transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +20 -1
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +68 -5
- transformers/core_model_loading.py +201 -35
- transformers/dependency_versions_table.py +1 -1
- transformers/feature_extraction_utils.py +54 -22
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +162 -122
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +101 -64
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +2 -12
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +12 -0
- transformers/integrations/accelerate.py +44 -111
- transformers/integrations/aqlm.py +3 -5
- transformers/integrations/awq.py +2 -5
- transformers/integrations/bitnet.py +5 -8
- transformers/integrations/bitsandbytes.py +16 -15
- transformers/integrations/deepspeed.py +18 -3
- transformers/integrations/eetq.py +3 -5
- transformers/integrations/fbgemm_fp8.py +1 -1
- transformers/integrations/finegrained_fp8.py +6 -16
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/higgs.py +2 -5
- transformers/integrations/hub_kernels.py +23 -5
- transformers/integrations/integration_utils.py +35 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +4 -10
- transformers/integrations/peft.py +5 -0
- transformers/integrations/quanto.py +5 -2
- transformers/integrations/spqr.py +3 -5
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/vptq.py +3 -5
- transformers/modeling_gguf_pytorch_utils.py +66 -19
- transformers/modeling_rope_utils.py +78 -81
- transformers/modeling_utils.py +583 -503
- transformers/models/__init__.py +19 -0
- transformers/models/afmoe/modeling_afmoe.py +7 -16
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/align/modeling_align.py +12 -6
- transformers/models/altclip/modeling_altclip.py +7 -3
- transformers/models/apertus/modeling_apertus.py +4 -2
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +1 -1
- transformers/models/aria/modeling_aria.py +8 -4
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +27 -0
- transformers/models/auto/feature_extraction_auto.py +7 -3
- transformers/models/auto/image_processing_auto.py +4 -2
- transformers/models/auto/modeling_auto.py +31 -0
- transformers/models/auto/processing_auto.py +4 -0
- transformers/models/auto/tokenization_auto.py +132 -153
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +18 -19
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +9 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +7 -0
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +3 -0
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +7 -0
- transformers/models/bit/modeling_bit.py +5 -1
- transformers/models/bitnet/modeling_bitnet.py +1 -1
- transformers/models/blenderbot/modeling_blenderbot.py +7 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +6 -7
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +7 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +8 -0
- transformers/models/blip_2/modeling_blip_2.py +2 -0
- transformers/models/bloom/modeling_bloom.py +13 -44
- transformers/models/blt/modeling_blt.py +162 -2
- transformers/models/blt/modular_blt.py +168 -3
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +6 -0
- transformers/models/bros/modeling_bros.py +8 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/canine/modeling_canine.py +6 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +9 -4
- transformers/models/chinese_clip/modeling_chinese_clip.py +6 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +25 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clipseg/modeling_clipseg.py +4 -0
- transformers/models/clvp/modeling_clvp.py +14 -3
- transformers/models/code_llama/tokenization_code_llama.py +1 -1
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/cohere/modeling_cohere.py +1 -1
- transformers/models/cohere2/modeling_cohere2.py +1 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +0 -1
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +4 -1
- transformers/models/convbert/modeling_convbert.py +3 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +3 -1
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +14 -2
- transformers/models/cvt/modeling_cvt.py +5 -1
- transformers/models/cwm/modeling_cwm.py +1 -1
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +46 -39
- transformers/models/d_fine/modular_d_fine.py +15 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +1 -1
- transformers/models/dac/modeling_dac.py +4 -4
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +1 -1
- transformers/models/deberta/modeling_deberta.py +2 -0
- transformers/models/deberta_v2/modeling_deberta_v2.py +2 -0
- transformers/models/decision_transformer/modeling_decision_transformer.py +8 -5
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -4
- transformers/models/deepseek_v2/modular_deepseek_v2.py +4 -2
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +9 -5
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +1 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +8 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +12 -1
- transformers/models/dia/modular_dia.py +11 -0
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +3 -3
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +3 -0
- transformers/models/dinov3_vit/modular_dinov3_vit.py +3 -0
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/doge/modeling_doge.py +1 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +16 -12
- transformers/models/dots1/modeling_dots1.py +14 -5
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +5 -2
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +13 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +14 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +5 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +8 -2
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt_fast.py +46 -14
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +1 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +16 -13
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +9 -35
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +6 -1
- transformers/models/evolla/modeling_evolla.py +9 -1
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +1 -1
- transformers/models/falcon/modeling_falcon.py +3 -3
