transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +20 -1
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +68 -5
- transformers/core_model_loading.py +201 -35
- transformers/dependency_versions_table.py +1 -1
- transformers/feature_extraction_utils.py +54 -22
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +162 -122
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +101 -64
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +2 -12
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +12 -0
- transformers/integrations/accelerate.py +44 -111
- transformers/integrations/aqlm.py +3 -5
- transformers/integrations/awq.py +2 -5
- transformers/integrations/bitnet.py +5 -8
- transformers/integrations/bitsandbytes.py +16 -15
- transformers/integrations/deepspeed.py +18 -3
- transformers/integrations/eetq.py +3 -5
- transformers/integrations/fbgemm_fp8.py +1 -1
- transformers/integrations/finegrained_fp8.py +6 -16
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/higgs.py +2 -5
- transformers/integrations/hub_kernels.py +23 -5
- transformers/integrations/integration_utils.py +35 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +4 -10
- transformers/integrations/peft.py +5 -0
- transformers/integrations/quanto.py +5 -2
- transformers/integrations/spqr.py +3 -5
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/vptq.py +3 -5
- transformers/modeling_gguf_pytorch_utils.py +66 -19
- transformers/modeling_rope_utils.py +78 -81
- transformers/modeling_utils.py +583 -503
- transformers/models/__init__.py +19 -0
- transformers/models/afmoe/modeling_afmoe.py +7 -16
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/align/modeling_align.py +12 -6
- transformers/models/altclip/modeling_altclip.py +7 -3
- transformers/models/apertus/modeling_apertus.py +4 -2
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +1 -1
- transformers/models/aria/modeling_aria.py +8 -4
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +27 -0
- transformers/models/auto/feature_extraction_auto.py +7 -3
- transformers/models/auto/image_processing_auto.py +4 -2
- transformers/models/auto/modeling_auto.py +31 -0
- transformers/models/auto/processing_auto.py +4 -0
- transformers/models/auto/tokenization_auto.py +132 -153
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +18 -19
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +9 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +7 -0
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +3 -0
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +7 -0
- transformers/models/bit/modeling_bit.py +5 -1
- transformers/models/bitnet/modeling_bitnet.py +1 -1
- transformers/models/blenderbot/modeling_blenderbot.py +7 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +6 -7
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +7 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +8 -0
- transformers/models/blip_2/modeling_blip_2.py +2 -0
- transformers/models/bloom/modeling_bloom.py +13 -44
- transformers/models/blt/modeling_blt.py +162 -2
- transformers/models/blt/modular_blt.py +168 -3
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +6 -0
- transformers/models/bros/modeling_bros.py +8 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/canine/modeling_canine.py +6 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +9 -4
- transformers/models/chinese_clip/modeling_chinese_clip.py +6 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +25 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clipseg/modeling_clipseg.py +4 -0
- transformers/models/clvp/modeling_clvp.py +14 -3
- transformers/models/code_llama/tokenization_code_llama.py +1 -1
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/cohere/modeling_cohere.py +1 -1
- transformers/models/cohere2/modeling_cohere2.py +1 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +0 -1
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +4 -1
- transformers/models/convbert/modeling_convbert.py +3 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +3 -1
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +14 -2
- transformers/models/cvt/modeling_cvt.py +5 -1
- transformers/models/cwm/modeling_cwm.py +1 -1
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +46 -39
- transformers/models/d_fine/modular_d_fine.py +15 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +1 -1
- transformers/models/dac/modeling_dac.py +4 -4
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +1 -1
- transformers/models/deberta/modeling_deberta.py +2 -0
- transformers/models/deberta_v2/modeling_deberta_v2.py +2 -0
- transformers/models/decision_transformer/modeling_decision_transformer.py +8 -5
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -4
- transformers/models/deepseek_v2/modular_deepseek_v2.py +4 -2
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +9 -5
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +1 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +8 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +12 -1
- transformers/models/dia/modular_dia.py +11 -0
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +3 -3
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +3 -0
- transformers/models/dinov3_vit/modular_dinov3_vit.py +3 -0
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/doge/modeling_doge.py +1 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +16 -12
- transformers/models/dots1/modeling_dots1.py +14 -5
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +5 -2
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +13 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +14 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +5 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +8 -2
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt_fast.py +46 -14
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +1 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +16 -13
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +9 -35
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +6 -1
- transformers/models/evolla/modeling_evolla.py +9 -1
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +1 -1
- transformers/models/falcon/modeling_falcon.py +3 -3
- transformers/models/falcon_h1/modeling_falcon_h1.py +28 -23
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +6 -2
- transformers/models/falcon_mamba/modular_falcon_mamba.py +7 -2
- transformers/models/fast_vlm/modeling_fast_vlm.py +7 -3
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +23 -10
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +14 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +4 -1
- transformers/models/flex_olmo/modeling_flex_olmo.py +7 -4
- transformers/models/florence2/modeling_florence2.py +20 -3
- transformers/models/florence2/modular_florence2.py +13 -0
- transformers/models/fnet/modeling_fnet.py +7 -0
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +16 -0
- transformers/models/gemma/modeling_gemma.py +10 -12
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma2/modeling_gemma2.py +1 -1
- transformers/models/gemma2/modular_gemma2.py +1 -1
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +28 -7
- transformers/models/gemma3/modular_gemma3.py +26 -6
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +47 -9
- transformers/models/gemma3n/modular_gemma3n.py +51 -9
- transformers/models/git/modeling_git.py +181 -126
- transformers/models/glm/modeling_glm.py +1 -1
- transformers/models/glm4/modeling_glm4.py +1 -1
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +9 -5
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +15 -5
- transformers/models/glm4v/modular_glm4v.py +11 -3
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +39 -23
- transformers/models/glm4v_moe/modular_glm4v_moe.py +12 -0
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +8 -5
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +3 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +15 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +1 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +1 -1
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +6 -9
- transformers/models/gpt_oss/modular_gpt_oss.py +5 -7
