transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (671) hide show
  1. transformers/__init__.py +20 -1
  2. transformers/activations.py +1 -1
  3. transformers/audio_utils.py +0 -1
  4. transformers/cache_utils.py +17 -15
  5. transformers/configuration_utils.py +114 -70
  6. transformers/conversion_mapping.py +68 -5
  7. transformers/core_model_loading.py +201 -35
  8. transformers/dependency_versions_table.py +1 -1
  9. transformers/feature_extraction_utils.py +54 -22
  10. transformers/generation/candidate_generator.py +79 -31
  11. transformers/generation/configuration_utils.py +162 -122
  12. transformers/generation/continuous_batching/cache.py +47 -18
  13. transformers/generation/continuous_batching/cache_manager.py +131 -34
  14. transformers/generation/continuous_batching/continuous_api.py +101 -64
  15. transformers/generation/continuous_batching/requests.py +28 -1
  16. transformers/generation/continuous_batching/scheduler.py +11 -4
  17. transformers/generation/stopping_criteria.py +1 -1
  18. transformers/generation/utils.py +108 -110
  19. transformers/generation/watermarking.py +8 -5
  20. transformers/image_processing_base.py +2 -12
  21. transformers/image_processing_utils_fast.py +15 -4
  22. transformers/initialization.py +37 -0
  23. transformers/integrations/__init__.py +12 -0
  24. transformers/integrations/accelerate.py +44 -111
  25. transformers/integrations/aqlm.py +3 -5
  26. transformers/integrations/awq.py +2 -5
  27. transformers/integrations/bitnet.py +5 -8
  28. transformers/integrations/bitsandbytes.py +16 -15
  29. transformers/integrations/deepspeed.py +18 -3
  30. transformers/integrations/eetq.py +3 -5
  31. transformers/integrations/fbgemm_fp8.py +1 -1
  32. transformers/integrations/finegrained_fp8.py +6 -16
  33. transformers/integrations/flash_attention.py +2 -2
  34. transformers/integrations/higgs.py +2 -5
  35. transformers/integrations/hub_kernels.py +23 -5
  36. transformers/integrations/integration_utils.py +35 -0
  37. transformers/integrations/mistral.py +12 -0
  38. transformers/integrations/moe.py +240 -0
  39. transformers/integrations/mxfp4.py +4 -10
  40. transformers/integrations/peft.py +5 -0
  41. transformers/integrations/quanto.py +5 -2
  42. transformers/integrations/spqr.py +3 -5
  43. transformers/integrations/tensor_parallel.py +167 -221
  44. transformers/integrations/vptq.py +3 -5
  45. transformers/modeling_gguf_pytorch_utils.py +66 -19
  46. transformers/modeling_rope_utils.py +78 -81
  47. transformers/modeling_utils.py +583 -503
  48. transformers/models/__init__.py +19 -0
  49. transformers/models/afmoe/modeling_afmoe.py +7 -16
  50. transformers/models/afmoe/modular_afmoe.py +5 -13
  51. transformers/models/aimv2/modeling_aimv2.py +4 -0
  52. transformers/models/aimv2/modular_aimv2.py +4 -0
  53. transformers/models/albert/modeling_albert.py +3 -0
  54. transformers/models/align/modeling_align.py +12 -6
  55. transformers/models/altclip/modeling_altclip.py +7 -3
  56. transformers/models/apertus/modeling_apertus.py +4 -2
  57. transformers/models/apertus/modular_apertus.py +4 -1
  58. transformers/models/arcee/modeling_arcee.py +1 -1
  59. transformers/models/aria/modeling_aria.py +8 -4
  60. transformers/models/aria/modular_aria.py +7 -3
  61. transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
  62. transformers/models/auto/auto_factory.py +1 -1
  63. transformers/models/auto/configuration_auto.py +27 -0
  64. transformers/models/auto/feature_extraction_auto.py +7 -3
  65. transformers/models/auto/image_processing_auto.py +4 -2
  66. transformers/models/auto/modeling_auto.py +31 -0
  67. transformers/models/auto/processing_auto.py +4 -0
  68. transformers/models/auto/tokenization_auto.py +132 -153
  69. transformers/models/auto/video_processing_auto.py +5 -2
  70. transformers/models/aya_vision/modeling_aya_vision.py +7 -3
  71. transformers/models/bamba/modeling_bamba.py +18 -19
  72. transformers/models/bamba/modular_bamba.py +17 -16
  73. transformers/models/bark/modeling_bark.py +9 -0
  74. transformers/models/bart/configuration_bart.py +0 -1
  75. transformers/models/bart/modeling_bart.py +7 -0
  76. transformers/models/beit/image_processing_beit_fast.py +0 -1
  77. transformers/models/bert/modeling_bert.py +3 -0
  78. transformers/models/bert_generation/modeling_bert_generation.py +2 -0
  79. transformers/models/big_bird/modeling_big_bird.py +3 -0
  80. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +7 -0
  81. transformers/models/bit/modeling_bit.py +5 -1
  82. transformers/models/bitnet/modeling_bitnet.py +1 -1
  83. transformers/models/blenderbot/modeling_blenderbot.py +7 -0
  84. transformers/models/blenderbot/tokenization_blenderbot.py +6 -7
  85. transformers/models/blenderbot_small/modeling_blenderbot_small.py +7 -0
  86. transformers/models/blip/modeling_blip.py +2 -0
  87. transformers/models/blip/modeling_blip_text.py +8 -0
  88. transformers/models/blip_2/modeling_blip_2.py +2 -0
  89. transformers/models/bloom/modeling_bloom.py +13 -44
  90. transformers/models/blt/modeling_blt.py +162 -2
  91. transformers/models/blt/modular_blt.py +168 -3
  92. transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
  93. transformers/models/bridgetower/modeling_bridgetower.py +6 -0
  94. transformers/models/bros/modeling_bros.py +8 -0
  95. transformers/models/camembert/modeling_camembert.py +109 -106
  96. transformers/models/canine/modeling_canine.py +6 -0
  97. transformers/models/canine/tokenization_canine.py +2 -0
  98. transformers/models/chameleon/modeling_chameleon.py +9 -4
  99. transformers/models/chinese_clip/modeling_chinese_clip.py +6 -3
  100. transformers/models/clap/feature_extraction_clap.py +2 -2
  101. transformers/models/clap/modeling_clap.py +25 -15
  102. transformers/models/clip/modeling_clip.py +2 -0
  103. transformers/models/clipseg/modeling_clipseg.py +4 -0
  104. transformers/models/clvp/modeling_clvp.py +14 -3
  105. transformers/models/code_llama/tokenization_code_llama.py +1 -1
  106. transformers/models/codegen/modeling_codegen.py +13 -4
  107. transformers/models/cohere/modeling_cohere.py +1 -1
  108. transformers/models/cohere2/modeling_cohere2.py +1 -1
  109. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +0 -1
  110. transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
  111. transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
  112. transformers/models/conditional_detr/modeling_conditional_detr.py +4 -1
  113. transformers/models/convbert/modeling_convbert.py +3 -0
  114. transformers/models/convnext/image_processing_convnext.py +2 -2
  115. transformers/models/convnext/image_processing_convnext_fast.py +9 -13
  116. transformers/models/csm/generation_csm.py +19 -22
  117. transformers/models/csm/modeling_csm.py +3 -1
  118. transformers/models/csm/modular_csm.py +2 -0
  119. transformers/models/ctrl/modeling_ctrl.py +14 -2
  120. transformers/models/cvt/modeling_cvt.py +5 -1
  121. transformers/models/cwm/modeling_cwm.py +1 -1
  122. transformers/models/d_fine/configuration_d_fine.py +3 -4
  123. transformers/models/d_fine/modeling_d_fine.py +46 -39
  124. transformers/models/d_fine/modular_d_fine.py +15 -4
  125. transformers/models/dab_detr/configuration_dab_detr.py +2 -2
  126. transformers/models/dab_detr/modeling_dab_detr.py +1 -1
  127. transformers/models/dac/modeling_dac.py +4 -4
  128. transformers/models/data2vec/modeling_data2vec_text.py +7 -0
  129. transformers/models/data2vec/modular_data2vec_text.py +7 -0
  130. transformers/models/dbrx/configuration_dbrx.py +9 -1
  131. transformers/models/dbrx/modeling_dbrx.py +1 -1
  132. transformers/models/deberta/modeling_deberta.py +2 -0
  133. transformers/models/deberta_v2/modeling_deberta_v2.py +2 -0
  134. transformers/models/decision_transformer/modeling_decision_transformer.py +8 -5
  135. transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -4
  136. transformers/models/deepseek_v2/modular_deepseek_v2.py +4 -2
  137. transformers/models/deepseek_v3/modeling_deepseek_v3.py +9 -5
  138. transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -2
  139. transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
  140. transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
  141. transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
  142. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
  143. transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
  144. transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
  145. transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
  146. transformers/models/deformable_detr/modeling_deformable_detr.py +1 -1
  147. transformers/models/depth_anything/configuration_depth_anything.py +2 -3
  148. transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
  149. transformers/models/detr/configuration_detr.py +1 -1
  150. transformers/models/detr/modeling_detr.py +8 -1
  151. transformers/models/dia/generation_dia.py +3 -10
  152. transformers/models/dia/modeling_dia.py +12 -1
  153. transformers/models/dia/modular_dia.py +11 -0
  154. transformers/models/dia/processing_dia.py +1 -1
  155. transformers/models/diffllama/modeling_diffllama.py +3 -3
  156. transformers/models/diffllama/modular_diffllama.py +2 -2
  157. transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
  158. transformers/models/dinov3_vit/modeling_dinov3_vit.py +3 -0
  159. transformers/models/dinov3_vit/modular_dinov3_vit.py +3 -0
  160. transformers/models/distilbert/modeling_distilbert.py +11 -9
  161. transformers/models/doge/modeling_doge.py +1 -1
  162. transformers/models/donut/image_processing_donut_fast.py +0 -1
  163. transformers/models/donut/modeling_donut_swin.py +16 -12
  164. transformers/models/dots1/modeling_dots1.py +14 -5
  165. transformers/models/dpt/configuration_dpt.py +1 -1
  166. transformers/models/dpt/image_processing_dpt_fast.py +1 -2
  167. transformers/models/dpt/modular_dpt.py +1 -2
  168. transformers/models/edgetam/configuration_edgetam.py +1 -1
  169. transformers/models/edgetam/modeling_edgetam.py +5 -2
  170. transformers/models/edgetam/modular_edgetam.py +15 -14
  171. transformers/models/edgetam_video/modeling_edgetam_video.py +55 -43
  172. transformers/models/edgetam_video/modular_edgetam_video.py +13 -19
  173. transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
  174. transformers/models/efficientloftr/modeling_efficientloftr.py +14 -1
  175. transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
  176. transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
  177. transformers/models/efficientnet/modeling_efficientnet.py +5 -1
  178. transformers/models/electra/modeling_electra.py +7 -0
  179. transformers/models/emu3/modeling_emu3.py +8 -2
  180. transformers/models/emu3/modular_emu3.py +7 -1
  181. transformers/models/encodec/modeling_encodec.py +14 -0
  182. transformers/models/eomt/image_processing_eomt_fast.py +46 -14
  183. transformers/models/eomt/modeling_eomt.py +7 -0
  184. transformers/models/eomt/modular_eomt.py +7 -0
  185. transformers/models/ernie/modeling_ernie.py +6 -0
  186. transformers/models/ernie/modular_ernie.py +6 -0
  187. transformers/models/ernie4_5/modeling_ernie4_5.py +1 -1
  188. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +16 -13
  189. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +9 -35
  190. transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
  191. transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
  192. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
  193. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
  194. transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
  195. transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
  196. transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
  197. transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
  198. transformers/models/esm/modeling_esm.py +6 -0
  199. transformers/models/esm/modeling_esmfold.py +6 -1
  200. transformers/models/evolla/modeling_evolla.py +9 -1
  201. transformers/models/evolla/modular_evolla.py +8 -0
  202. transformers/models/exaone4/modeling_exaone4.py +1 -1
  203. transformers/models/falcon/modeling_falcon.py +3 -3
  204. transformers/models/falcon_h1/modeling_falcon_h1.py +28 -23
  205. transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
  206. transformers/models/falcon_mamba/modeling_falcon_mamba.py +6 -2
  207. transformers/models/falcon_mamba/modular_falcon_mamba.py +7 -2
  208. transformers/models/fast_vlm/modeling_fast_vlm.py +7 -3
  209. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +23 -10
  210. transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
  211. transformers/models/flaubert/modeling_flaubert.py +14 -15
  212. transformers/models/flava/image_processing_flava_fast.py +0 -2
  213. transformers/models/flava/modeling_flava.py +4 -1
  214. transformers/models/flex_olmo/modeling_flex_olmo.py +7 -4
  215. transformers/models/florence2/modeling_florence2.py +20 -3
  216. transformers/models/florence2/modular_florence2.py +13 -0
  217. transformers/models/fnet/modeling_fnet.py +7 -0
  218. transformers/models/fuyu/image_processing_fuyu.py +1 -1
  219. transformers/models/fuyu/modeling_fuyu.py +3 -1
  220. transformers/models/fuyu/processing_fuyu.py +16 -0
  221. transformers/models/gemma/modeling_gemma.py +10 -12
  222. transformers/models/gemma/modular_gemma.py +9 -11
  223. transformers/models/gemma2/modeling_gemma2.py +1 -1
  224. transformers/models/gemma2/modular_gemma2.py +1 -1
  225. transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
  226. transformers/models/gemma3/modeling_gemma3.py +28 -7
  227. transformers/models/gemma3/modular_gemma3.py +26 -6
  228. transformers/models/gemma3n/configuration_gemma3n.py +3 -0
  229. transformers/models/gemma3n/modeling_gemma3n.py +47 -9
  230. transformers/models/gemma3n/modular_gemma3n.py +51 -9
  231. transformers/models/git/modeling_git.py +181 -126
  232. transformers/models/glm/modeling_glm.py +1 -1
  233. transformers/models/glm4/modeling_glm4.py +1 -1
  234. transformers/models/glm46v/image_processing_glm46v.py +0 -4
  235. transformers/models/glm46v/modeling_glm46v.py +3 -1
  236. transformers/models/glm46v/modular_glm46v.py +3 -0
  237. transformers/models/glm4_moe/modeling_glm4_moe.py +9 -5
  238. transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
  239. transformers/models/glm4v/image_processing_glm4v.py +0 -4
  240. transformers/models/glm4v/modeling_glm4v.py +15 -5
  241. transformers/models/glm4v/modular_glm4v.py +11 -3
  242. transformers/models/glm4v_moe/modeling_glm4v_moe.py +39 -23
  243. transformers/models/glm4v_moe/modular_glm4v_moe.py +12 -0
  244. transformers/models/glmasr/__init__.py +30 -0
  245. transformers/models/glmasr/configuration_glmasr.py +197 -0
