlnet.py +3 -12
- transformers/models/xlnet/modeling_xlnet.py +149 -162
- transformers/models/xlnet/tokenization_xlnet.py +1 -4
- transformers/models/xlstm/configuration_xlstm.py +8 -12
- transformers/models/xlstm/modeling_xlstm.py +61 -96
- transformers/models/xmod/configuration_xmod.py +11 -3
- transformers/models/xmod/modeling_xmod.py +111 -116
- transformers/models/yolos/configuration_yolos.py +0 -1
- transformers/models/yolos/image_processing_yolos.py +60 -62
- transformers/models/yolos/image_processing_yolos_fast.py +42 -45
- transformers/models/yolos/modeling_yolos.py +19 -21
- transformers/models/yolos/modular_yolos.py +17 -19
- transformers/models/yoso/configuration_yoso.py +8 -2
- transformers/models/yoso/modeling_yoso.py +60 -62
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -8
- transformers/models/zamba/modeling_zamba.py +93 -125
- transformers/models/zamba2/configuration_zamba2.py +44 -50
- transformers/models/zamba2/modeling_zamba2.py +137 -165
- transformers/models/zamba2/modular_zamba2.py +79 -74
- transformers/models/zoedepth/configuration_zoedepth.py +17 -41
- transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +20 -21
- transformers/models/zoedepth/modeling_zoedepth.py +19 -19
- transformers/pipelines/__init__.py +47 -106
- transformers/pipelines/any_to_any.py +15 -23
- transformers/pipelines/audio_utils.py +1 -2
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +13 -17
- transformers/pipelines/image_text_to_text.py +1 -2
- transformers/pipelines/question_answering.py +4 -43
- transformers/pipelines/text_classification.py +1 -14
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/pipelines/token_classification.py +1 -22
- transformers/pipelines/video_classification.py +1 -9
- transformers/pipelines/zero_shot_audio_classification.py +0 -1
- transformers/pipelines/zero_shot_classification.py +0 -6
- transformers/pipelines/zero_shot_image_classification.py +0 -7
- transformers/processing_utils.py +128 -137
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/base.py +10 -0
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_quark.py +0 -1
- transformers/quantizers/quantizer_torchao.py +3 -19
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +6 -65
- transformers/tokenization_mistral_common.py +563 -903
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +228 -341
- transformers/tokenization_utils_sentencepiece.py +5 -6
- transformers/tokenization_utils_tokenizers.py +36 -7
- transformers/trainer.py +30 -41
- transformers/trainer_jit_checkpoint.py +1 -2
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +414 -420
- transformers/utils/__init__.py +1 -4
- transformers/utils/attention_visualizer.py +1 -1
- transformers/utils/auto_docstring.py +567 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/dummy_pt_objects.py +0 -42
- transformers/utils/generic.py +70 -34
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +135 -107
- transformers/utils/quantization_config.py +8 -31
- transformers/video_processing_utils.py +24 -25
- transformers/video_utils.py +21 -23
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/METADATA +120 -239
- transformers-5.1.0.dist-info/RECORD +2092 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -229
- transformers-5.0.0rc2.dist-info/RECORD +0 -2042
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc2.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1697 @@
|
|
|
1
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
2
|
+
# This file was automatically generated from src/transformers/models/lw_detr/modular_lw_detr.py.
|
|
3
|
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
4
|
+
# the file from the modular. If any change should be done, please apply the change to the
|
|
5
|
+
# modular_lw_detr.py file directly. One of our CI enforces this.
|
|
6
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
7
|
+
# Copyright 2026 The HuggingFace Inc. team. All rights reserved.
|
|
8
|
+
#
|
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
10
|
+
# you may not use this file except in compliance with the License.
|
|
11
|
+
# You may obtain a copy of the License at
|
|
12
|
+
#
|
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
14
|
+
#
|
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
18
|
+
# See the License for the specific language governing permissions and
|
|
19
|
+
# limitations under the License.
|
|
20
|
+
import collections.abc
|
|
21
|
+
import math
|
|
22
|
+
import warnings
|
|
23
|
+
from collections.abc import Callable
|
|
24
|
+
from dataclasses import dataclass
|
|
25
|
+
from typing import Any
|
|
26
|
+
|
|
27
|
+
import torch
|
|
28
|
+
import torch.nn.functional as F
|
|
29
|
+
from torch import Tensor, nn
|
|
30
|
+
|
|
31
|
+
from ... import initialization as init
|
|
32
|
+
from ...activations import ACT2CLS, ACT2FN
|
|
33
|
+
from ...backbone_utils import BackboneMixin
|
|
34
|
+
from ...integrations import use_kernel_forward_from_hub
|
|
35
|
+
from ...modeling_layers import GradientCheckpointingLayer
|
|
36
|
+
from ...modeling_outputs import BackboneOutput, BaseModelOutputWithCrossAttentions
|
|
37
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
38
|
+
from ...processing_utils import Unpack
|
|
39
|
+
from ...pytorch_utils import meshgrid
|
|
40
|
+
from ...utils import ModelOutput, TransformersKwargs, auto_docstring, torch_compilable_check
|
|
41
|
+
from ...utils.generic import check_model_inputs
|
|
42
|
+
from .configuration_lw_detr import LwDetrConfig, LwDetrViTConfig
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def eager_attention_forward(
|
|
46
|
+
module: nn.Module,
|
|
47
|
+
query: torch.Tensor,
|
|
48
|
+
key: torch.Tensor,
|
|
49
|
+
value: torch.Tensor,
|
|
50
|
+
attention_mask: torch.Tensor | None,
|
|
51
|
+
scaling: float,
|
|
52
|
+
dropout: float = 0.0,
|
|
53
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
54
|
+
):
|
|
55
|
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
|
56
|
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
|
57
|
+
|
|
58
|
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
|
59
|
+
if attention_mask is not None:
|
|
60
|
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
61
|
+
attn_weights = attn_weights + causal_mask
|
|
62
|
+
|
|
63
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
64
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
65
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
66
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
67
|
+
|
|
68
|
+
return attn_output, attn_weights
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
72
|
+
"""
|
|
73
|
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
74
|
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
75
|
+
"""
|
|
76
|
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
77
|
+
if n_rep == 1:
|
|
78
|
+
return hidden_states
|
|
79
|
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
80
|
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
class LwDetrViTSelfAttention(nn.Module):
|
|
84
|
+
def __init__(self, config: LwDetrViTConfig):
|
|
85
|
+
super().__init__()
|
|
86
|
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
|
87
|
+
raise ValueError(
|
|
88
|
+
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
|
|
89
|
+
f"heads {config.num_attention_heads}."
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
self.config = config
|
|
93
|
+
self.num_attention_heads = config.num_attention_heads
|
|
94
|
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
|
95
|
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
96
|
+
self.dropout_prob = config.dropout_prob
|
|
97
|
+
self.scaling = self.attention_head_size**-0.5
|
|
98
|
+
self.is_causal = False
|
|
99
|
+
|
|
100
|
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
|
101
|
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
|
102
|
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
|
103
|
+
self.num_key_value_groups = 1
|
|
104
|
+
|
|
105
|
+
def forward(
|
|
106
|
+
self,
|
|
107
|
+
hidden_states: torch.Tensor,
|
|
108
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
109
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
110
|
+
batch_size = hidden_states.shape[0]
|
|
111
|
+
new_shape = batch_size, -1, self.num_attention_heads, self.attention_head_size
|
|
112
|
+
|
|
113
|
+
key_layer = self.key(hidden_states).view(*new_shape).transpose(1, 2)
|
|
114
|
+
value_layer = self.value(hidden_states).view(*new_shape).transpose(1, 2)
|
|
115
|
+
query_layer = self.query(hidden_states).view(*new_shape).transpose(1, 2)
|
|
116
|
+
|
|
117
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
118
|
+
self.config._attn_implementation, eager_attention_forward
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
context_layer, attention_probs = attention_interface(
|
|
122
|
+
self,
|
|
123
|
+
query_layer,
|
|
124
|
+
key_layer,
|
|
125
|
+
value_layer,
|
|
126
|
+
None,
|
|
127
|
+
is_causal=self.is_causal,
|
|
128
|
+
scaling=self.scaling,
|
|
129
|
+
dropout=0.0 if not self.training else self.dropout_prob,
|
|
130
|
+
**kwargs,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
134
|
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
|
135
|
+
|
|
136
|
+
return context_layer, attention_probs
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
class LwDetrViTAttention(nn.Module):
|
|
140
|
+
def __init__(self, config: LwDetrViTConfig):
|
|
141
|
+
"""
|
|
142
|
+
Args:
|
|
143
|
+
config (`LwDetrViTConfig`):
|
|
144
|
+
Model configuration.
|
|
145
|
+
"""
|
|
146
|
+
super().__init__()
|
|
147
|
+
self.attention = LwDetrViTSelfAttention(config)
|
|
148
|
+
self.output = nn.Linear(config.hidden_size, config.hidden_size)
|
|
149
|
+
|
|
150
|
+
def forward(
|
|
151
|
+
self,
|
|
152
|
+
hidden_states: torch.Tensor,
|
|
153
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
154
|
+
) -> torch.Tensor:
|
|
155
|
+
self_attn_output, _ = self.attention(hidden_states, **kwargs)
|
|
156
|
+
output = self.output(self_attn_output)
|
|
157
|
+
return output
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class LwDetrViTMlp(nn.Module):
|
|
161
|
+
def __init__(self, config, in_features: int, hidden_features: int) -> None:
|
|
162
|
+
super().__init__()
|
|
163
|
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
164
|
+
self.act = ACT2FN[config.hidden_act]
|
|
165
|
+
self.fc2 = nn.Linear(hidden_features, in_features)
|
|
166
|
+
self.drop = nn.Dropout(config.dropout_prob)
|
|
167
|
+
|
|
168
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
169
|
+
x = self.fc1(x)
|
|
170
|
+
x = self.act(x)
|
|
171
|
+
x = self.drop(x)
|
|
172
|
+
x = self.fc2(x)
|
|
173
|
+
x = self.drop(x)
|
|
174
|
+
|
|
175
|
+
return x
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class LwDetrViTLayer(GradientCheckpointingLayer):
|
|
179
|
+
def __init__(
|
|
180
|
+
self,
|
|
181
|
+
config: LwDetrViTConfig,
|
|
182
|
+
layer_idx,
|
|
183
|
+
) -> None:
|
|
184
|
+
super().__init__()
|
|
185
|
+
|
|
186
|
+
dim = config.hidden_size
|
|
187
|
+
self.attention = LwDetrViTAttention(config)
|
|
188
|
+
self.intermediate = LwDetrViTMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio))
|
|
189
|
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
190
|
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
191
|
+
|
|
192
|
+
self.gamma_1 = nn.Parameter(torch.Tensor(dim), requires_grad=True)
|
|
193
|
+
self.gamma_2 = nn.Parameter(torch.Tensor(dim), requires_grad=True)
|
|
194
|
+
|
|
195
|
+
self.window = layer_idx in config.window_block_indices
|
|
196
|
+
self.num_windows = config.num_windows
|
|
197
|
+
|
|
198
|
+
def forward(
|
|
199
|
+
self,
|
|
200
|
+
hidden_states: torch.Tensor,
|
|
201
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
202
|
+
) -> torch.Tensor:
|
|
203
|
+
batch_size, seq_len, channels = hidden_states.shape
|
|
204
|
+
hidden_states_norm = self.layernorm_before(hidden_states)
|
|
205
|
+
|
|
206
|
+
if not self.window:
|
|
207
|
+
hidden_states_norm = hidden_states_norm.reshape(
|
|
208
|
+
batch_size // self.num_windows, self.num_windows * seq_len, channels
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
attention_output = self.attention(hidden_states_norm, **kwargs)
|
|
212
|
+
attention_output = attention_output * self.gamma_1
|
|
213
|
+
|
|
214
|
+
if not self.window:
|
|
215
|
+
attention_output = attention_output.reshape(batch_size, seq_len, channels)
|
|
216
|
+
|
|
217
|
+
hidden_states = hidden_states + attention_output
|
|
218
|
+
|
|
219
|
+
layer_output = self.layernorm_after(hidden_states)
|
|
220
|
+
layer_output = self.intermediate(layer_output)
|
|
221
|
+
layer_output = layer_output * self.gamma_2
|
|
222
|
+
|
|
223
|
+
hidden_states = hidden_states + layer_output
|
|
224
|
+
|
|
225
|
+
return hidden_states
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
class LwDetrViTEncoder(nn.Module):
|
|
229
|
+
def __init__(self, config: LwDetrViTConfig) -> None:
|
|
230
|
+
super().__init__()
|
|
231
|
+
self.config = config
|
|
232
|
+
self.layer = nn.ModuleList([LwDetrViTLayer(config, i) for i in range(config.num_hidden_layers)])
|
|
233
|
+
self.gradient_checkpointing = False
|
|
234
|
+
|
|
235
|
+
def forward(
|
|
236
|
+
self,
|
|
237
|
+
hidden_states: torch.Tensor,
|
|
238
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
239
|
+
) -> list[torch.Tensor]:
|
|
240
|
+
list_hidden_states = [hidden_states]
|
|
241
|
+
for i, layer_module in enumerate(self.layer):
|
|
242
|
+
hidden_states = layer_module(hidden_states, **kwargs)
|
|
243
|
+
list_hidden_states.append(hidden_states)
|
|
244
|
+
return list_hidden_states
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
class LwDetrViTEmbeddings(nn.Module):
|
|
248
|
+
"""
|
|
249
|
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
|
250
|
+
`hidden_states` (patch embeddings) to be consumed by a Transformer.
