transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (671) hide show
  1. transformers/__init__.py +20 -1
  2. transformers/activations.py +1 -1
  3. transformers/audio_utils.py +0 -1
  4. transformers/cache_utils.py +17 -15
  5. transformers/configuration_utils.py +114 -70
  6. transformers/conversion_mapping.py +68 -5
  7. transformers/core_model_loading.py +201 -35
  8. transformers/dependency_versions_table.py +1 -1
  9. transformers/feature_extraction_utils.py +54 -22
  10. transformers/generation/candidate_generator.py +79 -31
  11. transformers/generation/configuration_utils.py +162 -122
  12. transformers/generation/continuous_batching/cache.py +47 -18
  13. transformers/generation/continuous_batching/cache_manager.py +131 -34
  14. transformers/generation/continuous_batching/continuous_api.py +101 -64
  15. transformers/generation/continuous_batching/requests.py +28 -1
  16. transformers/generation/continuous_batching/scheduler.py +11 -4
  17. transformers/generation/stopping_criteria.py +1 -1
  18. transformers/generation/utils.py +108 -110
  19. transformers/generation/watermarking.py +8 -5
  20. transformers/image_processing_base.py +2 -12
  21. transformers/image_processing_utils_fast.py +15 -4
  22. transformers/initialization.py +37 -0
  23. transformers/integrations/__init__.py +12 -0
  24. transformers/integrations/accelerate.py +44 -111
  25. transformers/integrations/aqlm.py +3 -5
  26. transformers/integrations/awq.py +2 -5
  27. transformers/integrations/bitnet.py +5 -8
  28. transformers/integrations/bitsandbytes.py +16 -15
  29. transformers/integrations/deepspeed.py +18 -3
  30. transformers/integrations/eetq.py +3 -5
  31. transformers/integrations/fbgemm_fp8.py +1 -1
  32. transformers/integrations/finegrained_fp8.py +6 -16
  33. transformers/integrations/flash_attention.py +2 -2
  34. transformers/integrations/higgs.py +2 -5
  35. transformers/integrations/hub_kernels.py +23 -5
  36. transformers/integrations/integration_utils.py +35 -0
  37. transformers/integrations/mistral.py +12 -0
  38. transformers/integrations/moe.py +240 -0
  39. transformers/integrations/mxfp4.py +4 -10
  40. transformers/integrations/peft.py +5 -0
  41. transformers/integrations/quanto.py +5 -2
  42. transformers/integrations/spqr.py +3 -5
  43. transformers/integrations/tensor_parallel.py +167 -221
  44. transformers/integrations/vptq.py +3 -5
  45. transformers/modeling_gguf_pytorch_utils.py +66 -19
  46. transformers/modeling_rope_utils.py +78 -81
  47. transformers/modeling_utils.py +583 -503
  48. transformers/models/__init__.py +19 -0
  49. transformers/models/afmoe/modeling_afmoe.py +7 -16
  50. transformers/models/afmoe/modular_afmoe.py +5 -13
  51. transformers/models/aimv2/modeling_aimv2.py +4 -0
  52. transformers/models/aimv2/modular_aimv2.py +4 -0
  53. transformers/models/albert/modeling_albert.py +3 -0
  54. transformers/models/align/modeling_align.py +12 -6
  55. transformers/models/altclip/modeling_altclip.py +7 -3
  56. transformers/models/apertus/modeling_apertus.py +4 -2
  57. transformers/models/apertus/modular_apertus.py +4 -1
  58. transformers/models/arcee/modeling_arcee.py +1 -1
  59. transformers/models/aria/modeling_aria.py +8 -4
  60. transformers/models/aria/modular_aria.py +7 -3
  61. transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
  62. transformers/models/auto/auto_factory.py +1 -1
  63. transformers/models/auto/configuration_auto.py +27 -0
  64. transformers/models/auto/feature_extraction_auto.py +7 -3
  65. transformers/models/auto/image_processing_auto.py +4 -2
  66. transformers/models/auto/modeling_auto.py +31 -0
  67. transformers/models/auto/processing_auto.py +4 -0
  68. transformers/models/auto/tokenization_auto.py +132 -153
  69. transformers/models/auto/video_processing_auto.py +5 -2
  70. transformers/models/aya_vision/modeling_aya_vision.py +7 -3
  71. transformers/models/bamba/modeling_bamba.py +18 -19
  72. transformers/models/bamba/modular_bamba.py +17 -16
  73. transformers/models/bark/modeling_bark.py +9 -0
  74. transformers/models/bart/configuration_bart.py +0 -1
  75. transformers/models/bart/modeling_bart.py +7 -0