  246. transformers/models/glmasr/modeling_glmasr.py +512 -0
  247. transformers/models/glmasr/modular_glmasr.py +433 -0
  248. transformers/models/glmasr/processing_glmasr.py +332 -0
  249. transformers/models/glpn/image_processing_glpn_fast.py +0 -1
  250. transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
  251. transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
  252. transformers/models/gpt2/modeling_gpt2.py +8 -5
  253. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +3 -8
  254. transformers/models/gpt_neo/modeling_gpt_neo.py +15 -3
  255. transformers/models/gpt_neox/modeling_gpt_neox.py +1 -1
  256. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +1 -1
  257. transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
  258. transformers/models/gpt_oss/modeling_gpt_oss.py +6 -9
  259. transformers/models/gpt_oss/modular_gpt_oss.py +5 -7
  260. transformers/models/gptj/modeling_gptj.py +15 -6
  261. transformers/models/granite/modeling_granite.py +1 -1
  262. transformers/models/granite_speech/modeling_granite_speech.py +15 -1
  263. transformers/models/granitemoe/modeling_granitemoe.py +2 -3
  264. transformers/models/granitemoe/modular_granitemoe.py +1 -2
  265. transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
  266. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +33 -23
  267. transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
  268. transformers/models/granitemoeshared/modeling_granitemoeshared.py +2 -3
  269. transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
  270. transformers/models/grounding_dino/modeling_grounding_dino.py +4 -4
  271. transformers/models/groupvit/modeling_groupvit.py +6 -1
  272. transformers/models/helium/modeling_helium.py +1 -1
  273. transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -0
  274. transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -0
  275. transformers/models/hubert/modeling_hubert.py +4 -0
  276. transformers/models/hubert/modular_hubert.py +4 -0
  277. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +1 -1
  278. transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
  279. transformers/models/hunyuan_v1_moe/__init__.py +1 -1
  280. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +12 -4
  281. transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
  282. transformers/models/ibert/modeling_ibert.py +16 -0
  283. transformers/models/idefics/modeling_idefics.py +10 -0
  284. transformers/models/idefics2/modeling_idefics2.py +7 -1
  285. transformers/models/idefics3/modeling_idefics3.py +5 -1
  286. transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
  287. transformers/models/imagegpt/modeling_imagegpt.py +9 -2
  288. transformers/models/instructblip/modeling_instructblip.py +2 -0
  289. transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
  290. transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
  291. transformers/models/internvl/modeling_internvl.py +11 -8
  292. transformers/models/internvl/modular_internvl.py +5 -9
  293. transformers/models/internvl/video_processing_internvl.py +0 -1
  294. transformers/models/jais2/__init__.py +27 -0
  295. transformers/models/jais2/configuration_jais2.py +152 -0
  296. transformers/models/jais2/modeling_jais2.py +486 -0
  297. transformers/models/jais2/modular_jais2.py +196 -0
  298. transformers/models/jamba/modeling_jamba.py +24 -19
  299. transformers/models/jamba/modular_jamba.py +17 -17
  300. transformers/models/janus/image_processing_janus_fast.py +0 -1
  301. transformers/models/janus/modeling_janus.py +15 -7
  302. transformers/models/janus/modular_janus.py +16 -7
  303. transformers/models/jetmoe/modeling_jetmoe.py +2 -2
  304. transformers/models/jetmoe/modular_jetmoe.py +1 -0
  305. transformers/models/kosmos2/modeling_kosmos2.py +14 -2
  306. transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
  307. transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
  308. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +9 -3
  309. transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
  310. transformers/models/lasr/configuration_lasr.py +4 -0
  311. transformers/models/lasr/modeling_lasr.py +3 -2
  312. transformers/models/lasr/modular_lasr.py +8 -1
  313. transformers/models/lasr/processing_lasr.py +0 -2
  314. transformers/models/layoutlm/modeling_layoutlm.py +5 -3
  315. transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
  316. transformers/models/layoutlmv2/modeling_layoutlmv2.py +12 -0
  317. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1 -0
  318. transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
  319. transformers/models/layoutlmv3/modeling_layoutlmv3.py +29 -5
  320. transformers/models/led/modeling_led.py +6 -0
  321. transformers/models/levit/modeling_levit.py +18 -0
  322. transformers/models/lfm2/modeling_lfm2.py +1 -1
  323. transformers/models/lfm2_moe/modeling_lfm2_moe.py +14 -4
  324. transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
  325. transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
  326. transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
  327. transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
  328. transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
  329. transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
  330. transformers/models/lilt/modeling_lilt.py +19 -15
  331. transformers/models/llama/modeling_llama.py +1 -1
  332. transformers/models/llama4/image_processing_llama4_fast.py +1 -2
  333. transformers/models/llama4/modeling_llama4.py +8 -4
  334. transformers/models/llava/image_processing_llava_fast.py +0 -1
  335. transformers/models/llava/modeling_llava.py +12 -7
  336. transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
  337. transformers/models/llava_next/modeling_llava_next.py +7 -3
  338. transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
  339. transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
  340. transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
  341. transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
  342. transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
  343. transformers/models/longcat_flash/modeling_longcat_flash.py +2 -1
  344. transformers/models/longcat_flash/modular_longcat_flash.py +1 -0
  345. transformers/models/longt5/modeling_longt5.py +0 -4
  346. transformers/models/m2m_100/modeling_m2m_100.py +10 -0
  347. transformers/models/mamba/modeling_mamba.py +2 -1
  348. transformers/models/mamba2/modeling_mamba2.py +24 -23
  349. transformers/models/marian/configuration_marian.py +1 -1
  350. transformers/models/marian/modeling_marian.py +3 -0
  351. transformers/models/markuplm/modeling_markuplm.py +5 -8
  352. transformers/models/mask2former/configuration_mask2former.py +3 -3
  353. transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
  354. transformers/models/mask2former/modeling_mask2former.py +9 -0
  355. transformers/models/maskformer/configuration_maskformer.py +3 -3
  356. transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
  357. transformers/models/maskformer/modeling_maskformer.py +9 -1
  358. transformers/models/maskformer/modeling_maskformer_swin.py +19 -15
  359. transformers/models/mbart/configuration_mbart.py +1 -0
  360. transformers/models/mbart/modeling_mbart.py +7 -0
  361. transformers/models/megatron_bert/modeling_megatron_bert.py +2 -0
  362. transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
  363. transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
  364. transformers/models/mimi/modeling_mimi.py +25 -4
  365. transformers/models/minimax/modeling_minimax.py +16 -3
  366. transformers/models/minimax/modular_minimax.py +12 -1
  367. transformers/models/ministral/modeling_ministral.py +1 -1
  368. transformers/models/ministral3/modeling_ministral3.py +1 -1
  369. transformers/models/mistral/modeling_mistral.py +1 -1
  370. transformers/models/mistral3/modeling_mistral3.py +10 -4
  371. transformers/models/mistral3/modular_mistral3.py +3 -1
  372. transformers/models/mixtral/modeling_mixtral.py +12 -4
  373. transformers/models/mixtral/modular_mixtral.py +6 -2
  374. transformers/models/mlcd/modeling_mlcd.py +6 -0
  375. transformers/models/mlcd/modular_mlcd.py +4 -0
  376. transformers/models/mllama/modeling_mllama.py +13 -2
  377. transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
  378. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -4
  379. transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
  380. transformers/models/mobilebert/modeling_mobilebert.py +2 -0
  381. transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
  382. transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
  383. transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
  384. transformers/models/mobilevit/modeling_mobilevit.py +4 -0
  385. transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -0
  386. transformers/models/modernbert/modeling_modernbert.py +12 -1
  387. transformers/models/modernbert/modular_modernbert.py +12 -1
  388. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -1
  389. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +9 -1
  390. transformers/models/moonshine/modeling_moonshine.py +1 -1
  391. transformers/models/moshi/modeling_moshi.py +21 -51
  392. transformers/models/mpnet/modeling_mpnet.py +2 -0
  393. transformers/models/mra/modeling_mra.py +4 -1
  394. transformers/models/mt5/configuration_mt5.py +2 -3
  395. transformers/models/mt5/modeling_mt5.py +0 -10
  396. transformers/models/musicgen/modeling_musicgen.py +5 -9
  397. transformers/models/musicgen_melody/modeling_musicgen_melody.py +4 -0
  398. transformers/models/mvp/modeling_mvp.py +7 -0
  399. transformers/models/nanochat/modeling_nanochat.py +1 -1
  400. transformers/models/nemotron/modeling_nemotron.py +3 -3
  401. transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
  402. transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
  403. transformers/models/nougat/image_processing_nougat_fast.py +0 -1
  404. transformers/models/nougat/tokenization_nougat.py +11 -16
  405. transformers/models/nystromformer/modeling_nystromformer.py +7 -0
  406. transformers/models/olmo/modeling_olmo.py +1 -1
  407. transformers/models/olmo2/modeling_olmo2.py +1 -1
  408. transformers/models/olmo3/modeling_olmo3.py +1 -1
  409. transformers/models/olmoe/modeling_olmoe.py +12 -4
  410. transformers/models/olmoe/modular_olmoe.py +4 -2
  411. transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
  412. transformers/models/omdet_turbo/modeling_omdet_turbo.py +4 -0
  413. transformers/models/oneformer/configuration_oneformer.py +3 -3
  414. transformers/models/oneformer/modeling_oneformer.py +7 -38
  415. transformers/models/openai/modeling_openai.py +12 -0
  416. transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
  417. transformers/models/ovis2/modeling_ovis2.py +15 -3
  418. transformers/models/ovis2/modular_ovis2.py +8 -0
  419. transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
  420. transformers/models/owlv2/modeling_owlv2.py +7 -3
  421. transformers/models/owlv2/modular_owlv2.py +0 -2
  422. transformers/models/owlvit/modeling_owlvit.py +7 -3
  423. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +3 -2
  424. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +28 -14
  425. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +22 -12
  426. transformers/models/paligemma/modeling_paligemma.py +25 -17
  427. transformers/models/parakeet/modeling_parakeet.py +5 -0
  428. transformers/models/parakeet/modular_parakeet.py +5 -0
  429. transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
  430. transformers/models/patchtsmixer/modeling_patchtsmixer.py +4 -0
  431. transformers/models/patchtst/modeling_patchtst.py +5 -4
  432. transformers/models/pe_audio/__init__.py +30 -0
  433. transformers/models/pe_audio/configuration_pe_audio.py +206 -0
  434. transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
  435. transformers/models/pe_audio/modeling_pe_audio.py +820 -0
  436. transformers/models/pe_audio/modular_pe_audio.py +299 -0
  437. transformers/models/pe_audio/processing_pe_audio.py +24 -0
  438. transformers/models/pe_audio_video/__init__.py +29 -0
  439. transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
  440. transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
  441. transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
  442. transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
  443. transformers/models/pe_video/__init__.py +30 -0
  444. transformers/models/pe_video/configuration_pe_video.py +211 -0
  445. transformers/models/pe_video/modeling_pe_video.py +636 -0
  446. transformers/models/pe_video/modular_pe_video.py +219 -0
  447. transformers/models/pe_video/processing_pe_video.py +10 -0
  448. transformers/models/pe_video/video_processing_pe_video.py +66 -0
  449. transformers/models/pegasus/configuration_pegasus.py +1 -0
  450. transformers/models/pegasus/modeling_pegasus.py +3 -0
  451. transformers/models/pegasus_x/modeling_pegasus_x.py +1 -0
  452. transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
  453. transformers/models/perceiver/modeling_perceiver.py +5 -1
  454. transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
  455. transformers/models/perception_lm/modeling_perception_lm.py +7 -3
  456. transformers/models/perception_lm/modular_perception_lm.py +7 -3
  457. transformers/models/persimmon/modeling_persimmon.py +1 -1
  458. transformers/models/phi/modeling_phi.py +1 -1
  459. transformers/models/phi3/modeling_phi3.py +1 -1
  460. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +4 -1
  461. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +3 -0
  462. transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
  463. transformers/models/phimoe/modeling_phimoe.py +12 -4
  464. transformers/models/phimoe/modular_phimoe.py +1 -1
  465. transformers/models/pix2struct/processing_pix2struct.py +0 -4
  466. transformers/models/pixio/__init__.py +30 -0
  467. transformers/models/pixio/configuration_pixio.py +151 -0
  468. transformers/models/pixio/modeling_pixio.py +507 -0
  469. transformers/models/pixio/modular_pixio.py +404 -0
  470. transformers/models/pixtral/modeling_pixtral.py +1 -1
  471. transformers/models/pixtral/processing_pixtral.py +3 -1
  472. transformers/models/plbart/configuration_plbart.py +1 -0
  473. transformers/models/plbart/modeling_plbart.py +7 -0
  474. transformers/models/plbart/modular_plbart.py +6 -0
  475. transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
  476. transformers/models/poolformer/modeling_poolformer.py +11 -1
  477. transformers/models/pop2piano/configuration_pop2piano.py +0 -1
  478. transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
