transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +20 -1
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +68 -5
- transformers/core_model_loading.py +201 -35
- transformers/dependency_versions_table.py +1 -1
- transformers/feature_extraction_utils.py +54 -22
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +162 -122
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +101 -64
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +2 -12
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +12 -0
- transformers/integrations/accelerate.py +44 -111
- transformers/integrations/aqlm.py +3 -5
- transformers/integrations/awq.py +2 -5
- transformers/integrations/bitnet.py +5 -8
- transformers/integrations/bitsandbytes.py +16 -15
- transformers/integrations/deepspeed.py +18 -3
- transformers/integrations/eetq.py +3 -5
- transformers/integrations/fbgemm_fp8.py +1 -1
- transformers/integrations/finegrained_fp8.py +6 -16
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/higgs.py +2 -5
- transformers/integrations/hub_kernels.py +23 -5
- transformers/integrations/integration_utils.py +35 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +4 -10
- transformers/integrations/peft.py +5 -0
- transformers/integrations/quanto.py +5 -2
- transformers/integrations/spqr.py +3 -5
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/vptq.py +3 -5
- transformers/modeling_gguf_pytorch_utils.py +66 -19
- transformers/modeling_rope_utils.py +78 -81
- transformers/modeling_utils.py +583 -503
- transformers/models/__init__.py +19 -0
- transformers/models/afmoe/modeling_afmoe.py +7 -16
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/align/modeling_align.py +12 -6
- transformers/models/altclip/modeling_altclip.py +7 -3
- transformers/models/apertus/modeling_apertus.py +4 -2
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +1 -1
- transformers/models/aria/modeling_aria.py +8 -4
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +27 -0
- transformers/models/auto/feature_extraction_auto.py +7 -3
- transformers/models/auto/image_processing_auto.py +4 -2
- transformers/models/auto/modeling_auto.py +31 -0
- transformers/models/auto/processing_auto.py +4 -0
- transformers/models/auto/tokenization_auto.py +132 -153
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +18 -19
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +9 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +7 -0
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +3 -0
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +7 -0
- transformers/models/bit/modeling_bit.py +5 -1
- transformers/models/bitnet/modeling_bitnet.py +1 -1
- transformers/models/blenderbot/modeling_blenderbot.py +7 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +6 -7
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +7 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +8 -0
- transformers/models/blip_2/modeling_blip_2.py +2 -0
- transformers/models/bloom/modeling_bloom.py +13 -44
- transformers/models/blt/modeling_blt.py +162 -2
- transformers/models/blt/modular_blt.py +168 -3
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +6 -0
- transformers/models/bros/modeling_bros.py +8 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/canine/modeling_canine.py +6 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +9 -4
- transformers/models/chinese_clip/modeling_chinese_clip.py +6 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +25 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clipseg/modeling_clipseg.py +4 -0
- transformers/models/clvp/modeling_clvp.py +14 -3
- transformers/models/code_llama/tokenization_code_llama.py +1 -1
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/cohere/modeling_cohere.py +1 -1
- transformers/models/cohere2/modeling_cohere2.py +1 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +0 -1
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +4 -1
- transformers/models/convbert/modeling_convbert.py +3 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +3 -1
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +14 -2
- transformers/models/cvt/modeling_cvt.py +5 -1
- transformers/models/cwm/modeling_cwm.py +1 -1
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +46 -39
- transformers/models/d_fine/modular_d_fine.py +15 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +1 -1
- transformers/models/dac/modeling_dac.py +4 -4
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +1 -1
- transformers/models/deberta/modeling_deberta.py +2 -0
- transformers/models/deberta_v2/modeling_deberta_v2.py +2 -0
- transformers/models/decision_transformer/modeling_decision_transformer.py +8 -5
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -4
- transformers/models/deepseek_v2/modular_deepseek_v2.py +4 -2
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +9 -5
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +1 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +8 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +12 -1
- transformers/models/dia/modular_dia.py +11 -0
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +3 -3
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +3 -0
- transformers/models/dinov3_vit/modular_dinov3_vit.py +3 -0
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/doge/modeling_doge.py +1 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +16 -12
- transformers/models/dots1/modeling_dots1.py +14 -5
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +5 -2
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +13 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +14 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +5 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +8 -2
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt_fast.py +46 -14
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +1 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +16 -13
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +9 -35