|
|
251
|
+
"""
|
|
252
|
+
|
|
253
|
+
def __init__(self, config):
|
|
254
|
+
super().__init__()
|
|
255
|
+
image_size, patch_size = config.pretrain_image_size, config.patch_size
|
|
256
|
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
|
257
|
+
|
|
258
|
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
|
259
|
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
|
260
|
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
261
|
+
self.image_size = image_size
|
|
262
|
+
self.patch_size = patch_size
|
|
263
|
+
self.num_channels = num_channels
|
|
264
|
+
self.num_patches = num_patches
|
|
265
|
+
|
|
266
|
+
if config.use_absolute_position_embeddings:
|
|
267
|
+
# Initialize absolute positional embedding with pretrain image size.
|
|
268
|
+
num_positions = num_patches + 1
|
|
269
|
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size))
|
|
270
|
+
else:
|
|
271
|
+
self.position_embeddings = None
|
|
272
|
+
|
|
273
|
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
|
274
|
+
|
|
275
|
+
def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width):
|
|
276
|
+
"""
|
|
277
|
+
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the
|
|
278
|
+
original embeddings.
|
|
279
|
+
|
|
280
|
+
Args:
|
|
281
|
+
abs_pos_embeddings (`torch.Tensor`):
|
|
282
|
+
Absolute positional embeddings with (1, num_position, num_channels).
|
|
283
|
+
has_cls_token (`bool`):
|
|
284
|
+
If true, has 1 embedding in abs_pos_embeddings for cls token.
|
|
285
|
+
height (`int`):
|
|
286
|
+
Height of input image tokens.
|
|
287
|
+
width (`int`):
|
|
288
|
+
Width of input image tokens.
|
|
289
|
+
|
|
290
|
+
Returns:
|
|
291
|
+
Absolute positional embeddings after processing with shape (1, height, width, num_channels)
|
|
292
|
+
"""
|
|
293
|
+
if has_cls_token:
|
|
294
|
+
abs_pos_embeddings = abs_pos_embeddings[:, 1:]
|
|
295
|
+
num_position = abs_pos_embeddings.shape[1]
|
|
296
|
+
size = int(math.sqrt(num_position)) # This is a constant and can be recorded as such in the ONNX export.
|
|
297
|
+
if size * size != num_position:
|
|
298
|
+
raise ValueError("Absolute position embeddings must be a square number.")
|
|
299
|
+
|
|
300
|
+
if torch.jit.is_tracing() or (size != height or size != width):
|
|
301
|
+
# nn.functional.interpolate is a noop in case size == height and size == width - we need to always capture this path with jit.trace.
|
|
302
|
+
new_abs_pos_embeddings = nn.functional.interpolate(
|
|
303
|
+
abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2),
|
|
304
|
+
size=(height, width),
|
|
305
|
+
mode="bicubic",
|
|
306
|
+
align_corners=False,
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
return new_abs_pos_embeddings.permute(0, 2, 3, 1)
|
|
310
|
+
else:
|
|
311
|
+
return abs_pos_embeddings.reshape(1, height, width, -1)
|
|
312
|
+
|
|
313
|
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
|
314
|
+
num_channels = pixel_values.shape[1]
|
|
315
|
+
if num_channels != self.num_channels:
|
|
316
|
+
raise ValueError(
|
|
317
|
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
|
318
|
+
f" Expected {self.num_channels} but got {num_channels}."
|
|
319
|
+
)
|
|
320
|
+
embeddings = self.projection(pixel_values)
|
|
321
|
+
|
|
322
|
+
if self.position_embeddings is not None:
|
|
323
|
+
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
|
|
324
|
+
embeddings = embeddings.permute(0, 2, 3, 1)
|
|
325
|
+
# add position embeddings
|
|
326
|
+
embeddings = embeddings + self.get_absolute_positions(
|
|
327
|
+
self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2]
|
|
328
|
+
)
|
|
329
|
+
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
|
|
330
|
+
embeddings = embeddings.permute(0, 3, 1, 2)
|
|
331
|
+
|
|
332
|
+
return embeddings
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
@auto_docstring
|
|
336
|
+
class LwDetrViTPreTrainedModel(PreTrainedModel):
|
|
337
|
+
config: LwDetrViTConfig
|
|
338
|
+
base_model_prefix = "lw_detr_vit"
|
|
339
|
+
main_input_name = "pixel_values"
|
|
340
|
+
input_modalities = ("image",)
|
|
341
|
+
supports_gradient_checkpointing = True
|
|
342
|
+
_no_split_modules = ["LwDetrViTEmbeddings", "LwDetrViTLayer"]
|
|
343
|
+
_supports_sdpa = True
|
|
344
|
+
_supports_flash_attn = True
|
|
345
|
+
_supports_flex_attn = True
|
|
346
|
+
_supports_attention_backend = True
|
|
347
|
+
_can_record_outputs = {
|
|
348
|
+
"hidden_states": LwDetrViTLayer,
|
|
349
|
+
"attentions": LwDetrViTSelfAttention,
|
|
350
|
+
}
|
|
351
|
+
|
|
352
|
+
@torch.no_grad()
|
|
353
|
+
def _init_weights(self, module) -> None:
|
|
354
|
+
"""Initialize the weights"""
|
|
355
|
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
|
356
|
+
init.trunc_normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
|
357
|
+
if module.bias is not None:
|
|
358
|
+
init.zeros_(module.bias)
|
|
359
|
+
elif isinstance(module, nn.LayerNorm):
|
|
360
|
+
init.zeros_(module.bias)
|
|
361
|
+
init.ones_(module.weight)
|
|
362
|
+
elif isinstance(module, LwDetrViTEmbeddings):
|
|
363
|
+
init.trunc_normal_(module.position_embeddings, mean=0.0, std=self.config.initializer_range)
|
|
364
|
+
if isinstance(module, LwDetrViTLayer):
|
|
365
|
+
nn.init.constant_(module.gamma_1, self.config.cae_init_values)
|
|
366
|
+
nn.init.constant_(module.gamma_2, self.config.cae_init_values)
|
|
367
|
+
|
|
368
|
+
|
|
369
|
+
@auto_docstring()
|
|
370
|
+
class LwDetrViTBackbone(BackboneMixin, LwDetrViTPreTrainedModel):
|
|
371
|
+
def __init__(self, config):
|
|
372
|
+
super().__init__(config)
|
|
373
|
+
|
|
374
|
+
self.embeddings = LwDetrViTEmbeddings(config)
|
|
375
|
+
self.encoder = LwDetrViTEncoder(config)
|
|
376
|
+
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
|
|
377
|
+
|
|
378
|
+
# initialize weights and apply final processing
|
|
379
|
+
self.post_init()
|
|
380
|
+
|
|
381
|
+
def get_input_embeddings(self) -> LwDetrViTEmbeddings:
|
|
382
|
+
return self.embeddings.projection
|
|
383
|
+
|
|
384
|
+
@check_model_inputs
|
|
385
|
+
@auto_docstring
|
|
386
|
+
def forward(self, pixel_values: torch.Tensor, **kwargs: Unpack[TransformersKwargs]) -> BackboneOutput:
|
|
387
|
+
r"""
|
|
388
|
+
Examples:
|
|
389
|
+
|
|
390
|
+
```python
|
|
391
|
+
>>> from transformers import LwDetrViTConfig, LwDetrViTBackbone
|
|
392
|
+
>>> import torch
|
|
393
|
+
|
|
394
|
+
>>> config = LwDetrViTConfig()
|
|
395
|
+
>>> model = LwDetrViTBackbone(config)
|
|
396
|
+
|
|
397
|
+
>>> pixel_values = torch.randn(1, 3, 224, 224)
|
|
398
|
+
|
|
399
|
+
>>> with torch.no_grad():
|
|
400
|
+
... outputs = model(pixel_values)
|
|
401
|
+
|
|
402
|
+
>>> feature_maps = outputs.feature_maps
|
|
403
|
+
>>> list(feature_maps[-1].shape)
|
|
404
|
+
[1, 768, 14, 14]
|
|
405
|
+
```"""
|
|
406
|
+
embedding_output = self.embeddings(pixel_values)
|
|
407
|
+
|
|
408
|
+
batch_size, channels, height, width = embedding_output.shape
|
|
409
|
+
# (batch_size, channels, height, width) -> (batch_size, height, width, channels)
|
|
410
|
+
hidden_states = embedding_output.permute(0, 2, 3, 1)
|
|
411
|
+
|
|
412
|
+
window_height = height // self.config.num_windows_side
|
|
413
|
+
window_width = width // self.config.num_windows_side
|
|
414
|
+
# (batch_size, height, width, channels) -> (batch_size*num_windows_side**2, window_height*window_width, channels)
|
|
415
|
+
hidden_states = (
|
|
416
|
+
hidden_states.reshape(
|
|
417
|
+
batch_size,
|
|
418
|
+
self.config.num_windows_side,
|
|
419
|
+
window_height,
|
|
420
|
+
self.config.num_windows_side,
|
|
421
|
+
window_width,
|
|
422
|
+
channels,
|
|
423
|
+
)
|
|
424
|
+
.permute(0, 1, 3, 2, 4, 5)
|
|
425
|
+
.reshape(batch_size * self.config.num_windows_side**2, window_height * window_width, channels)
|
|
426
|
+
)
|
|
427
|
+
|
|
428
|
+
hidden_states = self.encoder(hidden_states, **kwargs)
|
|
429
|
+
|
|
430
|
+
feature_maps = ()
|
|
431
|
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
|
432
|
+
if stage in self.out_features:
|
|
433
|
+
hidden_state = (
|
|
434
|
+
hidden_state.reshape(
|
|
435
|
+
batch_size,
|
|
436
|
+
self.config.num_windows_side,
|
|
437
|
+
self.config.num_windows_side,
|
|
438
|
+
window_height,
|
|
439
|
+
window_width,
|
|
440
|
+
channels,
|
|
441
|
+
)
|
|
442
|
+
.permute(0, 5, 1, 3, 2, 4)
|
|
443
|
+
.reshape(batch_size, channels, height, width)
|
|
444
|
+
)
|
|
445
|
+
feature_maps += (hidden_state,)
|
|
446
|
+
|
|
447
|
+
return BackboneOutput(feature_maps=feature_maps)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
class LwDetrConvNormLayer(nn.Module):
|
|
451
|
+
def __init__(
|
|
452
|
+
self,
|
|
453
|
+
config: LwDetrConfig,
|
|
454
|
+
in_channels: int,
|
|
455
|
+
out_channels: int,
|
|
456
|
+
kernel_size: int,
|
|
457
|
+
stride: int,
|
|
458
|
+
activation: str | None = None,
|
|
459
|
+
):
|
|
460
|
+
super().__init__()
|
|
461
|
+
self.conv = nn.Conv2d(
|
|
462
|
+
in_channels,
|
|
463
|
+
out_channels,
|
|
464
|
+
kernel_size,
|
|
465
|
+
stride,
|
|
466
|
+
padding=kernel_size // 2,
|
|
467
|
+
bias=False,
|
|
468
|
+
)
|
|
469
|
+
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
|
|
470
|
+
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
471
|
+
|
|
472
|
+
def forward(self, hidden_state):
|
|
473
|
+
hidden_state = self.conv(hidden_state)
|
|
474
|
+
hidden_state = self.norm(hidden_state)
|
|
475
|
+
hidden_state = self.activation(hidden_state)
|
|
476
|
+
return hidden_state
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
class LwDetrRepVggBlock(nn.Module):
|
|
480
|
+
def __init__(self, config: LwDetrConfig):
|
|
481
|
+
super().__init__()
|
|
482
|
+
hidden_channels = int(config.d_model * config.hidden_expansion)
|
|
483
|
+
self.conv1 = LwDetrConvNormLayer(
|
|
484
|
+
config, hidden_channels, hidden_channels, 3, 1, activation=config.activation_function
|
|
485
|
+
)
|
|
486
|
+
self.conv2 = LwDetrConvNormLayer(
|
|
487
|
+
config, hidden_channels, hidden_channels, 3, 1, activation=config.activation_function
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
491
|
+
y = self.conv1(x)
|
|
492
|
+
y = self.conv2(y)
|
|
493
|
+
return y
|
|
494
|
+
|
|
495
|
+
|
|
496
|
+
class LwDetrC2FLayer(nn.Module):
|
|
497
|
+
# Inspired by RTDetrCSPRepLayer
|
|
498
|
+
def __init__(self, config: LwDetrConfig, in_channels: int):
|
|
499
|
+
super().__init__()
|
|
500
|
+
num_blocks = config.c2f_num_blocks
|
|
501
|
+
activation = config.activation_function
|
|
502
|
+
out_channels = config.d_model
|
|
503
|
+
|
|
504
|
+
self.hidden_channels = int(out_channels * config.hidden_expansion)
|
|
505
|
+
|
|
506
|
+
conv1_out_channels = 2 * self.hidden_channels
|
|
507
|
+
self.conv1 = LwDetrConvNormLayer(config, in_channels, conv1_out_channels, 1, 1, activation=activation)
|
|
508
|
+
|
|
509
|
+
conv2_in_channels = (2 + num_blocks) * self.hidden_channels
|
|
510
|
+
self.conv2 = LwDetrConvNormLayer(config, conv2_in_channels, out_channels, 1, 1, activation=activation)
|
|
511
|
+
|
|
512
|
+
self.bottlenecks = nn.ModuleList(LwDetrRepVggBlock(config) for _ in range(num_blocks))
|
|
513
|
+
|
|
514
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
515
|
+
hidden_states = self.conv1(hidden_states)
|
|
516
|
+
all_hidden_states = list(hidden_states.split(self.hidden_channels, 1))
|
|
517
|
+
hidden_states = all_hidden_states[-1]
|
|
518
|
+
|
|
519
|
+
for bottleneck in self.bottlenecks:
|
|
520
|
+
hidden_states = bottleneck(hidden_states)
|
|
521
|
+
all_hidden_states.append(hidden_states)
|
|
522
|
+
|
|
523
|
+
hidden_states = torch.cat(all_hidden_states, 1)
|
|
524
|
+
hidden_states = self.conv2(hidden_states)
|
|
525
|
+
return hidden_states
|
|
526
|
+
|
|
527
|
+
|
|
528
|
+
class LwDetrLayerNorm(nn.LayerNorm):
|
|
529
|
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
|
530
|
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
|
531
|
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
|
532
|
+
"""
|
|
533
|
+
|
|
534
|
+
def __init__(self, normalized_shape, *, eps=1e-6, data_format="channels_last", **kwargs):
|
|
535
|
+
super().__init__(normalized_shape, eps=eps, **kwargs)
|
|
536
|
+
if data_format not in ["channels_last", "channels_first"]:
|
|
537
|
+
raise NotImplementedError(f"Unsupported data format: {data_format}")
|
|
538
|
+
self.data_format = data_format
|
|
539
|
+
|
|
540
|
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
|
541
|
+
"""
|
|
542
|
+
Args:
|
|
543
|
+
features: Tensor of shape (batch_size, channels, height, width) OR (batch_size, height, width, channels)
|
|
544
|
+
"""
|
|
545
|
+
if self.data_format == "channels_first":
|
|
546
|
+
features = features.permute(0, 2, 3, 1)
|
|
547
|
+
features = super().forward(features)
|
|
548
|
+
features = features.permute(0, 3, 1, 2)
|
|
549
|
+
else:
|
|
550
|
+
features = super().forward(features)
|
|
551
|
+
return features
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
class LwDetrSamplingLayer(nn.Module):
|
|
555
|
+
def __init__(self, config: LwDetrConfig, channel_size: int, scale: float):
|
|
556
|
+
super().__init__()
|
|
557
|
+
|
|
558
|
+
self.scale = scale
|
|
559
|
+
self.channel_size = channel_size
|
|
560
|
+
|
|
561
|
+
layers = []
|
|
562
|
+
if scale == 2.0:
|
|
563
|
+
if channel_size > 512:
|
|
564
|
+
layers.append(LwDetrConvNormLayer(config, channel_size, channel_size // 2, 1, 1, activation="relu"))
|
|
565
|
+
layers.append(nn.ConvTranspose2d(channel_size // 2, channel_size // 4, kernel_size=2, stride=2))
|
|
566
|
+
else:
|
|
567
|
+
layers.append(nn.ConvTranspose2d(channel_size, channel_size // 2, 2, 2))
|
|
568
|
+
elif scale == 0.5:
|
|
569
|
+
layers.append(LwDetrConvNormLayer(config, channel_size, channel_size, 3, 2, activation="relu"))
|
|
570
|
+
self.layers = nn.ModuleList(layers)
|
|
571
|
+
|
|
572
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
573
|
+
for layer in self.layers:
|
|
574
|
+
hidden_states = layer(hidden_states)
|
|
575
|
+
return hidden_states
|
|
576
|
+
|
|
577
|
+
|
|
578
|
+
class LwDetrScaleProjector(nn.Module):
|
|
579
|
+
def __init__(self, config: LwDetrConfig, scale: float):
|
|
580
|
+
super().__init__()
|
|
581
|
+
|
|
582
|
+
intermediate_dims = [config.backbone_config.hidden_size] * len(config.backbone_config.out_indices)
|
|
583
|
+
sampling_layers = []
|
|
584
|
+
for channel_size in intermediate_dims:
|
|
585
|
+
sampling_layers.append(LwDetrSamplingLayer(config, channel_size, scale))
|
|
586
|
+
self.sampling_layers = nn.ModuleList(sampling_layers)
|
|
587
|
+
|
|
588
|
+
intermediate_dim = intermediate_dims[-1]
|
|
589
|
+
if scale == 2.0:
|
|
590
|
+
if intermediate_dim > 512:
|
|
591
|
+
intermediate_dim = intermediate_dim // 4
|
|
592
|
+
else:
|
|
593
|
+
intermediate_dim = intermediate_dim // 2
|
|
594
|
+
projector_input_dim = intermediate_dim * len(intermediate_dims)
|
|
595
|
+
|
|
596
|
+
self.projector_layer = LwDetrC2FLayer(config, projector_input_dim)
|
|
597
|
+
self.layer_norm = LwDetrLayerNorm(config.d_model, data_format="channels_first")
|
|
598
|
+
|
|
599
|
+
def forward(self, hidden_states_tuple: tuple[torch.Tensor]) -> torch.Tensor:
|
|
600
|
+
sampled_hidden_states = []
|
|
601
|
+
for sampling_layer, hidden_states in zip(self.sampling_layers, hidden_states_tuple):
|
|
602
|
+
hidden_states = sampling_layer(hidden_states)
|
|
603
|
+
sampled_hidden_states.append(hidden_states)
|
|
604
|
+
hidden_states = torch.cat(sampled_hidden_states, dim=1)
|
|
605
|
+
hidden_states = self.projector_layer(hidden_states)
|
|
606
|
+
hidden_states = self.layer_norm(hidden_states)
|
|
607
|
+
return hidden_states
|
|
608
|
+
|
|
609
|
+
|
|
610
|
+
class LwDetrMultiScaleProjector(nn.Module):
|
|
611
|
+
def __init__(self, config: LwDetrConfig):
|
|
612
|
+
super().__init__()
|
|
613
|
+
|
|
614
|
+
self.config = config
|
|
615
|
+
scale_factors = config.projector_scale_factors
|
|
616
|
+
|
|
617
|
+
self.scale_layers = nn.ModuleList([LwDetrScaleProjector(config, scale) for scale in scale_factors])
|
|