  479. transformers/models/prophetnet/modeling_prophetnet.py +2 -1
  480. transformers/models/qwen2/modeling_qwen2.py +1 -1
  481. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +104 -64
  482. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +58 -18
  483. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -5
  484. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +26 -22
  485. transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -2
  486. transformers/models/qwen2_moe/modeling_qwen2_moe.py +12 -4
  487. transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
  488. transformers/models/qwen2_vl/modeling_qwen2_vl.py +17 -4
  489. transformers/models/qwen3/modeling_qwen3.py +1 -1
  490. transformers/models/qwen3_moe/modeling_qwen3_moe.py +12 -4
  491. transformers/models/qwen3_next/modeling_qwen3_next.py +4 -6
  492. transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
  493. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +92 -46
  494. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +48 -4
  495. transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
  496. transformers/models/qwen3_vl/modeling_qwen3_vl.py +17 -4
  497. transformers/models/qwen3_vl/modular_qwen3_vl.py +21 -10
  498. transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
  499. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +94 -112
  500. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +32 -81
  501. transformers/models/rag/configuration_rag.py +0 -8
  502. transformers/models/rag/modeling_rag.py +7 -9
  503. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +3 -2
  504. transformers/models/reformer/modeling_reformer.py +9 -1
  505. transformers/models/regnet/modeling_regnet.py +4 -0
  506. transformers/models/rembert/modeling_rembert.py +7 -1
  507. transformers/models/resnet/modeling_resnet.py +8 -3
  508. transformers/models/roberta/modeling_roberta.py +3 -0
  509. transformers/models/roberta/modular_roberta.py +3 -0
  510. transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
  511. transformers/models/roc_bert/modeling_roc_bert.py +3 -0
  512. transformers/models/rt_detr/configuration_rt_detr.py +1 -1
  513. transformers/models/rt_detr/modeling_rt_detr.py +4 -0
  514. transformers/models/rt_detr/modeling_rt_detr_resnet.py +8 -3
  515. transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
  516. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +7 -0
  517. transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
  518. transformers/models/rwkv/modeling_rwkv.py +1 -1
  519. transformers/models/sam/configuration_sam.py +1 -0
  520. transformers/models/sam/image_processing_sam_fast.py +0 -1
  521. transformers/models/sam/modeling_sam.py +4 -1
  522. transformers/models/sam2/configuration_sam2.py +1 -1
  523. transformers/models/sam2/modeling_sam2.py +5 -1
  524. transformers/models/sam2/modular_sam2.py +5 -1
  525. transformers/models/sam2_video/modeling_sam2_video.py +51 -43
  526. transformers/models/sam2_video/modular_sam2_video.py +31 -18
  527. transformers/models/sam3/configuration_sam3.py +21 -1
  528. transformers/models/sam3/modeling_sam3.py +23 -0
  529. transformers/models/sam3_tracker/modeling_sam3_tracker.py +2 -0
  530. transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -0
  531. transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
  532. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +26 -15
  533. transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
  534. transformers/models/sam3_video/configuration_sam3_video.py +14 -0
  535. transformers/models/sam3_video/modeling_sam3_video.py +3 -3
  536. transformers/models/sam3_video/processing_sam3_video.py +1 -1
  537. transformers/models/sam_hq/configuration_sam_hq.py +1 -0
  538. transformers/models/sam_hq/modeling_sam_hq.py +26 -23
  539. transformers/models/seamless_m4t/modeling_seamless_m4t.py +27 -11
  540. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +6 -0
  541. transformers/models/seed_oss/modeling_seed_oss.py +1 -1
  542. transformers/models/segformer/image_processing_segformer_fast.py +0 -1
  543. transformers/models/segformer/modeling_segformer.py +2 -2
  544. transformers/models/segformer/modular_segformer.py +0 -1
  545. transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
  546. transformers/models/siglip/modeling_siglip.py +24 -2
  547. transformers/models/siglip2/modeling_siglip2.py +63 -41
  548. transformers/models/smollm3/modeling_smollm3.py +1 -1
  549. transformers/models/smolvlm/modeling_smolvlm.py +5 -1
  550. transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
  551. transformers/models/speech_to_text/modeling_speech_to_text.py +10 -0
  552. transformers/models/speecht5/modeling_speecht5.py +28 -0
  553. transformers/models/splinter/modeling_splinter.py +9 -3
  554. transformers/models/squeezebert/modeling_squeezebert.py +2 -0
  555. transformers/models/stablelm/modeling_stablelm.py +1 -1
  556. transformers/models/starcoder2/modeling_starcoder2.py +1 -1
  557. transformers/models/superglue/image_processing_superglue_fast.py +1 -2
  558. transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
  559. transformers/models/swiftformer/modeling_swiftformer.py +4 -0
  560. transformers/models/swin/modeling_swin.py +16 -12
  561. transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
  562. transformers/models/swin2sr/modeling_swin2sr.py +49 -33
  563. transformers/models/swinv2/modeling_swinv2.py +41 -33
  564. transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
  565. transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
  566. transformers/models/t5/configuration_t5.py +7 -1
  567. transformers/models/t5/modeling_t5.py +1 -7
  568. transformers/models/t5gemma/modeling_t5gemma.py +1 -1
  569. transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
  570. transformers/models/t5gemma2/modeling_t5gemma2.py +13 -4
  571. transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
  572. transformers/models/table_transformer/configuration_table_transformer.py +1 -1
  573. transformers/models/table_transformer/modeling_table_transformer.py +1 -1
  574. transformers/models/textnet/image_processing_textnet_fast.py +0 -1
  575. transformers/models/timesfm/modeling_timesfm.py +12 -0
  576. transformers/models/timesfm/modular_timesfm.py +12 -0
  577. transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
  578. transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
  579. transformers/models/timm_wrapper/modeling_timm_wrapper.py +19 -13
  580. transformers/models/trocr/modeling_trocr.py +1 -2
  581. transformers/models/tvp/configuration_tvp.py +5 -1
  582. transformers/models/tvp/modeling_tvp.py +4 -4
  583. transformers/models/udop/configuration_udop.py +1 -0
  584. transformers/models/udop/modeling_udop.py +3 -7
  585. transformers/models/umt5/configuration_umt5.py +2 -2
  586. transformers/models/umt5/modeling_umt5.py +0 -6
  587. transformers/models/vaultgemma/modeling_vaultgemma.py +1 -1
  588. transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
  589. transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
  590. transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
  591. transformers/models/video_llava/modeling_video_llava.py +7 -3
  592. transformers/models/vilt/configuration_vilt.py +2 -2
  593. transformers/models/vilt/modeling_vilt.py +7 -0
  594. transformers/models/vipllava/modeling_vipllava.py +7 -3
  595. transformers/models/visual_bert/modeling_visual_bert.py +2 -0
  596. transformers/models/vitmatte/configuration_vitmatte.py +1 -1
  597. transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
  598. transformers/models/vitmatte/modeling_vitmatte.py +4 -0
  599. transformers/models/vitpose/configuration_vitpose.py +1 -1
  600. transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
  601. transformers/models/voxtral/modeling_voxtral.py +2 -2
  602. transformers/models/voxtral/modular_voxtral.py +2 -2
  603. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +16 -10
  604. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +7 -0
  605. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +21 -11
  606. transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
  607. transformers/models/whisper/generation_whisper.py +1 -0
  608. transformers/models/whisper/modeling_whisper.py +5 -3
  609. transformers/models/x_clip/modeling_x_clip.py +2 -0
  610. transformers/models/xcodec/modeling_xcodec.py +5 -0
  611. transformers/models/xglm/modeling_xglm.py +10 -0
  612. transformers/models/xlm/modeling_xlm.py +13 -14
  613. transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
  614. transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
  615. transformers/models/xlnet/modeling_xlnet.py +3 -1
  616. transformers/models/xmod/modeling_xmod.py +3 -0
  617. transformers/models/yoso/modeling_yoso.py +4 -1
  618. transformers/models/zamba/modeling_zamba.py +2 -1
  619. transformers/models/zamba2/modeling_zamba2.py +3 -2
  620. transformers/models/zoedepth/configuration_zoedepth.py +1 -1
  621. transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
  622. transformers/models/zoedepth/modeling_zoedepth.py +7 -0
  623. transformers/pipelines/__init__.py +9 -6
  624. transformers/pipelines/automatic_speech_recognition.py +20 -12
  625. transformers/pipelines/base.py +1 -1
  626. transformers/pipelines/document_question_answering.py +1 -1
  627. transformers/pipelines/question_answering.py +1 -1
  628. transformers/pipelines/text_to_audio.py +2 -2
  629. transformers/processing_utils.py +127 -56
  630. transformers/quantizers/auto.py +2 -4
  631. transformers/quantizers/base.py +9 -64
  632. transformers/quantizers/quantizer_aqlm.py +1 -18
  633. transformers/quantizers/quantizer_auto_round.py +1 -10
  634. transformers/quantizers/quantizer_awq.py +3 -8
  635. transformers/quantizers/quantizer_bitnet.py +1 -6
  636. transformers/quantizers/quantizer_bnb_4bit.py +9 -49
  637. transformers/quantizers/quantizer_bnb_8bit.py +9 -19
  638. transformers/quantizers/quantizer_compressed_tensors.py +1 -4
  639. transformers/quantizers/quantizer_eetq.py +2 -12
  640. transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
  641. transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
  642. transformers/quantizers/quantizer_fp_quant.py +4 -4
  643. transformers/quantizers/quantizer_gptq.py +1 -4
  644. transformers/quantizers/quantizer_higgs.py +2 -6
  645. transformers/quantizers/quantizer_mxfp4.py +2 -28
  646. transformers/quantizers/quantizer_quanto.py +14 -14
  647. transformers/quantizers/quantizer_spqr.py +3 -8
  648. transformers/quantizers/quantizer_torchao.py +28 -124
  649. transformers/quantizers/quantizer_vptq.py +1 -10
  650. transformers/testing_utils.py +28 -12
  651. transformers/tokenization_mistral_common.py +3 -2
  652. transformers/tokenization_utils_base.py +3 -2
  653. transformers/tokenization_utils_tokenizers.py +25 -2
  654. transformers/trainer.py +24 -2
  655. transformers/trainer_callback.py +8 -0
  656. transformers/trainer_seq2seq.py +4 -0
  657. transformers/training_args.py +8 -10
  658. transformers/utils/__init__.py +4 -0
  659. transformers/utils/attention_visualizer.py +4 -4
  660. transformers/utils/auto_docstring.py +34 -25
  661. transformers/utils/generic.py +20 -0
  662. transformers/utils/import_utils.py +51 -9
  663. transformers/utils/kernel_config.py +71 -18
  664. transformers/utils/quantization_config.py +8 -8
  665. transformers/video_processing_utils.py +16 -12
  666. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +5 -6
  667. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +671 -632
  668. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +0 -0
  669. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
  670. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/licenses/LICENSE +0 -0
  671. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1898 @@
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_ernie4_5_vl_moe.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2025 Baidu and HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import itertools
23
+ from collections.abc import Callable
24
+ from typing import Any, Optional, Union
25
+
26
+ import torch
27
+ import torch.nn as nn
28
+ import torch.nn.functional as F
29
+
30
+ from ... import initialization as init
31
+ from ...activations import ACT2FN
32
+ from ...cache_utils import Cache, DynamicCache
33
+ from ...generation import GenerationMixin
34
+ from ...integrations import use_experts_implementation, use_kernel_forward_from_hub, use_kernelized_func
35
+ from ...masking_utils import create_causal_mask
36
+ from ...modeling_flash_attention_utils import FlashAttentionKwargs
37
+ from ...modeling_layers import GradientCheckpointingLayer
38
+ from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
39
+ from ...modeling_rope_utils import dynamic_rope_update
40
+ from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
41
+ from ...processing_utils import Unpack
42
+ from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling
43
+ from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
44
+ from .configuration_ernie4_5_vl_moe import (
45
+ Ernie4_5_VL_MoeConfig,
46
+ Ernie4_5_VL_MoeTextConfig,
47
+ Ernie4_5_VL_MoeVisionConfig,
48
+ )
49
+
50
+
51
+ class Ernie4_5_VL_MoeTextRotaryEmbedding(nn.Module):
52
+ inv_freq: torch.Tensor # fix linting for `register_buffer`
53
+
54
+ def __init__(self, config, device=None):
55
+ super().__init__()
56
+ self.max_seq_len_cached = config.max_position_embeddings
57
+ self.original_max_seq_len = config.max_position_embeddings
58
+
59
+ self.config = config
60
+
61
+ self.rope_type = self.config.rope_parameters["rope_type"]
62
+ rope_init_fn: Callable = self.compute_default_rope_parameters
63
+ if self.rope_type != "default":
64
+ raise ValueError(f"Ernie 4.5 VL requires the `default` rope type, but found {self.rope_type} instead.")
65
+ inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
66
+
67
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
68
+ self.original_inv_freq = inv_freq
69
+
70
+ self.mrope_section = config.rope_parameters.get("mrope_section", [22, 22, 20])
71
+
72
+ @staticmethod
73
+ def compute_default_rope_parameters(
74
+ config: Optional[Ernie4_5_VL_MoeTextConfig] = None,
75
+ device: Optional["torch.device"] = None,
76
+ seq_len: Optional[int] = None,
77
+ ) -> tuple["torch.Tensor", float]:
78
+ """
79
+ Computes the inverse frequencies according to the original RoPE implementation
80
+ Args:
81
+ config ([`~transformers.PreTrainedConfig`]):
82
+ The model configuration.
83
+ device (`torch.device`):
84
+ The device to use for initialization of the inverse frequencies.
85
+ seq_len (`int`, *optional*):
86
+ The current sequence length. Unused for this type of RoPE.