- transformers/models/falcon_h1/modeling_falcon_h1.py +28 -23
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +6 -2
- transformers/models/falcon_mamba/modular_falcon_mamba.py +7 -2
- transformers/models/fast_vlm/modeling_fast_vlm.py +7 -3
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +23 -10
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +14 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +4 -1
- transformers/models/flex_olmo/modeling_flex_olmo.py +7 -4
- transformers/models/florence2/modeling_florence2.py +20 -3
- transformers/models/florence2/modular_florence2.py +13 -0
- transformers/models/fnet/modeling_fnet.py +7 -0
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +16 -0
- transformers/models/gemma/modeling_gemma.py +10 -12
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma2/modeling_gemma2.py +1 -1
- transformers/models/gemma2/modular_gemma2.py +1 -1
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +28 -7
- transformers/models/gemma3/modular_gemma3.py +26 -6
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +47 -9
- transformers/models/gemma3n/modular_gemma3n.py +51 -9
- transformers/models/git/modeling_git.py +181 -126
- transformers/models/glm/modeling_glm.py +1 -1
- transformers/models/glm4/modeling_glm4.py +1 -1
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +9 -5
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +15 -5
- transformers/models/glm4v/modular_glm4v.py +11 -3
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +39 -23
- transformers/models/glm4v_moe/modular_glm4v_moe.py +12 -0
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +8 -5
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +3 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +15 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +1 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +1 -1
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +6 -9
- transformers/models/gpt_oss/modular_gpt_oss.py +5 -7
- transformers/models/gptj/modeling_gptj.py +15 -6
- transformers/models/granite/modeling_granite.py +1 -1
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +2 -3
- transformers/models/granitemoe/modular_granitemoe.py +1 -2
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +33 -23
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +2 -3
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +4 -4
- transformers/models/groupvit/modeling_groupvit.py +6 -1
- transformers/models/helium/modeling_helium.py +1 -1
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -0
- transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -0
- transformers/models/hubert/modeling_hubert.py +4 -0
- transformers/models/hubert/modular_hubert.py +4 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +12 -4
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +16 -0
- transformers/models/idefics/modeling_idefics.py +10 -0
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +9 -2
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +11 -8
- transformers/models/internvl/modular_internvl.py +5 -9
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +24 -19
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +15 -7
- transformers/models/janus/modular_janus.py +16 -7
- transformers/models/jetmoe/modeling_jetmoe.py +2 -2
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +14 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +9 -3
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/configuration_lasr.py +4 -0
- transformers/models/lasr/modeling_lasr.py +3 -2
- transformers/models/lasr/modular_lasr.py +8 -1
- transformers/models/lasr/processing_lasr.py +0 -2
- transformers/models/layoutlm/modeling_layoutlm.py +5 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +12 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1 -0
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +29 -5
- transformers/models/led/modeling_led.py +6 -0
- transformers/models/levit/modeling_levit.py +18 -0
- transformers/models/lfm2/modeling_lfm2.py +1 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +14 -4
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lilt/modeling_lilt.py +19 -15
- transformers/models/llama/modeling_llama.py +1 -1
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +8 -4
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +2 -1
- transformers/models/longcat_flash/modular_longcat_flash.py +1 -0
- transformers/models/longt5/modeling_longt5.py +0 -4
- transformers/models/m2m_100/modeling_m2m_100.py +10 -0
- transformers/models/mamba/modeling_mamba.py +2 -1
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +3 -0
- transformers/models/markuplm/modeling_markuplm.py +5 -8
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +9 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +9 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +19 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +7 -0
- transformers/models/megatron_bert/modeling_megatron_bert.py +2 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mimi/modeling_mimi.py +25 -4
- transformers/models/minimax/modeling_minimax.py +16 -3
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +1 -1
- transformers/models/mistral/modeling_mistral.py +1 -1
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +12 -4
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +13 -2
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +4 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -0
- transformers/models/modernbert/modeling_modernbert.py +12 -1
- transformers/models/modernbert/modular_modernbert.py +12 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -1
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +9 -1
- transformers/models/moonshine/modeling_moonshine.py +1 -1
- transformers/models/moshi/modeling_moshi.py +21 -51
- transformers/models/mpnet/modeling_mpnet.py +2 -0
- transformers/models/mra/modeling_mra.py +4 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +0 -10
- transformers/models/musicgen/modeling_musicgen.py +5 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +4 -0
- transformers/models/mvp/modeling_mvp.py +7 -0