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +6 -1
- transformers/models/evolla/modeling_evolla.py +9 -1
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +1 -1
- transformers/models/falcon/modeling_falcon.py +3 -3
- transformers/models/falcon_h1/modeling_falcon_h1.py +28 -23
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +6 -2
- transformers/models/falcon_mamba/modular_falcon_mamba.py +7 -2
- transformers/models/fast_vlm/modeling_fast_vlm.py +7 -3
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +23 -10
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +14 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +4 -1
- transformers/models/flex_olmo/modeling_flex_olmo.py +7 -4
- transformers/models/florence2/modeling_florence2.py +20 -3
- transformers/models/florence2/modular_florence2.py +13 -0
- transformers/models/fnet/modeling_fnet.py +7 -0
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +16 -0
- transformers/models/gemma/modeling_gemma.py +10 -12
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma2/modeling_gemma2.py +1 -1
- transformers/models/gemma2/modular_gemma2.py +1 -1
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +28 -7
- transformers/models/gemma3/modular_gemma3.py +26 -6
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +47 -9
- transformers/models/gemma3n/modular_gemma3n.py +51 -9
- transformers/models/git/modeling_git.py +181 -126
- transformers/models/glm/modeling_glm.py +1 -1
- transformers/models/glm4/modeling_glm4.py +1 -1
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +9 -5
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +15 -5
- transformers/models/glm4v/modular_glm4v.py +11 -3
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +39 -23
- transformers/models/glm4v_moe/modular_glm4v_moe.py +12 -0
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +8 -5
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +3 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +15 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +1 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +1 -1
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +6 -9
- transformers/models/gpt_oss/modular_gpt_oss.py +5 -7
- transformers/models/gptj/modeling_gptj.py +15 -6
- transformers/models/granite/modeling_granite.py +1 -1
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +2 -3
- transformers/models/granitemoe/modular_granitemoe.py +1 -2
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +33 -23
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +2 -3
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +4 -4
- transformers/models/groupvit/modeling_groupvit.py +6 -1
- transformers/models/helium/modeling_helium.py +1 -1
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -0
- transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -0
- transformers/models/hubert/modeling_hubert.py +4 -0
- transformers/models/hubert/modular_hubert.py +4 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +12 -4
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +16 -0
- transformers/models/idefics/modeling_idefics.py +10 -0
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +9 -2
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +11 -8
- transformers/models/internvl/modular_internvl.py +5 -9
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +24 -19
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +15 -7
- transformers/models/janus/modular_janus.py +16 -7
- transformers/models/jetmoe/modeling_jetmoe.py +2 -2
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +14 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +9 -3
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/configuration_lasr.py +4 -0
- transformers/models/lasr/modeling_lasr.py +3 -2
- transformers/models/lasr/modular_lasr.py +8 -1
- transformers/models/lasr/processing_lasr.py +0 -2
- transformers/models/layoutlm/modeling_layoutlm.py +5 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +12 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1 -0
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +29 -5
- transformers/models/led/modeling_led.py +6 -0
- transformers/models/levit/modeling_levit.py +18 -0
- transformers/models/lfm2/modeling_lfm2.py +1 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +14 -4
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lilt/modeling_lilt.py +19 -15
- transformers/models/llama/modeling_llama.py +1 -1
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +8 -4
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +2 -1
- transformers/models/longcat_flash/modular_longcat_flash.py +1 -0
- transformers/models/longt5/modeling_longt5.py +0 -4
- transformers/models/m2m_100/modeling_m2m_100.py +10 -0
- transformers/models/mamba/modeling_mamba.py +2 -1
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +3 -0
- transformers/models/markuplm/modeling_markuplm.py +5 -8
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +9 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +9 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +19 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +7 -0
- transformers/models/megatron_bert/modeling_megatron_bert.py +2 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mimi/modeling_mimi.py +25 -4
- transformers/models/minimax/modeling_minimax.py +16 -3
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +1 -1
- transformers/models/mistral/modeling_mistral.py +1 -1
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +12 -4
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +13 -2
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +4 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -0
- transformers/models/modernbert/modeling_modernbert.py +12 -1
- transformers/models/modernbert/modular_modernbert.py +12 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -1
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +9 -1
- transformers/models/moonshine/modeling_moonshine.py +1 -1