- transformers/models/gptj/modeling_gptj.py +15 -6
- transformers/models/granite/modeling_granite.py +1 -1
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +2 -3
- transformers/models/granitemoe/modular_granitemoe.py +1 -2
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +33 -23
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +2 -3
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +4 -4
- transformers/models/groupvit/modeling_groupvit.py +6 -1
- transformers/models/helium/modeling_helium.py +1 -1
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -0
- transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -0
- transformers/models/hubert/modeling_hubert.py +4 -0
- transformers/models/hubert/modular_hubert.py +4 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +12 -4
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +16 -0
- transformers/models/idefics/modeling_idefics.py +10 -0
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +9 -2
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +11 -8
- transformers/models/internvl/modular_internvl.py +5 -9
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +24 -19
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +15 -7
- transformers/models/janus/modular_janus.py +16 -7
- transformers/models/jetmoe/modeling_jetmoe.py +2 -2
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +14 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +9 -3
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/configuration_lasr.py +4 -0
- transformers/models/lasr/modeling_lasr.py +3 -2
- transformers/models/lasr/modular_lasr.py +8 -1
- transformers/models/lasr/processing_lasr.py +0 -2
- transformers/models/layoutlm/modeling_layoutlm.py +5 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +12 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1 -0
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +29 -5
- transformers/models/led/modeling_led.py +6 -0
- transformers/models/levit/modeling_levit.py +18 -0
- transformers/models/lfm2/modeling_lfm2.py +1 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +14 -4
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lilt/modeling_lilt.py +19 -15
- transformers/models/llama/modeling_llama.py +1 -1
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +8 -4
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +2 -1
- transformers/models/longcat_flash/modular_longcat_flash.py +1 -0
- transformers/models/longt5/modeling_longt5.py +0 -4
- transformers/models/m2m_100/modeling_m2m_100.py +10 -0
- transformers/models/mamba/modeling_mamba.py +2 -1
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +3 -0
- transformers/models/markuplm/modeling_markuplm.py +5 -8
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +9 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +9 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +19 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +7 -0
- transformers/models/megatron_bert/modeling_megatron_bert.py +2 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mimi/modeling_mimi.py +25 -4
- transformers/models/minimax/modeling_minimax.py +16 -3
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +1 -1
- transformers/models/mistral/modeling_mistral.py +1 -1
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +12 -4
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +13 -2
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +4 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -0
- transformers/models/modernbert/modeling_modernbert.py +12 -1
- transformers/models/modernbert/modular_modernbert.py +12 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -1
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +9 -1
- transformers/models/moonshine/modeling_moonshine.py +1 -1
- transformers/models/moshi/modeling_moshi.py +21 -51
- transformers/models/mpnet/modeling_mpnet.py +2 -0
- transformers/models/mra/modeling_mra.py +4 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +0 -10
- transformers/models/musicgen/modeling_musicgen.py +5 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +4 -0
- transformers/models/mvp/modeling_mvp.py +7 -0
- transformers/models/nanochat/modeling_nanochat.py +1 -1
- transformers/models/nemotron/modeling_nemotron.py +3 -3
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +11 -16
- transformers/models/nystromformer/modeling_nystromformer.py +7 -0
- transformers/models/olmo/modeling_olmo.py +1 -1
- transformers/models/olmo2/modeling_olmo2.py +1 -1
- transformers/models/olmo3/modeling_olmo3.py +1 -1
- transformers/models/olmoe/modeling_olmoe.py +12 -4
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +4 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +7 -38
- transformers/models/openai/modeling_openai.py +12 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +7 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +7 -3
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +3 -2
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +28 -14
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +22 -12
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/modeling_parakeet.py +5 -0
- transformers/models/parakeet/modular_parakeet.py +5 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +4 -0
- transformers/models/patchtst/modeling_patchtst.py +5 -4
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/models/pe_audio/processing_pe_audio.py +24 -0
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +3 -0
- transformers/models/pegasus_x/modeling_pegasus_x.py +1 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +5 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +1 -1
- transformers/models/phi/modeling_phi.py +1 -1
- transformers/models/phi3/modeling_phi3.py +1 -1
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +4 -1
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +3 -0
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +12 -4
- transformers/models/phimoe/modular_phimoe.py +1 -1
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +1 -1
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +7 -0
- transformers/models/plbart/modular_plbart.py +6 -0
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +11 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prophetnet/modeling_prophetnet.py +2 -1
- transformers/models/qwen2/modeling_qwen2.py +1 -1
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +104 -64
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +58 -18
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -5
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +26 -22
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +12 -4
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +17 -4
- transformers/models/qwen3/modeling_qwen3.py +1 -1
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +12 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +4 -6
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +92 -46
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +48 -4
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +17 -4
- transformers/models/qwen3_vl/modular_qwen3_vl.py +21 -10
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +94 -112
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +32 -81
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +7 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +3 -2
- transformers/models/reformer/modeling_reformer.py +9 -1
- transformers/models/regnet/modeling_regnet.py +4 -0
- transformers/models/rembert/modeling_rembert.py +7 -1
- transformers/models/resnet/modeling_resnet.py +8 -3
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +4 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +8 -3
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +7 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +1 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +5 -1
- transformers/models/sam2/modular_sam2.py +5 -1
- transformers/models/sam2_video/modeling_sam2_video.py +51 -43
- transformers/models/sam2_video/modular_sam2_video.py +31 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +23 -0
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +26 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +3 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +27 -11