618
|
+
|
|
619
|
+
def forward(self, hidden_states: tuple[torch.Tensor]) -> list[torch.Tensor]:
|
|
620
|
+
output_hidden_states = []
|
|
621
|
+
for scale_layer in self.scale_layers:
|
|
622
|
+
output_hidden_states.append(scale_layer(hidden_states))
|
|
623
|
+
return output_hidden_states
|
|
624
|
+
|
|
625
|
+
|
|
626
|
+
class LwDetrConvEncoder(nn.Module):
|
|
627
|
+
def __init__(self, config: LwDetrConfig):
|
|
628
|
+
super().__init__()
|
|
629
|
+
self.backbone = LwDetrViTBackbone(config.backbone_config)
|
|
630
|
+
self.projector = LwDetrMultiScaleProjector(config)
|
|
631
|
+
|
|
632
|
+
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
|
|
633
|
+
# send pixel_values through the model to get list of feature maps
|
|
634
|
+
features = self.backbone(pixel_values).feature_maps
|
|
635
|
+
features = self.projector(features)
|
|
636
|
+
out = []
|
|
637
|
+
for feature_map in features:
|
|
638
|
+
# downsample pixel_mask to match shape of corresponding feature_map
|
|
639
|
+
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
|
|
640
|
+
out.append((feature_map, mask))
|
|
641
|
+
return out
|
|
642
|
+
|
|
643
|
+
|
|
644
|
+
class LwDetrAttention(nn.Module):
|
|
645
|
+
def __init__(self, config: LwDetrConfig, layer_idx: int):
|
|
646
|
+
super().__init__()
|
|
647
|
+
self.config = config
|
|
648
|
+
self.layer_idx = layer_idx
|
|
649
|
+
self.head_dim = getattr(config, "head_dim", config.d_model // config.decoder_self_attention_heads)
|
|
650
|
+
self.scaling = self.head_dim**-0.5
|
|
651
|
+
self.attention_dropout = config.attention_dropout
|
|
652
|
+
self.is_causal = False
|
|
653
|
+
self.num_key_value_groups = 1
|
|
654
|
+
|
|
655
|
+
self.q_proj = nn.Linear(
|
|
656
|
+
config.d_model, config.decoder_self_attention_heads * self.head_dim, bias=config.attention_bias
|
|
657
|
+
)
|
|
658
|
+
self.k_proj = nn.Linear(
|
|
659
|
+
config.d_model, config.decoder_self_attention_heads * self.head_dim, bias=config.attention_bias
|
|
660
|
+
)
|
|
661
|
+
self.v_proj = nn.Linear(
|
|
662
|
+
config.d_model, config.decoder_self_attention_heads * self.head_dim, bias=config.attention_bias
|
|
663
|
+
)
|
|
664
|
+
self.o_proj = nn.Linear(
|
|
665
|
+
config.decoder_self_attention_heads * self.head_dim, config.d_model, bias=config.attention_bias
|
|
666
|
+
)
|
|
667
|
+
|
|
668
|
+
def forward(
|
|
669
|
+
self,
|
|
670
|
+
hidden_states: torch.Tensor,
|
|
671
|
+
position_embeddings: torch.Tensor | None = None,
|
|
672
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
673
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
674
|
+
batch_size, seq_len, _ = hidden_states.shape
|
|
675
|
+
input_shape = hidden_states.shape[:-1]
|
|
676
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
677
|
+
|
|
678
|
+
hidden_states_original = hidden_states
|
|
679
|
+
if position_embeddings is not None:
|
|
680
|
+
hidden_states = hidden_states if position_embeddings is None else hidden_states + position_embeddings
|
|
681
|
+
|
|
682
|
+
if self.training:
|
|
683
|
+
# at training, we use group detr technique to add more supervision by using multiple weight-sharing decoders at once for faster convergence
|
|
684
|
+
# at inference, we only use one decoder
|
|
685
|
+
hidden_states_original = torch.cat(
|
|
686
|
+
hidden_states_original.split(seq_len // self.config.group_detr, dim=1), dim=0
|
|
687
|
+
)
|
|
688
|
+
hidden_states = torch.cat(hidden_states.split(seq_len // self.config.group_detr, dim=1), dim=0)
|
|
689
|
+
|
|
690
|
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
691
|
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
692
|
+
value_states = self.v_proj(hidden_states_original).view(hidden_shape).transpose(1, 2)
|
|
693
|
+
|
|
694
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
695
|
+
self.config._attn_implementation, eager_attention_forward
|
|
696
|
+
)
|
|
697
|
+
|
|
698
|
+
attn_output, attn_weights = attention_interface(
|
|
699
|
+
self,
|
|
700
|
+
query_states,
|
|
701
|
+
key_states,
|
|
702
|
+
value_states,
|
|
703
|
+
attention_mask=None,
|
|
704
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
705
|
+
scaling=self.scaling,
|
|
706
|
+
**kwargs,
|
|
707
|
+
)
|
|
708
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
709
|
+
attn_output = self.o_proj(attn_output)
|
|
710
|
+
|
|
711
|
+
if self.training:
|
|
712
|
+
attn_output = torch.cat(torch.split(attn_output, batch_size, dim=0), dim=1)
|
|
713
|
+
|
|
714
|
+
return attn_output, attn_weights
|
|
715
|
+
|
|
716
|
+
|
|
717
|
+
@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
|
|
718
|
+
class MultiScaleDeformableAttention(nn.Module):
|
|
719
|
+
def forward(
|
|
720
|
+
self,
|
|
721
|
+
value: Tensor,
|
|
722
|
+
value_spatial_shapes: Tensor,
|
|
723
|
+
value_spatial_shapes_list: list[tuple],
|
|
724
|
+
level_start_index: Tensor,
|
|
725
|
+
sampling_locations: Tensor,
|
|
726
|
+
attention_weights: Tensor,
|
|
727
|
+
im2col_step: int,
|
|
728
|
+
):
|
|
729
|
+
batch_size, _, num_heads, hidden_dim = value.shape
|
|
730
|
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
|
731
|
+
value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
|
|
732
|
+
sampling_grids = 2 * sampling_locations - 1
|
|
733
|
+
sampling_value_list = []
|
|
734
|
+
for level_id, (height, width) in enumerate(value_spatial_shapes_list):
|
|
735
|
+
# batch_size, height*width, num_heads, hidden_dim
|
|
736
|
+
# -> batch_size, height*width, num_heads*hidden_dim
|
|
737
|
+
# -> batch_size, num_heads*hidden_dim, height*width
|
|
738
|
+
# -> batch_size*num_heads, hidden_dim, height, width
|
|
739
|
+
value_l_ = (
|
|
740
|
+
value_list[level_id]
|
|
741
|
+
.flatten(2)
|
|
742
|
+
.transpose(1, 2)
|
|
743
|
+
.reshape(batch_size * num_heads, hidden_dim, height, width)
|
|
744
|
+
)
|
|
745
|
+
# batch_size, num_queries, num_heads, num_points, 2
|
|
746
|
+
# -> batch_size, num_heads, num_queries, num_points, 2
|
|
747
|
+
# -> batch_size*num_heads, num_queries, num_points, 2
|
|
748
|
+
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
|
|
749
|
+
# batch_size*num_heads, hidden_dim, num_queries, num_points
|
|
750
|
+
sampling_value_l_ = nn.functional.grid_sample(
|
|
751
|
+
value_l_,
|
|
752
|
+
sampling_grid_l_,
|
|
753
|
+
mode="bilinear",
|
|
754
|
+
padding_mode="zeros",
|
|
755
|
+
align_corners=False,
|
|
756
|
+
)
|
|
757
|
+
sampling_value_list.append(sampling_value_l_)
|
|
758
|
+
# (batch_size, num_queries, num_heads, num_levels, num_points)
|
|
759
|
+
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
|
|
760
|
+
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
|
|
761
|
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
|
762
|
+
batch_size * num_heads, 1, num_queries, num_levels * num_points
|
|
763
|
+
)
|
|
764
|
+
output = (
|
|
765
|
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
|
766
|
+
.sum(-1)
|
|
767
|
+
.view(batch_size, num_heads * hidden_dim, num_queries)
|
|
768
|
+
)
|
|
769
|
+
return output.transpose(1, 2).contiguous()
|
|
770
|
+
|
|
771
|
+
|
|
772
|
+
class LwDetrMultiscaleDeformableAttention(nn.Module):
|
|
773
|
+
"""
|
|
774
|
+
Multiscale deformable attention as proposed in Deformable DETR.
|
|
775
|
+
"""
|
|
776
|
+
|
|
777
|
+
def __init__(self, config: LwDetrConfig, num_heads: int, n_points: int):
|
|
778
|
+
super().__init__()
|
|
779
|
+
|
|
780
|
+
self.attn = MultiScaleDeformableAttention()
|
|
781
|
+
|
|
782
|
+
if config.d_model % num_heads != 0:
|
|
783
|
+
raise ValueError(
|
|
784
|
+
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
|
|
785
|
+
)
|
|
786
|
+
dim_per_head = config.d_model // num_heads
|
|
787
|
+
# check if dim_per_head is power of 2
|
|
788
|
+
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
|
|
789
|
+
warnings.warn(
|
|
790
|
+
"You'd better set embed_dim (d_model) in LwDetrMultiscaleDeformableAttention to make the"
|
|
791
|
+
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
|
|
792
|
+
" implementation."