- transformers/models/moshi/modeling_moshi.py +21 -51
- transformers/models/mpnet/modeling_mpnet.py +2 -0
- transformers/models/mra/modeling_mra.py +4 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +0 -10
- transformers/models/musicgen/modeling_musicgen.py +5 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +4 -0
- transformers/models/mvp/modeling_mvp.py +7 -0
- transformers/models/nanochat/modeling_nanochat.py +1 -1
- transformers/models/nemotron/modeling_nemotron.py +3 -3
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +11 -16
- transformers/models/nystromformer/modeling_nystromformer.py +7 -0
- transformers/models/olmo/modeling_olmo.py +1 -1
- transformers/models/olmo2/modeling_olmo2.py +1 -1
- transformers/models/olmo3/modeling_olmo3.py +1 -1
- transformers/models/olmoe/modeling_olmoe.py +12 -4
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +4 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +7 -38
- transformers/models/openai/modeling_openai.py +12 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +7 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +7 -3
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +3 -2
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +28 -14
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +22 -12
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/modeling_parakeet.py +5 -0
- transformers/models/parakeet/modular_parakeet.py +5 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +4 -0
- transformers/models/patchtst/modeling_patchtst.py +5 -4
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/models/pe_audio/processing_pe_audio.py +24 -0
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +3 -0
- transformers/models/pegasus_x/modeling_pegasus_x.py +1 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +5 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +1 -1
- transformers/models/phi/modeling_phi.py +1 -1
- transformers/models/phi3/modeling_phi3.py +1 -1
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +4 -1
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +3 -0
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +12 -4
- transformers/models/phimoe/modular_phimoe.py +1 -1
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +1 -1
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +7 -0
- transformers/models/plbart/modular_plbart.py +6 -0
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +11 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prophetnet/modeling_prophetnet.py +2 -1
- transformers/models/qwen2/modeling_qwen2.py +1 -1
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +104 -64
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +58 -18
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -5
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +26 -22
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +12 -4
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +17 -4
- transformers/models/qwen3/modeling_qwen3.py +1 -1
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +12 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +4 -6
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +92 -46
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +48 -4
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +17 -4
- transformers/models/qwen3_vl/modular_qwen3_vl.py +21 -10
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +94 -112
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +32 -81
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +7 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +3 -2
- transformers/models/reformer/modeling_reformer.py +9 -1
- transformers/models/regnet/modeling_regnet.py +4 -0
- transformers/models/rembert/modeling_rembert.py +7 -1
- transformers/models/resnet/modeling_resnet.py +8 -3
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +4 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +8 -3
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +7 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +1 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +5 -1
- transformers/models/sam2/modular_sam2.py +5 -1
- transformers/models/sam2_video/modeling_sam2_video.py +51 -43
- transformers/models/sam2_video/modular_sam2_video.py +31 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +23 -0
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +26 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +3 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +27 -11
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +6 -0
- transformers/models/seed_oss/modeling_seed_oss.py +1 -1
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +2 -2
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +63 -41
- transformers/models/smollm3/modeling_smollm3.py +1 -1
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +10 -0
- transformers/models/speecht5/modeling_speecht5.py +28 -0
- transformers/models/splinter/modeling_splinter.py +9 -3
- transformers/models/squeezebert/modeling_squeezebert.py +2 -0
- transformers/models/stablelm/modeling_stablelm.py +1 -1
- transformers/models/starcoder2/modeling_starcoder2.py +1 -1
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/swiftformer/modeling_swiftformer.py +4 -0
- transformers/models/swin/modeling_swin.py +16 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +49 -33
- transformers/models/swinv2/modeling_swinv2.py +41 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +1 -7
- transformers/models/t5gemma/modeling_t5gemma.py +1 -1
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +13 -4
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +1 -1
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +12 -0
- transformers/models/timesfm/modular_timesfm.py +12 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +19 -13
- transformers/models/trocr/modeling_trocr.py +1 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +4 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +3 -7