  76. transformers/models/beit/image_processing_beit_fast.py +0 -1
  77. transformers/models/bert/modeling_bert.py +3 -0
  78. transformers/models/bert_generation/modeling_bert_generation.py +2 -0
  79. transformers/models/big_bird/modeling_big_bird.py +3 -0
  80. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +7 -0
  81. transformers/models/bit/modeling_bit.py +5 -1
  82. transformers/models/bitnet/modeling_bitnet.py +1 -1
  83. transformers/models/blenderbot/modeling_blenderbot.py +7 -0
  84. transformers/models/blenderbot/tokenization_blenderbot.py +6 -7
  85. transformers/models/blenderbot_small/modeling_blenderbot_small.py +7 -0
  86. transformers/models/blip/modeling_blip.py +2 -0
  87. transformers/models/blip/modeling_blip_text.py +8 -0
  88. transformers/models/blip_2/modeling_blip_2.py +2 -0
  89. transformers/models/bloom/modeling_bloom.py +13 -44
  90. transformers/models/blt/modeling_blt.py +162 -2
  91. transformers/models/blt/modular_blt.py +168 -3
  92. transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
  93. transformers/models/bridgetower/modeling_bridgetower.py +6 -0
  94. transformers/models/bros/modeling_bros.py +8 -0
  95. transformers/models/camembert/modeling_camembert.py +109 -106
  96. transformers/models/canine/modeling_canine.py +6 -0
  97. transformers/models/canine/tokenization_canine.py +2 -0
  98. transformers/models/chameleon/modeling_chameleon.py +9 -4
  99. transformers/models/chinese_clip/modeling_chinese_clip.py +6 -3
  100. transformers/models/clap/feature_extraction_clap.py +2 -2
  101. transformers/models/clap/modeling_clap.py +25 -15
  102. transformers/models/clip/modeling_clip.py +2 -0
  103. transformers/models/clipseg/modeling_clipseg.py +4 -0
  104. transformers/models/clvp/modeling_clvp.py +14 -3
  105. transformers/models/code_llama/tokenization_code_llama.py +1 -1
  106. transformers/models/codegen/modeling_codegen.py +13 -4
  107. transformers/models/cohere/modeling_cohere.py +1 -1
  108. transformers/models/cohere2/modeling_cohere2.py +1 -1
  109. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +0 -1
  110. transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
  111. transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
  112. transformers/models/conditional_detr/modeling_conditional_detr.py +4 -1
  113. transformers/models/convbert/modeling_convbert.py +3 -0
  114. transformers/models/convnext/image_processing_convnext.py +2 -2
  115. transformers/models/convnext/image_processing_convnext_fast.py +9 -13
  116. transformers/models/csm/generation_csm.py +19 -22
  117. transformers/models/csm/modeling_csm.py +3 -1
  118. transformers/models/csm/modular_csm.py +2 -0
  119. transformers/models/ctrl/modeling_ctrl.py +14 -2
  120. transformers/models/cvt/modeling_cvt.py +5 -1
  121. transformers/models/cwm/modeling_cwm.py +1 -1
  122. transformers/models/d_fine/configuration_d_fine.py +3 -4
  123. transformers/models/d_fine/modeling_d_fine.py +46 -39
  124. transformers/models/d_fine/modular_d_fine.py +15 -4
  125. transformers/models/dab_detr/configuration_dab_detr.py +2 -2
  126. transformers/models/dab_detr/modeling_dab_detr.py +1 -1
  127. transformers/models/dac/modeling_dac.py +4 -4
  128. transformers/models/data2vec/modeling_data2vec_text.py +7 -0
  129. transformers/models/data2vec/modular_data2vec_text.py +7 -0
  130. transformers/models/dbrx/configuration_dbrx.py +9 -1
  131. transformers/models/dbrx/modeling_dbrx.py +1 -1
  132. transformers/models/deberta/modeling_deberta.py +2 -0
  133. transformers/models/deberta_v2/modeling_deberta_v2.py +2 -0
  134. transformers/models/decision_transformer/modeling_decision_transformer.py +8 -5
  135. transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -4
  136. transformers/models/deepseek_v2/modular_deepseek_v2.py +4 -2
  137. transformers/models/deepseek_v3/modeling_deepseek_v3.py +9 -5
  138. transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -2
  139. transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
  140. transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
  141. transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