87
+ Returns:
88
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
89
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
90
+ """
91
+ base = config.rope_parameters["rope_theta"]
92
+ dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
93
+
94
+ attention_factor = 1.0 # Unused in this type of RoPE
95
+
96
+ # Compute the inverse frequencies
97
+ inv_freq = 1.0 / (
98
+ base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
99
+ )
100
+
101
+ # Special to ernie, we prerotate on the hw dim
102
+ mrope_section = config.rope_parameters.get("mrope_section", [22, 22, 20])
103
+ hw_dim = mrope_section[0] + mrope_section[1]
104
+ t_dim = mrope_section[2]
105
+
106
+ inv_freq_3d = torch.empty_like(inv_freq)
107
+ # (Pre-)Rotate to avoid another rotation during the forward
108
+ inv_freq_3d[:hw_dim] = torch.cat([inv_freq[:-t_dim][0::2], inv_freq[:-t_dim][1::2]])
109
+ inv_freq_3d[-t_dim:] = inv_freq[-t_dim:]
110
+
111
+ return inv_freq_3d, attention_factor
112
+
113
+ @torch.no_grad()
114
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
115
+ def forward(self, x, position_ids):
116
+ inv_freq_expanded = (
117
+ self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1).to(x.device)
118
+ )
119
+ position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
120
+
121
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
122
+ with maybe_autocast(device_type=device_type, enabled=False): # Force float32
123
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
124
+ cos = freqs.cos() * self.attention_scaling
125
+ sin = freqs.sin() * self.attention_scaling
126
+
127
+ sin = self.recomposition_to_3d(sin)
128
+ cos = self.recomposition_to_3d(cos)
129
+
130
+ return cos, sin
131
+
132
+ def recomposition_to_3d(self, freq):
133
+ freq_h, freq_w, freq_t = (m[(i + 1) % 3] for i, m in enumerate(freq.split([*self.mrope_section], dim=-1)))
134
+ freq_hw = torch.stack([freq_h, freq_w], dim=-1).flatten(-2)
135
+ freq_hwt = torch.cat([freq_hw, freq_t], dim=-1)
136
+ return freq_hwt.repeat_interleave(2, dim=-1)
137
+
138
+
139
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
140
+ """
141
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
142
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
143
+ """
144
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
145
+ if n_rep == 1:
146
+ return hidden_states
147
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
148
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
149
+
150
+
151
+ def eager_attention_forward(
152
+ module: nn.Module,
153
+ query: torch.Tensor,
154
+ key: torch.Tensor,
155
+ value: torch.Tensor,
156
+ attention_mask: Optional[torch.Tensor],
157
+ scaling: float,
158
+ dropout: float = 0.0,
159
+ **kwargs: Unpack[TransformersKwargs],
160
+ ):
161
+ key_states = repeat_kv(key, module.num_key_value_groups)
162
+ value_states = repeat_kv(value, module.num_key_value_groups)
163
+
164
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
165
+ if attention_mask is not None:
166
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
167
+ attn_weights = attn_weights + causal_mask
168
+
169
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
170
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
171
+ attn_output = torch.matmul(attn_weights, value_states)
172
+ attn_output = attn_output.transpose(1, 2).contiguous()
173
+
174
+ return attn_output, attn_weights
175
+
176
+
177
+ def rotate_half_text(x):
178
+ """Rotates half the hidden dims of the input."""
179
+ x1 = x[..., 0::2]
180
+ x2 = x[..., 1::2]
181
+ return torch.stack((-x2, x1), dim=-1).flatten(-2)
182
+
183
+
184
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
185
+ """Applies Rotary Position Embedding to the query and key tensors.
186
+
187
+ Args:
188
+ q (`torch.Tensor`): The query tensor.
189
+ k (`torch.Tensor`): The key tensor.
190
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
191
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
192
+ position_ids (`torch.Tensor`, *optional*):
193
+ Deprecated and unused.
194
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
195
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
196
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
197
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
198
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
199
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
200
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
201
+ Returns:
202
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
203
+ """
204
+ original_dtype = q.dtype
205
+
206
+ cos = cos.unsqueeze(unsqueeze_dim)
207
+ sin = sin.unsqueeze(unsqueeze_dim)
208
+
209
+ q_embed = (q.float() * cos) + (rotate_half_text(q).float() * sin)
210
+ k_embed = (k.float() * cos) + (rotate_half_text(k).float() * sin)
211
+
212
+ return q_embed.to(original_dtype), k_embed.to(original_dtype)
213
+
214
+
215
+ @use_kernelized_func(apply_rotary_pos_emb)
216
+ class Ernie4_5_VL_MoeTextAttention(nn.Module):
217
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
218
+
219
+ def __init__(self, config: Ernie4_5_VL_MoeConfig, layer_idx: int):
220
+ super().__init__()
221
+ self.config = config
222
+ self.layer_idx = layer_idx
223
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
224
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
225
+ self.scaling = self.head_dim**-0.5
226
+
227
+ self.attention_dropout = 0.0
228
+ self.is_causal = True
229
+
230
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
231
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
232
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
233
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
234
+
235
+ def forward(
236
+ self,
237
+ hidden_states: torch.Tensor,
238
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
239
+ attention_mask: Optional[torch.Tensor] = None,
240
+ past_key_values: Optional[Cache] = None,
241
+ cache_position: Optional[torch.LongTensor] = None,
242
+ **kwargs: Unpack[TransformersKwargs],
243
+ ) -> tuple[torch.Tensor, torch.Tensor]:
244
+ input_shape = hidden_states.shape[:-1]
245
+ hidden_shape = (*input_shape, -1, self.head_dim)
246
+
247
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
248
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
249
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
250
+
251
+ cos, sin = position_embeddings
252
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
253
+
254
+ if past_key_values is not None:
255
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
256
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
257
+ key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
258
+
259
+ attention_interface: Callable = eager_attention_forward
260
+ if self.config._attn_implementation != "eager":
261
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
262
+
263
+ attn_output, attn_weights = attention_interface(
264
+ self,
265
+ query_states,
266
+ key_states,
267
+ value_states,
268
+ attention_mask,
269
+ dropout=0.0 if not self.training else self.attention_dropout,
270
+ scaling=self.scaling,
271
+ **kwargs,
272
+ )
273
+
274
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
275
+ attn_output = self.o_proj(attn_output)
276
+ return attn_output, attn_weights
277
+
278
+
279
+ @use_kernel_forward_from_hub("RMSNorm")
280
+ class Ernie4_5_VL_MoeRMSNorm(nn.Module):
281
+ def __init__(self, hidden_size, eps=1e-6):
282
+ """
283
+ Ernie4_5_VL_MoeRMSNorm is equivalent to T5LayerNorm
284
+ """
285
+ super().__init__()
286
+ self.weight = nn.Parameter(torch.ones(hidden_size))
287
+ self.variance_epsilon = eps
288
+
289
+ def forward(self, hidden_states):
290
+ input_dtype = hidden_states.dtype
291
+ hidden_states = hidden_states.to(torch.float32)
292
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
293
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
294
+ return self.weight * hidden_states.to(input_dtype)
295
+
296
+ def extra_repr(self):
297
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
298
+
299
+
300
+ class Ernie4_5_VL_MoeMLP(nn.Module):
301
+ def __init__(self, config, intermediate_size=None):
302
+ super().__init__()
303
+ self.config = config
304
+ self.hidden_size = config.hidden_size
305
+ self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
306
+
307
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
308
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
309
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
310
+ self.act_fn = ACT2FN[config.hidden_act]
311
+
312
+ def forward(self, x):
313
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
314
+ return down_proj
315
+
316
+
317
+ class Ernie4_5_VL_MoeMoeStatics(nn.Module):
318
+ """
319
+ Stores MoE (Mixture of Experts) statistics
320
+ - Bias for the gating
321
+ - Additionally, usage per expert in the original codebase
322
+ """
323
+
324
+ def __init__(self, config):
325
+ super().__init__()
326
+
327
+ num_experts_groups = 1
328
+ num_experts = config.moe_num_experts
329
+
330
+ self.e_score_correction_bias = nn.Parameter(
331
+ torch.zeros(num_experts_groups, num_experts, dtype=torch.float32),
332
+ requires_grad=False,
333
+ )
334
+
335
+ def forward(self, hidden_states):
336
+ # NOTE: This is a workaround to enable TP with a module that only has parameters
337
+ #
338
+ # Otherwise, it stays as `DTensor` when called in the "super" forward
339
+ # 1. All other tensors are local (`torch.Tensor`)
340
+ # 2. Isolate does not work on `nn.Module` which only has parameters
341
+ return hidden_states + self.e_score_correction_bias.squeeze()
342
+
343
+
344
+ class Ernie4_5_VL_MoeMoeTopKRouter(nn.Module):
345
+ def __init__(self, config):
346
+ super().__init__()
347
+ self.weight = nn.Parameter(torch.zeros(config.moe_num_experts, config.hidden_size, dtype=torch.float32))
348
+ self.moe_statics = Ernie4_5_VL_MoeMoeStatics(config)
349
+ self.top_k = config.moe_k
350
+ self.norm_min = config.moe_norm_min
351
+
352
+ def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
353
+ device_type = (
354
+ hidden_states.device.type
355
+ if isinstance(hidden_states.device.type, str) and hidden_states.device.type != "mps"
356
+ else "cpu"
357
+ )
358
+
359
+ with maybe_autocast(device_type=device_type, enabled=False): # Force float32
360
+ router_logits = F.linear(hidden_states.float(), self.weight.float())
361
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
362
+ _, selected_experts = torch.topk(self.moe_statics(routing_weights), self.top_k, dim=-1)
363
+ routing_weights = torch.gather(routing_weights, dim=-1, index=selected_experts)
364
+ routing_weights = routing_weights / torch.clamp(
365
+ routing_weights.sum(dim=-1, keepdim=True), min=self.norm_min
366
+ )
367
+ routing_weights = routing_weights.to(hidden_states.dtype)
368
+ return router_logits, selected_experts, routing_weights
369
+
370
+
371
+ @use_experts_implementation
372
+ class Ernie4_5_VL_MoeMoeExperts(nn.Module):
373
+ """Collection of expert weights stored as 3D tensors."""
374
+
375
+ def __init__(self, config, intermediate_size=None):
376
+ super().__init__()
377
+ self.num_experts = config.moe_num_experts
378
+ self.hidden_dim = config.hidden_size
379
+ self.intermediate_dim = config.moe_intermediate_size if intermediate_size is None else intermediate_size
380
+ self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, 2 * self.intermediate_dim, self.hidden_dim))
381
+ self.down_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim, self.intermediate_dim))
382
+ self.act_fn = ACT2FN[config.hidden_act]
383
+
384
+ def forward(
385
+ self,
386
+ hidden_states: torch.Tensor,
387
+ top_k_index: torch.Tensor,
388
+ top_k_weights: torch.Tensor,
389
+ ) -> torch.Tensor:
390
+ final_hidden_states = torch.zeros_like(hidden_states)
391
+ with torch.no_grad():
392
+ expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts)
393
+ expert_mask = expert_mask.permute(2, 1, 0)
394
+ expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
395
+
396
+ for expert_idx in expert_hit:
397
+ expert_idx = expert_idx[0]
398
+ if expert_idx == self.num_experts:
399
+ continue
400
+ top_k_pos, token_idx = torch.where(expert_mask[expert_idx])
401
+ current_state = hidden_states[token_idx]
402
+ gate, up = nn.functional.linear(current_state, self.gate_up_proj[expert_idx]).chunk(2, dim=-1)
403
+ current_hidden_states = self.act_fn(gate) * up
404
+ current_hidden_states = nn.functional.linear(current_hidden_states, self.down_proj[expert_idx])
405
+ current_hidden_states = current_hidden_states * top_k_weights[token_idx, top_k_pos, None]
406
+ final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
407
+
408
+ return final_hidden_states
409
+
410
+
411
+ class Ernie4_5_VL_MoeSparseMoeBlock(nn.Module):
412
+ def __init__(self, config, intermediate_size):
413
+ super().__init__()
414
+ self.hidden_dim = config.hidden_size
415
+ self.num_experts = config.moe_num_experts
416
+ self.top_k = config.moe_k
417
+ self.gate = Ernie4_5_VL_MoeMoeTopKRouter(config)
418
+ self.experts = Ernie4_5_VL_MoeMoeExperts(config, intermediate_size)
419
+
420
+ def forward(
421
+ self,
422
+ hidden_states: torch.Tensor,
423
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
424
+ hidden_states = hidden_states.view(-1, self.hidden_dim)
425
+
426
+ router_logits, top_k_index, top_k_weights = self.gate(hidden_states)
427
+ final_hidden_states = self.experts(hidden_states, top_k_index, top_k_weights)
428
+
429
+ # moe results are changed to a flattened shape to ease the modality isolated assigning of results
430
+ return final_hidden_states.flatten(), router_logits.flatten()
431
+
432
+
433
+ class Ernie4_5_VL_MoeMoeBlock(nn.Module):
434
+ """
435
+ Similar to `Ernie4_5_Moe` where we have modality isolated experts:
436
+ - A set of text experts that are only run on text tokens
437
+ - A set of vision experts that are only run on vision (image/video) tokens
438
+
439
+ This modality isolation is unique to the Ernie 4.5 VL Moe models.