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +6 -0
- transformers/models/seed_oss/modeling_seed_oss.py +1 -1
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +2 -2
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +63 -41
- transformers/models/smollm3/modeling_smollm3.py +1 -1
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +10 -0
- transformers/models/speecht5/modeling_speecht5.py +28 -0
- transformers/models/splinter/modeling_splinter.py +9 -3
- transformers/models/squeezebert/modeling_squeezebert.py +2 -0
- transformers/models/stablelm/modeling_stablelm.py +1 -1
- transformers/models/starcoder2/modeling_starcoder2.py +1 -1
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/swiftformer/modeling_swiftformer.py +4 -0
- transformers/models/swin/modeling_swin.py +16 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +49 -33
- transformers/models/swinv2/modeling_swinv2.py +41 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +1 -7
- transformers/models/t5gemma/modeling_t5gemma.py +1 -1
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +13 -4
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +1 -1
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +12 -0
- transformers/models/timesfm/modular_timesfm.py +12 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +19 -13
- transformers/models/trocr/modeling_trocr.py +1 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +4 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +3 -7
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +0 -6
- transformers/models/vaultgemma/modeling_vaultgemma.py +1 -1
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +7 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/visual_bert/modeling_visual_bert.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +4 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +16 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +7 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +21 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +5 -3
- transformers/models/x_clip/modeling_x_clip.py +2 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +10 -0
- transformers/models/xlm/modeling_xlm.py +13 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +4 -1
- transformers/models/zamba/modeling_zamba.py +2 -1
- transformers/models/zamba2/modeling_zamba2.py +3 -2
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +7 -0
- transformers/pipelines/__init__.py +9 -6
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/document_question_answering.py +1 -1
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +127 -56
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +9 -64
- transformers/quantizers/quantizer_aqlm.py +1 -18
- transformers/quantizers/quantizer_auto_round.py +1 -10
- transformers/quantizers/quantizer_awq.py +3 -8
- transformers/quantizers/quantizer_bitnet.py +1 -6
- transformers/quantizers/quantizer_bnb_4bit.py +9 -49
- transformers/quantizers/quantizer_bnb_8bit.py +9 -19
- transformers/quantizers/quantizer_compressed_tensors.py +1 -4
- transformers/quantizers/quantizer_eetq.py +2 -12
- transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
- transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
- transformers/quantizers/quantizer_fp_quant.py +4 -4
- transformers/quantizers/quantizer_gptq.py +1 -4
- transformers/quantizers/quantizer_higgs.py +2 -6
- transformers/quantizers/quantizer_mxfp4.py +2 -28
- transformers/quantizers/quantizer_quanto.py +14 -14
- transformers/quantizers/quantizer_spqr.py +3 -8
- transformers/quantizers/quantizer_torchao.py +28 -124
- transformers/quantizers/quantizer_vptq.py +1 -10
- transformers/testing_utils.py +28 -12
- transformers/tokenization_mistral_common.py +3 -2
- transformers/tokenization_utils_base.py +3 -2
- transformers/tokenization_utils_tokenizers.py +25 -2
- transformers/trainer.py +24 -2
- transformers/trainer_callback.py +8 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/training_args.py +8 -10
- transformers/utils/__init__.py +4 -0
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +34 -25
- transformers/utils/generic.py +20 -0
- transformers/utils/import_utils.py +51 -9
- transformers/utils/kernel_config.py +71 -18
- transformers/utils/quantization_config.py +8 -8
- transformers/video_processing_utils.py +16 -12
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +5 -6
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +671 -632
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -31,7 +31,12 @@ from ... import initialization as init
|
|
|
31
31
|
from ...activations import ACT2FN
|
|
32
32
|
from ...cache_utils import Cache, DynamicCache
|
|
33
33
|
from ...generation import GenerationMixin
|
|
34
|
-
from ...integrations import
|
|
34
|
+
from ...integrations import (
|
|
35
|
+
use_experts_implementation,
|
|
36
|
+
use_kernel_forward_from_hub,
|
|
37
|
+
use_kernel_func_from_hub,
|
|
38
|
+
use_kernelized_func,
|
|
39
|
+
)
|
|
35
40
|
from ...masking_utils import create_causal_mask
|
|
36
41
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
37
42
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
@@ -39,7 +44,7 @@ from ...modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
|
|
39
44
|
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
40
45
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
41
46
|
from ...processing_utils import Unpack
|
|
42
|
-
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
|
47
|
+
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_grouped_mm_available
|
|
43
48
|
from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
|
|
44
49
|
from .configuration_qwen3_vl_moe import Qwen3VLMoeConfig, Qwen3VLMoeTextConfig, Qwen3VLMoeVisionConfig
|
|
45
50
|
|
|
@@ -65,92 +70,77 @@ class Qwen3VLMoeTextRMSNorm(nn.Module):
|
|
|
65
70
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
66
71
|
|
|
67
72
|
|
|
73
|
+
@use_experts_implementation
|
|
68
74
|
class Qwen3VLMoeTextExperts(nn.Module):
|
|
75
|
+
"""Collection of expert weights stored as 3D tensors."""
|
|
76
|
+
|
|
69
77
|
def __init__(self, config):
|
|
70
78
|
super().__init__()
|
|
71
79
|
self.num_experts = config.num_experts
|
|
72
|
-
self.
|
|
73
|
-
self.
|
|
74
|
-
self.
|
|
75
|
-
self.
|
|
76
|
-
self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size)))
|
|
80
|
+
self.hidden_dim = config.hidden_size
|
|
81
|
+
self.intermediate_dim = config.moe_intermediate_size
|
|
82
|
+
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, 2 * self.intermediate_dim, self.hidden_dim))
|
|
83
|
+
self.down_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim, self.intermediate_dim))
|
|
77
84
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
78
85
|
|
|
79
86
|
def forward(
|
|
80
|
-
self,
|
|
87
|
+
self,
|
|
88
|
+
hidden_states: torch.Tensor,
|
|
89
|
+
top_k_index: torch.Tensor,
|
|
90
|
+
top_k_weights: torch.Tensor,
|
|
81
91
|
) -> torch.Tensor:
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
92
|
+
final_hidden_states = torch.zeros_like(hidden_states)
|
|
93
|
+
with torch.no_grad():
|
|
94
|
+
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts)
|
|
95
|
+
expert_mask = expert_mask.permute(2, 1, 0)
|
|
96
|
+
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
|
97
|
+
|
|
98
|
+
for expert_idx in expert_hit:
|
|
99
|
+
expert_idx = expert_idx[0]
|
|
100
|
+
if expert_idx == self.num_experts:
|
|
101
|
+
continue
|
|
102
|
+
top_k_pos, token_idx = torch.where(expert_mask[expert_idx])
|
|
103
|
+
current_state = hidden_states[token_idx]
|
|
104
|
+
gate, up = nn.functional.linear(current_state, self.gate_up_proj[expert_idx]).chunk(2, dim=-1)
|
|
105
|
+
current_hidden_states = self.act_fn(gate) * up
|
|
106
|
+
current_hidden_states = nn.functional.linear(current_hidden_states, self.down_proj[expert_idx])
|
|
107
|
+
current_hidden_states = current_hidden_states * top_k_weights[token_idx, top_k_pos, None]
|
|
108
|
+
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
|
|
109
|
+
|
|
110
|
+
return final_hidden_states
|
|
85
111
|
|
|
86
|
-
For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs.