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +0 -6
- transformers/models/vaultgemma/modeling_vaultgemma.py +1 -1
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +7 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/visual_bert/modeling_visual_bert.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +4 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +16 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +7 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +21 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +5 -3
- transformers/models/x_clip/modeling_x_clip.py +2 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +10 -0
- transformers/models/xlm/modeling_xlm.py +13 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +4 -1
- transformers/models/zamba/modeling_zamba.py +2 -1
- transformers/models/zamba2/modeling_zamba2.py +3 -2
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +7 -0
- transformers/pipelines/__init__.py +9 -6
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/document_question_answering.py +1 -1
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +127 -56
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +9 -64
- transformers/quantizers/quantizer_aqlm.py +1 -18
- transformers/quantizers/quantizer_auto_round.py +1 -10
- transformers/quantizers/quantizer_awq.py +3 -8
- transformers/quantizers/quantizer_bitnet.py +1 -6
- transformers/quantizers/quantizer_bnb_4bit.py +9 -49
- transformers/quantizers/quantizer_bnb_8bit.py +9 -19
- transformers/quantizers/quantizer_compressed_tensors.py +1 -4
- transformers/quantizers/quantizer_eetq.py +2 -12
- transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
- transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
- transformers/quantizers/quantizer_fp_quant.py +4 -4
- transformers/quantizers/quantizer_gptq.py +1 -4
- transformers/quantizers/quantizer_higgs.py +2 -6
- transformers/quantizers/quantizer_mxfp4.py +2 -28
- transformers/quantizers/quantizer_quanto.py +14 -14
- transformers/quantizers/quantizer_spqr.py +3 -8
- transformers/quantizers/quantizer_torchao.py +28 -124
- transformers/quantizers/quantizer_vptq.py +1 -10
- transformers/testing_utils.py +28 -12
- transformers/tokenization_mistral_common.py +3 -2
- transformers/tokenization_utils_base.py +3 -2
- transformers/tokenization_utils_tokenizers.py +25 -2
- transformers/trainer.py +24 -2
- transformers/trainer_callback.py +8 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/training_args.py +8 -10
- transformers/utils/__init__.py +4 -0
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +34 -25
- transformers/utils/generic.py +20 -0
- transformers/utils/import_utils.py +51 -9
- transformers/utils/kernel_config.py +71 -18
- transformers/utils/quantization_config.py +8 -8
- transformers/video_processing_utils.py +16 -12
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +5 -6
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +671 -632
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -215,6 +215,46 @@ class Siglip2VisionEmbeddings(nn.Module):
|
|
|
215
215
|
return embeddings
|
|
216
216
|
|
|
217
217
|
|
|
218
|
+
class Siglip2TextEmbeddings(nn.Module):
|
|
219
|
+
def __init__(self, config: Siglip2TextConfig):
|
|
220
|
+
super().__init__()
|
|
221
|
+
embed_dim = config.hidden_size
|
|
222
|
+
|
|
223
|
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
|
224
|
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
|
225
|
+
|
|
226
|
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
227
|
+
self.register_buffer(
|
|
228
|
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
def forward(
|
|
232
|
+
self,
|
|
233
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
234
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
235
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
236
|
+
) -> torch.Tensor:
|
|
237
|
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
|
238
|
+
max_position_embedding = self.position_embedding.weight.shape[0]
|
|
239
|
+
|
|
240
|
+
if seq_length > max_position_embedding:
|
|
241
|
+
raise ValueError(
|
|
242
|
+
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
|
|
243
|
+
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
if position_ids is None:
|
|
247
|
+
position_ids = self.position_ids[:, :seq_length]
|
|
248
|
+
|
|
249
|
+
if inputs_embeds is None:
|
|
250
|
+
inputs_embeds = self.token_embedding(input_ids)
|
|
251
|
+
|
|
252
|
+
position_embeddings = self.position_embedding(position_ids)
|
|
253
|
+
embeddings = inputs_embeds + position_embeddings
|
|
254
|
+
|
|
255
|
+
return embeddings
|
|
256
|
+
|
|
257
|
+
|
|
218
258
|
def eager_attention_forward(
|
|
219
259
|
module: nn.Module,
|
|
220
260
|
query: torch.Tensor,
|
|
@@ -412,6 +452,8 @@ class Siglip2PreTrainedModel(PreTrainedModel):
|
|
|
412
452
|
else self.config.hidden_size
|
|
413
453
|
)
|
|
414
454
|
init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
|
455
|
+
if hasattr(module, "position_ids"):
|
|
456
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
415
457
|
elif isinstance(module, nn.Embedding):
|
|
416
458
|
default_flax_embed_init(module.weight)
|
|
417
459
|
elif isinstance(module, Siglip2Attention):
|
|
@@ -447,6 +489,8 @@ class Siglip2PreTrainedModel(PreTrainedModel):
|
|
|
447
489
|
elif isinstance(module, nn.LayerNorm):
|
|
448
490
|
init.zeros_(module.bias)
|
|
449
491
|
init.ones_(module.weight)
|
|
492
|
+
elif isinstance(module, Siglip2TextEmbeddings):
|
|
493
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
450
494
|
|
|
451
495
|
|
|
452
496
|
class Siglip2Encoder(nn.Module):
|
|
@@ -484,6 +528,7 @@ class Siglip2Encoder(nn.Module):
|
|
|
484
528
|
|
|
485
529
|
|
|
486
530
|
class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
531
|
+
_input_embed_layer = "patch_embedding"
|
|
487
532
|
_can_record_outputs = {
|
|
488
533
|
"hidden_states": Siglip2EncoderLayer,
|
|
489
534
|
"attentions": Siglip2Attention,
|
|
@@ -501,6 +546,8 @@ class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