- transformers/models/nanochat/modeling_nanochat.py +1 -1
- transformers/models/nemotron/modeling_nemotron.py +3 -3
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +11 -16
- transformers/models/nystromformer/modeling_nystromformer.py +7 -0
- transformers/models/olmo/modeling_olmo.py +1 -1
- transformers/models/olmo2/modeling_olmo2.py +1 -1
- transformers/models/olmo3/modeling_olmo3.py +1 -1
- transformers/models/olmoe/modeling_olmoe.py +12 -4
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +4 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +7 -38
- transformers/models/openai/modeling_openai.py +12 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +7 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +7 -3
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +3 -2
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +28 -14
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +22 -12
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/modeling_parakeet.py +5 -0
- transformers/models/parakeet/modular_parakeet.py +5 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +4 -0
- transformers/models/patchtst/modeling_patchtst.py +5 -4
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/models/pe_audio/processing_pe_audio.py +24 -0
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +3 -0
- transformers/models/pegasus_x/modeling_pegasus_x.py +1 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +5 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +1 -1
- transformers/models/phi/modeling_phi.py +1 -1
- transformers/models/phi3/modeling_phi3.py +1 -1
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +4 -1
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +3 -0
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +12 -4
- transformers/models/phimoe/modular_phimoe.py +1 -1
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +1 -1
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +7 -0
- transformers/models/plbart/modular_plbart.py +6 -0
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +11 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prophetnet/modeling_prophetnet.py +2 -1
- transformers/models/qwen2/modeling_qwen2.py +1 -1
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +104 -64
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +58 -18
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -5
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +26 -22
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +12 -4
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +17 -4
- transformers/models/qwen3/modeling_qwen3.py +1 -1
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +12 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +4 -6
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +92 -46
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +48 -4
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +17 -4
- transformers/models/qwen3_vl/modular_qwen3_vl.py +21 -10
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +94 -112
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +32 -81
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +7 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +3 -2
- transformers/models/reformer/modeling_reformer.py +9 -1
- transformers/models/regnet/modeling_regnet.py +4 -0
- transformers/models/rembert/modeling_rembert.py +7 -1
- transformers/models/resnet/modeling_resnet.py +8 -3
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +4 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +8 -3
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +7 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +1 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +5 -1
- transformers/models/sam2/modular_sam2.py +5 -1
- transformers/models/sam2_video/modeling_sam2_video.py +51 -43
- transformers/models/sam2_video/modular_sam2_video.py +31 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +23 -0
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +26 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +3 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +27 -11
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +6 -0
- transformers/models/seed_oss/modeling_seed_oss.py +1 -1
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +2 -2
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +63 -41
- transformers/models/smollm3/modeling_smollm3.py +1 -1
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +10 -0
- transformers/models/speecht5/modeling_speecht5.py +28 -0
- transformers/models/splinter/modeling_splinter.py +9 -3
- transformers/models/squeezebert/modeling_squeezebert.py +2 -0
- transformers/models/stablelm/modeling_stablelm.py +1 -1
- transformers/models/starcoder2/modeling_starcoder2.py +1 -1
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/swiftformer/modeling_swiftformer.py +4 -0
- transformers/models/swin/modeling_swin.py +16 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +49 -33
- transformers/models/swinv2/modeling_swinv2.py +41 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +1 -7
- transformers/models/t5gemma/modeling_t5gemma.py +1 -1
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +13 -4
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +1 -1
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +12 -0
- transformers/models/timesfm/modular_timesfm.py +12 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +19 -13
- transformers/models/trocr/modeling_trocr.py +1 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +4 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +3 -7
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +0 -6
- transformers/models/vaultgemma/modeling_vaultgemma.py +1 -1
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +7 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/visual_bert/modeling_visual_bert.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +4 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +16 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +7 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +21 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +5 -3