|
|
87
112
|
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
for expert_idx in expert_hit[:]:
|
|
106
|
-
with torch.no_grad():
|
|
107
|
-
_, token_idx = torch.where(expert_mask[expert_idx[0]])
|
|
108
|
-
current_state = hidden_states[token_idx]
|
|
109
|
-
gate_up = current_state @ self.gate_up_proj[expert_idx]
|
|
110
|
-
gate, up = gate_up.chunk(2, dim=-1)
|
|
111
|
-
gated_output = up * self.act_fn(gate)
|
|
112
|
-
out = gated_output @ self.down_proj[expert_idx]
|
|
113
|
-
weighted_output = out[0] * routing_weights[token_idx, expert_idx, None]
|
|
114
|
-
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
|
|
115
|
-
next_states = next_states.view(batch_size, -1, self.hidden_size)
|
|
116
|
-
else:
|
|
117
|
-
hidden_states = hidden_states.repeat(self.num_experts, 1)
|
|
118
|
-
hidden_states = hidden_states.view(self.num_experts, -1, self.hidden_size)
|
|
119
|
-
gate_up = torch.bmm(hidden_states, self.gate_up_proj)
|
|
120
|
-
gate, up = gate_up.chunk(2, dim=-1) # not supported for DTensors
|
|
121
|
-
next_states = torch.bmm((up * self.act_fn(gate)), self.down_proj)
|
|
122
|
-
next_states = next_states.reshape(self.num_experts, batch_size, -1, self.hidden_size)
|
|
123
|
-
next_states = (
|
|
124
|
-
next_states * routing_weights.transpose(0, 1).view(self.num_experts, batch_size, -1)[..., None]
|
|
125
|
-
)
|
|
126
|
-
next_states = next_states.sum(dim=0)
|
|
127
|
-
return next_states
|
|
113
|
+
class Qwen3VLMoeTextTopKRouter(nn.Module):
|
|
114
|
+
def __init__(self, config):
|
|
115
|
+
super().__init__()
|
|
116
|
+
self.top_k = config.num_experts_per_tok
|
|
117
|
+
self.num_experts = config.num_experts
|
|
118
|
+
self.hidden_dim = config.hidden_size
|
|
119
|
+
self.weight = nn.Parameter(torch.zeros(self.num_experts, self.hidden_dim))
|
|
120
|
+
|
|
121
|
+
def forward(self, hidden_states):
|
|
122
|
+
hidden_states = hidden_states.reshape(-1, self.hidden_dim)
|
|
123
|
+
router_logits = F.linear(hidden_states, self.weight) # (seq_len, num_experts)
|
|
124
|
+
router_logits = torch.nn.functional.softmax(router_logits, dtype=torch.float, dim=-1)
|
|
125
|
+
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k)
|
|
126
|
+
router_top_value /= router_top_value.sum(dim=-1, keepdim=True)
|
|
127
|
+
router_top_value = router_top_value.to(router_logits.dtype)
|
|
128
|
+
router_scores = router_top_value
|
|
129
|
+
return router_logits, router_scores, router_indices
|
|
128
130
|
|
|
129
131
|
|
|
130
132
|
class Qwen3VLMoeTextSparseMoeBlock(nn.Module):
|
|
131
|
-
def __init__(self, config):
|
|
133
|
+
def __init__(self, config: Qwen3VLMoeTextConfig):
|
|
132
134
|
super().__init__()
|
|
133
|
-
self.hidden_size = config.hidden_size
|
|
134
|
-
self.num_experts = config.num_experts
|
|
135
|
-
self.top_k = config.num_experts_per_tok
|
|
136
|
-
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
|
137
135
|
self.experts = Qwen3VLMoeTextExperts(config)
|
|
136
|
+
self.gate = Qwen3VLMoeTextTopKRouter(config)
|
|
138
137
|
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
router_logits = self.gate(hidden_states)
|
|
146
|
-
routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float)
|
|
147
|
-
routing_weights, router_indices = torch.topk(routing_weights, self.top_k, dim=-1)
|
|
148
|
-
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
|
|
149
|
-
routing_weights = routing_weights.to(router_logits.dtype)
|
|
150
|
-
router_weights = torch.zeros_like(router_logits).scatter_(1, router_indices, routing_weights)
|
|
151
|
-
hidden_states = hidden_states.reshape(batch_size, -1, self.hidden_size)
|
|
152
|
-
routed_out = self.experts(hidden_states, router_weights, router_indices)
|
|
153
|
-
return routed_out
|
|
138
|
+
def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
139
|
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
|
140
|
+
hidden_states_reshaped = hidden_states.view(-1, hidden_dim)
|
|
141
|
+
_, routing_weights, selected_experts = self.gate(hidden_states_reshaped)
|
|
142
|
+
final_hidden_states = self.experts(hidden_states_reshaped, selected_experts, routing_weights)
|
|
143
|
+
return final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
|
154
144
|
|
|
155
145
|
|
|
156
146
|
def rotate_half(x):
|
|
@@ -368,27 +358,6 @@ class Qwen3VLMoeTextDecoderLayer(GradientCheckpointingLayer):
|
|
|
368
358
|
return hidden_states
|
|
369
359
|
|
|
370
360
|
|
|
371
|
-
class Qwen3VLMoeTextTopKRouter(nn.Module):
|
|
372
|
-
def __init__(self, config):
|
|
373
|
-
super().__init__()
|
|
374
|
-
self.top_k = config.num_experts_per_tok
|
|
375
|
-
self.num_experts = config.num_experts
|
|
376
|
-
self.norm_topk_prob = config.norm_topk_prob
|
|
377
|
-
self.hidden_dim = config.hidden_size
|
|
378
|
-
self.weight = nn.Parameter(torch.zeros(self.num_experts, self.hidden_dim))
|
|
379
|
-
|
|
380
|
-
def forward(self, hidden_states):
|
|
381
|
-
hidden_states = hidden_states.reshape(-1, self.hidden_dim)
|
|
382
|
-
router_logits = F.linear(hidden_states, self.weight) # (seq_len, num_experts)
|
|
383
|
-
router_logits = torch.nn.functional.softmax(router_logits, dtype=torch.float, dim=-1)
|
|
384
|
-
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k)
|
|
385
|
-
if self.norm_topk_prob:
|
|
386
|
-
router_top_value /= router_top_value.sum(dim=-1, keepdim=True)
|
|
387
|
-