  142. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
  143. transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
  144. transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
  145. transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
  146. transformers/models/deformable_detr/modeling_deformable_detr.py +1 -1
  147. transformers/models/depth_anything/configuration_depth_anything.py +2 -3
  148. transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
  149. transformers/models/detr/configuration_detr.py +1 -1
  150. transformers/models/detr/modeling_detr.py +8 -1
  151. transformers/models/dia/generation_dia.py +3 -10
  152. transformers/models/dia/modeling_dia.py +12 -1
  153. transformers/models/dia/modular_dia.py +11 -0
  154. transformers/models/dia/processing_dia.py +1 -1
  155. transformers/models/diffllama/modeling_diffllama.py +3 -3
  156. transformers/models/diffllama/modular_diffllama.py +2 -2
  157. transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
  158. transformers/models/dinov3_vit/modeling_dinov3_vit.py +3 -0
  159. transformers/models/dinov3_vit/modular_dinov3_vit.py +3 -0
  160. transformers/models/distilbert/modeling_distilbert.py +11 -9
  161. transformers/models/doge/modeling_doge.py +1 -1
  162. transformers/models/donut/image_processing_donut_fast.py +0 -1
  163. transformers/models/donut/modeling_donut_swin.py +16 -12
  164. transformers/models/dots1/modeling_dots1.py +14 -5
  165. transformers/models/dpt/configuration_dpt.py +1 -1
  166. transformers/models/dpt/image_processing_dpt_fast.py +1 -2
  167. transformers/models/dpt/modular_dpt.py +1 -2
  168. transformers/models/edgetam/configuration_edgetam.py +1 -1
  169. transformers/models/edgetam/modeling_edgetam.py +5 -2
  170. transformers/models/edgetam/modular_edgetam.py +15 -14
  171. transformers/models/edgetam_video/modeling_edgetam_video.py +55 -43
  172. transformers/models/edgetam_video/modular_edgetam_video.py +13 -19
  173. transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
  174. transformers/models/efficientloftr/modeling_efficientloftr.py +14 -1
  175. transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
  176. transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
  177. transformers/models/efficientnet/modeling_efficientnet.py +5 -1
  178. transformers/models/electra/modeling_electra.py +7 -0
  179. transformers/models/emu3/modeling_emu3.py +8 -2
  180. transformers/models/emu3/modular_emu3.py +7 -1
  181. transformers/models/encodec/modeling_encodec.py +14 -0
  182. transformers/models/eomt/image_processing_eomt_fast.py +46 -14
  183. transformers/models/eomt/modeling_eomt.py +7 -0
  184. transformers/models/eomt/modular_eomt.py +7 -0
  185. transformers/models/ernie/modeling_ernie.py +6 -0
  186. transformers/models/ernie/modular_ernie.py +6 -0
  187. transformers/models/ernie4_5/modeling_ernie4_5.py +1 -1
  188. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +16 -13
  189. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +9 -35
  190. transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
  191. transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
  192. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
  193. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
  194. transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
  195. transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
  196. transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
  197. transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
  198. transformers/models/esm/modeling_esm.py +6 -0
  199. transformers/models/esm/modeling_esmfold.py +6 -1
  200. transformers/models/evolla/modeling_evolla.py +9 -1
  201. transformers/models/evolla/modular_evolla.py +8 -0
  202. transformers/models/exaone4/modeling_exaone4.py +1 -1
  203. transformers/models/falcon/modeling_falcon.py +3 -3
  204. transformers/models/falcon_h1/modeling_falcon_h1.py +28 -23
  205. transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
  206. transformers/models/falcon_mamba/modeling_falcon_mamba.py +6 -2
  207. transformers/models/falcon_mamba/modular_falcon_mamba.py +7 -2