440
+ """
441
+
442
+ def __init__(self, config):
443
+ super().__init__()
444
+ self.num_experts = config.moe_num_experts
445
+
446
+ self.text_moe = Ernie4_5_VL_MoeSparseMoeBlock(config, intermediate_size=config.moe_intermediate_size[0])
447
+ self.vision_moe = Ernie4_5_VL_MoeSparseMoeBlock(config, intermediate_size=config.moe_intermediate_size[1])
448
+
449
+ self.shared_experts = None
450
+ if config.moe_num_shared_experts > 0:
451
+ self.shared_experts = Ernie4_5_VL_MoeMLP(
452
+ config, config.moe_intermediate_size[0] * config.moe_num_shared_experts
453
+ )
454
+
455
+ def forward(
456
+ self,
457
+ hidden_states: torch.Tensor,
458
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
459
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
460
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
461
+
462
+ # (Optional) shared experts
463
+ if self.shared_experts is not None:
464
+ shared_output = self.shared_experts(hidden_states)
465
+
466
+ if moe_mm_token_type_ids is not None and moe_mm_token_type_ids.any():
467
+ final_hidden_states = torch.zeros_like(hidden_states)
468
+ router_logits = torch.zeros(
469
+ size=(batch_size * sequence_length, self.num_experts),
470
+ device=final_hidden_states.device,
471
+ dtype=torch.float,
472
+ )
473
+
474
+ # True (1 or 2) == vision, False (0) == text tokens
475
+ moe_mm_token_type_ids = moe_mm_token_type_ids.bool()
476
+ token_type_ids_router = moe_mm_token_type_ids.reshape(-1)[:, None].expand(-1, self.num_experts)
477
+ token_type_ids_states = moe_mm_token_type_ids[..., None].expand(-1, -1, hidden_dim)
478
+
479
+ # Run moe on each modality and assign their results to the original token positions
480
+ final_hidden_states[~token_type_ids_states], router_logits[~token_type_ids_router] = self.text_moe(
481
+ hidden_states[~token_type_ids_states]
482
+ )
483
+ final_hidden_states[token_type_ids_states], router_logits[token_type_ids_router] = self.vision_moe(
484
+ hidden_states[token_type_ids_states]
485
+ )
486
+ else:
487
+ final_hidden_states, router_logits = self.text_moe(hidden_states)
488
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
489
+ router_logits = router_logits.reshape(-1, self.num_experts)
490
+
491
+ # Add (optional) shared experts to the result
492
+ if self.shared_experts is not None:
493
+ final_hidden_states = final_hidden_states + shared_output
494
+
495
+ return final_hidden_states, router_logits
496
+
497
+
498
+ class Ernie4_5_VL_MoeDecoderLayer(GradientCheckpointingLayer):
499
+ def __init__(self, config, layer_idx):
500
+ super().__init__()
501
+ self.hidden_size = config.hidden_size
502
+
503
+ self.self_attn = Ernie4_5_VL_MoeTextAttention(config, layer_idx)
504
+
505
+ if config.mlp_layer_types[layer_idx] == "sparse":
506
+ self.mlp = Ernie4_5_VL_MoeMoeBlock(config)
507
+ else:
508
+ self.mlp = Ernie4_5_VL_MoeMLP(config)
509
+
510
+ self.input_layernorm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, config.rms_norm_eps)
511
+ self.post_attention_layernorm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, config.rms_norm_eps)
512
+
513
+ def forward(
514
+ self,
515
+ hidden_states: torch.Tensor,
516
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
517
+ attention_mask: Optional[torch.Tensor] = None,
518
+ position_ids: Optional[torch.Tensor] = None,
519
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
520
+ past_key_values: Optional[Cache] = None,
521
+ cache_position: Optional[torch.LongTensor] = None,
522
+ **kwargs: Unpack[FlashAttentionKwargs],
523
+ ) -> tuple[torch.Tensor, Optional[tuple[torch.Tensor, torch.Tensor]]]:
524
+ residual = hidden_states
525
+
526
+ hidden_states = self.input_layernorm(hidden_states)
527
+
528
+ # Self Attention
529
+ hidden_states, _ = self.self_attn(
530
+ hidden_states=hidden_states,
531
+ position_embeddings=position_embeddings,
532
+ attention_mask=attention_mask,
533
+ position_ids=position_ids,
534
+ past_key_values=past_key_values,
535
+ cache_position=cache_position,
536
+ **kwargs,
537
+ )
538
+ hidden_states = hidden_states + residual
539
+
540
+ # Fully Connected
541
+ residual = hidden_states
542
+ hidden_states = self.post_attention_layernorm(hidden_states)
543
+ if isinstance(self.mlp, Ernie4_5_VL_MoeMoeBlock):
544
+ hidden_states, _ = self.mlp(hidden_states, moe_mm_token_type_ids)
545
+ else:
546
+ hidden_states = self.mlp(hidden_states)
547
+ hidden_states = hidden_states + residual
548
+
549
+ return hidden_states
550
+
551
+
552
+ @auto_docstring
553
+ class Ernie4_5_VL_MoePreTrainedModel(PreTrainedModel):
554
+ config: Ernie4_5_VL_MoeConfig
555
+ base_model_prefix = "model"
556
+ input_modalities = ("image", "video", "text")
557
+ supports_gradient_checkpointing = True
558
+ _no_split_modules = ["Ernie4_5_VL_MoeDecoderLayer", "Ernie4_5_VL_MoeVisionBlock"]
559
+ _skip_keys_device_placement = "past_key_values"
560
+ _supports_flash_attn = True
561
+ _supports_sdpa = True
562
+ _can_compile_fullgraph = False
563
+ _supports_attention_backend = True
564
+
565
+ _can_record_outputs = {
566
+ "router_logits": OutputRecorder(Ernie4_5_VL_MoeMoeBlock, index=1),
567
+ "hidden_states": Ernie4_5_VL_MoeDecoderLayer,
568
+ "attentions": Ernie4_5_VL_MoeTextAttention,
569
+ }
570
+ _keep_in_fp32_modules_strict = ["gate.weight", "moe_statics"]
571
+
572
+ def _init_weights(self, module):
573
+ super()._init_weights(module)
574
+ if isinstance(module, Ernie4_5_VL_MoeMoeTopKRouter):
575
+ init.zeros_(module.moe_statics.e_score_correction_bias)
576
+ init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
577
+ elif isinstance(module, Ernie4_5_VL_MoeMoeExperts):
578
+ init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
579
+ init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
580
+ elif isinstance(module, Ernie4_5_VL_MoeVisionRotaryEmbedding):
581
+ inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
582
+ init.copy_(module.inv_freq, inv_freq)
583
+
584
+
585
+ @auto_docstring
586
+ class Ernie4_5_VL_MoeTextModel(Ernie4_5_VL_MoePreTrainedModel):
587
+ config: Ernie4_5_VL_MoeTextConfig
588
+
589
+ def __init__(self, config: Ernie4_5_VL_MoeTextConfig):
590
+ super().__init__(config)
591
+ self.padding_idx = config.pad_token_id
592
+ self.vocab_size = config.vocab_size
593
+
594
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
595
+ self.layers = nn.ModuleList(
596
+ [Ernie4_5_VL_MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
597
+ )
598
+ self.norm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
599
+ self.rotary_emb = Ernie4_5_VL_MoeTextRotaryEmbedding(config=config)
600
+ self.gradient_checkpointing = False
601
+
602
+ # Initialize weights and apply final processing
603
+ self.post_init()
604
+
605
+ @check_model_inputs
606
+ @auto_docstring
607
+ def forward(
608
+ self,
609
+ input_ids: Optional[torch.LongTensor] = None,
610
+ attention_mask: Optional[torch.Tensor] = None,
611
+ position_ids: Optional[torch.LongTensor] = None,
612
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
613
+ past_key_values: Optional[Cache] = None,
614
+ inputs_embeds: Optional[torch.FloatTensor] = None,
615
+ use_cache: Optional[bool] = None,
616
+ cache_position: Optional[torch.LongTensor] = None,
617
+ **kwargs: Unpack[FlashAttentionKwargs],
618
+ ) -> MoeModelOutputWithPast:
619
+ r"""
620
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
621
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
622
+ """
623
+ if (input_ids is None) ^ (inputs_embeds is not None):
624
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
625
+
626
+ if use_cache and past_key_values is None:
627
+ past_key_values = DynamicCache(config=self.config)
628
+
629
+ if inputs_embeds is None:
630
+ inputs_embeds = self.embed_tokens(input_ids)
631
+
632
+ if cache_position is None:
633
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
634
+ cache_position = torch.arange(
635
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
636
+ )
637
+
638
+ # the hard coded `3` is for temporal, height and width.
639
+ if position_ids is None:
640
+ position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
641
+ elif position_ids.ndim == 2:
642
+ position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
643
+
644
+ # NOTE: we need to pass text position ids for packing. Ernie 4.5 VL uses 3D positions
645
+ # where each dim indicates visual spatial positions for temporal/height/width grids.
646
+ # There are is only one scenario when FA2-like packed masking might be activated.
647
+ # 1. User specifically passed packed `position_ids` and no attention mask.
648
+ # In this case we expect the useer to create correct position ids for all 3 grids
649
+ # and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
650
+ if position_ids.ndim == 3 and position_ids.shape[0] == 4:
651
+ text_position_ids = position_ids[0]
652
+ position_ids = position_ids[1:]
653
+ else:
654
+ # If inputs are not packed (usual 3D positions), do not prepare mask from position_ids
655
+ text_position_ids = None
656
+
657
+ attention_mask = create_causal_mask(
658
+ config=self.config,
659
+ input_embeds=inputs_embeds,
660
+ attention_mask=attention_mask,
661
+ cache_position=cache_position,
662
+ past_key_values=past_key_values,
663
+ position_ids=text_position_ids,
664
+ )
665
+
666
+ hidden_states = inputs_embeds
667
+
668
+ # create position embeddings to be shared across the decoder layers
669
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
670
+
671
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
672
+ hidden_states = decoder_layer(
673
+ hidden_states,
674
+ position_embeddings=position_embeddings,
675
+ attention_mask=attention_mask,
676
+ position_ids=position_ids,
677
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
678
+ past_key_values=past_key_values,
679
+ cache_position=cache_position,
680
+ **kwargs,
681
+ )
682
+
683
+ hidden_states = self.norm(hidden_states)
684
+
685
+ return MoeModelOutputWithPast(
686
+ last_hidden_state=hidden_states,
687
+ past_key_values=past_key_values,
688
+ )
689
+
690
+
691
+ class Ernie4_5VLVisionMLP(nn.Module):
692
+ def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
693
+ super().__init__()
694
+ self.fc1 = nn.Linear(dim, hidden_dim)
695
+ self.act = ACT2FN[hidden_act]
696
+ self.fc2 = nn.Linear(hidden_dim, dim)
697
+
698
+ def forward(self, x) -> torch.Tensor:
699
+ return self.fc2(self.act(self.fc1(x)))
700
+
701
+
702
+ class Ernie4_5_VL_MoePatchEmbed(nn.Module):
703
+ def __init__(
704
+ self,
705
+ patch_size: int = 14,
706
+ in_channels: int = 3,
707
+ embed_dim: int = 1152,
708
+ ) -> None:
709
+ super().__init__()
710
+ self.patch_size = patch_size
711
+ self.in_channels = in_channels
712
+ self.embed_dim = embed_dim
713
+ self.proj = nn.Linear(in_channels * patch_size * patch_size, embed_dim, bias=False)
714
+
715
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
716
+ target_dtype = self.proj.weight.dtype
717
+ return self.proj(hidden_states.to(target_dtype))
718
+
719
+
720
+ class Ernie4_5_VL_MoeVisionRotaryEmbedding(nn.Module):
721
+ inv_freq: torch.Tensor # fix linting for `register_buffer`
722
+
723
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
724
+ super().__init__()
725
+ self.dim = dim
726
+ self.theta = theta
727
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
728
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
729
+
730
+ def forward(self, seqlen: int) -> torch.Tensor:
731
+ seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
732
+ freqs = torch.outer(seq, self.inv_freq)
733
+ return freqs
734
+
735
+
736
+ def rotate_half(x):
737
+ """Rotates half the hidden dims of the input."""
738
+ x1 = x[..., : x.shape[-1] // 2]
739
+ x2 = x[..., x.shape[-1] // 2 :]
740
+ return torch.cat((-x2, x1), dim=-1)
741
+
742
+
743
+ def apply_rotary_pos_emb_vision(
744
+ q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
745
+ ) -> tuple[torch.Tensor, torch.Tensor]:
746
+ orig_q_dtype = q.dtype
747
+ orig_k_dtype = k.dtype
748
+ q, k = q.float(), k.float()
749
+ cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
750
+ q_embed = (q * cos) + (rotate_half(q) * sin)
751
+ k_embed = (k * cos) + (rotate_half(k) * sin)
752
+ q_embed = q_embed.to(orig_q_dtype)
753
+ k_embed = k_embed.to(orig_k_dtype)
754
+ return q_embed, k_embed
755
+
756
+
757
+ class Ernie4_5_VL_MoeVisionAttention(nn.Module):
758
+ def __init__(self, config: Ernie4_5_VL_MoeVisionConfig) -> None:
759
+ super().__init__()
760
+ self.dim = config.hidden_size
761
+ self.num_heads = config.num_heads
762
+ self.head_dim = self.dim // self.num_heads
763
+ self.num_key_value_groups = 1 # needed for eager attention
764
+ self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
765
+ self.proj = nn.Linear(self.dim, self.dim)
766
+ self.scaling = self.head_dim**-0.5
767
+ self.config = config
768
+ self.attention_dropout = 0.0
769
+ self.is_causal = False
770
+
771
+ def forward(
772
+ self,
773
+ hidden_states: torch.Tensor,
774
+ cu_seqlens: torch.Tensor,
775
+ rotary_pos_emb: Optional[torch.Tensor] = None,
776
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
777
+ **kwargs,
778
+ ) -> torch.Tensor:
779
+ seq_length = hidden_states.shape[0]
780
+ query_states, key_states, value_states = (
781
+ self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
782
+ )
783
+ cos, sin = position_embeddings
784
+ query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
785
+
786
+ query_states = query_states.transpose(0, 1).unsqueeze(0)
787
+ key_states = key_states.transpose(0, 1).unsqueeze(0)
788
+ value_states = value_states.transpose(0, 1).unsqueeze(0)
789
+
790
+ attention_interface: Callable = eager_attention_forward
791
+ if self.config._attn_implementation != "eager":
792
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
793
+
794
+ if "flash" in self.config._attn_implementation:
795
+ # Flash Attention: Use cu_seqlens for variable length attention
796
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
797
+ attn_output, _ = attention_interface(
798
+ self,
799
+ query_states,
800
+ key_states,
801
+ value_states,
802
+ attention_mask=None,
803
+ scaling=self.scaling,
804
+ dropout=0.0 if not self.training else self.attention_dropout,
805
+ cu_seq_lens_q=cu_seqlens,
806
+ cu_seq_lens_k=cu_seqlens,
807
+ max_length_q=max_seqlen,
808
+ max_length_k=max_seqlen,
809
+ is_causal=False,
810
+ **kwargs,
811
+ )
812
+ else:
813
+ # Other implementations: Process each chunk separately
814
+ lengths = cu_seqlens[1:] - cu_seqlens[:-1]
815
+ splits = [
816
+ torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
817
+ ]
818
+
819
+ attn_outputs = [
820
+ attention_interface(
821
+ self,
822
+ q,
823
+ k,
824
+ v,
825
+ attention_mask=None,
826
+ scaling=self.scaling,
827
+ dropout=0.0 if not self.training else self.attention_dropout,
828
+ is_causal=False,
829
+ **kwargs,
830
+ )[0]
831
+ for q, k, v in zip(*splits)
832
+ ]
833
+ attn_output = torch.cat(attn_outputs, dim=1)
834
+
835
+ attn_output = attn_output.reshape(seq_length, -1).contiguous()
836
+ attn_output = self.proj(attn_output)
837
+ return attn_output
838
+
839
+
840
+ class Ernie4_5_VL_MoeVisionBlock(GradientCheckpointingLayer):
841
+ def __init__(self, config) -> None:
842
+ super().__init__()
843
+
844
+ self.norm1 = nn.LayerNorm(config.hidden_size, config.rms_norm_eps)
845
+ self.norm2 = nn.LayerNorm(config.hidden_size, config.rms_norm_eps)
846
+ self.attn = Ernie4_5_VL_MoeVisionAttention(config=config)
847
+ self.mlp = Ernie4_5VLVisionMLP(
848
+ dim=config.hidden_size,
849
+ hidden_dim=config.intermediate_size,
850
+ hidden_act=config.hidden_act,
851
+ )
852
+
853
+ def forward(
854
+ self,
855
+ hidden_states: torch.Tensor,
856
+ cu_seqlens: torch.Tensor,
857
+ rotary_pos_emb: Optional[torch.Tensor] = None,
858
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
859
+ **kwargs,
860
+ ) -> torch.Tensor:
861
+ hidden_states = hidden_states + self.attn(
862
+ self.norm1(hidden_states),
863
+ cu_seqlens=cu_seqlens,
864
+ rotary_pos_emb=rotary_pos_emb,
865
+ position_embeddings=position_embeddings,
866
+ **kwargs,
867
+ )
868
+ hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
869
+ return hidden_states
870
+
871
+
872
+ @auto_docstring
873
+ class Ernie4_5_VL_MoeVisionTransformerPretrainedModel(Ernie4_5_VL_MoePreTrainedModel):
874
+ config: Ernie4_5_VL_MoeVisionConfig
875
+ input_modalities = ("image", "video")
876
+ _no_split_modules = ["Ernie4_5_VL_MoeVisionBlock"]
877
+ _input_embed_layer = "patch_embed"
878
+
879
+ def __init__(self, config) -> None:
880
+ super().__init__(config)
881
+ self.spatial_merge_size = config.spatial_merge_size
882
+
883
+ self.patch_embed = Ernie4_5_VL_MoePatchEmbed(
884
+ patch_size=config.patch_size,
885
+ in_channels=config.in_channels,
886
+ embed_dim=config.hidden_size,
887
+ )
888
+
889
+ head_dim = config.hidden_size // config.num_heads
890
+ self.rotary_pos_emb = Ernie4_5_VL_MoeVisionRotaryEmbedding(head_dim // 2)
891
+
892
+ self.blocks = nn.ModuleList([Ernie4_5_VL_MoeVisionBlock(config) for _ in range(config.depth)])
893
+ self.gradient_checkpointing = False
894
+
895
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
896
+
897
+ self.post_init()
898
+
899
+ def rot_pos_emb(self, grid_thw):
900
+ pos_ids = []
901
+ for t, h, w in grid_thw:
902
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
903
+ hpos_ids = hpos_ids.reshape(
904
+ h // self.spatial_merge_size,
905
+ self.spatial_merge_size,
906
+ w // self.spatial_merge_size,
907
+ self.spatial_merge_size,
908
+ )
909
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
910
+ hpos_ids = hpos_ids.flatten()
911
+
912
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
913
+ wpos_ids = wpos_ids.reshape(
914
+ h // self.spatial_merge_size,
915
+ self.spatial_merge_size,
916
+ w // self.spatial_merge_size,
917
+ self.spatial_merge_size,
918
+ )
919
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
920
+ wpos_ids = wpos_ids.flatten()
921
+ pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
922
+ pos_ids = torch.cat(pos_ids, dim=0)
923
+ max_grid_size = grid_thw[:, 1:].max()
924
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
925
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
926
+ return rotary_pos_emb
927
+
928
+ @auto_docstring
929
+ def forward(
930
+ self,
931
+ hidden_states: torch.Tensor,
932
+ grid_thw: torch.Tensor,
933
+ **kwargs,
934
+ ) -> torch.Tensor:
935
+ r"""
936
+ grid_thw (`torch.LongTensor` of shape `(num_images, 3)`):
937
+ The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values.