router_top_value = router_top_value.to(router_logits.dtype)
|
|
388
|
-
router_scores = router_top_value
|
|
389
|
-
return router_logits, router_scores, router_indices
|
|
390
|
-
|
|
391
|
-
|
|
392
361
|
@auto_docstring
|
|
393
362
|
class Qwen3VLMoePreTrainedModel(PreTrainedModel):
|
|
394
363
|
config: Qwen3VLMoeConfig
|
|
@@ -399,7 +368,9 @@ class Qwen3VLMoePreTrainedModel(PreTrainedModel):
|
|
|
399
368
|
_supports_flash_attn = True
|
|
400
369
|
_supports_sdpa = True
|
|
401
370
|
_supports_flex_attn = True
|
|
402
|
-
_can_compile_fullgraph =
|
|
371
|
+
_can_compile_fullgraph = (
|
|
372
|
+
is_grouped_mm_available()
|
|
373
|
+
) # https://huggingface.co/docs/transformers/experts_interface#torchcompile
|
|
403
374
|
_supports_attention_backend = True
|
|
404
375
|
_can_record_outputs = {
|
|
405
376
|
"router_logits": OutputRecorder(Qwen3VLMoeTextTopKRouter, layer_name="mlp.gate", index=0),
|
|
@@ -418,6 +389,27 @@ class Qwen3VLMoePreTrainedModel(PreTrainedModel):
|
|
|
418
389
|
if isinstance(module, Qwen3VLMoeTextExperts):
|
|
419
390
|
init.normal_(module.gate_up_proj, mean=0.0, std=std)
|
|
420
391
|
init.normal_(module.down_proj, mean=0.0, std=std)
|
|
392
|
+
elif isinstance(module, Qwen3VLMoeTextTopKRouter):
|
|
393
|
+
init.normal_(module.weight, mean=0.0, std=std)
|
|
394
|
+
elif isinstance(module, Qwen3VLMoeVisionRotaryEmbedding):
|
|
395
|
+
inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
|
|
396
|
+
init.copy_(module.inv_freq, inv_freq)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
class Qwen3VLMoeVisionRotaryEmbedding(nn.Module):
|
|
400
|
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
|
401
|
+
|
|
402
|
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
403
|
+
super().__init__()
|
|
404
|
+
self.dim = dim
|
|
405
|
+
self.theta = theta
|
|
406
|
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
407
|
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
408
|
+
|
|
409
|
+
def forward(self, seqlen: int) -> torch.Tensor:
|
|
410
|
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
|
411
|
+
freqs = torch.outer(seq, self.inv_freq)
|
|
412
|
+
return freqs
|
|
421
413
|
|
|
422
414
|
|
|
423
415
|
class Qwen3VLMoeVisionMLP(nn.Module):
|
|
@@ -453,20 +445,6 @@ class Qwen3VLMoeVisionPatchEmbed(nn.Module):
|
|
|
453
445
|
return hidden_states
|
|
454
446
|
|
|
455
447
|
|
|
456
|
-
class Qwen3VLMoeVisionRotaryEmbedding(nn.Module):
|
|
457
|
-
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
|
458
|
-
|
|
459
|
-
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
460
|
-
super().__init__()
|
|
461
|
-
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
462
|
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
463
|
-
|
|
464
|
-
def forward(self, seqlen: int) -> torch.Tensor:
|
|
465
|
-
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
|
466
|
-
freqs = torch.outer(seq, self.inv_freq)
|
|
467
|
-
return freqs
|
|
468
|
-
|
|
469
|
-
|
|
470
448
|
class Qwen3VLMoeVisionPatchMerger(nn.Module):
|
|
471
449
|
def __init__(self, config: Qwen3VLMoeVisionConfig, use_postshuffle_norm=False) -> None:
|
|
472
450
|
super().__init__()
|
|
@@ -534,8 +512,8 @@ class Qwen3VLMoeVisionAttention(nn.Module):
|
|
|
534
512
|
if self.config._attn_implementation != "eager":
|
|
535
513
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
536
514
|
|
|
537
|
-
if self.config._attn_implementation
|
|
538
|
-
# Flash Attention
|
|
515
|
+
if "flash" in self.config._attn_implementation:
|
|
516
|
+
# Flash Attention: Use cu_seqlens for variable length attention
|
|
539
517
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
|
540
518
|
attn_output, _ = attention_interface(
|
|
541
519
|
self,
|
|
@@ -646,6 +624,8 @@ class Qwen3VLMoeVisionModel(Qwen3VLMoePreTrainedModel):
|
|
|
646
624
|
|
|
647
625
|
self.gradient_checkpointing = False
|
|
648
626
|
|
|
627
|
+
self.post_init()
|
|
628
|
+
|
|
649
629
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
|
|
650
630
|
merge_size = self.spatial_merge_size
|
|
651
631
|
|
|
@@ -815,7 +795,7 @@ class Qwen3VLMoeTextRotaryEmbedding(nn.Module):
|
|
|
815
795
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
816
796
|
|
|
817
797
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
818
|
-
self.original_inv_freq =
|
|
798
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
819
799
|
|
|
820
800
|
self.mrope_section = config.rope_parameters.get("mrope_section", [24, 20, 20])
|
|
821
801
|
|
|
@@ -1635,6 +1615,7 @@ class Qwen3VLMoeForConditionalGeneration(Qwen3VLMoePreTrainedModel, GenerationMi
|
|
|
1635
1615
|
pixel_values_videos=None,
|
|
1636
1616
|
image_grid_thw=None,
|
|
1637
1617
|
video_grid_thw=None,
|
|
1618
|
+
is_first_iteration=False,
|
|
1638
1619
|
**kwargs,
|
|
1639
1620
|
):
|
|
1640
1621
|
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
@@ -1651,6 +1632,7 @@ class Qwen3VLMoeForConditionalGeneration(Qwen3VLMoePreTrainedModel, GenerationMi
|
|
|
1651
1632
|
image_grid_thw=image_grid_thw,
|
|
1652
1633
|
video_grid_thw=video_grid_thw,
|
|
1653
1634
|
use_cache=use_cache,
|
|
1635
|
+
is_first_iteration=is_first_iteration,
|
|
1654
1636
|
**kwargs,
|
|
1655
1637
|
)
|
|
1656
1638
|
|
|
@@ -1682,7 +1664,7 @@ class Qwen3VLMoeForConditionalGeneration(Qwen3VLMoePreTrainedModel, GenerationMi
|
|
|
1682
1664
|
text_positions = model_inputs["position_ids"][None, ...]