- transformers/models/x_clip/modeling_x_clip.py +2 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +10 -0
- transformers/models/xlm/modeling_xlm.py +13 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +4 -1
- transformers/models/zamba/modeling_zamba.py +2 -1
- transformers/models/zamba2/modeling_zamba2.py +3 -2
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +7 -0
- transformers/pipelines/__init__.py +9 -6
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/document_question_answering.py +1 -1
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +127 -56
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +9 -64
- transformers/quantizers/quantizer_aqlm.py +1 -18
- transformers/quantizers/quantizer_auto_round.py +1 -10
- transformers/quantizers/quantizer_awq.py +3 -8
- transformers/quantizers/quantizer_bitnet.py +1 -6
- transformers/quantizers/quantizer_bnb_4bit.py +9 -49
- transformers/quantizers/quantizer_bnb_8bit.py +9 -19
- transformers/quantizers/quantizer_compressed_tensors.py +1 -4
- transformers/quantizers/quantizer_eetq.py +2 -12
- transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
- transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
- transformers/quantizers/quantizer_fp_quant.py +4 -4
- transformers/quantizers/quantizer_gptq.py +1 -4
- transformers/quantizers/quantizer_higgs.py +2 -6
- transformers/quantizers/quantizer_mxfp4.py +2 -28
- transformers/quantizers/quantizer_quanto.py +14 -14
- transformers/quantizers/quantizer_spqr.py +3 -8
- transformers/quantizers/quantizer_torchao.py +28 -124
- transformers/quantizers/quantizer_vptq.py +1 -10
- transformers/testing_utils.py +28 -12
- transformers/tokenization_mistral_common.py +3 -2
- transformers/tokenization_utils_base.py +3 -2
- transformers/tokenization_utils_tokenizers.py +25 -2
- transformers/trainer.py +24 -2
- transformers/trainer_callback.py +8 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/training_args.py +8 -10
- transformers/utils/__init__.py +4 -0
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +34 -25
- transformers/utils/generic.py +20 -0
- transformers/utils/import_utils.py +51 -9
- transformers/utils/kernel_config.py +71 -18
- transformers/utils/quantization_config.py +8 -8
- transformers/video_processing_utils.py +16 -12
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +5 -6
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +671 -632
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -27,6 +27,7 @@ import torch.distributions
|
|
|
27
27
|
import torch.nn as nn
|
|
28
28
|
import torch.nn.functional as F
|
|
29
29
|
|
|
30
|
+
from ... import initialization as init
|
|
30
31
|
from ...activations import ACT2FN
|
|
31
32
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
32
33
|
from ...generation import GenerationMixin
|
|
@@ -102,7 +103,7 @@ class BltRotaryEmbedding(nn.Module):
|
|
|
102
103
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
103
104
|
|
|
104
105
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
105
|
-
self.original_inv_freq =
|
|
106
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
106
107
|
|
|
107
108
|
@staticmethod
|
|
108
109
|
def compute_default_rope_parameters(
|
|
@@ -444,6 +445,163 @@ class BltPreTrainedModel(PreTrainedModel):
|
|
|
444
445
|
"attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="local_decoder"),
|
|
445
446
|
}
|
|
446
447
|
|
|
448
|
+
@torch.no_grad()
|
|
449
|
+
def _init_weights(self, module):
|
|
450
|
+
"""
|
|
451
|
+
Initialize BLT weights following the original ByteLatentTransformer:
|
|
452
|
+
|
|
453
|
+
- Most weights are drawn from a truncated normal.
|
|
454
|
+
- Scale is ~ 1 / sqrt(model_dim) (or 1 / sqrt(hidden_dim) for FFN outputs).
|
|
455
|
+
- Norm layers are set to weight = 1, bias = 0.
|
|
456
|
+
"""
|
|
457
|
+
class_name = module.__class__.__name__
|
|
458
|
+
|
|
459
|
+
# Norms: RMSNorm / LayerNorm
|
|
460
|
+
if isinstance(module, (BltRMSNorm, nn.LayerNorm)) or "RMSNorm" in class_name or "LayerNorm" in class_name:
|
|
461
|
+
if getattr(module, "weight", None) is not None:
|
|
462
|
+
init.ones_(module.weight)
|
|
463
|
+
if getattr(module, "bias", None) is not None:
|
|
464
|
+
init.zeros_(module.bias)
|
|
465
|
+
return
|
|
466
|
+
|
|
467
|
+
# Embeddings (encoder / patcher / hash embeddings)
|
|
468
|
+
if isinstance(module, nn.Embedding):
|
|
469
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
470
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
471
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
472
|
+
if hidden_size is None:
|
|
473
|
+
hidden_size = module.embedding_dim
|
|
474
|
+
|
|
475
|
+
std = hidden_size**-0.5
|
|
476
|
+
init.trunc_normal_(
|
|
477
|
+
module.weight,
|
|
478
|
+
mean=0.0,
|
|
479
|
+
std=std,
|
|
480
|
+
a=-3 * std,
|
|
481
|
+
b=3 * std,
|
|
482
|
+
)
|
|
483
|
+
if module.padding_idx is not None:
|
|
484
|
+
init.zeros_(module.weight[module.padding_idx])
|
|
485
|
+
return
|
|
486
|
+
|
|
487
|
+
# Self-attention / cross-attention projections
|
|
488
|
+
if isinstance(module, (BltSelfAttention, BltCrossAttention)) or class_name in (
|
|
489
|
+
"MllamaTextSelfAttention",
|
|
490
|
+
"MllamaTextCrossAttention",
|
|
491
|
+
):
|
|
492
|
+
dim = getattr(self.config, "hidden_size", None)
|
|
493
|
+
if dim is None and hasattr(module, "hidden_size"):
|
|
494
|
+
dim = module.hidden_size
|
|
495
|
+
if dim is None:
|
|
496
|
+
for name in ("q_proj", "k_proj", "v_proj", "o_proj", "dense"):
|
|
497
|
+
proj = getattr(module, name, None)
|
|
498
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
499
|
+
dim = proj.weight.shape[-1]
|
|
500
|
+
break
|
|
501
|
+
if dim is None:
|
|
502
|
+
return
|
|
503
|
+
|
|
504
|
+
std = dim**-0.5
|
|
505
|
+
|
|
506
|
+
# Input projections (q, k, v)
|
|
507
|
+
for proj_name in ("q_proj", "k_proj", "v_proj"):
|
|
508
|
+
proj = getattr(module, proj_name, None)
|
|
509
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
510
|
+
init.trunc_normal_(
|
|
511
|
+
proj.weight,
|
|
512
|
+
mean=0.0,
|
|
513
|
+
std=std,
|
|
514
|
+
a=-3 * std,
|
|
515
|
+
b=3 * std,
|
|
516
|
+
)
|
|
517
|
+
if getattr(proj, "bias", None) is not None:
|
|
518
|
+
init.zeros_(proj.bias)
|
|
519