|
501
546
|
if self.use_head:
|
|
502
547
|
self.head = Siglip2MultiheadAttentionPoolingHead(config)
|
|
503
548
|
|
|
549
|
+
self.post_init()
|
|
550
|
+
|
|
504
551
|
@check_model_inputs(tie_last_hidden_states=False)
|
|
505
552
|
@auto_docstring
|
|
506
553
|
def forward(
|
|
@@ -549,49 +596,11 @@ class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
|
549
596
|
)
|
|
550
597
|
|
|
551
598
|
|
|
552
|
-
class
|
|
553
|
-
|
|
554
|
-
super().__init__()
|
|
555
|
-
embed_dim = config.hidden_size
|
|
599
|
+
class Siglip2TextTransformer(Siglip2PreTrainedModel):
|
|
600
|
+
_input_embed_layer = "token_embedding"
|
|
556
601
|
|
|
557
|
-
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
|
558
|
-
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
|
559
|
-
|
|
560
|
-
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
561
|
-
self.register_buffer(
|
|
562
|
-
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
563
|
-
)
|
|
564
|
-
|
|
565
|
-
def forward(
|
|
566
|
-
self,
|
|
567
|
-
input_ids: Optional[torch.LongTensor] = None,
|
|
568
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
569
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
570
|
-
) -> torch.Tensor:
|
|
571
|
-
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
|
572
|
-
max_position_embedding = self.position_embedding.weight.shape[0]
|
|
573
|
-
|
|
574
|
-
if seq_length > max_position_embedding:
|
|
575
|
-
raise ValueError(
|
|
576
|
-
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
|
|
577
|
-
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
|
|
578
|
-
)
|
|
579
|
-
|
|
580
|
-
if position_ids is None:
|
|
581
|
-
position_ids = self.position_ids[:, :seq_length]
|
|
582
|
-
|
|
583
|
-
if inputs_embeds is None:
|
|
584
|
-
inputs_embeds = self.token_embedding(input_ids)
|
|
585
|
-
|
|
586
|
-
position_embeddings = self.position_embedding(position_ids)
|
|
587
|
-
embeddings = inputs_embeds + position_embeddings
|
|
588
|
-
|
|
589
|
-
return embeddings
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
class Siglip2TextTransformer(nn.Module):
|
|
593
602
|
def __init__(self, config: Siglip2TextConfig):
|
|
594
|
-
super().__init__()
|
|
603
|
+
super().__init__(config)
|
|
595
604
|
self.config = config
|
|
596
605
|
embed_dim = config.hidden_size
|
|
597
606
|
self.embeddings = Siglip2TextEmbeddings(config)
|
|
@@ -599,6 +608,7 @@ class Siglip2TextTransformer(nn.Module):
|
|
|
599
608
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
600
609
|
|
|
601
610
|
self.head = nn.Linear(embed_dim, config.projection_size)
|
|
611
|
+
self.post_init()
|
|
602
612
|
|
|
603
613
|
@can_return_tuple
|
|
604
614
|
@auto_docstring
|
|
@@ -833,6 +843,12 @@ class Siglip2Model(Siglip2PreTrainedModel):
|
|
|
833
843
|
# Initialize weights and apply final processing
|
|
834
844
|
self.post_init()
|
|
835
845
|
|
|
846
|
+
def get_input_embeddings(self) -> nn.Module:
|
|
847
|
+
return self.text_model.embeddings.token_embedding
|
|
848
|
+
|
|
849
|
+
def set_input_embeddings(self, value: nn.Module):
|
|
850
|
+
self.text_model.embeddings.token_embedding = value
|
|
851
|
+
|
|
836
852
|
@filter_out_non_signature_kwargs()
|
|
837
853
|
@auto_docstring
|
|
838
854
|
def get_text_features(
|
|
@@ -1051,6 +1067,12 @@ class Siglip2ForImageClassification(Siglip2PreTrainedModel):
|
|
|
1051
1067
|
# Initialize weights and apply final processing
|
|
1052
1068
|
self.post_init()
|
|
1053
1069
|
|
|
1070
|
+
def get_input_embeddings(self) -> nn.Module:
|
|
1071
|
+
return self.vision_model.embeddings.patch_embedding
|
|
1072
|
+
|
|
1073
|
+
def set_input_embeddings(self, value: nn.Module):
|
|
1074
|
+
self.vision_model.embeddings.patch_embedding = value
|
|
1075
|
+
|
|
1054
1076
|
@check_model_inputs
|
|
1055
1077
|
@auto_docstring
|
|
1056
1078
|
def forward(
|
|
@@ -63,7 +63,7 @@ class SmolLM3RotaryEmbedding(nn.Module):
|
|
|
63
63
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
64
64
|
|
|
65
65
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
66
|
-
self.original_inv_freq =
|
|
66
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
67
67
|
|
|
68
68
|
@staticmethod
|
|
69
69
|
def compute_default_rope_parameters(
|
|
@@ -330,6 +330,8 @@ class SmolVLMVisionTransformer(SmolVLMPreTrainedModel):
|
|
|
330
330
|
self.patch_size = config.patch_size
|
|
331
331
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
332
332
|
|
|
333
|
+
self.post_init()
|
|
334
|
+
|
|
333
335
|
def get_input_embeddings(self):
|
|
334
336
|
return self.embeddings
|
|
335
337
|
|
|
@@ -853,6 +855,7 @@ class SmolVLMForConditionalGeneration(SmolVLMPreTrainedModel, GenerationMixin):
|
|
|
853
855
|
pixel_attention_mask=None,
|
|
854
856
|
image_hidden_states=None,
|
|
855
857
|
logits_to_keep=None,
|
|
858
|
+
is_first_iteration=False,
|
|
856
859
|
**kwargs,
|
|
857
860
|
):
|
|
858
861
|
# Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take
|
|
@@ -868,10 +871,11 @@ class SmolVLMForConditionalGeneration(SmolVLMPreTrainedModel, GenerationMixin):
|
|
|
868
871
|
pixel_attention_mask=pixel_attention_mask,
|
|
869
872
|
image_hidden_states=image_hidden_states,
|
|
870
873
|
logits_to_keep=logits_to_keep,
|
|
874
|
+
is_first_iteration=is_first_iteration,
|
|
871
875
|
**kwargs,
|
|
872
876
|
)
|
|
873
877
|
|
|
874
|
-
if image_hidden_states is not None or
|
|
878
|
+
if image_hidden_states is not None or not is_first_iteration:
|
|
875
879
|
model_inputs["pixel_values"] = None
|
|
876
880
|
model_inputs["pixel_attention_mask"] = None
|
|
877
881
|
|
|
@@ -331,7 +331,6 @@ class SmolVLMVideoProcessor(BaseVideoProcessor):
|
|
|
331
331
|
processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index)
|
|
332
332
|
pixel_attention_mask = reorder_videos(processed_padded_mask_grouped, grouped_videos_index)
|
|
333
333
|
|
|
334
|
-
processed_videos = torch.stack(processed_videos, dim=0) if return_tensors else processed_videos
|
|
335
334
|