|
|
1683
1665
|
model_inputs["position_ids"] = torch.cat([text_positions, vision_positions], dim=0)
|
|
1684
1666
|
|
|
1685
|
-
if
|
|
1667
|
+
if not is_first_iteration and use_cache:
|
|
1686
1668
|
model_inputs["pixel_values"] = None
|
|
1687
1669
|
model_inputs["pixel_values_videos"] = None
|
|
1688
1670
|
|
|
@@ -18,9 +18,9 @@ from typing import Optional, Union
|
|
|
18
18
|
|
|
19
19
|
import torch
|
|
20
20
|
import torch.nn as nn
|
|
21
|
+
import torch.nn.functional as F
|
|
21
22
|
|
|
22
23
|
from ... import initialization as init
|
|
23
|
-
from ...activations import ACT2FN
|
|
24
24
|
from ...cache_utils import Cache
|
|
25
25
|
from ...configuration_utils import PreTrainedConfig
|
|
26
26
|
from ...modeling_rope_utils import RopeParameters
|
|
@@ -29,8 +29,10 @@ from ...processing_utils import Unpack
|
|
|
29
29
|
from ...utils import TransformersKwargs, can_return_tuple, logging
|
|
30
30
|
from ..qwen3_moe.modeling_qwen3_moe import (
|
|
31
31
|
Qwen3MoeDecoderLayer,
|
|
32
|
+
Qwen3MoeExperts,
|
|
32
33
|
Qwen3MoePreTrainedModel,
|
|
33
34
|
Qwen3MoeRMSNorm,
|
|
35
|
+
Qwen3MoeSparseMoeBlock,
|
|
34
36
|
load_balancing_loss_func,
|
|
35
37
|
)
|
|
36
38
|
from ..qwen3_vl.configuration_qwen3_vl import Qwen3VLConfig, Qwen3VLVisionConfig
|
|
@@ -41,6 +43,7 @@ from ..qwen3_vl.modeling_qwen3_vl import (
|
|
|
41
43
|
Qwen3VLTextAttention,
|
|
42
44
|
Qwen3VLTextModel,
|
|
43
45
|
Qwen3VLVisionModel,
|
|
46
|
+
Qwen3VLVisionRotaryEmbedding,
|
|
44
47
|
)
|
|
45
48
|
|
|
46
49
|
|
|
@@ -257,92 +260,31 @@ class Qwen3VLMoeTextRMSNorm(Qwen3MoeRMSNorm):
|
|
|
257
260
|
pass
|
|
258
261
|
|
|
259
262
|
|
|
260
|
-
class Qwen3VLMoeTextExperts(
|
|
263
|
+
class Qwen3VLMoeTextExperts(Qwen3MoeExperts):
|
|
264
|
+
pass
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
class Qwen3VLMoeTextTopKRouter(nn.Module):
|
|
261
268
|
def __init__(self, config):
|
|
262
269
|
super().__init__()
|
|
270
|
+
self.top_k = config.num_experts_per_tok
|
|
263
271
|
self.num_experts = config.num_experts
|
|
264
|
-
self.
|
|
265
|
-
self.
|
|
266
|
-
self.expert_dim = self.intermediate_size
|
|
267
|
-
self.gate_up_proj = nn.Parameter(torch.zeros(self.num_experts, self.hidden_size, 2 * self.expert_dim))
|
|
268
|
-
self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size)))
|
|
269
|
-
self.act_fn = ACT2FN[config.hidden_act]
|
|
272
|
+
self.hidden_dim = config.hidden_size
|
|
273
|
+
self.weight = nn.Parameter(torch.zeros(self.num_experts, self.hidden_dim))
|
|
270
274
|
|
|
271
|
-
def forward(
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
Args:
|
|
281
|
-
hidden_states (torch.Tensor): (batch_size * token_num, hidden_size)
|
|
282
|
-
routing_weights (torch.Tensor): (batch_size * token_num, num_experts)
|
|
283
|
-
router_indices (torch.Tensor): (batch_size * token_num, top_k)
|
|
284
|
-
Returns:
|
|
285
|
-
torch.Tensor
|
|
286
|
-
"""
|
|
287
|
-
batch_size = hidden_states.shape[0]
|
|
288
|
-
hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size)
|
|
289
|
-
if self.training:
|
|
290
|
-
next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
|
|
291
|
-
with torch.no_grad():
|
|
292
|
-
expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=self.num_experts)
|
|
293
|
-
expert_mask = expert_mask.permute(2, 1, 0)
|
|
294
|
-
# we sum on the top_k and on the sequence length to get which experts
|
|
295
|
-
# are hit this time around
|
|
296
|
-
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
|
297
|
-
for expert_idx in expert_hit[:]:
|
|
298
|
-
with torch.no_grad():
|
|
299
|
-
_, token_idx = torch.where(expert_mask[expert_idx[0]])
|
|
300
|
-
current_state = hidden_states[token_idx]
|
|
301
|
-
gate_up = current_state @ self.gate_up_proj[expert_idx]
|
|
302
|
-
gate, up = gate_up.chunk(2, dim=-1)
|
|
303
|
-
gated_output = up * self.act_fn(gate)
|
|
304
|
-
out = gated_output @ self.down_proj[expert_idx]
|
|
305
|
-
weighted_output = out[0] * routing_weights[token_idx, expert_idx, None]
|
|
306
|
-
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
|
|
307
|
-
next_states = next_states.view(batch_size, -1, self.hidden_size)
|
|
308
|
-
else:
|
|
309
|
-
hidden_states = hidden_states.repeat(self.num_experts, 1)
|
|
310
|
-
hidden_states = hidden_states.view(self.num_experts, -1, self.hidden_size)
|
|
311
|
-
gate_up = torch.bmm(hidden_states, self.gate_up_proj)
|
|
312
|
-
gate, up = gate_up.chunk(2, dim=-1) # not supported for DTensors
|
|
313
|
-
next_states = torch.bmm((up * self.act_fn(gate)), self.down_proj)
|
|
314
|
-
next_states = next_states.reshape(self.num_experts, batch_size, -1, self.hidden_size)
|
|
315
|
-
next_states = (
|
|
316
|
-
next_states * routing_weights.transpose(0, 1).view(self.num_experts, batch_size, -1)[..., None]
|
|
317
|
-
)
|
|
318
|
-
next_states = next_states.sum(dim=0)
|
|
319
|
-
return next_states
|
|
275
|
+
def forward(self, hidden_states):
|
|
276
|
+
hidden_states = hidden_states.reshape(-1, self.hidden_dim)
|
|
277
|
+
router_logits = F.linear(hidden_states, self.weight) # (seq_len, num_experts)
|
|
278
|
+
router_logits = torch.nn.functional.softmax(router_logits, dtype=torch.float, dim=-1)
|
|
279
|
+
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k)
|
|
280
|
+
router_top_value /= router_top_value.sum(dim=-1, keepdim=True)
|
|
281
|
+
router_top_value = router_top_value.to(router_logits.dtype)
|
|
282
|
+
router_scores = router_top_value
|
|
283
|
+
return router_logits, router_scores, router_indices
|
|
320
284
|
|
|
321
285
|
|
|
322
|
-
class Qwen3VLMoeTextSparseMoeBlock(
|
|
323
|
-
|
|
324
|
-
super().__init__()
|
|
325
|
-
self.hidden_size = config.hidden_size
|
|