|
+
|
|
520
|
+
# Output projection: o_proj or dense
|
|
521
|
+
o_proj = getattr(module, "o_proj", getattr(module, "dense", None))
|
|
522
|
+
if o_proj is not None and hasattr(o_proj, "weight"):
|
|
523
|
+
init.trunc_normal_(
|
|
524
|
+
o_proj.weight,
|
|
525
|
+
mean=0.0,
|
|
526
|
+
std=std,
|
|
527
|
+
a=-3 * std,
|
|
528
|
+
b=3 * std,
|
|
529
|
+
)
|
|
530
|
+
if getattr(o_proj, "bias", None) is not None:
|
|
531
|
+
init.zeros_(o_proj.bias)
|
|
532
|
+
return
|
|
533
|
+
|
|
534
|
+
# MLP / FFN blocks
|
|
535
|
+
if isinstance(module, BltMLP) or class_name == "MllamaTextMLP":
|
|
536
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
537
|
+
if hidden_size is None and hasattr(self.config, "decoder_config"):
|
|
538
|
+
hidden_size = getattr(self.config.decoder_config, "hidden_size", None)
|
|
539
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
540
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
541
|
+
|
|
542
|
+
# Input-side std
|
|
543
|
+
in_std = None
|
|
544
|
+
if hidden_size is not None:
|
|
545
|
+
in_std = hidden_size**-0.5
|
|
546
|
+
|
|
547
|
+
gate_proj = getattr(module, "gate_proj", getattr(module, "fc1", None))
|
|
548
|
+
up_proj = getattr(module, "up_proj", None)
|
|
549
|
+
down_proj = getattr(module, "down_proj", getattr(module, "fc2", None))
|
|
550
|
+
|
|
551
|
+
# gate / input projections
|
|
552
|
+
for proj in (gate_proj, up_proj):
|
|
553
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
554
|
+
std = in_std or (proj.weight.shape[1] ** -0.5)
|
|
555
|
+
init.trunc_normal_(
|
|
556
|
+
proj.weight,
|
|
557
|
+
mean=0.0,
|
|
558
|
+
std=std,
|
|
559
|
+
a=-3 * std,
|
|
560
|
+
b=3 * std,
|
|
561
|
+
)
|
|
562
|
+
if getattr(proj, "bias", None) is not None:
|
|
563
|
+
init.zeros_(proj.bias)
|
|
564
|
+
|
|
565
|
+
# output/ down projections
|
|
566
|
+
if down_proj is not None and hasattr(down_proj, "weight"):
|
|
567
|
+
hidden_dim = down_proj.weight.shape[1]
|
|
568
|
+
out_std = hidden_dim**-0.5
|
|
569
|
+
init.trunc_normal_(
|
|
570
|
+
down_proj.weight,
|
|
571
|
+
mean=0.0,
|
|
572
|
+
std=out_std,
|
|
573
|
+
a=-3 * out_std,
|
|
574
|
+
b=3 * out_std,
|
|
575
|
+
)
|
|
576
|
+
if getattr(down_proj, "bias", None) is not None:
|
|
577
|
+
init.zeros_(down_proj.bias)
|
|
578
|
+
return
|
|
579
|
+
|
|
580
|
+
# Generic Linear layers (projections, lm_head, etc.)
|
|
581
|
+
if isinstance(module, nn.Linear):
|
|
582
|
+
fan_in = module.in_features
|
|
583
|
+
std = fan_in**-0.5
|
|
584
|
+
init.trunc_normal_(
|
|
585
|
+
module.weight,
|
|
586
|
+
mean=0.0,
|
|
587
|
+
std=std,
|
|
588
|
+
a=-3 * std,
|
|
589
|
+
b=3 * std,
|
|
590
|
+
)
|
|
591
|
+
if module.bias is not None:
|
|
592
|
+
init.zeros_(module.bias)
|
|
593
|
+
return
|
|
594
|
+
|
|
595
|
+
if isinstance(module, BltRotaryEmbedding):
|
|
596
|
+
rope_fn = (
|
|
597
|
+
ROPE_INIT_FUNCTIONS[module.rope_type]
|
|
598
|
+
if module.rope_type != "default"
|
|
599
|
+
else module.compute_default_rope_parameters
|
|
600
|
+
)
|
|
601
|
+
buffer_value, _ = rope_fn(module.config)
|
|
602
|
+
init.copy_(module.inv_freq, buffer_value)
|
|
603
|
+
init.copy_(module.original_inv_freq, buffer_value)
|
|
604
|
+
|
|
447
605
|
|
|
448
606
|
class BltLocalEncoder(BltPreTrainedModel):
|
|
449
607
|
config: BltLocalEncoderConfig
|
|
@@ -753,6 +911,8 @@ class BltPatcher(BltPreTrainedModel):
|
|
|
753
911
|
bias=False,
|
|
754
912
|
)
|
|
755
913
|
|
|
914
|
+
self.post_init()
|
|
915
|
+
|
|
756
916
|
def forward(
|
|
757
917
|
self,
|
|
758
918
|
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -952,7 +1112,7 @@ def compute_hash_embeddings(
|
|
|
952
1112
|
hash_ids = byte_group_hash_function(local_encoder_tokens, group_size, prime, encoder_hash_byte_group_vocab)
|
|
953
1113
|
# Apply offset to get the correct slice of the fused embedding
|
|
954
1114
|
offset_hash_ids = hash_ids + embedding_idx * encoder_hash_byte_group_vocab
|
|
955
|
-
embeddings += encoder_hash_tok_embedding(offset_hash_ids)
|
|
1115
|
+
embeddings += encoder_hash_tok_embedding(offset_hash_ids).to(embeddings.device)
|
|
956
1116
|
embedding_idx += 1
|
|
957
1117
|
|
|
958
1118
|
return embeddings
|
|
@@ -22,10 +22,11 @@ import torch.distributions
|
|
|
22
22
|
import torch.nn as nn
|
|
23
23
|
import torch.nn.functional as F
|
|
24
24
|
|
|
25
|
+
from ... import initialization as init
|
|
25
26
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
26
27
|
from ...masking_utils import create_causal_mask
|
|
27
28
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
28
|
-
from ...modeling_rope_utils import dynamic_rope_update
|
|
29
|
+
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
29
30
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
|
30
31
|
from ...processing_utils import Unpack
|
|
31
32
|
from ...utils import TransformersKwargs, auto_docstring, logging
|
|
@@ -133,7 +134,7 @@ def compute_hash_embeddings(
|
|
|
133
134
|
hash_ids = byte_group_hash_function(local_encoder_tokens, group_size, prime, encoder_hash_byte_group_vocab)
|
|
134
135
|
# Apply offset to get the correct slice of the fused embedding
|
|
135
136
|
offset_hash_ids = hash_ids + embedding_idx * encoder_hash_byte_group_vocab
|
|
136
|
-
embeddings += encoder_hash_tok_embedding(offset_hash_ids)
|
|
137
|
+
embeddings += encoder_hash_tok_embedding(offset_hash_ids).to(embeddings.device)
|
|
137
138
|
embedding_idx += 1
|
|
138
139
|
|
|
139
140
|
return embeddings
|
|
@@ -360,8 +361,170 @@ class BltPreTrainedModel(MllamaPreTrainedModel):
|
|
|
360
361
|
"attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="local_decoder"),
|
|
361
362
|
}
|
|
362
363
|
|
|
364
|
+
# Weight initialization is adapted from:
|
|
365
|
+
# - https://github.com/facebookresearch/blt/blob/main/bytelatent/model/blt.py
|
|
366
|
+
# - https://github.com/pytorch/torchtitan/blob/main/torchtitan/experiments/transformers_modeling_backend/model/model.py
|
|
367
|
+
#
|
|
368
|
+
# Both implementations use truncated normal initialization with std ~ 1 / sqrt(d_model)
|
|
369
|
+
# (or 1 / sqrt(hidden_dim) for FFN outputs), and unit initialization for normalization layers.
|
|
370
|
+