938
+ """
939
+ hidden_states = self.patch_embed(hidden_states)
940
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
941
+ emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
942
+ position_embeddings = (emb.cos(), emb.sin())
943
+
944
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
945
+ dim=0,
946
+ # Select dtype based on the following factors:
947
+ # - FA2 requires that cu_seqlens_q must have dtype int32
948
+ # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
949
+ # See https://github.com/huggingface/transformers/pull/34852 for more information
950
+ dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
951
+ )
952
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
953
+
954
+ for block in self.blocks:
955
+ hidden_states = block(
956
+ hidden_states,
957
+ cu_seqlens=cu_seqlens,
958
+ position_embeddings=position_embeddings,
959
+ **kwargs,
960
+ )
961
+ hidden_states = self.ln(hidden_states)
962
+ return hidden_states
963
+
964
+
965
+ class Ernie4_5_VL_MoeVisionMLP(nn.Module):
966
+ def __init__(self, config, in_dim, out_dim):
967
+ super().__init__()
968
+
969
+ self.fc1 = nn.Linear(in_dim, out_dim)
970
+ self.act_fn = nn.GELU()
971
+ self.fc2 = nn.Linear(out_dim, out_dim)
972
+ self.ln = nn.LayerNorm(out_dim, eps=config.vision_config.rms_norm_eps)
973
+
974
+ def forward(self, hidden_states):
975
+ hidden_states = self.fc1(hidden_states)
976
+ hidden_states = self.act_fn(hidden_states)
977
+ hidden_states = self.fc2(hidden_states)
978
+ hidden_states = self.ln(hidden_states)
979
+ return hidden_states
980
+
981
+
982
+ class Ernie4_5_VL_MoeVariableResolutionResamplerModel(nn.Module):
983
+ def __init__(self, config: Ernie4_5_VL_MoeConfig):
984
+ super().__init__()
985
+ self.config = config
986
+
987
+ self.in_dim = config.vision_config.hidden_size
988
+ self.out_dim = config.text_config.hidden_size
989
+ self.spatial_merge_size = config.vision_config.spatial_merge_size
990
+ self.temporal_merge_size = config.vision_config.temporal_merge_size
991
+
992
+ # compress 2d conv(picture) to 1d
993
+ self.spatial_dim = self.in_dim * self.spatial_merge_size**2
994
+ # compress 3d conv(video) to 1d
995
+ self.temporal_dim = self.in_dim * self.spatial_merge_size**2 * self.temporal_merge_size
996
+
997
+ self.spatial_linear = Ernie4_5_VL_MoeVisionMLP(config, self.spatial_dim, self.spatial_dim)
998
+ self.temporal_linear = Ernie4_5_VL_MoeVisionMLP(config, self.temporal_dim, self.spatial_dim)
999
+
1000
+ self.mlp = nn.Linear(self.spatial_dim, self.out_dim)
1001
+ self.after_norm = Ernie4_5_VL_MoeRMSNorm(self.out_dim, config.text_config.rms_norm_eps)
1002
+
1003
+ def _temporal_slicing(self, hidden_states, grid_thw):
1004
+ """
1005
+ Slices along the temporal dimension in even/odd patterns (usually if we have a video input)
1006
+ or duplicates along temporal dimension (usually if we have an image input).
1007
+
1008
+ Example:
1009
+ Video input with temporal pattern of [1, -1, 2, -2, 3, -3]
1010
+ > Even input [1, 2, 3], odd input [-1, -2, -3]
1011
+ > Reorderd via slices to [1, 2, 3, -1, -2, -3]
1012
+ Image input with temporal pattern [1]
1013
+ > Duplicate input [1], [1]
1014
+ > Reordered to [1, 1]
1015
+
1016
+ NOTE: This is hard-coded for `temporal_merge_size == 2` and won't work otherwise.
1017
+ """
1018
+ # Calculating offsets on spatial dim (based on flattened tensors)
1019
+ grid_t, grid_hw = grid_thw[:, 0], grid_thw[:, 1:]
1020
+ grid_hw_after_conv = grid_hw.prod(-1) // (self.spatial_merge_size**2)
1021
+
1022
+ # Calculating offsets on batch dim (based on flattened tensors)
1023
+ tokens_per_img_or_vid = (grid_thw.prod(-1) // (self.spatial_merge_size**2)).flatten()
1024
+ batch_offsets = torch.empty(tokens_per_img_or_vid.size(), dtype=tokens_per_img_or_vid.dtype)
1025
+ batch_offsets[0] = 0
1026
+ batch_offsets[1:] = tokens_per_img_or_vid.cumsum(dim=0)[:-1]
1027
+
1028
+ first_slice_offsets = []
1029
+ second_slice_offsets = []
1030
+ for temporal_size, spatial_size, batch_offset in zip(grid_t, grid_hw_after_conv, batch_offsets):
1031
+ # Depending on temporal, we may interleave:
1032
+ # - Images have temporal == 1 --> same offsets (duplicate "frame" image)
1033
+ # - Videos have temporal > 1 --> different offsets (even, odd)
1034
+ first_offset_range = range(0, temporal_size, 2)
1035
+ second_offset_range = range(1 if temporal_size > 1 else 0, temporal_size, 2)
1036
+
1037
+ for temporal_offset_even, temporal_offset_odd in zip(first_offset_range, second_offset_range):
1038
+ first_slice_offsets.append(
1039
+ torch.arange(
1040
+ batch_offset + (temporal_offset_even) * spatial_size,
1041
+ batch_offset + (temporal_offset_even + 1) * spatial_size,
1042
+ )
1043
+ )
1044
+ second_slice_offsets.append(
1045
+ torch.arange(
1046
+ batch_offset + (temporal_offset_odd) * spatial_size,
1047
+ batch_offset + (temporal_offset_odd + 1) * spatial_size,
1048
+ )
1049
+ )
1050
+
1051
+ # Input: [1, -1, 2, -2, 3, -3] or [1]
1052
+ # Indices: [0, 2, 4] (even) or [0] (duplicate)
1053
+ first_slice_offsets = torch.cat(first_slice_offsets, dim=-1).to(hidden_states.device)
1054
+ # Indices: [1, 3, 5] (odd) or [0] (duplicate)
1055
+ second_slice_offsets = torch.cat(second_slice_offsets, dim=-1).to(hidden_states.device)
1056
+
1057
+ # Output: [1, 2, 3, -1, -2, -3] or [1, 1]
1058
+ return torch.concat(
1059
+ [
1060
+ torch.index_select(hidden_states, dim=0, index=first_slice_offsets),
1061
+ torch.index_select(hidden_states, dim=0, index=second_slice_offsets),
1062
+ ],
1063
+ dim=-1,
1064
+ )
1065
+
1066
+ def forward(self, hidden_states, grid_thw):
1067
+ # image spatial
1068
+ # reshape imitates convolution via linear projection
1069
+ hidden_states = hidden_states.reshape([-1, hidden_states.shape[-1] * (self.spatial_merge_size**2)])
1070
+ hidden_states = self.spatial_linear(hidden_states)
1071
+
1072
+ # video temporal
1073
+ hidden_states = self._temporal_slicing(hidden_states, grid_thw)
1074
+ hidden_states = self.temporal_linear(hidden_states)
1075
+
1076
+ # final mlp
1077
+ hidden_states = self.mlp(hidden_states)
1078
+ hidden_states = self.after_norm(hidden_states)
1079
+
1080
+ return hidden_states
1081
+
1082
+
1083
+ @auto_docstring
1084
+ class Ernie4_5_VL_MoeModel(Ernie4_5_VL_MoePreTrainedModel):
1085
+ base_model_prefix = "model"
1086
+ _checkpoint_conversion_mapping = {"^norm": "language_model.norm"}
1087
+ # Reference: fix gemma3 grad acc #37208
1088
+ accepts_loss_kwargs = False
1089
+ config: Ernie4_5_VL_MoeConfig
1090
+ _no_split_modules = ["Ernie4_5_VL_MoeDecoderLayer", "Ernie4_5_VL_MoeVisionBlock"]
1091
+
1092
+ def __init__(self, config: Ernie4_5_VL_MoeConfig):
1093
+ super().__init__(config)
1094
+ self.language_model = Ernie4_5_VL_MoeTextModel._from_config(config.text_config)
1095
+ self.rope_deltas = None # cache rope_deltas here
1096
+ self.vision_tower = Ernie4_5_VL_MoeVisionTransformerPretrainedModel._from_config(config.vision_config)
1097
+ self.resampler_model = Ernie4_5_VL_MoeVariableResolutionResamplerModel(config)
1098
+
1099
+ # Initialize weights and apply final processing
1100
+ self.post_init()
1101
+
1102
+ def get_input_embeddings(self):
1103
+ return self.language_model.get_input_embeddings()
1104
+
1105
+ def set_input_embeddings(self, value):
1106
+ self.language_model.set_input_embeddings(value)
1107
+
1108
+ def get_rope_index(
1109
+ self,
1110
+ input_ids: Optional[torch.LongTensor] = None,
1111
+ image_grid_thw: Optional[torch.LongTensor] = None,
1112
+ video_grid_thw: Optional[torch.LongTensor] = None,
1113
+ attention_mask: Optional[torch.Tensor] = None,
1114
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1115
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1116
+ """
1117
+ Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
1118
+
1119
+ Explanation:
1120
+ Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
1121
+
1122
+ For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
1123
+ Examples:
1124
+ input_ids: [T T T T T], here T is for text.
1125
+ temporal position_ids: [0, 1, 2, 3, 4]
1126
+ height position_ids: [0, 1, 2, 3, 4]
1127
+ width position_ids: [0, 1, 2, 3, 4]
1128
+
1129
+ For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
1130
+ and 1D rotary position embedding for text part.
1131
+ Examples:
1132
+ Temporal (Time): 3 patches, representing different segments of the video in time.
1133
+ Height: 2 patches, dividing each frame vertically.
1134
+ Width: 2 patches, dividing each frame horizontally.
1135
+ We also have some important parameters:
1136
+ fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
1137
+ tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
1138
+ temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
1139
+ interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
1140
+ input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
1141
+ vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
1142
+ vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
1143
+ vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
1144
+ text temporal position_ids: [101, 102, 103, 104, 105]
1145
+ text height position_ids: [101, 102, 103, 104, 105]
1146
+ text width position_ids: [101, 102, 103, 104, 105]
1147
+ Here we calculate the text start position_ids as the max vision position_ids plus 1.
1148
+
1149
+ Args:
1150
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1151
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1152
+ it.
1153
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1154
+ The temporal, height and width of feature shape of each image in LLM.
1155
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1156
+ The temporal, height and width of feature shape of each video in LLM.
1157
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1158
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1159
+
1160
+ - 1 for tokens that are **not masked**,
1161
+ - 0 for tokens that are **masked**.