|
|
793
|
+
)
|
|
794
|
+
|
|
795
|
+
self.im2col_step = 64
|
|
796
|
+
|
|
797
|
+
self.d_model = config.d_model
|
|
798
|
+
self.n_levels = config.num_feature_levels
|
|
799
|
+
self.n_heads = num_heads
|
|
800
|
+
self.n_points = n_points
|
|
801
|
+
|
|
802
|
+
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
|
|
803
|
+
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
|
|
804
|
+
self.value_proj = nn.Linear(config.d_model, config.d_model)
|
|
805
|
+
self.output_proj = nn.Linear(config.d_model, config.d_model)
|
|
806
|
+
|
|
807
|
+
self.disable_custom_kernels = config.disable_custom_kernels
|
|
808
|
+
|
|
809
|
+
def forward(
|
|
810
|
+
self,
|
|
811
|
+
hidden_states: torch.Tensor,
|
|
812
|
+
attention_mask: torch.Tensor | None = None,
|
|
813
|
+
encoder_hidden_states=None,
|
|
814
|
+
encoder_attention_mask=None,
|
|
815
|
+
position_embeddings: torch.Tensor | None = None,
|
|
816
|
+
reference_points=None,
|
|
817
|
+
spatial_shapes=None,
|
|
818
|
+
spatial_shapes_list=None,
|
|
819
|
+
level_start_index=None,
|
|
820
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
821
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
822
|
+
# add position embeddings to the hidden states before projecting to queries and keys
|
|
823
|
+
if position_embeddings is not None:
|
|
824
|
+
hidden_states = hidden_states + position_embeddings
|
|
825
|
+
|
|
826
|
+
batch_size, num_queries, _ = hidden_states.shape
|
|
827
|
+
batch_size, sequence_length, _ = encoder_hidden_states.shape
|
|
828
|
+
total_elements = sum(height * width for height, width in spatial_shapes_list)
|
|
829
|
+
torch_compilable_check(
|
|
830
|
+
total_elements == sequence_length,
|
|
831
|
+
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states",
|
|
832
|
+
)
|
|
833
|
+
|
|
834
|
+
value = self.value_proj(encoder_hidden_states)
|
|
835
|
+
if attention_mask is not None:
|
|
836
|
+
# we invert the attention_mask
|
|
837
|
+
value = value.masked_fill(~attention_mask[..., None], float(0))
|
|
838
|
+
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
|
|
839
|
+
sampling_offsets = self.sampling_offsets(hidden_states).view(
|
|
840
|
+
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
|
|
841
|
+
)
|
|
842
|
+
attention_weights = self.attention_weights(hidden_states).view(
|
|
843
|
+
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
|
|
844
|
+
)
|
|
845
|
+
attention_weights = F.softmax(attention_weights, -1).view(
|
|
846
|
+
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
|
|
847
|
+
)
|
|
848
|
+
# batch_size, num_queries, n_heads, n_levels, n_points, 2
|
|
849
|
+
num_coordinates = reference_points.shape[-1]
|
|
850
|
+
if num_coordinates == 2:
|
|
851
|
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
|
852
|
+
sampling_locations = (
|
|
853
|
+
reference_points[:, :, None, :, None, :]
|
|
854
|
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
|
855
|
+
)
|
|
856
|
+
elif num_coordinates == 4:
|
|
857
|
+
sampling_locations = (
|
|
858
|
+
reference_points[:, :, None, :, None, :2]
|
|
859
|
+
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
|
860
|
+
)
|
|
861
|
+
else:
|
|
862
|
+
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
|
|
863
|
+
|
|
864
|
+
output = self.attn(
|
|
865
|
+
value,
|
|
866
|
+
spatial_shapes,
|
|
867
|
+
spatial_shapes_list,
|
|
868
|
+
level_start_index,
|
|
869
|
+
sampling_locations,
|
|
870
|
+
attention_weights,
|
|
871
|
+
self.im2col_step,
|
|
872
|
+
)
|
|
873
|
+
|
|
874
|
+
output = self.output_proj(output)
|
|
875
|
+
|
|
876
|
+
return output, attention_weights
|
|
877
|
+
|
|
878
|
+
|
|
879
|
+
class LwDetrMLP(nn.Module):
|
|
880
|
+
def __init__(self, config: LwDetrConfig):
|
|
881
|
+
super().__init__()
|
|
882
|
+
self.dropout = config.dropout
|
|
883
|
+
self.activation_fn = ACT2FN[config.decoder_activation_function]
|
|
884
|
+
self.fc1 = nn.Linear(config.d_model, config.decoder_ffn_dim)
|
|
885
|
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, config.d_model)
|
|
886
|
+
|
|
887
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
888
|
+
residual = hidden_states
|
|
889
|
+
hidden_states = self.fc1(hidden_states)
|
|
890
|
+
hidden_states = self.activation_fn(hidden_states)
|
|
891
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
892
|
+
hidden_states = self.fc2(hidden_states)
|
|
893
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
894
|
+
hidden_states = residual + hidden_states
|
|
895
|
+
return hidden_states
|
|
896
|
+
|
|
897
|
+
|
|
898
|
+
class LwDetrDecoderLayer(GradientCheckpointingLayer):
|
|
899
|
+
def __init__(self, config: LwDetrConfig, layer_idx: int):
|
|
900
|
+
nn.Module.__init__(self)
|
|
901
|
+
|
|
902
|
+
# self-attention
|
|
903
|
+
self.self_attn = LwDetrAttention(config, layer_idx=layer_idx)
|
|
904
|
+
self.dropout = config.dropout
|
|
905
|
+
self.activation_fn = ACT2FN[config.decoder_activation_function]
|
|
906
|
+
self.activation_dropout = config.activation_dropout
|
|
907
|
+
self.self_attn_layer_norm = nn.LayerNorm(config.d_model)
|
|
908
|
+
|
|
909
|
+
# cross-attention
|
|
910
|
+
self.cross_attn = LwDetrMultiscaleDeformableAttention(
|
|
911
|
+
config,
|
|
912
|
+
num_heads=config.decoder_cross_attention_heads,
|
|
913
|
+
n_points=config.decoder_n_points,
|
|
914
|
+
)
|
|
915
|
+
self.cross_attn_layer_norm = nn.LayerNorm(config.d_model)
|
|
916
|
+
|
|
917
|
+
# mlp
|
|
918
|
+
self.mlp = LwDetrMLP(config)
|
|
919
|
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
|
920
|
+
|
|
921
|
+
def forward(
|
|
922
|
+
self,
|
|
923
|
+
hidden_states: torch.Tensor,
|
|
924
|
+
position_embeddings: torch.Tensor | None = None,
|
|
925
|
+
reference_points=None,
|
|
926
|
+
spatial_shapes=None,
|
|
927
|
+
spatial_shapes_list=None,
|
|
928
|
+
level_start_index=None,
|
|
929
|
+
encoder_hidden_states: torch.Tensor | None = None,
|
|
930
|
+
encoder_attention_mask: torch.Tensor | None = None,
|
|
931
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
932
|
+
):
|
|
933
|
+
self_attention_output, self_attn_weights = self.self_attn(
|
|
934
|
+
hidden_states, position_embeddings=position_embeddings, **kwargs
|
|
935
|
+
)
|
|
936
|
+
|
|
937
|
+
self_attention_output = nn.functional.dropout(self_attention_output, p=self.dropout, training=self.training)
|
|
938
|
+
hidden_states = hidden_states + self_attention_output
|
|
939
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
940
|
+
|
|
941
|
+
cross_attention_output, cross_attn_weights = self.cross_attn(
|
|
942
|
+
hidden_states=hidden_states,
|
|
943
|
+
attention_mask=encoder_attention_mask,
|
|
944
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
945
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
946
|
+
position_embeddings=position_embeddings,
|
|
947
|
+
reference_points=reference_points,
|
|
948
|
+
spatial_shapes=spatial_shapes,
|
|
949
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
950
|
+
level_start_index=level_start_index,
|
|
951
|
+
**kwargs,
|
|
952
|
+
)
|
|
953
|
+
cross_attention_output = nn.functional.dropout(cross_attention_output, p=self.dropout, training=self.training)
|
|
954
|
+
hidden_states = hidden_states + cross_attention_output
|
|
955
|
+
hidden_states = self.cross_attn_layer_norm(hidden_states)
|
|
956
|
+
|
|
957
|
+
hidden_states = self.mlp(hidden_states)
|
|
958
|
+
hidden_states = self.layer_norm(hidden_states)
|
|
959
|
+
|
|
960
|
+
return hidden_states
|
|
961
|
+
|
|
962
|
+
|
|
963
|
+
@auto_docstring
|
|
964
|
+
class LwDetrPreTrainedModel(PreTrainedModel):
|
|
965
|
+
config: LwDetrConfig
|
|
966
|
+
base_model_prefix = "model"
|
|
967
|
+
main_input_name = "pixel_values"
|
|
968
|
+
_no_split_modules = [
|
|
969
|
+
r"LwDetrConvEncoder",
|
|
970
|
+
r"LwDetrDecoderLayer",
|
|
971
|
+
]
|
|
972
|
+
_supports_sdpa = True
|
|
973
|
+
_supports_flash_attn = True
|
|
974
|
+
_supports_flex_attn = True
|
|
975
|
+
_supports_attention_backend = True
|
|
976
|
+
_can_record_outputs = {
|
|
977
|
+
"attentions": [LwDetrAttention, LwDetrMultiscaleDeformableAttention],
|
|
978
|
+
"hidden_states": [LwDetrDecoderLayer],
|
|
979
|
+
}
|
|
980
|
+
|
|
981
|
+
@torch.no_grad()
|
|
982
|
+
def _init_weights(self, module):
|
|
983
|
+
super()._init_weights(module)
|
|
984
|
+
|
|
985
|
+
if isinstance(module, LwDetrMultiscaleDeformableAttention):
|
|
986
|
+
init.constant_(module.sampling_offsets.weight, 0.0)
|
|
987
|
+
thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads)
|
|
988
|
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
|
989
|
+
grid_init = (
|
|
990
|
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
|
991
|
+
.view(module.n_heads, 1, 1, 2)
|
|
992
|
+
.repeat(1, module.n_levels, module.n_points, 1)
|
|
993
|
+
)
|
|
994
|
+
for i in range(module.n_points):
|
|
995
|
+
grid_init[:, :, i, :] *= i + 1
|
|
996
|
+
|
|
997
|
+
init.copy_(module.sampling_offsets.bias, grid_init.view(-1))
|
|
998
|
+
init.constant_(module.attention_weights.weight, 0.0)
|
|
999
|
+
init.constant_(module.attention_weights.bias, 0.0)
|
|
1000
|
+
init.xavier_uniform_(module.value_proj.weight)
|
|
1001
|
+
init.constant_(module.value_proj.bias, 0.0)
|
|
1002
|
+
init.xavier_uniform_(module.output_proj.weight)
|
|
1003
|
+
init.constant_(module.output_proj.bias, 0.0)
|
|
1004
|
+
if hasattr(module, "level_embed"):
|
|
1005
|
+
init.normal_(module.level_embed)
|
|
1006
|
+
if hasattr(module, "refpoint_embed") and module.refpoint_embed is not None:
|
|
1007
|
+
init.constant_(module.refpoint_embed.weight, 0)
|
|
1008
|
+
if hasattr(module, "class_embed") and module.class_embed is not None:
|
|
1009
|
+
prior_prob = 0.01
|
|
1010
|
+
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|
1011
|
+
init.constant_(module.class_embed.bias, bias_value)
|
|
1012
|
+
if hasattr(module, "bbox_embed") and module.bbox_embed is not None:
|
|
1013
|
+
init.constant_(module.bbox_embed.layers[-1].weight, 0)
|
|
1014
|
+
init.constant_(module.bbox_embed.layers[-1].bias, 0)
|
|
1015
|
+
|
|
1016
|
+
|
|
1017
|
+
@dataclass
|
|
1018
|
+
@auto_docstring(
|
|
1019
|
+
custom_intro="""
|
|
1020
|
+
Base class for outputs of the LwDetrDecoder. This class adds two attributes to
|
|
1021
|
+
BaseModelOutputWithCrossAttentions, namely:
|
|
1022
|
+
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
|
|
1023
|
+
- a stacked tensor of intermediate reference points.
|
|
1024
|
+
"""
|
|
1025
|
+
)
|
|
1026
|
+
class LwDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
|
|
1027
|
+
r"""
|
|
1028
|
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
|
1029
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
1030
|
+
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
|
1031
|
+
used to compute the weighted average in the cross-attention heads.
|
|
1032
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
|
|
1033
|
+
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
|
|
1034
|
+
layernorm.
|
|
1035
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
|
1036
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
1037
|
+
"""
|
|
1038
|
+
|
|
1039
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
1040
|
+
|
|
1041
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
1042
|
+
|
|
1043
|
+
|
|
1044
|
+
# function to generate sine positional embedding for 4d coordinates
|
|
1045
|
+
def gen_sine_position_embeddings(pos_tensor, hidden_size=256):
|
|
1046
|
+
"""
|
|
1047
|
+
This function computes position embeddings using sine and cosine functions from the input positional tensor,
|
|
1048
|
+
which has a shape of (batch_size, num_queries, 4).
|
|
1049
|
+
The last dimension of `pos_tensor` represents the following coordinates:
|
|
1050
|
+
- 0: x-coord
|
|
1051
|
+
- 1: y-coord
|
|
1052
|
+
- 2: width
|
|
1053
|
+
- 3: height
|
|
1054
|
+
|
|
1055
|
+
The output shape is (batch_size, num_queries, 512), where final dim (hidden_size*2 = 512) is the total embedding dimension
|
|
1056
|
+
achieved by concatenating the sine and cosine values for each coordinate.