  208. transformers/models/fast_vlm/modeling_fast_vlm.py +7 -3
  209. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +23 -10
  210. transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
  211. transformers/models/flaubert/modeling_flaubert.py +14 -15
  212. transformers/models/flava/image_processing_flava_fast.py +0 -2
  213. transformers/models/flava/modeling_flava.py +4 -1
  214. transformers/models/flex_olmo/modeling_flex_olmo.py +7 -4
  215. transformers/models/florence2/modeling_florence2.py +20 -3
  216. transformers/models/florence2/modular_florence2.py +13 -0
  217. transformers/models/fnet/modeling_fnet.py +7 -0
  218. transformers/models/fuyu/image_processing_fuyu.py +1 -1
  219. transformers/models/fuyu/modeling_fuyu.py +3 -1
  220. transformers/models/fuyu/processing_fuyu.py +16 -0
  221. transformers/models/gemma/modeling_gemma.py +10 -12
  222. transformers/models/gemma/modular_gemma.py +9 -11
  223. transformers/models/gemma2/modeling_gemma2.py +1 -1
  224. transformers/models/gemma2/modular_gemma2.py +1 -1
  225. transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
  226. transformers/models/gemma3/modeling_gemma3.py +28 -7
  227. transformers/models/gemma3/modular_gemma3.py +26 -6
  228. transformers/models/gemma3n/configuration_gemma3n.py +3 -0
  229. transformers/models/gemma3n/modeling_gemma3n.py +47 -9
  230. transformers/models/gemma3n/modular_gemma3n.py +51 -9
  231. transformers/models/git/modeling_git.py +181 -126
  232. transformers/models/glm/modeling_glm.py +1 -1
  233. transformers/models/glm4/modeling_glm4.py +1 -1
  234. transformers/models/glm46v/image_processing_glm46v.py +0 -4
  235. transformers/models/glm46v/modeling_glm46v.py +3 -1
  236. transformers/models/glm46v/modular_glm46v.py +3 -0
  237. transformers/models/glm4_moe/modeling_glm4_moe.py +9 -5
  238. transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
  239. transformers/models/glm4v/image_processing_glm4v.py +0 -4
  240. transformers/models/glm4v/modeling_glm4v.py +15 -5
  241. transformers/models/glm4v/modular_glm4v.py +11 -3
  242. transformers/models/glm4v_moe/modeling_glm4v_moe.py +39 -23
  243. transformers/models/glm4v_moe/modular_glm4v_moe.py +12 -0
  244. transformers/models/glmasr/__init__.py +30 -0
  245. transformers/models/glmasr/configuration_glmasr.py +197 -0
  246. transformers/models/glmasr/modeling_glmasr.py +512 -0
  247. transformers/models/glmasr/modular_glmasr.py +433 -0
  248. transformers/models/glmasr/processing_glmasr.py +332 -0
  249. transformers/models/glpn/image_processing_glpn_fast.py +0 -1
  250. transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
  251. transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
  252. transformers/models/gpt2/modeling_gpt2.py +8 -5
  253. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +3 -8
  254. transformers/models/gpt_neo/modeling_gpt_neo.py +15 -3
  255. transformers/models/gpt_neox/modeling_gpt_neox.py +1 -1
  256. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +1 -1
  257. transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
  258. transformers/models/gpt_oss/modeling_gpt_oss.py +6 -9
  259. transformers/models/gpt_oss/modular_gpt_oss.py +5 -7
  260. transformers/models/gptj/modeling_gptj.py +15 -6
  261. transformers/models/granite/modeling_granite.py +1 -1
  262. transformers/models/granite_speech/modeling_granite_speech.py +15 -1
  263. transformers/models/granitemoe/modeling_granitemoe.py +2 -3
  264. transformers/models/granitemoe/modular_granitemoe.py +1 -2
  265. transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
  266. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +33 -23
  267. transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
  268. transformers/models/granitemoeshared/modeling_granitemoeshared.py +2 -3
  269. transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
  270. transformers/models/grounding_dino/modeling_grounding_dino.py +4 -4
  271. transformers/models/groupvit/modeling_groupvit.py +6 -1
  272. transformers/models/helium/modeling_helium.py +1 -1
  273. transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -0