326
|
-
self.num_experts = config.num_experts
|
|
327
|
-
self.top_k = config.num_experts_per_tok
|
|
328
|
-
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
|
329
|
-
self.experts = Qwen3VLMoeTextExperts(config)
|
|
330
|
-
|
|
331
|
-
# since all the models use norm_topk_prob, we don't need to have a extra check for it
|
|
332
|
-
# self.norm_topk_prob = config.norm_topk_prob
|
|
333
|
-
|
|
334
|
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
335
|
-
batch_size = hidden_states.shape[0]
|
|
336
|
-
hidden_states = hidden_states.reshape(-1, self.hidden_size)
|
|
337
|
-
router_logits = self.gate(hidden_states)
|
|
338
|
-
routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float)
|
|
339
|
-
routing_weights, router_indices = torch.topk(routing_weights, self.top_k, dim=-1)
|
|
340
|
-
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
|
|
341
|
-
routing_weights = routing_weights.to(router_logits.dtype)
|
|
342
|
-
router_weights = torch.zeros_like(router_logits).scatter_(1, router_indices, routing_weights)
|
|
343
|
-
hidden_states = hidden_states.reshape(batch_size, -1, self.hidden_size)
|
|
344
|
-
routed_out = self.experts(hidden_states, router_weights, router_indices)
|
|
345
|
-
return routed_out
|
|
286
|
+
class Qwen3VLMoeTextSparseMoeBlock(Qwen3MoeSparseMoeBlock):
|
|
287
|
+
pass
|
|
346
288
|
|
|
347
289
|
|
|
348
290
|
class Qwen3VLMoeTextAttention(Qwen3VLTextAttention):
|
|
@@ -368,6 +310,15 @@ class Qwen3VLMoePreTrainedModel(Qwen3MoePreTrainedModel):
|
|
|
368
310
|
if isinstance(module, Qwen3VLMoeTextExperts):
|
|
369
311
|
init.normal_(module.gate_up_proj, mean=0.0, std=std)
|
|
370
312
|
init.normal_(module.down_proj, mean=0.0, std=std)
|
|
313
|
+
elif isinstance(module, Qwen3VLMoeTextTopKRouter):
|
|
314
|
+
init.normal_(module.weight, mean=0.0, std=std)
|
|
315
|
+
elif isinstance(module, Qwen3VLMoeVisionRotaryEmbedding):
|
|
316
|
+
inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
|
|
317
|
+
init.copy_(module.inv_freq, inv_freq)
|
|
318
|
+
|
|
319
|
+
|
|
320
|
+
class Qwen3VLMoeVisionRotaryEmbedding(Qwen3VLVisionRotaryEmbedding):
|
|
321
|
+
pass
|
|
371
322
|
|
|
372
323
|
|
|
373
324
|
class Qwen3VLMoeVisionModel(Qwen3VLVisionModel):
|
|
@@ -70,9 +70,6 @@ RAG_CONFIG_DOC = r"""
|
|
|
70
70
|
`context_attention_mask` are returned. See returned tensors for more detail.
|
|
71
71
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
72
72
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
73
|
-
forced_eos_token_id (`int`, *optional*):
|
|
74
|
-
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
|
75
|
-
`eos_token_id`.
|
|
76
73
|
"""
|
|
77
74
|
|
|
78
75
|
|
|
@@ -109,7 +106,6 @@ class RagConfig(PreTrainedConfig):
|
|
|
109
106
|
do_marginalize=False,
|
|
110
107
|
output_retrieved=False,
|
|
111
108
|
use_cache=True,
|
|
112
|
-
forced_eos_token_id=None,
|
|
113
109
|
dataset_revision=None,
|
|
114
110
|
**kwargs,
|
|
115
111
|
):
|
|
@@ -118,7 +114,6 @@ class RagConfig(PreTrainedConfig):
|
|
|
118
114
|
pad_token_id=pad_token_id,
|
|
119
115
|
eos_token_id=eos_token_id,
|
|
120
116
|
decoder_start_token_id=decoder_start_token_id,
|
|
121
|
-
forced_eos_token_id=forced_eos_token_id,
|
|
122
117
|
is_encoder_decoder=is_encoder_decoder,
|
|
123
118
|
prefix=prefix,
|
|
124
119
|
vocab_size=vocab_size,
|
|
@@ -166,9 +161,6 @@ class RagConfig(PreTrainedConfig):
|
|
|
166
161
|
|
|
167
162
|
self.use_cache = use_cache
|
|
168
163
|
|
|
169
|
-
if forced_eos_token_id is None:
|
|
170
|
-
self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
|
|
171
|
-
|
|
172
164
|
@classmethod
|
|
173
165
|
def from_question_encoder_generator_configs(
|
|
174
166
|
cls, question_encoder_config: PreTrainedConfig, generator_config: PreTrainedConfig, **kwargs
|
|
@@ -422,6 +422,8 @@ class RagModel(RagPreTrainedModel):
|
|
|
422
422
|
self.ctx_encoder = None
|
|
423
423
|
self.context_encoder_training = False
|
|
424
424
|
|
|
425
|
+
self.post_init()
|
|
426
|
+
|
|
425
427
|
@auto_docstring
|
|
426
428
|
def forward(
|
|
427
429
|
self,
|
|
@@ -690,6 +692,8 @@ class RagSequenceForGeneration(RagPreTrainedModel):
|
|
|
690
692
|
# instantiate model
|
|
691
693
|
self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
|
|
692
694
|
|
|
695
|
+
self.post_init()
|
|
696
|
+
|
|
693
697
|
def set_retriever(self, retriever: RagRetriever):
|
|
694
698
|
self.rag.retriever = retriever
|
|
695
699
|
|
|
@@ -1126,6 +1130,8 @@ class RagTokenForGeneration(RagPreTrainedModel, GenerationMixin):
|
|
|
1126
1130
|
# instantiate model
|
|
1127
1131
|
self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
|
|
1128
1132
|
|
|
1133
|
+
self.post_init()
|
|
1134
|
+
|
|
1129
1135
|
def set_retriever(self, retriever: RagRetriever):
|
|
1130
1136
|
self.rag.retriever = retriever
|
|
1131
1137
|
|
|
@@ -1404,7 +1410,6 @@ class RagTokenForGeneration(RagPreTrainedModel, GenerationMixin):
|
|
|
1404
1410
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], list[int]]] = None,
|
|
1405
1411
|
logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
|
|
1406
1412
|
stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(),
|
|
1407
|
-
use_model_defaults: Optional[bool] = None,
|
|
1408
1413
|
**kwargs,
|
|
1409
1414
|
) -> torch.LongTensor:
|
|
1410
1415
|
"""
|
|
@@ -1463,11 +1468,6 @@ class RagTokenForGeneration(RagPreTrainedModel, GenerationMixin):
|
|
|
1463
1468
|
Custom stopping criteria that complement the default stopping criteria built from arguments and a
|
|
1464
1469
|
model's config. If a stopping criteria is passed that is already created with the arguments or a
|
|
1465
1470
|
model's config an error is thrown.