# We follow the same scheme here, but expressed in the Transformers APIs.
|
|
371
|
+
|
|
372
|
+
@torch.no_grad()
|
|
363
373
|
def _init_weights(self, module):
|
|
364
|
-
|
|
374
|
+
"""
|
|
375
|
+
Initialize BLT weights following the original ByteLatentTransformer:
|
|
376
|
+
|
|
377
|
+
- Most weights are drawn from a truncated normal.
|
|
378
|
+
- Scale is ~ 1 / sqrt(model_dim) (or 1 / sqrt(hidden_dim) for FFN outputs).
|
|
379
|
+
- Norm layers are set to weight = 1, bias = 0.
|
|
380
|
+
"""
|
|
381
|
+
class_name = module.__class__.__name__
|
|
382
|
+
|
|
383
|
+
# Norms: RMSNorm / LayerNorm
|
|
384
|
+
if isinstance(module, (BltRMSNorm, nn.LayerNorm)) or "RMSNorm" in class_name or "LayerNorm" in class_name:
|
|
385
|
+
if getattr(module, "weight", None) is not None:
|
|
386
|
+
init.ones_(module.weight)
|
|
387
|
+
if getattr(module, "bias", None) is not None:
|
|
388
|
+
init.zeros_(module.bias)
|
|
389
|
+
return
|
|
390
|
+
|
|
391
|
+
# Embeddings (encoder / patcher / hash embeddings)
|
|
392
|
+
if isinstance(module, nn.Embedding):
|
|
393
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
394
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
395
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
396
|
+
if hidden_size is None:
|
|
397
|
+
hidden_size = module.embedding_dim
|
|
398
|
+
|
|
399
|
+
std = hidden_size**-0.5
|
|
400
|
+
init.trunc_normal_(
|
|
401
|
+
module.weight,
|
|
402
|
+
mean=0.0,
|
|
403
|
+
std=std,
|
|
404
|
+
a=-3 * std,
|
|
405
|
+
b=3 * std,
|
|
406
|
+
)
|
|
407
|
+
if module.padding_idx is not None:
|
|
408
|
+
init.zeros_(module.weight[module.padding_idx])
|
|
409
|
+
return
|
|
410
|
+
|
|
411
|
+
# Self-attention / cross-attention projections
|
|
412
|
+
if isinstance(module, (BltSelfAttention, BltCrossAttention)) or class_name in (
|
|
413
|
+
"MllamaTextSelfAttention",
|
|
414
|
+
"MllamaTextCrossAttention",
|
|
415
|
+
):
|
|
416
|
+
dim = getattr(self.config, "hidden_size", None)
|
|
417
|
+
if dim is None and hasattr(module, "hidden_size"):
|
|
418
|
+
dim = module.hidden_size
|
|
419
|
+
if dim is None:
|
|
420
|
+
for name in ("q_proj", "k_proj", "v_proj", "o_proj", "dense"):
|
|
421
|
+
proj = getattr(module, name, None)
|
|
422
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
423
|
+
dim = proj.weight.shape[-1]
|
|
424
|
+
break
|
|
425
|
+
if dim is None:
|
|
426
|
+
return
|
|
427
|
+
|
|
428
|
+
std = dim**-0.5
|
|
429
|
+
|
|
430
|
+
# Input projections (q, k, v)
|
|
431
|
+
for proj_name in ("q_proj", "k_proj", "v_proj"):
|
|
432
|
+
proj = getattr(module, proj_name, None)
|
|
433
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
434
|
+
init.trunc_normal_(
|
|
435
|
+
proj.weight,
|
|
436
|
+
mean=0.0,
|
|
437
|
+
std=std,
|
|
438
|
+
a=-3 * std,
|
|
439
|
+
b=3 * std,
|
|
440
|
+
)
|
|
441
|
+
if getattr(proj, "bias", None) is not None:
|
|
442
|
+
init.zeros_(proj.bias)
|
|
443
|
+
|
|
444
|
+
# Output projection: o_proj or dense
|
|
445
|
+
o_proj = getattr(module, "o_proj", getattr(module, "dense", None))
|
|
446
|
+
if o_proj is not None and hasattr(o_proj, "weight"):
|
|
447
|
+
init.trunc_normal_(
|
|
448
|
+
o_proj.weight,
|
|
449
|
+
mean=0.0,
|
|
450
|
+
std=std,
|
|
451
|
+
a=-3 * std,
|
|
452
|
+
b=3 * std,
|
|
453
|
+
)
|
|
454
|
+
if getattr(o_proj, "bias", None) is not None:
|
|
455
|
+
init.zeros_(o_proj.bias)
|
|
456
|
+
return
|
|
457
|
+
|
|
458
|
+
# MLP / FFN blocks
|
|
459
|
+
if isinstance(module, BltMLP) or class_name == "MllamaTextMLP":
|
|
460
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
461
|
+
if hidden_size is None and hasattr(self.config, "decoder_config"):
|
|
462
|
+
hidden_size = getattr(self.config.decoder_config, "hidden_size", None)
|
|
463
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
464
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
465
|
+
|
|
466
|
+
# Input-side std
|
|
467
|
+
in_std = None
|
|
468
|
+
if hidden_size is not None:
|
|
469
|
+
in_std = hidden_size**-0.5
|
|
470
|
+
|
|
471
|
+
gate_proj = getattr(module, "gate_proj", getattr(module, "fc1", None))
|
|
472
|
+
up_proj = getattr(module, "up_proj", None)
|
|
473
|
+
down_proj = getattr(module, "down_proj", getattr(module, "fc2", None))
|
|
474
|
+
|
|
475
|
+
# gate / input projections
|
|
476
|
+
for proj in (gate_proj, up_proj):
|
|
477
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
478
|
+
std = in_std or (proj.weight.shape[1] ** -0.5)
|
|
479
|
+
init.trunc_normal_(
|
|
480
|
+
proj.weight,
|
|
481
|
+
mean=0.0,
|
|
482
|
+
std=std,
|
|
483
|
+
a=-3 * std,
|
|
484
|
+
b=3 * std,
|
|
485
|
+
)
|
|
486
|
+
if getattr(proj, "bias", None) is not None:
|
|
487
|
+
init.zeros_(proj.bias)
|
|
488
|
+
|
|
489
|
+
# output/ down projections
|
|
490
|
+
if down_proj is not None and hasattr(down_proj, "weight"):
|
|
491
|
+
hidden_dim = down_proj.weight.shape[1]
|
|
492
|
+
out_std = hidden_dim**-0.5
|
|
493
|
+
init.trunc_normal_(
|
|
494
|
+
down_proj.weight,
|
|
495
|
+
mean=0.0,
|
|
496
|
+
std=out_std,
|
|
497
|
+
a=-3 * out_std,
|
|
498
|
+
b=3 * out_std,
|
|
499
|
+
)
|
|
500
|
+
if getattr(down_proj, "bias", None) is not None:
|
|
501
|
+
init.zeros_(down_proj.bias)
|
|
502
|
+
return
|
|
503
|
+
|
|
504
|
+
# Generic Linear layers (projections, lm_head, etc.)
|
|
505
|
+
if isinstance(module, nn.Linear):
|
|
506
|
+
fan_in = module.in_features
|
|
507
|
+
std = fan_in**-0.5
|
|
508
|
+
init.trunc_normal_(
|
|
509
|
+
module.weight,
|
|
510
|
+
mean=0.0,
|
|
511
|
+
std=std,
|
|
512
|
+
a=-3 * std,
|
|
513
|
+
b=3 * std,
|
|
514
|
+
)
|
|
515
|
+
if module.bias is not None:
|
|
516
|
+
init.zeros_(module.bias)
|
|
517
|
+
return
|
|
518
|
+
|
|
519
|
+
if isinstance(module, BltRotaryEmbedding):
|
|
520
|
+
rope_fn = (
|
|
521
|
+
ROPE_INIT_FUNCTIONS[module.rope_type]
|
|
522
|
+
if module.rope_type != "default"
|
|
523
|
+
else module.compute_default_rope_parameters
|
|
524
|
+
)
|
|
525
|
+
buffer_value, _ = rope_fn(module.config)
|
|
526
|
+
init.copy_(module.inv_freq, buffer_value)
|
|
527
|
+
init.copy_(module.original_inv_freq, buffer_value)
|
|
365
528
|
|
|
366
529
|
def _update_causal_mask(self, module):
|
|
367
530
|
raise AttributeError("No need to inherit it!")