|
|
1057
|
+
"""
|
|
1058
|
+
scale = 2 * math.pi
|
|
1059
|
+
dim = hidden_size // 2
|
|
1060
|
+
dim_t = torch.arange(dim, dtype=torch.float32, device=pos_tensor.device)
|
|
1061
|
+
dim_t = 10000 ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / dim)
|
|
1062
|
+
x_embed = pos_tensor[:, :, 0] * scale
|
|
1063
|
+
y_embed = pos_tensor[:, :, 1] * scale
|
|
1064
|
+
pos_x = x_embed[:, :, None] / dim_t
|
|
1065
|
+
pos_y = y_embed[:, :, None] / dim_t
|
|
1066
|
+
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
|
|
1067
|
+
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
|
|
1068
|
+
if pos_tensor.size(-1) == 4:
|
|
1069
|
+
w_embed = pos_tensor[:, :, 2] * scale
|
|
1070
|
+
pos_w = w_embed[:, :, None] / dim_t
|
|
1071
|
+
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
|
|
1072
|
+
|
|
1073
|
+
h_embed = pos_tensor[:, :, 3] * scale
|
|
1074
|
+
pos_h = h_embed[:, :, None] / dim_t
|
|
1075
|
+
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
|
|
1076
|
+
|
|
1077
|
+
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
|
1078
|
+
else:
|
|
1079
|
+
raise ValueError(f"Unknown pos_tensor shape(-1):{pos_tensor.size(-1)}")
|
|
1080
|
+
return pos.to(pos_tensor.dtype)
|
|
1081
|
+
|
|
1082
|
+
|
|
1083
|
+
class LwDetrDecoder(LwDetrPreTrainedModel):
|
|
1084
|
+
"""
|
|
1085
|
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DeformableDetrDecoderLayer`].
|
|
1086
|
+
|
|
1087
|
+
The decoder updates the query embeddings through multiple self-attention and deformable cross-attention layers.
|
|
1088
|
+
|
|
1089
|
+
Some tweaks for LwDetr:
|
|
1090
|
+
|
|
1091
|
+
- it uses group detr technique at training for faster convergence.
|
|
1092
|
+
|
|
1093
|
+
Args:
|
|
1094
|
+
config: LwDetrConfig
|
|
1095
|
+
"""
|
|
1096
|
+
|
|
1097
|
+
def __init__(self, config: LwDetrConfig):
|
|
1098
|
+
super().__init__(config)
|
|
1099
|
+
self.dropout = config.dropout
|
|
1100
|
+
self.layers = nn.ModuleList([LwDetrDecoderLayer(config, i) for i in range(config.decoder_layers)])
|
|
1101
|
+
self.layernorm = nn.LayerNorm(config.d_model)
|
|
1102
|
+
|
|
1103
|
+
self.gradient_checkpointing = False
|
|
1104
|
+
|
|
1105
|
+
self.ref_point_head = LwDetrMLPPredictionHead(2 * config.d_model, config.d_model, config.d_model, num_layers=2)
|
|
1106
|
+
|
|
1107
|
+
self.post_init()
|
|
1108
|
+
|
|
1109
|
+
def get_reference(self, reference_points, valid_ratios):
|
|
1110
|
+
# batch_size, num_queries, batch_size, 4
|
|
1111
|
+
obj_center = reference_points[..., :4]
|
|
1112
|
+
|
|
1113
|
+
# batch_size, num_queries, num_levels, 4
|
|
1114
|
+
reference_points_inputs = obj_center[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
|
|
1115
|
+
|
|
1116
|
+
# batch_size, num_queries, d_model * 2
|
|
1117
|
+
query_sine_embed = gen_sine_position_embeddings(reference_points_inputs[:, :, 0, :], self.config.d_model)
|
|
1118
|
+
|
|
1119
|
+
# batch_size, num_queries, d_model
|
|
1120
|
+
query_pos = self.ref_point_head(query_sine_embed)
|
|
1121
|
+
return reference_points_inputs, query_pos
|
|
1122
|
+
|
|
1123
|
+
def forward(
|
|
1124
|
+
self,
|
|
1125
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
1126
|
+
reference_points: torch.Tensor | None = None,
|
|
1127
|
+
spatial_shapes: torch.Tensor | None = None,
|
|
1128
|
+
spatial_shapes_list: torch.Tensor | None = None,
|
|
1129
|
+
level_start_index: torch.Tensor | None = None,
|
|
1130
|
+
valid_ratios: torch.Tensor | None = None,
|
|
1131
|
+
encoder_hidden_states: torch.Tensor | None = None,
|
|
1132
|
+
encoder_attention_mask: torch.Tensor | None = None,
|
|
1133
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1134
|
+
):
|
|
1135
|
+
intermediate = ()
|
|
1136
|
+
intermediate_reference_points = (reference_points,)
|
|
1137
|
+
|
|
1138
|
+
if inputs_embeds is not None:
|
|
1139
|
+
hidden_states = inputs_embeds
|
|
1140
|
+
|
|
1141
|
+
reference_points_inputs, query_pos = self.get_reference(reference_points, valid_ratios)
|
|
1142
|
+
|
|
1143
|
+
for idx, decoder_layer in enumerate(self.layers):
|
|
1144
|
+
hidden_states = decoder_layer(
|
|
1145
|
+
hidden_states,
|
|
1146
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
1147
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
1148
|
+
position_embeddings=query_pos,
|
|
1149
|
+
reference_points=reference_points_inputs,
|
|
1150
|
+
spatial_shapes=spatial_shapes,
|
|
1151
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1152
|
+
level_start_index=level_start_index,
|
|
1153
|
+
**kwargs,
|
|
1154
|
+
)
|
|
1155
|
+
intermediate_hidden_states = self.layernorm(hidden_states)
|
|
1156
|
+
intermediate += (intermediate_hidden_states,)
|
|
1157
|
+
|
|
1158
|
+
intermediate = torch.stack(intermediate)
|
|
1159
|
+
last_hidden_state = intermediate[-1]
|
|
1160
|
+
intermediate_reference_points = torch.stack(intermediate_reference_points)
|
|
1161
|
+
|
|
1162
|
+
return LwDetrDecoderOutput(
|
|
1163
|
+
last_hidden_state=last_hidden_state,
|
|
1164
|
+
intermediate_hidden_states=intermediate,
|
|
1165
|
+
intermediate_reference_points=intermediate_reference_points,
|
|
1166
|
+
)
|
|
1167
|
+
|
|
1168
|
+
|
|
1169
|
+
@dataclass
|
|
1170
|
+
@auto_docstring(
|
|
1171
|
+
custom_intro="""
|
|
1172
|
+
Base class for outputs of the LwDetr backbone-decoder model.
|
|
1173
|
+
"""
|
|
1174
|
+
)
|
|
1175
|
+
class LwDetrModelOutput(ModelOutput):
|
|
1176
|
+
r"""
|
|
1177
|
+
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
1178
|
+
Initial reference points sent through the Transformer decoder.
|
|
1179
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
1180
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
1181
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
1182
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
1183
|
+
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1184
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
1185
|
+
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
|
1186
|
+
foreground and background).
|
|
1187
|
+
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1188
|
+
Logits of predicted bounding boxes coordinates in the first stage.
|
|
1189
|
+
"""
|
|
1190
|
+
|
|
1191
|
+
init_reference_points: torch.FloatTensor | None = None
|
|
1192
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
1193
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
1194
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
1195
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
1196
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
1197
|
+
|
|
1198
|
+
|
|
1199
|
+
def refine_bboxes(reference_points, deltas):
|
|
1200
|
+
reference_points = reference_points.to(deltas.device)
|
|
1201
|
+
new_reference_points_cxcy = deltas[..., :2] * reference_points[..., 2:] + reference_points[..., :2]
|
|
1202
|
+
new_reference_points_wh = deltas[..., 2:].exp() * reference_points[..., 2:]
|
|
1203
|
+
new_reference_points = torch.cat((new_reference_points_cxcy, new_reference_points_wh), -1)
|
|
1204
|
+
return new_reference_points
|
|
1205
|
+
|
|
1206
|
+
|
|
1207
|
+
@auto_docstring(
|
|
1208
|
+
custom_intro="""
|
|
1209
|
+
The bare LW Detr Model (consisting of a backbone and decoder Transformer) outputting raw
|
|
1210
|
+
hidden-states without any specific head on top.
|
|
1211
|
+
"""
|
|
1212
|
+
)
|
|
1213
|
+
class LwDetrModel(LwDetrPreTrainedModel):
|
|
1214
|
+
def __init__(self, config: LwDetrConfig):
|
|
1215
|
+
super().__init__(config)
|
|
1216
|
+
|
|
1217
|
+
# Create backbone + positional encoding
|
|
1218
|
+
self.backbone = LwDetrConvEncoder(config)
|
|
1219
|
+
|
|
1220
|
+
self.group_detr = config.group_detr
|
|
1221
|
+
self.num_queries = config.num_queries
|
|
1222
|
+
hidden_dim = config.d_model
|
|
1223
|
+
self.reference_point_embed = nn.Embedding(self.num_queries * self.group_detr, 4)
|
|
1224
|
+
self.query_feat = nn.Embedding(self.num_queries * self.group_detr, hidden_dim)
|
|
1225
|
+
|
|
1226
|
+
self.decoder = LwDetrDecoder(config)
|
|
1227
|
+
|
|
1228
|
+
self.enc_output = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(self.group_detr)])
|
|
1229
|
+
self.enc_output_norm = nn.ModuleList([nn.LayerNorm(hidden_dim) for _ in range(self.group_detr)])
|
|
1230
|
+
# Should normally be None and then instantiated in the ForObjectDetection class
|
|
1231
|
+
self.enc_out_bbox_embed = nn.ModuleList(
|
|
1232
|
+
[LwDetrMLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3) for _ in range(self.group_detr)]
|
|
1233
|
+
)
|
|
1234
|
+
self.enc_out_class_embed = nn.ModuleList(
|
|
1235
|
+
[nn.Linear(config.d_model, config.num_labels) for _ in range(self.group_detr)]
|
|
1236
|
+
)
|
|
1237
|
+
|
|
1238
|
+
self.post_init()
|
|
1239
|
+
|
|
1240
|
+
def freeze_backbone(self):
|
|
1241
|
+
for name, param in self.backbone.model.named_parameters():
|
|
1242
|
+
param.requires_grad_(False)
|
|
1243
|
+
|
|
1244
|
+
def unfreeze_backbone(self):
|
|
1245
|
+
for name, param in self.backbone.model.named_parameters():
|
|
1246
|
+
param.requires_grad_(True)
|
|
1247
|
+
|
|
1248
|
+
def get_valid_ratio(self, mask, dtype=torch.float32):
|
|
1249
|
+
"""Get the valid ratio of all feature maps."""
|
|
1250
|
+
|
|
1251
|
+
_, height, width = mask.shape
|
|
1252
|
+
valid_height = torch.sum(mask[:, :, 0], 1)
|
|
1253
|
+
valid_width = torch.sum(mask[:, 0, :], 1)
|
|
1254
|
+
valid_ratio_height = valid_height.to(dtype) / height
|
|
1255
|
+
valid_ratio_width = valid_width.to(dtype) / width
|
|
1256
|
+
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1)
|
|
1257
|
+
return valid_ratio
|
|
1258
|
+
|
|
1259
|
+
def get_proposal_pos_embed(self, proposals):
|
|
1260
|
+
"""Get the position embedding of the proposals."""
|
|
1261
|
+
|
|
1262
|
+
num_pos_feats = self.config.d_model // 2
|
|
1263
|
+
temperature = 10000
|
|
1264
|
+
scale = 2 * math.pi
|
|
1265
|
+
|
|
1266
|
+
# Compute position embeddings in float32 to avoid overflow with large temperature values in fp16
|
|
1267
|
+
proposals_dtype = proposals.dtype
|
|
1268
|
+
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
|
|
1269
|
+
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
|
|
1270
|
+
# batch_size, num_queries, 4
|
|
1271
|
+
proposals = proposals.sigmoid().to(torch.float32) * scale
|
|
1272
|
+
# batch_size, num_queries, 4, 128
|
|
1273
|
+
pos = proposals[:, :, :, None] / dim_t
|
|
1274
|
+
# batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512
|
|
1275
|
+
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
|
|
1276
|
+
# Convert back to target dtype after all computations are done
|
|
1277
|
+
return pos.to(proposals_dtype)
|
|
1278
|
+
|
|
1279
|
+
def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
|
|
1280
|
+
"""Generate the encoder output proposals from encoded enc_output.