1162
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1163
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1164
+
1165
+ Returns:
1166
+ position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
1167
+ mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
1168
+ """
1169
+
1170
+ temporal_merge_size = self.config.vision_config.temporal_merge_size
1171
+ spatial_merge_size = self.config.vision_config.spatial_merge_size
1172
+
1173
+ mrope_position_deltas = []
1174
+ if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
1175
+ total_input_ids = input_ids
1176
+ if attention_mask is None:
1177
+ attention_mask = torch.ones_like(total_input_ids)
1178
+ position_ids = torch.ones(
1179
+ 3,
1180
+ input_ids.shape[0],
1181
+ input_ids.shape[1],
1182
+ dtype=input_ids.dtype,
1183
+ device=input_ids.device,
1184
+ )
1185
+ image_index, video_index = 0, 0
1186
+ attention_mask = attention_mask.to(total_input_ids.device)
1187
+ for i, input_ids in enumerate(total_input_ids):
1188
+ # If we don't have `mm_token_type_ids`, then we have text tokens only (== 0)
1189
+ if mm_token_type_ids is None:
1190
+ input_token_type = torch.zeros_like(input_ids)[attention_mask[i] == 1].tolist()
1191
+ else:
1192
+ input_token_type = mm_token_type_ids[i, attention_mask[i] == 1].tolist()
1193
+
1194
+ input_type_group = []
1195
+ for key, group in itertools.groupby(enumerate(input_token_type), lambda x: x[1]):
1196
+ group = list(group)
1197
+ start_index = group[0][0]
1198
+ end_index = group[-1][0] + 1
1199
+ input_type_group.append((key, start_index, end_index))
1200
+
1201
+ llm_pos_ids_list = []
1202
+ for modality_type, start_idx, end_idx in input_type_group:
1203
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
1204
+
1205
+ # text == 0
1206
+ if modality_type == 0:
1207
+ text_len = end_idx - start_idx
1208
+ llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1209
+
1210
+ # image == 1, video == 2
1211
+ else:
1212
+ grid_thw = image_grid_thw if modality_type == 1 else video_grid_thw
1213
+ mm_index = image_index if modality_type == 1 else video_index
1214
+ t_merge_size = 1 if modality_type == 1 else temporal_merge_size
1215
+
1216
+ t, h, w = (
1217
+ grid_thw[mm_index][0],
1218
+ grid_thw[mm_index][1],
1219
+ grid_thw[mm_index][2],
1220
+ )
1221
+ llm_grid_t, llm_grid_h, llm_grid_w = (
1222
+ t.item() // t_merge_size,
1223
+ h.item() // spatial_merge_size,
1224
+ w.item() // spatial_merge_size,
1225
+ )
1226
+
1227
+ for t_idx in range(llm_grid_t):
1228
+ t_index = torch.tensor(t_idx).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
1229
+ h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(1, -1, llm_grid_w).flatten()
1230
+ w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(1, llm_grid_h, -1).flatten()
1231
+ llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx)
1232
+
1233
+ if modality_type == 1:
1234
+ image_index += 1
1235
+ else:
1236
+ video_index += 1
1237
+
1238
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1239
+ position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
1240
+ mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
1241
+ mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
1242
+ return position_ids, mrope_position_deltas
1243
+ else:
1244
+ if attention_mask is not None:
1245
+ position_ids = attention_mask.long().cumsum(-1) - 1
1246
+ position_ids.masked_fill_(attention_mask == 0, 1)
1247
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
1248
+ max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
1249
+ mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
1250
+ else:
1251
+ position_ids = (
1252
+ torch.arange(input_ids.shape[1], device=input_ids.device)
1253
+ .view(1, 1, -1)
1254
+ .expand(3, input_ids.shape[0], -1)
1255
+ )
1256
+ mrope_position_deltas = torch.zeros(
1257
+ [input_ids.shape[0], 1],
1258
+ device=input_ids.device,
1259
+ dtype=input_ids.dtype,
1260
+ )
1261
+
1262
+ return position_ids, mrope_position_deltas
1263
+
1264
+ def get_video_features(
1265
+ self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
1266
+ ):
1267
+ """
1268
+ Encodes videos into continuous embeddings that can be forwarded to the language model.
1269
+
1270
+ Args:
1271
+ pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
1272
+ The tensors corresponding to the input videos.
1273
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1274
+ The temporal, height and width of feature shape of each video in LLM.
1275
+ """
1276
+ video_embeds = self.vision_tower(pixel_values_videos, video_grid_thw)
1277
+ video_embeds = self.resampler_model(video_embeds, video_grid_thw)
1278
+ split_sizes = (
1279
+ video_grid_thw.prod(-1)
1280
+ // self.vision_tower.spatial_merge_size**2
1281
+ // self.resampler_model.temporal_merge_size
1282
+ ).tolist()
1283
+ video_embeds = torch.split(video_embeds, split_sizes)
1284
+ return video_embeds
1285
+
1286
+ def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
1287
+ """
1288
+ Encodes images into continuous embeddings that can be forwarded to the language model.
1289
+
1290
+ Args:
1291
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
1292
+ The tensors corresponding to the input images.
1293
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1294
+ The temporal, height and width of feature shape of each image in LLM.
1295
+ """
1296
+ image_embeds = self.vision_tower(pixel_values, image_grid_thw)
1297
+ image_embeds = self.resampler_model(image_embeds, image_grid_thw)
1298
+ split_sizes = (image_grid_thw.prod(-1) // self.vision_tower.spatial_merge_size**2).tolist()
1299
+ image_embeds = torch.split(image_embeds, split_sizes)
1300
+ return image_embeds
1301
+
1302
+ def get_placeholder_mask(
1303
+ self,
1304
+ input_ids: torch.LongTensor,
1305
+ inputs_embeds: torch.FloatTensor,
1306
+ image_features: Optional[torch.FloatTensor] = None,
1307
+ video_features: Optional[torch.FloatTensor] = None,
1308
+ ):
1309
+ """
1310
+ Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
1311
+ equal to the length of multimodal features. If the lengths are different, an error is raised.
1312
+ """
1313
+ if input_ids is None:
1314
+ special_image_mask = inputs_embeds == self.get_input_embeddings()(
1315
+ torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
1316
+ )
1317
+ special_image_mask = special_image_mask.all(-1)
1318
+ special_video_mask = inputs_embeds == self.get_input_embeddings()(
1319
+ torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device)
1320
+ )
1321
+ special_video_mask = special_video_mask.all(-1)
1322
+ else:
1323
+ special_image_mask = input_ids == self.config.image_token_id
1324
+ special_video_mask = input_ids == self.config.video_token_id
1325
+
1326
+ n_image_tokens = special_image_mask.sum()
1327
+ special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
1328
+ if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel():
1329
+ raise ValueError(
1330
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}"
1331
+ )
1332
+
1333
+ n_video_tokens = special_video_mask.sum()
1334
+ special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
1335
+ if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel():
1336
+ raise ValueError(
1337
+ f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}"
1338
+ )
1339
+
1340
+ return special_image_mask, special_video_mask
1341
+
1342
+ @auto_docstring
1343
+ @can_return_tuple
1344
+ def forward(
1345
+ self,
1346
+ input_ids: torch.LongTensor = None,
1347
+ attention_mask: Optional[torch.Tensor] = None,
1348
+ position_ids: Optional[torch.LongTensor] = None,
1349
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1350
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
1351
+ past_key_values: Optional[Cache] = None,
1352
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1353
+ use_cache: Optional[bool] = None,
1354
+ pixel_values: Optional[torch.Tensor] = None,
1355
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
1356
+ image_grid_thw: Optional[torch.LongTensor] = None,
1357
+ video_grid_thw: Optional[torch.LongTensor] = None,
1358
+ rope_deltas: Optional[torch.LongTensor] = None,
1359
+ cache_position: Optional[torch.LongTensor] = None,
1360
+ **kwargs: Unpack[TransformersKwargs],
1361
+ ) -> Union[tuple, MoeModelOutputWithPast]:
1362
+ r"""
1363
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1364
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1365
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1366
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
1367
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1368
+ The temporal, height and width of feature shape of each image in LLM.
1369
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1370
+ The temporal, height and width of feature shape of each video in LLM.
1371
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
1372
+ The rope index difference between sequence length and multimodal rope.
1373
+ """
1374
+ if inputs_embeds is None:
1375
+ inputs_embeds = self.get_input_embeddings()(input_ids)
1376
+
1377
+ if pixel_values is not None:
1378
+ image_embeds = self.get_image_features(pixel_values, image_grid_thw)
1379
+ image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
1380
+ image_mask, _ = self.get_placeholder_mask(
1381
+ input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
1382
+ )
1383
+ inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
1384
+
1385
+ if pixel_values_videos is not None:
1386
+ video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
1387
+ video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
1388
+ _, video_mask = self.get_placeholder_mask(
1389
+ input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
1390
+ )
1391
+ inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
1392
+
1393
+ if position_ids is None:
1394
+ position_ids = self.get_position_ids(
1395
+ input_ids=input_ids,
1396
+ attention_mask=attention_mask,
1397
+ past_key_values=past_key_values,
1398
+ inputs_embeds=inputs_embeds,
1399
+ image_grid_thw=image_grid_thw,
1400
+ video_grid_thw=video_grid_thw,
1401
+ cache_position=cache_position,
1402
+ mm_token_type_ids=mm_token_type_ids,
1403
+ )
1404
+
1405
+ outputs = self.language_model(
1406
+ input_ids=None,
1407
+ position_ids=position_ids,
1408
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
1409
+ attention_mask=attention_mask,
1410
+ use_cache=use_cache,
1411
+ past_key_values=past_key_values,
1412
+ inputs_embeds=inputs_embeds,
1413
+ return_dict=True,
1414
+ cache_position=cache_position,
1415
+ **kwargs,
1416
+ )
1417
+
1418
+ return MoeModelOutputWithPast(
1419
+ last_hidden_state=outputs.last_hidden_state,
1420
+ past_key_values=outputs.past_key_values,
1421
+ hidden_states=outputs.hidden_states,
1422
+ attentions=outputs.attentions,
1423
+ router_logits=outputs.router_logits,
1424
+ )
1425
+
1426
+ # TODO: Should be moved to generation loop instead in the future
1427
+ # Relevant PR(s): https://github.com/huggingface/transformers/pull/42088
1428
+ def get_position_ids(
1429
+ self,
1430
+ input_ids: torch.LongTensor = None,
1431
+ attention_mask: Optional[torch.Tensor] = None,
1432
+ past_key_values: Optional[Cache] = None,
1433
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1434
+ image_grid_thw: Optional[torch.LongTensor] = None,
1435
+ video_grid_thw: Optional[torch.LongTensor] = None,
1436
+ cache_position: Optional[torch.LongTensor] = None,
1437
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1438
+ ):
1439
+ """
1440
+ Calculating the 3D position ids with a custom mechanism / caching
1441
+ - First forward calculates the initial positions and the respective
1442
+ deltas (offset) for subsequent positions. See `get_rope_index` for
1443
+ more details.
1444
+ - Second and on (generation), uses the cache position combined with the
1445
+ cached deltas to determine the current position.
1446
+
1447
+ NOTE: We assume that the position ids are `None` and recalculate them here in any case.
1448
+ """
1449
+ # Calculate RoPE index once per generation in the pre-fill stage only.
1450
+ # When compiling, we can't check tensor values thus we check only input length
1451
+ # It is safe to assume that `length!=1` means we're in pre-fill because compiled
1452
+ # models currently cannot do asssisted decoding
1453
+ prefill_compiled_stage = is_torchdynamo_compiling() and (
1454
+ (input_ids is not None and input_ids.shape[1] != 1)
1455
+ or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
1456
+ )
1457
+ prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
1458
+ (cache_position is not None and cache_position[0] == 0)
1459
+ or (past_key_values is None or past_key_values.get_seq_length() == 0)
1460
+ )
1461
+ if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None:
1462
+ position_ids, rope_deltas = self.get_rope_index(
1463
+ input_ids,
1464
+ image_grid_thw,
1465
+ video_grid_thw,
1466
+ attention_mask=attention_mask,
1467
+ mm_token_type_ids=mm_token_type_ids,
1468
+ )
1469
+ self.rope_deltas = rope_deltas
1470
+ # then use the prev pre-calculated rope-deltas to get the correct position ids
1471
+ else:
1472
+ if input_ids is not None:
1473
+ batch_size, seq_length, device = input_ids.shape[0], 1, input_ids.device
1474
+ elif inputs_embeds is not None:
1475
+ batch_size, seq_length, device = inputs_embeds.shape[0], 1, inputs_embeds.device
1476
+ else:
1477
+ raise ValueError(
1478
+ "Cannot calculate position ids without any input to the model. "
1479
+ "Need either `input_ids` or `inputs_embeds`!"
1480
+ )
1481
+
1482
+ delta = (cache_position[0] + self.rope_deltas).to(device) if cache_position is not None else 0
1483
+ position_ids = torch.arange(seq_length, device=device)
1484
+ position_ids = position_ids.view(1, -1).expand(batch_size, -1)
1485
+ if cache_position is not None: # otherwise `deltas` is an int `0`
1486
+ delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
1487
+ position_ids = position_ids.add(delta)
1488
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
1489
+
1490
+ return position_ids
1491
+
1492
+
1493
+ def load_balancing_loss_func(
1494
+ gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
1495
+ num_experts: Optional[int] = None,
1496
+ top_k=2,
1497
+ attention_mask: Optional[torch.Tensor] = None,
1498
+ ) -> Union[torch.Tensor, int]:
1499
+ r"""
1500
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
1501
+
1502
+ See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
1503
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
1504
+ experts is too unbalanced.
1505
+
1506
+ Args:
1507
+ gate_logits:
1508
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
1509
+ shape [batch_size X sequence_length, num_experts].
1510
+ num_experts:
1511
+ Number of experts
1512
+ top_k:
1513
+ The number of experts to route per-token, can be also interpreted as the `top-k` routing
1514
+ parameter.
1515
+ attention_mask (`torch.Tensor`, *optional*):
1516
+ The attention_mask used in forward function
1517
+ shape [batch_size X sequence_length] if not None.
1518
+
1519
+ Returns:
1520
+ The auxiliary loss.