|
|
@@ -634,6 +797,8 @@ class BltPatcher(BltPreTrainedModel):
|
|
|
634
797
|
bias=False,
|
|
635
798
|
)
|
|
636
799
|
|
|
800
|
+
self.post_init()
|
|
801
|
+
|
|
637
802
|
def forward(
|
|
638
803
|
self,
|
|
639
804
|
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -251,10 +251,8 @@ class BridgeTowerImageProcessorFast(BaseImageProcessorFast):
|
|
|
251
251
|
processed_images, processed_masks = self.pad(
|
|
252
252
|
processed_images, return_mask=True, disable_grouping=disable_grouping
|
|
253
253
|
)
|
|
254
|
-
processed_masks = torch.stack(processed_masks, dim=0) if return_tensors else processed_masks
|
|
255
254
|
data["pixel_mask"] = processed_masks
|
|
256
255
|
|
|
257
|
-
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
|
|
258
256
|
data["pixel_values"] = processed_images
|
|
259
257
|
|
|
260
258
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
@@ -943,6 +943,11 @@ class BridgeTowerPreTrainedModel(PreTrainedModel):
|
|
|
943
943
|
init.ones_(module.weight)
|
|
944
944
|
elif isinstance(module, BridgeTowerForContrastiveLearning):
|
|
945
945
|
init.constant_(module.logit_scale, self.config.logit_scale_init_value)
|
|
946
|
+
elif isinstance(module, BridgeTowerVisionEmbeddings):
|
|
947
|
+
init.copy_(module.position_ids, torch.arange(module.num_positions).expand((1, -1)))
|
|
948
|
+
elif isinstance(module, BridgeTowerTextEmbeddings):
|
|
949
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
950
|
+
init.zeros_(module.token_type_ids)
|
|
946
951
|
|
|
947
952
|
if isinstance(module, (nn.Linear, BridgeTowerMLMHead)) and module.bias is not None:
|
|
948
953
|
init.zeros_(module.bias)
|
|
@@ -955,6 +960,7 @@ class BridgeTowerVisionModel(BridgeTowerPreTrainedModel):
|
|
|
955
960
|
def __init__(self, config):
|
|
956
961
|
super().__init__(config)
|
|
957
962
|
self.visual = BridgeTowerVisionTransformer(config)
|
|
963
|
+
self.post_init()
|
|
958
964
|
|
|
959
965
|
@property
|
|
960
966
|
def dtype(self):
|
|
@@ -522,6 +522,14 @@ class BrosPreTrainedModel(PreTrainedModel):
|
|
|
522
522
|
std = self.config.initializer_range
|
|
523
523
|
if isinstance(module, BrosRelationExtractor):
|
|
524
524
|
init.normal_(module.dummy_node, std=std)
|
|
525
|
+
elif isinstance(module, BrosTextEmbeddings):
|
|
526
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
527
|
+
init.zeros_(module.token_type_ids)
|
|
528
|
+
elif isinstance(module, BrosPositionalEmbedding1D):
|
|
529
|
+
inv_freq = 1 / (
|
|
530
|
+
10000 ** (torch.arange(0.0, module.dim_bbox_sinusoid_emb_1d, 2.0) / module.dim_bbox_sinusoid_emb_1d)
|
|
531
|
+
)
|
|
532
|
+
init.copy_(module.inv_freq, inv_freq)
|
|
525
533
|
|
|
526
534
|
|
|
527
535
|
@auto_docstring
|
|
@@ -54,6 +54,112 @@ from .configuration_camembert import CamembertConfig
|
|
|
54
54
|
logger = logging.get_logger(__name__)
|
|
55
55
|
|
|
56
56
|
|
|
57
|
+
class CamembertEmbeddings(nn.Module):
|
|
58
|
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
|
59
|
+
|
|
60
|
+
def __init__(self, config):
|
|
61
|
+
super().__init__()
|
|
62
|
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
|
63
|
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
|
64
|
+
|
|
65
|
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
66
|
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
67
|
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
68
|
+
self.register_buffer(
|
|
69
|
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
70
|
+
)
|
|
71
|
+
self.register_buffer(
|
|
72
|
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
self.padding_idx = config.pad_token_id
|
|
76
|
+
self.position_embeddings = nn.Embedding(
|
|
77
|
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
def forward(
|
|
81
|
+
self,
|
|
82
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
83
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
|
84
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
85
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
86
|
+
past_key_values_length: int = 0,
|
|
87
|
+
) -> torch.Tensor:
|
|
88
|
+
if position_ids is None:
|
|
89
|
+
if input_ids is not None:
|
|
90
|
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
|
91
|
+
position_ids = self.create_position_ids_from_input_ids(
|
|
92
|
+
input_ids, self.padding_idx, past_key_values_length
|
|
93
|
+
)
|
|
94
|
+
else:
|
|
95
|
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, self.padding_idx)
|
|
96
|
+
|
|
97
|
+
if input_ids is not None:
|
|
98
|
+
input_shape = input_ids.size()
|
|
99
|
+
else:
|
|
100
|
+
input_shape = inputs_embeds.size()[:-1]
|
|
101
|
+
|
|
102
|
+
batch_size, seq_length = input_shape
|
|
103
|
+
|
|
104
|
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
|
105
|
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
|
106
|
+
# issue #5664
|
|
107
|
+
if token_type_ids is None:
|
|
108
|
+
if hasattr(self, "token_type_ids"):
|
|
109
|
+
# NOTE: We assume either pos ids to have bsz == 1 (broadcastable) or bsz == effective bsz (input_shape[0])
|
|
110
|
+
buffered_token_type_ids = self.token_type_ids.expand(position_ids.shape[0], -1)
|
|
111
|
+
buffered_token_type_ids = torch.gather(buffered_token_type_ids, dim=1, index=position_ids)
|
|
112
|
+
token_type_ids = buffered_token_type_ids.expand(batch_size, seq_length)
|
|
113
|
+
else:
|
|
114
|
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
|
115
|
+
|
|
116
|
+
if inputs_embeds is None:
|
|
117
|
+
inputs_embeds = self.word_embeddings(input_ids)
|
|
118
|
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
119
|
+
embeddings = inputs_embeds + token_type_embeddings
|
|
120
|
+
|
|
121
|
+
position_embeddings = self.position_embeddings(position_ids)
|
|
122
|
+
embeddings = embeddings + position_embeddings
|
|
123
|
+
|
|
124
|
+
embeddings = self.LayerNorm(embeddings)
|
|
125
|
+
embeddings = self.dropout(embeddings)
|
|
126
|
+
return embeddings
|
|
127
|
+
|
|
128
|
+
@staticmethod
|
|
129
|
+
def create_position_ids_from_inputs_embeds(inputs_embeds, padding_idx):
|
|
130
|
+
"""
|
|
131
|
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
|
132
|
+
|
|
133
|
+
Args:
|
|
134
|
+
inputs_embeds: torch.Tensor
|
|
135
|
+
|
|
136
|
+
Returns: torch.Tensor
|
|
137
|
+
"""
|
|
138
|
+
input_shape = inputs_embeds.size()[:-1]
|
|
139
|
+
sequence_length = input_shape[1]
|
|
140
|
+
|
|
141
|
+
position_ids = torch.arange(
|
|
142
|
+
padding_idx + 1, sequence_length + padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
|
143
|
+
)
|
|
144
|
+
return position_ids.unsqueeze(0).expand(input_shape)
|
|
145
|
+
|
|
146
|
+
@staticmethod
|
|
147
|
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
|
148
|
+
"""
|
|
149
|
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
|
150
|
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
|
151
|
+
|
|
152
|
+
Args:
|
|
153
|
+
x: torch.Tensor x:
|
|
154
|
+
|
|
155
|
+
Returns: torch.Tensor
|
|
156
|
+
"""
|
|
157
|
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
|
158
|
+
mask = input_ids.ne(padding_idx).int()
|
|
159
|
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
|
160
|
+
return incremental_indices.long() + padding_idx
|
|
161
|
+
|
|
162
|
+
|
|
57
163
|
def eager_attention_forward(
|
|
58
164
|
module: nn.Module,
|
|
59
165
|
query: torch.Tensor,
|
|
@@ -417,112 +523,9 @@ class CamembertPreTrainedModel(PreTrainedModel):
|
|
|
417
523
|
super()._init_weights(module)
|
|
418
524
|
if isinstance(module, CamembertLMHead):
|
|
419
525
|
init.zeros_(module.bias)
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
"""Construct the embeddings from word, position and token_type embeddings."""