|
|
1281
|
+
|
|
1282
|
+
Args:
|
|
1283
|
+
enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
|
|
1284
|
+
padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
|
|
1285
|
+
spatial_shapes (list[tuple[int, int]]): Spatial shapes of the feature maps.
|
|
1286
|
+
|
|
1287
|
+
Returns:
|
|
1288
|
+
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
|
|
1289
|
+
- object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
|
|
1290
|
+
directly predict a bounding box. (without the need of a decoder)
|
|
1291
|
+
- output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
|
|
1292
|
+
sigmoid.
|
|
1293
|
+
"""
|
|
1294
|
+
batch_size = enc_output.shape[0]
|
|
1295
|
+
proposals = []
|
|
1296
|
+
_cur = 0
|
|
1297
|
+
for level, (height, width) in enumerate(spatial_shapes):
|
|
1298
|
+
mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1)
|
|
1299
|
+
valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
|
1300
|
+
valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
|
1301
|
+
|
|
1302
|
+
grid_y, grid_x = meshgrid(
|
|
1303
|
+
torch.linspace(
|
|
1304
|
+
0,
|
|
1305
|
+
height - 1,
|
|
1306
|
+
height,
|
|
1307
|
+
dtype=enc_output.dtype,
|
|
1308
|
+
device=enc_output.device,
|
|
1309
|
+
),
|
|
1310
|
+
torch.linspace(
|
|
1311
|
+
0,
|
|
1312
|
+
width - 1,
|
|
1313
|
+
width,
|
|
1314
|
+
dtype=enc_output.dtype,
|
|
1315
|
+
device=enc_output.device,
|
|
1316
|
+
),
|
|
1317
|
+
indexing="ij",
|
|
1318
|
+
)
|
|
1319
|
+
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
|
|
1320
|
+
|
|
1321
|
+
scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
|
|
1322
|
+
grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
|
|
1323
|
+
width_height = torch.ones_like(grid) * 0.05 * (2.0**level)
|
|
1324
|
+
proposal = torch.cat((grid, width_height), -1).view(batch_size, -1, 4)
|
|
1325
|
+
proposals.append(proposal)
|
|
1326
|
+
_cur += height * width
|
|
1327
|
+
output_proposals = torch.cat(proposals, 1)
|
|
1328
|
+
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
|
|
1329
|
+
output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
|
|
1330
|
+
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
|
|
1331
|
+
|
|
1332
|
+
# assign each pixel as an object query
|
|
1333
|
+
object_query = enc_output
|
|
1334
|
+
object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
|
|
1335
|
+
object_query = object_query.masked_fill(~output_proposals_valid, float(0))
|
|
1336
|
+
return object_query, output_proposals
|
|
1337
|
+
|
|
1338
|
+
@check_model_inputs
|
|
1339
|
+
@auto_docstring
|
|
1340
|
+
def forward(
|
|
1341
|
+
self,
|
|
1342
|
+
pixel_values: torch.FloatTensor = None,
|
|
1343
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1344
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1345
|
+
) -> LwDetrModelOutput:
|
|
1346
|
+
r"""
|
|
1347
|
+
Examples:
|
|
1348
|
+
|
|
1349
|
+
```python
|
|
1350
|
+
>>> from transformers import AutoImageProcessor, DeformableDetrModel
|
|
1351
|
+
>>> from PIL import Image
|
|
1352
|
+
>>> import httpx
|
|
1353
|
+
>>> from io import BytesIO
|
|
1354
|
+
|
|
1355
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
1356
|
+
>>> with httpx.stream("GET", url) as response:
|
|
1357
|
+
... image = Image.open(BytesIO(response.read()))
|
|
1358
|
+
|
|
1359
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("AnnaZhang/lwdetr_small_60e_coco")
|
|
1360
|
+
>>> model = DeformableDetrModel.from_pretrained("AnnaZhang/lwdetr_small_60e_coco")
|
|
1361
|
+
|
|
1362
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
1363
|
+
|
|
1364
|
+
>>> outputs = model(**inputs)
|
|
1365
|
+
|
|
1366
|
+
>>> last_hidden_states = outputs.last_hidden_state
|
|
1367
|
+
>>> list(last_hidden_states.shape)
|
|
1368
|
+
[1, 300, 256]
|
|
1369
|
+
```"""
|
|
1370
|
+
batch_size, num_channels, height, width = pixel_values.shape
|
|
1371
|
+
device = pixel_values.device
|
|
1372
|
+
|
|
1373
|
+
if pixel_mask is None:
|
|
1374
|
+
pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)
|
|
1375
|
+
|
|
1376
|
+
# Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
|
|
1377
|
+
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
|
|
1378
|
+
# which is a list of tuples
|
|
1379
|
+
features = self.backbone(pixel_values, pixel_mask)
|
|
1380
|
+
|
|
1381
|
+
# Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
|
|
1382
|
+
sources = []
|
|
1383
|
+
masks = []
|
|
1384
|
+
for level, (source, mask) in enumerate(features):
|
|
1385
|
+
sources.append(source)
|
|
1386
|
+
masks.append(mask)
|
|
1387
|
+
if mask is None:
|
|
1388
|
+
raise ValueError("No attention mask was provided")
|
|
1389
|
+
|
|
1390
|
+
if self.training:
|
|
1391
|
+
reference_points = self.reference_point_embed.weight
|
|
1392
|
+
query_feat = self.query_feat.weight
|
|
1393
|
+
else:
|
|
1394
|
+
# only use one group in inference
|
|
1395
|
+
reference_points = self.reference_point_embed.weight[: self.num_queries]
|
|
1396
|
+
query_feat = self.query_feat.weight[: self.num_queries]
|
|
1397
|
+
|
|
1398
|
+
# Prepare encoder inputs (by flattening)
|
|
1399
|
+
source_flatten = []
|
|
1400
|
+
mask_flatten = []
|
|
1401
|
+
spatial_shapes_list = []
|
|
1402
|
+
for source, mask in zip(sources, masks):
|
|
1403
|
+
batch_size, num_channels, height, width = source.shape
|
|
1404
|
+
spatial_shape = (height, width)
|
|
1405
|
+
spatial_shapes_list.append(spatial_shape)
|
|
1406
|
+
source = source.flatten(2).transpose(1, 2)
|
|
1407
|
+
mask = mask.flatten(1)
|
|
1408
|
+
source_flatten.append(source)
|
|
1409
|
+
mask_flatten.append(mask)
|
|
1410
|
+
source_flatten = torch.cat(source_flatten, 1)
|
|
1411
|
+
mask_flatten = torch.cat(mask_flatten, 1)
|
|
1412
|
+
spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=source_flatten.device)
|
|
1413
|
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
|
1414
|
+
valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
|
|
1415
|
+
|
|
1416
|
+
target = query_feat.unsqueeze(0).expand(batch_size, -1, -1)
|
|
1417
|
+
reference_points = reference_points.unsqueeze(0).expand(batch_size, -1, -1)
|
|
1418
|
+
|
|
1419
|
+
object_query_embedding, output_proposals = self.gen_encoder_output_proposals(
|
|
1420
|
+
source_flatten, ~mask_flatten, spatial_shapes_list
|
|
1421
|
+
)
|
|
1422
|
+
|
|
1423
|
+
group_detr = self.group_detr if self.training else 1
|
|
1424
|
+
topk = self.num_queries
|
|
1425
|
+
topk_coords_logits = []
|
|
1426
|
+
topk_coords_logits_undetach = []
|
|
1427
|
+
object_query_undetach = []
|
|
1428
|
+
|
|
1429
|
+
for group_id in range(group_detr):
|
|
1430
|
+
group_object_query = self.enc_output[group_id](object_query_embedding)
|
|
1431
|
+
group_object_query = self.enc_output_norm[group_id](group_object_query)
|
|
1432
|
+
|
|
1433
|
+
group_enc_outputs_class = self.enc_out_class_embed[group_id](group_object_query)
|
|
1434
|
+
group_delta_bbox = self.enc_out_bbox_embed[group_id](group_object_query)
|
|
1435
|
+
group_enc_outputs_coord = refine_bboxes(output_proposals, group_delta_bbox)
|
|
1436
|
+
|
|
1437
|
+
group_topk_proposals = torch.topk(group_enc_outputs_class.max(-1)[0], topk, dim=1)[1]
|
|
1438
|
+
group_topk_coords_logits_undetach = torch.gather(
|
|
1439
|
+
group_enc_outputs_coord,
|
|
1440
|
+
1,
|
|
1441
|
+
group_topk_proposals.unsqueeze(-1).repeat(1, 1, 4),
|
|
1442
|
+
)
|
|
1443
|
+
group_topk_coords_logits = group_topk_coords_logits_undetach.detach()
|
|
1444
|
+
group_object_query_undetach = torch.gather(
|
|
1445
|
+
group_object_query, 1, group_topk_proposals.unsqueeze(-1).repeat(1, 1, self.config.d_model)
|
|
1446
|
+
)
|
|
1447
|
+
|
|
1448
|
+
topk_coords_logits.append(group_topk_coords_logits)
|
|
1449
|
+
topk_coords_logits_undetach.append(group_topk_coords_logits_undetach)
|
|
1450
|
+
object_query_undetach.append(group_object_query_undetach)
|
|
1451
|
+
|
|
1452
|
+
topk_coords_logits = torch.cat(topk_coords_logits, 1)
|
|
1453
|
+
topk_coords_logits_undetach = torch.cat(topk_coords_logits_undetach, 1)
|
|
1454
|
+
object_query_undetach = torch.cat(object_query_undetach, 1)
|
|
1455
|
+
|
|
1456
|
+
enc_outputs_class = object_query_undetach
|
|
1457
|
+
enc_outputs_coord_logits = topk_coords_logits
|
|
1458
|
+
|
|
1459
|
+
reference_points = refine_bboxes(topk_coords_logits_undetach, reference_points)
|
|
1460
|
+
|
|
1461
|
+
init_reference_points = reference_points
|
|
1462
|
+
decoder_outputs = self.decoder(
|
|
1463
|
+
inputs_embeds=target,
|
|
1464
|
+
reference_points=reference_points,
|
|
1465
|
+
spatial_shapes=spatial_shapes,
|
|
1466
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1467
|
+
level_start_index=level_start_index,
|
|
1468
|
+
valid_ratios=valid_ratios,
|
|
1469
|
+
encoder_hidden_states=source_flatten,
|
|
1470
|
+
encoder_attention_mask=mask_flatten,
|
|
1471
|
+
**kwargs,
|
|
1472
|
+
)
|
|
1473
|
+
|
|
1474
|
+
return LwDetrModelOutput(
|
|
1475
|
+
init_reference_points=init_reference_points,
|
|
1476
|
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
1477
|
+
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
|
|
1478
|
+
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
|
|
1479
|
+
enc_outputs_class=enc_outputs_class,
|
|
1480
|
+
enc_outputs_coord_logits=enc_outputs_coord_logits,
|
|
1481
|
+
)
|
|
1482
|
+
|
|
1483
|
+
|
|
1484
|
+
class LwDetrMLPPredictionHead(nn.Module):
|
|
1485
|
+
"""
|
|
1486
|
+
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
|
|
1487
|
+
height and width of a bounding box w.r.t. an image.