data = {"pixel_values": processed_videos}
|
|
336
335
|
|
|
337
336
|
if do_pad:
|
|
@@ -22,6 +22,7 @@ import torch
|
|
|
22
22
|
from torch import nn
|
|
23
23
|
from torch.nn import CrossEntropyLoss
|
|
24
24
|
|
|
25
|
+
from ... import initialization as init
|
|
25
26
|
from ...activations import ACT2FN
|
|
26
27
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
27
28
|
from ...generation import GenerationMixin
|
|
@@ -105,6 +106,7 @@ class Speech2TextSinusoidalPositionalEmbedding(nn.Module):
|
|
|
105
106
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
106
107
|
super().__init__()
|
|
107
108
|
self.offset = 2
|
|
109
|
+
self.num_positions = num_positions
|
|
108
110
|
self.embedding_dim = embedding_dim
|
|
109
111
|
self.padding_idx = padding_idx
|
|
110
112
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
|
@@ -495,6 +497,14 @@ class Speech2TextPreTrainedModel(PreTrainedModel):
|
|
|
495
497
|
_supports_sdpa = False
|
|
496
498
|
_supports_flex_attn = False
|
|
497
499
|
|
|
500
|
+
def _init_weights(self, module):
|
|
501
|
+
super()._init_weights(module)
|
|
502
|
+
if isinstance(module, Speech2TextSinusoidalPositionalEmbedding):
|
|
503
|
+
emb_weights = module.get_embedding(
|
|
504
|
+
module.num_positions + module.offset, module.embedding_dim, module.padding_idx
|
|
505
|
+
)
|
|
506
|
+
init.copy_(module.weights, emb_weights)
|
|
507
|
+
|
|
498
508
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
|
499
509
|
"""
|
|
500
510
|
Computes the output length of the convolutional layers
|
|
@@ -290,6 +290,7 @@ class SpeechT5SinusoidalPositionalEmbedding(nn.Module):
|
|
|
290
290
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
291
291
|
super().__init__()
|
|
292
292
|
self.offset = 2
|
|
293
|
+
self.num_positions = num_positions
|
|
293
294
|
self.embedding_dim = embedding_dim
|
|
294
295
|
self.padding_idx = padding_idx
|
|
295
296
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
|
@@ -414,6 +415,7 @@ class SpeechT5ScaledPositionalEncoding(nn.Module):
|
|
|
414
415
|
self.register_buffer("pe", pe, persistent=False)
|
|
415
416
|
self.dropout = nn.Dropout(p=dropout)
|
|
416
417
|
self.dim = dim
|
|
418
|
+
self.max_len = max_len
|
|
417
419
|
self.alpha = nn.Parameter(torch.tensor(1.0))
|
|
418
420
|
|
|
419
421
|
def forward(self, emb):
|
|
@@ -1184,6 +1186,14 @@ class SpeechT5PreTrainedModel(PreTrainedModel):
|
|
|
1184
1186
|
init.constant_(module.conv.bias, 0)
|
|
1185
1187
|
elif isinstance(module, SpeechT5ScaledPositionalEncoding):
|
|
1186
1188
|
init.ones_(module.alpha)
|
|
1189
|
+
dim, max_len = module.dim, module.max_len
|
|
1190
|
+
pe = torch.zeros(max_len, dim)
|
|
1191
|
+
position = torch.arange(0, max_len).unsqueeze(1)
|
|
1192
|
+
div_term = torch.exp(torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim))
|
|
1193
|
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
|
1194
|
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
|
1195
|
+
pe = pe.unsqueeze(0)
|
|
1196
|
+
init.copy_(module.pe, pe)
|
|
1187
1197
|
elif isinstance(module, SpeechT5FeatureProjection):
|
|
1188
1198
|
k = math.sqrt(1 / module.projection.in_features)
|
|
1189
1199
|
init.uniform_(module.projection.weight, a=-k, b=k)
|
|
@@ -1195,6 +1205,10 @@ class SpeechT5PreTrainedModel(PreTrainedModel):
|
|
|
1195
1205
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm1d)):
|
|
1196
1206
|
init.zeros_(module.bias)
|
|
1197
1207
|
init.ones_(module.weight)
|
|
1208
|
+
if getattr(module, "running_mean", None) is not None:
|
|
1209
|
+
init.zeros_(module.running_mean)
|
|
1210
|
+
init.ones_(module.running_var)
|
|
1211
|
+
init.zeros_(module.num_batches_tracked)
|
|
1198
1212
|
elif isinstance(module, nn.Conv1d):
|
|
1199
1213
|
init.kaiming_normal_(module.weight)
|
|
1200
1214
|
if module.bias is not None:
|
|
@@ -1205,6 +1219,14 @@ class SpeechT5PreTrainedModel(PreTrainedModel):
|
|
|
1205
1219
|
# Here we need the check explicitly, as we slice the weight in the `zeros_` call, so it looses the flag
|
|
1206
1220
|
if module.padding_idx is not None and not getattr(module.weight, "_is_hf_initialized", False):
|
|
1207
1221
|
init.zeros_(module.weight[module.padding_idx])
|
|
1222
|
+
elif isinstance(module, SpeechT5SinusoidalPositionalEmbedding):
|
|
1223
|
+
emb_weights = module.get_embedding(
|
|
1224
|
+
module.num_positions + module.offset, module.embedding_dim, module.padding_idx
|
|
1225
|
+
)
|
|
1226
|
+
init.copy_(module.weights, emb_weights)
|
|
1227
|
+
elif isinstance(module, SpeechT5HifiGan):
|
|
1228
|
+
init.zeros_(module.mean)
|
|
1229
|
+
init.ones_(module.scale)
|
|
1208
1230
|
|
|
1209
1231
|
if hasattr(module, "masked_spec_embed"):
|
|
1210
1232
|
init.uniform_(module.masked_spec_embed)
|
|
@@ -3008,6 +3030,12 @@ class SpeechT5HifiGan(PreTrainedModel):
|
|
|
3008
3030
|
# Initialize weights and apply final processing
|
|
3009
3031
|
self.post_init()
|
|
3010
3032
|
|
|
3033
|
+
def _init_weights(self, module):
|
|
3034
|
+
super()._init_weights(module)
|
|
3035
|
+
if isinstance(module, SpeechT5HifiGan):
|
|
3036
|
+
init.zeros_(module.mean)
|
|
3037
|
+
init.ones_(module.scale)
|
|
3038
|
+
|
|
3011
3039
|
def apply_weight_norm(self):
|
|
3012
3040
|
weight_norm = nn.utils.weight_norm
|
|
3013
3041
|
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
|
@@ -22,6 +22,7 @@ import torch
|
|
|
22
22
|
from torch import nn
|
|
23
23
|
from torch.nn import CrossEntropyLoss
|
|
24
24
|
|
|
25
|
+
from ... import initialization as init
|
|
25
26
|
from ...activations import ACT2FN
|
|
26
27
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
27
28
|
from ...modeling_outputs import BaseModelOutput, ModelOutput, QuestionAnsweringModelOutput
|
|
@@ -305,9 +306,9 @@ class SplinterEncoder(nn.Module):
|
|
|
305
306
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
306
307
|
|
|
307
308
|
layer_outputs = layer_module(
|
|
308
|
-
hidden_states
|
|
309
|
-
attention_mask
|
|
310
|
-
output_attentions
|
|
309
|
+
hidden_states,
|
|
310