|
|
1466
|
-
use_model_defaults (`bool`, *optional*):
|
|
1467
|
-
When it is `True`, unset parameters in `generation_config` will be set to the model-specific default
|
|
1468
|
-
generation configuration (`model.generation_config`), as opposed to the global defaults
|
|
1469
|
-
(`GenerationConfig()`). If unset, models saved starting from `v4.50` will consider this flag to be
|
|
1470
|
-
`True`.
|
|
1471
1471
|
kwargs (`dict[str, Any]`, *optional*):
|
|
1472
1472
|
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
|
|
1473
1473
|
forwarded to the `forward` function of the model.
|
|
@@ -1479,9 +1479,7 @@ class RagTokenForGeneration(RagPreTrainedModel, GenerationMixin):
|
|
|
1479
1479
|
"""
|
|
1480
1480
|
# Handle `generation_config` and kwargs that might update it
|
|
1481
1481
|
generation_mode_kwargs = self._extract_generation_mode_kwargs(None, kwargs, False, None, None)
|
|
1482
|
-
generation_config, model_kwargs = self._prepare_generation_config(
|
|
1483
|
-
generation_config, use_model_defaults, **kwargs
|
|
1484
|
-
)
|
|
1482
|
+
generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
|
|
1485
1483
|
generation_mode = generation_config.get_generation_mode()
|
|
1486
1484
|
if generation_mode not in [
|
|
1487
1485
|
GenerationMode.SAMPLE,
|
|
@@ -80,7 +80,7 @@ class RecurrentGemmaRotaryEmbedding(nn.Module):
|
|
|
80
80
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
81
81
|
|
|
82
82
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
83
|
-
self.original_inv_freq =
|
|
83
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
84
84
|
|
|
85
85
|
@staticmethod
|
|
86
86
|
# Ignore copy
|
|
@@ -611,10 +611,11 @@ class RecurrentGemmaPreTrainedModel(PreTrainedModel):
|
|
|
611
611
|
# Here we need the check explicitly, as we slice the weight in the `zeros_` call, so it looses the flag
|
|
612
612
|
if module.padding_idx is not None and not getattr(module.weight, "_is_hf_initialized", False):
|
|
613
613
|
init.zeros_(module.weight[module.padding_idx])
|
|
614
|
-
|
|
615
614
|
# We initialize with 0s to be 1 centered as the RMSNorm here does (1 + weight)
|
|
616
615
|
elif isinstance(module, RecurrentGemmaRMSNorm):
|
|
617
616
|
init.zeros_(module.weight)
|
|
617
|
+
elif isinstance(module, RecurrentGemmaModel):
|
|
618
|
+
init.constant_(module.normalizer, module.config.hidden_size**0.5)
|
|
618
619
|
|
|
619
620
|
def _setup_cache(self, config, batch, device, dtype):
|
|
620
621
|
layers = getattr(self, "model", self).layers
|
|
@@ -1851,6 +1851,14 @@ class ReformerPreTrainedModel(PreTrainedModel):
|
|
|
1851
1851
|
if isinstance(module, AxialPositionEmbeddings):
|
|
1852
1852
|
for weight in module.weights:
|
|
1853
1853
|
init.normal_(weight, std=self.config.axial_norm_std)
|
|
1854
|
+
elif isinstance(module, LSHSelfAttention):
|
|
1855
|
+
init.constant_(module.self_mask_value_float16, -1e3)
|
|
1856
|
+
init.constant_(module.self_mask_value_float32, -1e5)
|
|
1857
|
+
init.constant_(module.mask_value_float16, -1e4)
|
|
1858
|
+
init.constant_(module.mask_value_float32, -1e9)
|
|
1859
|
+
elif isinstance(module, LocalSelfAttention):
|
|
1860
|
+
init.constant_(module.mask_value_float16, -1e4)
|
|
1861
|
+
init.constant_(module.mask_value_float32, -1e9)
|
|
1854
1862
|
|
|
1855
1863
|
|
|
1856
1864
|
@dataclass
|
|
@@ -2239,7 +2247,7 @@ class ReformerModelWithLMHead(ReformerPreTrainedModel, GenerationMixin):
|
|
|
2239
2247
|
)
|
|
2240
2248
|
|
|
2241
2249
|
def prepare_inputs_for_generation(
|
|
2242
|
-
self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, **kwargs
|
|
2250
|
+
self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, is_first_iteration=False, **kwargs
|
|
2243
2251
|
):
|
|
2244
2252
|
# Overitten -- different expected inputs/outputs
|
|
2245
2253
|
|
|
@@ -278,6 +278,10 @@ class RegNetPreTrainedModel(PreTrainedModel):
|
|
|
278
278
|
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
279
279
|
init.constant_(module.weight, 1)
|
|
280
280
|
init.constant_(module.bias, 0)
|
|
281
|
+
if getattr(module, "running_mean", None) is not None:
|
|
282
|
+
init.zeros_(module.running_mean)
|
|
283
|
+
init.ones_(module.running_var)
|
|
284
|
+
init.zeros_(module.num_batches_tracked)
|
|
281
285
|
|
|
282
286
|
|
|
283
287
|
@auto_docstring
|
|
@@ -21,6 +21,7 @@ import torch
|
|
|
21
21
|
from torch import nn
|
|
22
22
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
23
23
|
|
|
24
|
+
from ... import initialization as init
|
|
24
25
|
from ...activations import ACT2FN
|
|
25
26
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
26
27
|
from ...generation import GenerationMixin
|
|
@@ -488,6 +489,11 @@ class RemBertPreTrainedModel(PreTrainedModel):
|
|
|
488
489
|
base_model_prefix = "rembert"
|
|
489
490
|
supports_gradient_checkpointing = True
|
|
490
491
|
|
|
492
|
+
def _init_weights(self, module):
|
|
493
|
+
super()._init_weights(module)
|
|
494
|
+
if isinstance(module, RemBertEmbeddings):
|
|
495
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
496
|
+
|
|
491
497
|
|
|
492
498
|
@auto_docstring(
|
|
493
499
|
custom_intro="""
|
|
@@ -702,7 +708,7 @@ class RemBertForMaskedLM(RemBertPreTrainedModel):
|
|
|
702
708
|
attentions=outputs.attentions,
|
|
703
709
|
)
|
|
704
710
|
|
|
705
|
-
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
|
711
|
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, is_first_iteration=False, **model_kwargs):
|
|
706
712
|
input_shape = input_ids.shape
|
|
707
713
|
effective_batch_size = input_shape[0]
|
|
708
714
|
|