|
|
424
|
-
|
|
425
|
-
def __init__(self, config):
|
|
426
|
-
super().__init__()
|
|
427
|
-
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
|
428
|
-
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
|
429
|
-
|
|
430
|
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
431
|
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
432
|
-
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
433
|
-
self.register_buffer(
|
|
434
|
-
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
435
|
-
)
|
|
436
|
-
self.register_buffer(
|
|
437
|
-
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
|
438
|
-
)
|
|
439
|
-
|
|
440
|
-
self.padding_idx = config.pad_token_id
|
|
441
|
-
self.position_embeddings = nn.Embedding(
|
|
442
|
-
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
|
443
|
-
)
|
|
444
|
-
|
|
445
|
-
def forward(
|
|
446
|
-
self,
|
|
447
|
-
input_ids: Optional[torch.LongTensor] = None,
|
|
448
|
-
token_type_ids: Optional[torch.LongTensor] = None,
|
|
449
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
450
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
451
|
-
past_key_values_length: int = 0,
|
|
452
|
-
) -> torch.Tensor:
|
|
453
|
-
if position_ids is None:
|
|
454
|
-
if input_ids is not None:
|
|
455
|
-
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
|
456
|
-
position_ids = self.create_position_ids_from_input_ids(
|
|
457
|
-
input_ids, self.padding_idx, past_key_values_length
|
|
458
|
-
)
|
|
459
|
-
else:
|
|
460
|
-
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, self.padding_idx)
|
|
461
|
-
|
|
462
|
-
if input_ids is not None:
|
|
463
|
-
input_shape = input_ids.size()
|
|
464
|
-
else:
|
|
465
|
-
input_shape = inputs_embeds.size()[:-1]
|
|
466
|
-
|
|
467
|
-
batch_size, seq_length = input_shape
|
|
468
|
-
|
|
469
|
-
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
|
470
|
-
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
|
471
|
-
# issue #5664
|
|
472
|
-
if token_type_ids is None:
|
|
473
|
-
if hasattr(self, "token_type_ids"):
|
|
474
|
-
# NOTE: We assume either pos ids to have bsz == 1 (broadcastable) or bsz == effective bsz (input_shape[0])
|
|
475
|
-
buffered_token_type_ids = self.token_type_ids.expand(position_ids.shape[0], -1)
|
|
476
|
-
buffered_token_type_ids = torch.gather(buffered_token_type_ids, dim=1, index=position_ids)
|
|
477
|
-
token_type_ids = buffered_token_type_ids.expand(batch_size, seq_length)
|
|
478
|
-
else:
|
|
479
|
-
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
|
480
|
-
|
|
481
|
-
if inputs_embeds is None:
|
|
482
|
-
inputs_embeds = self.word_embeddings(input_ids)
|
|
483
|
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
484
|
-
embeddings = inputs_embeds + token_type_embeddings
|
|
485
|
-
|
|
486
|
-
position_embeddings = self.position_embeddings(position_ids)
|
|
487
|
-
embeddings = embeddings + position_embeddings
|
|
488
|
-
|
|
489
|
-
embeddings = self.LayerNorm(embeddings)
|
|
490
|
-
embeddings = self.dropout(embeddings)
|
|
491
|
-
return embeddings
|
|
492
|
-
|
|
493
|
-
@staticmethod
|
|
494
|
-
def create_position_ids_from_inputs_embeds(inputs_embeds, padding_idx):
|
|
495
|
-
"""
|
|
496
|
-
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
|
497
|
-
|
|
498
|
-
Args:
|
|
499
|
-
inputs_embeds: torch.Tensor
|
|
500
|
-
|
|
501
|
-
Returns: torch.Tensor
|
|
502
|
-
"""
|
|
503
|
-
input_shape = inputs_embeds.size()[:-1]
|
|
504
|
-
sequence_length = input_shape[1]
|
|
505
|
-
|
|
506
|
-
position_ids = torch.arange(
|
|
507
|
-
padding_idx + 1, sequence_length + padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
|
508
|
-
)
|
|
509
|
-
return position_ids.unsqueeze(0).expand(input_shape)
|
|
510
|
-
|
|
511
|
-
@staticmethod
|
|
512
|
-
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
|
513
|
-
"""
|
|
514
|
-
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
|
515
|
-
are ignored. This is modified from fairseq's `utils.make_positions`.
|
|
516
|
-
|
|
517
|
-
Args:
|
|
518
|
-
x: torch.Tensor x:
|
|
519
|
-
|
|
520
|
-
Returns: torch.Tensor
|
|
521
|
-
"""
|
|
522
|
-
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
|
523
|
-
mask = input_ids.ne(padding_idx).int()
|
|
524
|
-
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
|
525
|
-
return incremental_indices.long() + padding_idx
|
|
526
|
+
elif isinstance(module, CamembertEmbeddings):
|
|
527
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
528
|
+
init.zeros_(module.token_type_ids)
|
|
526
529
|
|
|
527
530
|
|
|
528
531
|
class CamembertEncoder(nn.Module):
|