|
+
attention_mask,
|
|
311
|
+
output_attentions,
|
|
311
312
|
**kwargs,
|
|
312
313
|
)
|
|
313
314
|
|
|
@@ -331,6 +332,11 @@ class SplinterPreTrainedModel(PreTrainedModel):
|
|
|
331
332
|
base_model_prefix = "splinter"
|
|
332
333
|
supports_gradient_checkpointing = True
|
|
333
334
|
|
|
335
|
+
def _init_weights(self, module):
|
|
336
|
+
super()._init_weights(module)
|
|
337
|
+
if isinstance(module, SplinterEmbeddings):
|
|
338
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
339
|
+
|
|
334
340
|
|
|
335
341
|
@auto_docstring
|
|
336
342
|
class SplinterModel(SplinterPreTrainedModel):
|
|
@@ -412,6 +412,8 @@ class SqueezeBertPreTrainedModel(PreTrainedModel):
|
|
|
412
412
|
super()._init_weights(module)
|
|
413
413
|
if isinstance(module, SqueezeBertLMPredictionHead):
|
|
414
414
|
init.zeros_(module.bias)
|
|
415
|
+
elif isinstance(module, SqueezeBertEmbeddings):
|
|
416
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
415
417
|
|
|
416
418
|
|
|
417
419
|
@auto_docstring
|
|
@@ -76,7 +76,7 @@ class StableLmRotaryEmbedding(nn.Module):
|
|
|
76
76
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
77
77
|
|
|
78
78
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
79
|
-
self.original_inv_freq =
|
|
79
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
80
80
|
|
|
81
81
|
@staticmethod
|
|
82
82
|
# Ignore copy
|
|
@@ -289,7 +289,7 @@ class Starcoder2RotaryEmbedding(nn.Module):
|
|
|
289
289
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
290
290
|
|
|
291
291
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
292
|
-
self.original_inv_freq =
|
|
292
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
293
293
|
|
|
294
294
|
@staticmethod
|
|
295
295
|
def compute_default_rope_parameters(
|
|
@@ -161,9 +161,8 @@ class SuperGlueImageProcessorFast(BaseImageProcessorFast):
|
|
|
161
161
|
stacked_pairs = [torch.stack(pair, dim=0) for pair in image_pairs]
|
|
162
162
|
|
|
163
163
|
# Return in same format as slow processor
|
|
164
|
-
image_pairs = torch.stack(stacked_pairs, dim=0) if return_tensors else stacked_pairs
|
|
165
164
|
|
|
166
|
-
return BatchFeature(data={"pixel_values":
|
|
165
|
+
return BatchFeature(data={"pixel_values": stacked_pairs}, tensor_type=return_tensors)
|
|
167
166
|
|
|
168
167
|
def post_process_keypoint_matching(
|
|
169
168
|
self,
|
|
@@ -110,8 +110,7 @@ class SuperPointImageProcessorFast(BaseImageProcessorFast):
|
|
|
110
110
|
stacked_images = self.rescale(stacked_images, rescale_factor)
|
|
111
111
|
processed_images_grouped[shape] = stacked_images
|
|
112
112
|
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
|
|
113
|
-
|
|
114
|
-
return BatchFeature(data={"pixel_values": processed_images})
|
|
113
|
+
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)
|
|
115
114
|
|
|
116
115
|
def post_process_keypoint_detection(
|
|
117
116
|
self, outputs: "SuperPointKeypointDescriptionOutput", target_sizes: Union[TensorType, list[tuple]]
|
|
@@ -400,6 +400,10 @@ class SwiftFormerPreTrainedModel(PreTrainedModel):
|
|
|
400
400
|
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
|
|
401
401
|
init.constant_(module.bias, 0)
|
|
402
402
|
init.constant_(module.weight, 1.0)
|
|
403
|
+
if getattr(module, "running_mean", None) is not None:
|
|
404
|
+
init.zeros_(module.running_mean)
|
|
405
|
+
init.ones_(module.running_var)
|
|
406
|
+
init.zeros_(module.num_batches_tracked)
|
|
403
407
|
elif isinstance(module, (SwiftFormerConvEncoder, SwiftFormerLocalRepresentation)):
|
|
404
408
|
init.ones_(module.layer_scale)
|
|
405
409
|
elif isinstance(module, SwiftFormerEncoderBlock):
|
|
@@ -411,18 +411,7 @@ class SwinSelfAttention(nn.Module):
|
|
|
411
411
|
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
|
|
412
412
|
)
|
|
413
413
|
|
|
414
|
-
|
|
415
|
-
coords_h = torch.arange(self.window_size[0])
|
|
416
|
-
coords_w = torch.arange(self.window_size[1])
|
|
417
|
-
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
418
|
-
coords_flatten = torch.flatten(coords, 1)
|
|
419
|
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
420
|
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
421
|
-
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
422
|
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
423
|
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
424
|
-
relative_position_index = relative_coords.sum(-1)
|
|
425
|
-
self.register_buffer("relative_position_index", relative_position_index)
|
|
414
|
+
self.register_buffer("relative_position_index", self.create_relative_position_index())
|
|
426
415
|
|
|
427
416
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
428
417
|
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
@@ -481,6 +470,20 @@ class SwinSelfAttention(nn.Module):
|
|
|
481
470
|
|
|
482
471
|
return outputs
|
|
483
472
|
|
|
473
|
+
def create_relative_position_index(self):
|
|
474
|
+
# get pair-wise relative position index for each token inside the window
|
|
475
|
+
coords_h = torch.arange(self.window_size[0])
|
|
476
|
+
coords_w = torch.arange(self.window_size[1])
|
|
477
|
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
478
|
+
coords_flatten = torch.flatten(coords, 1)
|
|
479
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
480
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
481
|
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
482
|
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
483
|
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
484
|
+
relative_position_index = relative_coords.sum(-1)
|
|
485
|
+
return relative_position_index
|
|
486
|
+
|
|
484
487
|
|
|
485
488
|
class SwinSelfOutput(nn.Module):
|
|
486
489
|
def __init__(self, config, dim):
|
|
@@ -823,6 +826,7 @@ class SwinPreTrainedModel(PreTrainedModel):
|
|
|
823
826
|
init.zeros_(module.position_embeddings)
|
|
824
827
|
elif isinstance(module, SwinSelfAttention):
|
|
825
828
|
init.zeros_(module.relative_position_bias_table)
|
|
829
|
+