1521
+ """
1522
+ if gate_logits is None or not isinstance(gate_logits, tuple):
1523
+ return 0
1524
+
1525
+ if isinstance(gate_logits, tuple):
1526
+ compute_device = gate_logits[0].device
1527
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
1528
+
1529
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
1530
+
1531
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
1532
+
1533
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
1534
+
1535
+ if attention_mask is None:
1536
+ # Compute the percentage of tokens routed to each experts
1537
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
1538
+
1539
+ # Compute the average probability of routing to these experts
1540
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
1541
+ else:
1542
+ batch_size, sequence_length = attention_mask.shape
1543
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
1544
+
1545
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
1546
+ expert_attention_mask = (
1547
+ attention_mask[None, :, :, None, None]
1548
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
1549
+ .reshape(-1, top_k, num_experts)
1550
+ .to(compute_device)
1551
+ )
1552
+
1553
+ # Compute the percentage of tokens routed to each experts
1554
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
1555
+ expert_attention_mask, dim=0
1556
+ )
1557
+
1558
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
1559
+ router_per_expert_attention_mask = (
1560
+ attention_mask[None, :, :, None]
1561
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
1562
+ .reshape(-1, num_experts)
1563
+ .to(compute_device)
1564
+ )
1565
+
1566
+ # Compute the average probability of routing to these experts
1567
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
1568
+ router_per_expert_attention_mask, dim=0
1569
+ )
1570
+
1571
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
1572
+ return overall_loss * num_experts
1573
+
1574
+
1575
+ class Ernie4_5_VL_MoeForConditionalGeneration(Ernie4_5_VL_MoePreTrainedModel, GenerationMixin):
1576
+ _checkpoint_conversion_mapping = {"^model.norm": "model.language_model.norm"}
1577
+ _tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
1578
+ # Reference: fix gemma3 grad acc #37208
1579
+ accepts_loss_kwargs = False
1580
+
1581
+ def __init__(self, config):
1582
+ super().__init__(config)
1583
+ self.model = Ernie4_5_VL_MoeModel(config)
1584
+ self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
1585
+
1586
+ self.router_aux_loss_coef = config.text_config.router_aux_loss_coef
1587
+ self.num_experts = config.text_config.moe_num_experts
1588
+ self.num_experts_per_tok = config.text_config.moe_k
1589
+
1590
+ self.post_init()
1591
+
1592
+ def get_input_embeddings(self):
1593
+ return self.model.get_input_embeddings()
1594
+
1595
+ def set_input_embeddings(self, value):
1596
+ self.model.set_input_embeddings(value)
1597
+
1598
+ def get_video_features(
1599
+ self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
1600
+ ):
1601
+ return self.model.get_video_features(pixel_values_videos, video_grid_thw)
1602
+
1603
+ def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
1604
+ return self.model.get_image_features(pixel_values, image_grid_thw)
1605
+
1606
+ @auto_docstring
1607
+ @can_return_tuple
1608
+ def forward(
1609
+ self,
1610
+ input_ids: torch.LongTensor = None,
1611
+ attention_mask: Optional[torch.Tensor] = None,
1612
+ position_ids: Optional[torch.LongTensor] = None,
1613
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1614
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
1615
+ past_key_values: Optional[Cache] = None,
1616
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1617
+ labels: Optional[torch.LongTensor] = None,
1618
+ use_cache: Optional[bool] = None,
1619
+ output_router_logits: Optional[bool] = None,
1620
+ pixel_values: Optional[torch.Tensor] = None,
1621
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
1622
+ image_grid_thw: Optional[torch.LongTensor] = None,
1623
+ video_grid_thw: Optional[torch.LongTensor] = None,
1624
+ rope_deltas: Optional[torch.LongTensor] = None,
1625
+ cache_position: Optional[torch.LongTensor] = None,
1626
+ logits_to_keep: Union[int, torch.Tensor] = 0,
1627
+ **kwargs: Unpack[TransformersKwargs],
1628
+ ) -> Union[tuple, MoeCausalLMOutputWithPast]:
1629
+ r"""
1630
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1631
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1632
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1633
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
1634
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1635
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1636
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1637
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1638
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1639
+ The temporal, height and width of feature shape of each image in LLM.
1640
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1641
+ The temporal, height and width of feature shape of each video in LLM.
1642
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
1643
+ The rope index difference between sequence length and multimodal rope.
1644
+ """
1645
+ output_router_logits = (
1646
+ output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits
1647
+ )
1648
+
1649
+ outputs = self.model(
1650
+ input_ids=input_ids,
1651
+ attention_mask=attention_mask,
1652
+ position_ids=position_ids,
1653
+ mm_token_type_ids=mm_token_type_ids,
1654
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
1655
+ past_key_values=past_key_values,
1656
+ inputs_embeds=inputs_embeds,
1657
+ use_cache=use_cache,
1658
+ output_router_logits=output_router_logits,
1659
+ return_dict=True,
1660
+ pixel_values=pixel_values,
1661
+ pixel_values_videos=pixel_values_videos,
1662
+ image_grid_thw=image_grid_thw,
1663
+ video_grid_thw=video_grid_thw,
1664
+ rope_deltas=rope_deltas,
1665
+ cache_position=cache_position,
1666
+ **kwargs,
1667
+ )
1668
+
1669
+ hidden_states = outputs.last_hidden_state
1670
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1671
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
1672
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
1673
+
1674
+ loss = None
1675
+ if labels is not None:
1676
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
1677
+
1678
+ aux_loss = None
1679
+ if output_router_logits:
1680
+ aux_loss = load_balancing_loss_func(
1681
+ outputs.router_logits,
1682
+ self.num_experts,
1683
+ self.num_experts_per_tok,
1684
+ attention_mask,
1685
+ )
1686
+ if labels is not None:
1687
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1688
+
1689
+ return MoeCausalLMOutputWithPast(
1690
+ loss=loss,
1691
+ aux_loss=aux_loss,
1692
+ logits=logits,
1693
+ past_key_values=outputs.past_key_values,
1694
+ hidden_states=outputs.hidden_states,
1695
+ attentions=outputs.attentions,
1696
+ router_logits=outputs.router_logits,
1697
+ )
1698
+
1699
+ def prepare_inputs_for_generation(
1700
+ self,
1701
+ input_ids,
1702
+ inputs_embeds=None,
1703
+ attention_mask=None,
1704
+ cache_position=None,
1705
+ past_key_values=None,
1706
+ image_grid_thw=None,
1707
+ video_grid_thw=None,
1708
+ use_cache=True,
1709
+ is_first_iteration=False,
1710
+ # Intentionally ignore position ids to force custom cache logic
1711
+ position_ids=None,
1712
+ **kwargs,
1713
+ ):
1714
+ model_inputs = super().prepare_inputs_for_generation(
1715
+ input_ids,
1716
+ inputs_embeds=inputs_embeds,
1717
+ attention_mask=attention_mask,
1718
+ cache_position=cache_position,
1719
+ past_key_values=past_key_values,
1720
+ image_grid_thw=image_grid_thw,
1721
+ video_grid_thw=video_grid_thw,
1722
+ use_cache=use_cache,
1723
+ is_first_iteration=is_first_iteration,
1724
+ **kwargs,
1725
+ )
1726
+
1727
+ # Using our own caching with rope delta
1728
+ model_inputs["position_ids"] = self.model.get_position_ids(
1729
+ input_ids=model_inputs.get("input_ids"),
1730
+ attention_mask=model_inputs.get("attention_mask"),
1731
+ past_key_values=model_inputs.get("past_key_values"),
1732
+ inputs_embeds=model_inputs.get("inputs_embeds"),
1733
+ image_grid_thw=model_inputs.get("image_grid_thw"),
1734
+ video_grid_thw=model_inputs.get("video_grid_thw"),
1735
+ cache_position=model_inputs.get("cache_position"),
1736
+ mm_token_type_ids=model_inputs.get("mm_token_type_ids"),
1737
+ )
1738
+
1739
+ if not is_first_iteration and use_cache:
1740
+ model_inputs["pixel_values"] = None
1741
+ model_inputs["pixel_values_videos"] = None
1742
+ model_inputs["mm_token_type_ids"] = None
1743
+ model_inputs["moe_mm_token_type_ids"] = None
1744
+
1745
+ return model_inputs
1746
+
1747
+ def _get_image_nums_and_video_nums(
1748
+ self,
1749
+ input_ids: Optional[torch.LongTensor],
1750
+ inputs_embeds: Optional[torch.Tensor] = None,
1751
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1752
+ """
1753
+ Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
1754
+ These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
1755
+
1756
+ Args:
1757
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1758
+ Indices of input sequence tokens in the vocabulary.
1759
+
1760
+ Returns:
1761
+ image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
1762
+ video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
1763
+ """
1764
+
1765
+ if inputs_embeds is not None:
1766
+ is_image = (
1767
+ inputs_embeds
1768
+ == self.get_input_embeddings()(
1769
+ torch.tensor(self.config.image_start_token_id, dtype=torch.long, device=inputs_embeds.device)
1770
+ )
1771
+ )[..., 0]
1772
+ is_video_start = (
1773
+ inputs_embeds
1774
+ == self.get_input_embeddings()(
1775
+ torch.tensor(self.config.video_start_token_id, dtype=torch.long, device=inputs_embeds.device)
1776
+ )
1777
+ )[..., 0]
1778
+ is_video_end = (
1779
+ inputs_embeds
1780
+ == self.get_input_embeddings()(
1781
+ torch.tensor(self.config.video_end_token_id, dtype=torch.long, device=inputs_embeds.device)
1782
+ )
1783
+ )[..., 0]
1784
+ else:
1785
+ is_image = input_ids == self.config.image_start_token_id
1786
+ is_video_start = input_ids == self.config.video_start_token_id
1787
+ is_video_end = input_ids == self.config.video_end_token_id
1788
+
1789
+ # Cumulative sum to track if we're inside a video span
1790
+ # We'll assume well-formed video tags (i.e. matching starts and ends)
1791
+ video_level = torch.cumsum(is_video_start.int() - is_video_end.int(), dim=1)
1792
+ inside_video = video_level > 0 # shape (batch_size, seq_length)
1793
+
1794
+ # Mask out image tokens that are inside video spans
1795
+ standalone_images = is_image & (~inside_video)
1796
+
1797
+ # Count per batch
1798
+ image_counts = standalone_images.sum(dim=1)
1799
+ video_counts = is_video_start.sum(dim=1)
1800
+
1801
+ return image_counts, video_counts
1802
+
1803
+ def _expand_inputs_for_generation(
1804
+ self,
1805
+ expand_size: int = 1,
1806
+ is_encoder_decoder: bool = False,
1807
+ input_ids: Optional[torch.LongTensor] = None,
1808
+ **model_kwargs,
1809
+ ) -> tuple[torch.LongTensor, dict[str, Any]]:
1810
+ # Overwritten -- Support for expanding tensors without a batch size dimension
1811
+ # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
1812
+ # pixel_values.shape[0] is sum(seqlen_images for samples)
1813
+ # image_grid_thw.shape[0] is sum(num_images for samples)
1814
+
1815
+ if expand_size == 1:
1816
+ return input_ids, model_kwargs
1817
+
1818
+ visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
1819
+
1820
+ def _expand_dict_for_generation_visual(dict_to_expand):
1821
+ image_grid_thw = model_kwargs.get("image_grid_thw", None)
1822
+ video_grid_thw = model_kwargs.get("video_grid_thw", None)
1823
+ image_nums, video_nums = self._get_image_nums_and_video_nums(
1824
+ input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None)
1825
+ )
1826
+
1827
+ def _repeat_interleave_samples(x, lengths, repeat_times):
1828
+ samples = torch.split(x, lengths)
1829
+ repeat_args = [repeat_times] + [1] * (x.dim() - 1)
1830
+ result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
1831
+ return result
1832
+
1833
+ for key in dict_to_expand:
1834
+ if key == "pixel_values":
1835
+ # split images into samples
1836
+ samples = torch.split(image_grid_thw, list(image_nums))
1837
+ # compute the sequence length of images for each sample
1838
+ lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
1839
+ dict_to_expand[key] = _repeat_interleave_samples(
1840
+ dict_to_expand[key], lengths=lengths, repeat_times=expand_size
1841
+ )
1842
+ elif key == "image_grid_thw":
1843
+ # get the num of images for each sample
1844
+ lengths = list(image_nums)
1845
+ dict_to_expand[key] = _repeat_interleave_samples(
1846
+ dict_to_expand[key], lengths=lengths, repeat_times=expand_size
1847
+ )
1848
+ elif key == "pixel_values_videos":
1849
+ samples = torch.split(video_grid_thw, list(video_nums))
1850
+ lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
1851
+ dict_to_expand[key] = _repeat_interleave_samples(
1852
+ dict_to_expand[key], lengths=lengths, repeat_times=expand_size
1853
+ )
1854
+ elif key == "video_grid_thw":
1855
+ lengths = list(video_nums)
1856
+ dict_to_expand[key] = _repeat_interleave_samples(
1857
+ dict_to_expand[key], lengths=lengths, repeat_times=expand_size
1858
+ )
1859
+ elif key == "second_per_grid_ts":
1860
+ dict_to_expand[key] = _repeat_interleave_samples(
1861
+ dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size
1862
+ )
1863
+ return dict_to_expand
1864
+
1865
+ def _expand_dict_for_generation(dict_to_expand):
1866
+ for key in dict_to_expand:
1867
+ if (
1868
+ key != "cache_position"
1869
+ and dict_to_expand[key] is not None
1870
+ and isinstance(dict_to_expand[key], torch.Tensor)
1871
+ and key not in visual_keys
1872
+ ):
1873
+ dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
1874
+ return dict_to_expand
1875
+
1876
+ model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
1877
+
1878
+ if input_ids is not None:
1879
+ input_ids = input_ids.repeat_interleave(expand_size, dim=0)
1880
+
1881
+ model_kwargs = _expand_dict_for_generation(model_kwargs)
1882
+
1883
+ if is_encoder_decoder:
1884
+ if model_kwargs.get("encoder_outputs") is None:
1885
+ raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
1886
+ model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
1887
+
1888
+ return input_ids, model_kwargs
1889
+
1890
+
1891
+ __all__ = [
1892
+ "Ernie4_5_VL_MoePreTrainedModel",
1893
+ "Ernie4_5_VL_MoeForConditionalGeneration",
1894
+ "Ernie4_5_VL_MoeModel",
1895
+ "Ernie4_5_VL_MoeTextModel",
1896
+ "Ernie4_5_VL_MoeVisionTransformerPretrainedModel",
1897
+ "Ernie4_5_VL_MoeVariableResolutionResamplerModel",
1898
+ ]