|
|
1488
|
+
|
|
1489
|
+
"""
|
|
1490
|
+
|
|
1491
|
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|
1492
|
+
super().__init__()
|
|
1493
|
+
self.num_layers = num_layers
|
|
1494
|
+
h = [hidden_dim] * (num_layers - 1)
|
|
1495
|
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
1496
|
+
|
|
1497
|
+
def forward(self, x):
|
|
1498
|
+
for i, layer in enumerate(self.layers):
|
|
1499
|
+
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
1500
|
+
return x
|
|
1501
|
+
|
|
1502
|
+
|
|
1503
|
+
@dataclass
|
|
1504
|
+
@auto_docstring(
|
|
1505
|
+
custom_intro="""
|
|
1506
|
+
Output type of [`LwDetrForObjectDetection`].
|
|
1507
|
+
"""
|
|
1508
|
+
)
|
|
1509
|
+
class LwDetrObjectDetectionOutput(ModelOutput):
|
|
1510
|
+
r"""
|
|
1511
|
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
|
|
1512
|
+
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
|
|
1513
|
+
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
|
|
1514
|
+
scale-invariant IoU loss.
|
|
1515
|
+
loss_dict (`Dict`, *optional*):
|
|
1516
|
+
A dictionary containing the individual losses. Useful for logging.
|
|
1517
|
+
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
|
|
1518
|
+
Classification logits (including no-object) for all queries.
|
|
1519
|
+
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
1520
|
+
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
|
1521
|
+
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
|
|
1522
|
+
possible padding). You can use [`~DeformableDetrProcessor.post_process_object_detection`] to retrieve the
|
|
1523
|
+
unnormalized bounding boxes.
|
|
1524
|
+
auxiliary_outputs (`list[Dict]`, *optional*):
|
|
1525
|
+
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
|
|
1526
|
+
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
|
|
1527
|
+
`pred_boxes`) for each decoder layer.
|
|
1528
|
+
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
1529
|
+
Initial reference points sent through the Transformer decoder.
|
|
1530
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
1531
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
1532
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
1533
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
1534
|
+
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1535
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
1536
|
+
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
|
1537
|
+
foreground and background).
|
|
1538
|
+
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1539
|
+
Logits of predicted bounding boxes coordinates in the first stage.
|
|
1540
|
+
"""
|
|
1541
|
+
|
|
1542
|
+
loss: torch.FloatTensor | None = None
|
|
1543
|
+
loss_dict: dict | None = None
|
|
1544
|
+
logits: torch.FloatTensor | None = None
|
|
1545
|
+
pred_boxes: torch.FloatTensor | None = None
|
|
1546
|
+
auxiliary_outputs: list[dict] | None = None
|
|
1547
|
+
init_reference_points: torch.FloatTensor | None = None
|
|
1548
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
1549
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
1550
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
1551
|
+
enc_outputs_class: Any = None
|
|
1552
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
1553
|
+
|
|
1554
|
+
|
|
1555
|
+
@auto_docstring(
|
|
1556
|
+
custom_intro="""
|
|
1557
|
+
LW DETR Model (consisting of a backbone and decoder Transformer) with object detection heads on
|
|
1558
|
+
top, for tasks such as COCO detection.
|
|
1559
|
+
"""
|
|
1560
|
+
)
|
|
1561
|
+
class LwDetrForObjectDetection(LwDetrPreTrainedModel):
|
|
1562
|
+
# When using clones, all layers > 0 will be clones, but layer 0 *is* required
|
|
1563
|
+
# We can't initialize the model on meta device as some weights are modified during the initialization
|
|
1564
|
+
_no_split_modules = None
|
|
1565
|
+
_tied_weights_keys = None
|
|
1566
|
+
|
|
1567
|
+
def __init__(self, config: LwDetrConfig):
|
|
1568
|
+
super().__init__(config)
|
|
1569
|
+
self.model = LwDetrModel(config)
|
|
1570
|
+
self.class_embed = nn.Linear(config.d_model, config.num_labels)
|
|
1571
|
+
self.bbox_embed = LwDetrMLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3)
|
|
1572
|
+
|
|
1573
|
+
self.post_init()
|
|
1574
|
+
|
|
1575
|
+
@check_model_inputs
|
|
1576
|
+
@auto_docstring
|
|
1577
|
+
def forward(
|
|
1578
|
+
self,
|
|
1579
|
+
pixel_values: torch.FloatTensor = None,
|
|
1580
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1581
|
+
labels: list[dict] | None = None,
|
|
1582
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1583
|
+
) -> LwDetrObjectDetectionOutput:
|
|
1584
|
+
r"""
|
|
1585
|
+
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
|
1586
|
+
Not used by default. Can be used to mask object queries.
|
|
1587
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1588
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
1589
|
+
can choose to directly pass a flattened representation of an image.
|
|
1590
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
1591
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
1592
|
+
embedded representation.
|
|
1593
|
+
labels (`list[Dict]` of len `(batch_size,)`, *optional*):
|
|
1594
|
+
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
|
1595
|
+
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
|
1596
|
+
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
|
|
1597
|
+
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
|
|
1598
|
+
|
|
1599
|
+
Examples:
|
|
1600
|
+
|
|
1601
|
+
```python
|
|
1602
|
+
>>> from transformers import AutoImageProcessor, LwDetrForObjectDetection
|
|
1603
|
+
>>> from PIL import Image
|
|
1604
|
+
>>> import httpx
|
|
1605
|
+
>>> from io import BytesIO
|
|
1606
|
+
|
|
1607
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
1608
|
+
>>> with httpx.stream("GET", url) as response:
|
|
1609
|
+
... image = Image.open(BytesIO(response.read()))
|
|
1610
|
+
|
|
1611
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("AnnaZhang/lwdetr_small_60e_coco")
|
|
1612
|
+
>>> model = LwDetrForObjectDetection.from_pretrained("AnnaZhang/lwdetr_small_60e_coco")
|
|
1613
|
+
|
|
1614
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
1615
|
+
>>> outputs = model(**inputs)
|
|
1616
|
+
|
|
1617
|
+
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
|
1618
|
+
>>> target_sizes = torch.tensor([image.size[::-1]])
|
|
1619
|
+
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
|
|
1620
|
+
... 0
|
|
1621
|
+
... ]
|
|
1622
|
+
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
|
1623
|
+
... box = [round(i, 2) for i in box.tolist()]
|
|
1624
|
+
... print(
|
|
1625
|
+
... f"Detected {model.config.id2label[label.item()]} with confidence "
|
|
1626
|
+
... f"{round(score.item(), 3)} at location {box}"
|
|
1627
|
+
... )
|
|
1628
|
+
Detected cat with confidence 0.8 at location [16.5, 52.84, 318.25, 470.78]
|
|
1629
|
+
Detected cat with confidence 0.789 at location [342.19, 24.3, 640.02, 372.25]
|
|
1630
|
+
Detected remote with confidence 0.633 at location [40.79, 72.78, 176.76, 117.25]
|
|
1631
|
+
```"""
|
|
1632
|
+
outputs = self.model(
|
|
1633
|
+
pixel_values,
|
|
1634
|
+
pixel_mask=pixel_mask,
|
|
1635
|
+
**kwargs,
|
|
1636
|
+
)
|
|
1637
|
+
|
|
1638
|
+
last_hidden_states = outputs.last_hidden_state
|
|
1639
|
+
intermediate_reference_points = outputs.intermediate_reference_points
|
|
1640
|
+
enc_outputs_class_logits = outputs.enc_outputs_class
|
|
1641
|
+
enc_outputs_boxes_logits = outputs.enc_outputs_coord_logits
|
|
1642
|
+
|
|
1643
|
+
logits = self.class_embed(last_hidden_states)
|
|
1644
|
+
pred_boxes_delta = self.bbox_embed(last_hidden_states)
|
|
1645
|
+
pred_boxes = refine_bboxes(intermediate_reference_points[-1], pred_boxes_delta)
|
|
1646
|
+
|
|
1647
|
+
enc_outputs_class_logits_list = enc_outputs_class_logits.split(self.config.num_queries, dim=1)
|
|
1648
|
+
pred_class = []
|
|
1649
|
+
group_detr = self.config.group_detr if self.training else 1
|
|
1650
|
+
for group_index in range(group_detr):
|
|
1651
|
+
group_pred_class = self.model.enc_out_class_embed[group_index](enc_outputs_class_logits_list[group_index])
|
|
1652
|
+
pred_class.append(group_pred_class)
|
|
1653
|
+
enc_outputs_class_logits = torch.cat(pred_class, dim=1)
|
|
1654
|
+
|
|
1655
|
+
loss, loss_dict, auxiliary_outputs = None, None, None
|
|
1656
|
+
if labels is not None:
|
|
1657
|
+
outputs_class, outputs_coord = None, None
|
|
1658
|
+
if self.config.auxiliary_loss:
|
|
1659
|
+
intermediate_hidden_states = outputs.intermediate_hidden_states
|
|
1660
|
+
outputs_coord_delta = self.bbox_embed(intermediate_hidden_states)
|
|
1661
|
+
outputs_coord = refine_bboxes(intermediate_reference_points, outputs_coord_delta)
|
|
1662
|
+
outputs_class = self.class_embed(intermediate_hidden_states)
|
|
1663
|
+
|
|
1664
|
+
loss, loss_dict, auxiliary_outputs = self.loss_function(
|
|
1665
|
+
logits,
|
|
1666
|
+
labels,
|
|
1667
|
+
self.device,
|
|
1668
|
+
pred_boxes,
|
|
1669
|
+
self.config,
|
|
1670
|
+
outputs_class,
|
|
1671
|
+
outputs_coord,
|
|
1672
|
+
enc_outputs_class_logits,
|
|
1673
|
+
enc_outputs_boxes_logits,
|
|
1674
|
+
)
|
|
1675
|
+
|
|
1676
|
+
return LwDetrObjectDetectionOutput(
|
|
1677
|
+
loss=loss,
|
|
1678
|
+
loss_dict=loss_dict,
|
|
1679
|
+
logits=logits,
|
|
1680
|
+
pred_boxes=pred_boxes,
|
|
1681
|
+
auxiliary_outputs=auxiliary_outputs,
|
|
1682
|
+
last_hidden_state=outputs.last_hidden_state,
|
|
1683
|
+
intermediate_hidden_states=outputs.intermediate_hidden_states,
|
|
1684
|
+
intermediate_reference_points=outputs.intermediate_reference_points,
|
|
1685
|
+
init_reference_points=outputs.init_reference_points,
|
|
1686
|
+
enc_outputs_class=enc_outputs_class_logits,
|
|
1687
|
+
enc_outputs_coord_logits=enc_outputs_boxes_logits,
|
|
1688
|
+
)
|
|
1689
|
+
|
|
1690
|
+
|
|
1691
|
+
__all__ = [
|
|
1692
|
+
"LwDetrPreTrainedModel",
|
|
1693
|
+
"LwDetrModel",
|
|
1694
|
+
"LwDetrForObjectDetection",
|
|
1695
|
+
"LwDetrViTPreTrainedModel",
|
|
1696
|
+
"LwDetrViTBackbone",
|
|
1697
|
+
]
|