init.copy_(module.relative_position_index, module.create_relative_position_index())
|
|
826
830
|
|
|
827
831
|
|
|
828
832
|
@auto_docstring
|
|
@@ -97,7 +97,6 @@ class Swin2SRImageProcessorFast(BaseImageProcessorFast):
|
|
|
97
97
|
stacked_images = self.pad(stacked_images, size_divisor=size_divisor)
|
|
98
98
|
processed_image_grouped[shape] = stacked_images
|
|
99
99
|
processed_images = reorder_images(processed_image_grouped, grouped_images_index)
|
|
100
|
-
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
|
|
101
100
|
|
|
102
101
|
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)
|
|
103
102
|
|
|
@@ -250,40 +250,8 @@ class Swin2SRSelfAttention(nn.Module):
|
|
|
250
250
|
nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)
|
|
251
251
|
)
|
|
252
252
|
|
|
253
|
-
|
|
254
|
-
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float()
|
|
255
|
-
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float()
|
|
256
|
-
relative_coords_table = (
|
|
257
|
-
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
|
|
258
|
-
.permute(1, 2, 0)
|
|
259
|
-
.contiguous()
|
|
260
|
-
.unsqueeze(0)
|
|
261
|
-
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
|
|
262
|
-
if pretrained_window_size[0] > 0:
|
|
263
|
-
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
|
|
264
|
-
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
|
|
265
|
-
elif window_size > 1:
|
|
266
|
-
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
|
267
|
-
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
|
268
|
-
relative_coords_table *= 8 # normalize to -8, 8
|
|
269
|
-
relative_coords_table = (
|
|
270
|
-
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
|
271
|
-
)
|
|
272
|
-
# set to same dtype as mlp weight
|
|
273
|
-
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype)
|
|
253
|
+
relative_coords_table, relative_position_index = self.create_coords_table_and_index()
|
|
274
254
|
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)
|
|
275
|
-
|
|
276
|
-
# get pair-wise relative position index for each token inside the window
|
|
277
|
-
coords_h = torch.arange(self.window_size[0])
|
|
278
|
-
coords_w = torch.arange(self.window_size[1])
|
|
279
|
-
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
280
|
-
coords_flatten = torch.flatten(coords, 1)
|
|
281
|
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
282
|
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
283
|
-
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
284
|
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
285
|
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
286
|
-
relative_position_index = relative_coords.sum(-1)
|
|
287
255
|
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
|
288
256
|
|
|
289
257
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
@@ -359,6 +327,43 @@ class Swin2SRSelfAttention(nn.Module):
|
|
|
359
327
|
|
|
360
328
|
return outputs
|
|
361
329
|
|
|
330
|
+
def create_coords_table_and_index(self):
|
|
331
|
+
# get relative_coords_table
|
|
332
|
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float()
|
|
333
|
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float()
|
|
334
|
+
relative_coords_table = (
|
|
335
|
+
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
|
|
336
|
+
.permute(1, 2, 0)
|
|
337
|
+
.contiguous()
|
|
338
|
+
.unsqueeze(0)
|
|
339
|
+
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
|
|
340
|
+
if self.pretrained_window_size[0] > 0:
|
|
341
|
+
relative_coords_table[:, :, :, 0] /= self.pretrained_window_size[0] - 1
|
|
342
|
+
relative_coords_table[:, :, :, 1] /= self.pretrained_window_size[1] - 1
|
|
343
|
+
elif self.window_size[0] > 1:
|
|
344
|
+
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
|
345
|
+
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
|
346
|
+
relative_coords_table *= 8 # normalize to -8, 8
|
|
347
|
+
relative_coords_table = (
|
|
348
|
+
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
|
349
|
+
)
|
|
350
|
+
# set to same dtype as mlp weight
|
|
351
|
+
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype)
|
|
352
|
+
|
|
353
|
+
# get pair-wise relative position index for each token inside the window
|
|
354
|
+
coords_h = torch.arange(self.window_size[0])
|
|
355
|
+
coords_w = torch.arange(self.window_size[1])
|
|
356
|
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
357
|
+
coords_flatten = torch.flatten(coords, 1)
|
|
358
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
359
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
360
|
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
361
|
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
362
|
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
363
|
+
relative_position_index = relative_coords.sum(-1)
|
|
364
|
+
|
|
365
|
+
return relative_coords_table, relative_position_index
|
|
366
|
+
|
|
362
367
|
|
|
363
368
|
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swin2SR
|
|
364
369
|
class Swin2SRSelfOutput(nn.Module):
|
|
@@ -702,6 +707,17 @@ class Swin2SRPreTrainedModel(PreTrainedModel):
|
|
|
702
707
|
elif isinstance(module, nn.LayerNorm):
|
|
703
708
|
init.zeros_(module.bias)
|
|
704
709
|
init.ones_(module.weight)
|
|
710
|
+
elif isinstance(module, Swin2SRSelfAttention):
|
|
711
|
+
init.constant_(module.logit_scale, math.log(10))
|
|
712
|
+
relative_coords_table, relative_position_index = module.create_coords_table_and_index()
|
|
713
|
+
init.copy_(module.relative_coords_table, relative_coords_table)
|
|
714
|
+
init.copy_(module.relative_position_index, relative_position_index)
|
|
715
|
+
elif isinstance(module, Swin2SRModel):
|
|
716
|
+
if module.config.num_channels == 3 and module.config.num_channels_out == 3:
|
|
717
|
+
mean = torch.tensor([0.4488, 0.4371, 0.4040]).view(1, 3, 1, 1)
|
|
718
|
+
else:
|
|
719
|
+
mean = torch.zeros(1, 1, 1, 1)
|
|
720
|
+
init.copy_(module.mean, mean)
|
|
705
721
|
|
|
706
722
|
|
|
707
723
|
@auto_docstring
|