  274. transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -0
  275. transformers/models/hubert/modeling_hubert.py +4 -0
  276. transformers/models/hubert/modular_hubert.py +4 -0
  277. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +1 -1
  278. transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
  279. transformers/models/hunyuan_v1_moe/__init__.py +1 -1
  280. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +12 -4
  281. transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
  282. transformers/models/ibert/modeling_ibert.py +16 -0
  283. transformers/models/idefics/modeling_idefics.py +10 -0
  284. transformers/models/idefics2/modeling_idefics2.py +7 -1
  285. transformers/models/idefics3/modeling_idefics3.py +5 -1
  286. transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
  287. transformers/models/imagegpt/modeling_imagegpt.py +9 -2
  288. transformers/models/instructblip/modeling_instructblip.py +2 -0
  289. transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
  290. transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
  291. transformers/models/internvl/modeling_internvl.py +11 -8
  292. transformers/models/internvl/modular_internvl.py +5 -9
  293. transformers/models/internvl/video_processing_internvl.py +0 -1
  294. transformers/models/jais2/__init__.py +27 -0
  295. transformers/models/jais2/configuration_jais2.py +152 -0
  296. transformers/models/jais2/modeling_jais2.py +486 -0
  297. transformers/models/jais2/modular_jais2.py +196 -0
  298. transformers/models/jamba/modeling_jamba.py +24 -19
  299. transformers/models/jamba/modular_jamba.py +17 -17
  300. transformers/models/janus/image_processing_janus_fast.py +0 -1
  301. transformers/models/janus/modeling_janus.py +15 -7
  302. transformers/models/janus/modular_janus.py +16 -7
  303. transformers/models/jetmoe/modeling_jetmoe.py +2 -2
  304. transformers/models/jetmoe/modular_jetmoe.py +1 -0
  305. transformers/models/kosmos2/modeling_kosmos2.py +14 -2
  306. transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
  307. transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
  308. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +9 -3
  309. transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
  310. transformers/models/lasr/configuration_lasr.py +4 -0
  311. transformers/models/lasr/modeling_lasr.py +3 -2
  312. transformers/models/lasr/modular_lasr.py +8 -1
  313. transformers/models/lasr/processing_lasr.py +0 -2
  314. transformers/models/layoutlm/modeling_layoutlm.py +5 -3
  315. transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
  316. transformers/models/layoutlmv2/modeling_layoutlmv2.py +12 -0
  317. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1 -0
  318. transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
  319. transformers/models/layoutlmv3/modeling_layoutlmv3.py +29 -5
  320. transformers/models/led/modeling_led.py +6 -0
  321. transformers/models/levit/modeling_levit.py +18 -0
  322. transformers/models/lfm2/modeling_lfm2.py +1 -1
  323. transformers/models/lfm2_moe/modeling_lfm2_moe.py +14 -4
  324. transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
  325. transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
  326. transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
  327. transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
  328. transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
  329. transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
  330. transformers/models/lilt/modeling_lilt.py +19 -15
  331. transformers/models/llama/modeling_llama.py +1 -1
  332. transformers/models/llama4/image_processing_llama4_fast.py +1 -2
  333. transformers/models/llama4/modeling_llama4.py +8 -4
  334. transformers/models/llava/image_processing_llava_fast.py +0 -1
  335. transformers/models/llava/modeling_llava.py +12 -7
  336. transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
  337. transformers/models/llava_next/modeling_llava_next.py +7 -3
  338. transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
  339. transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
  340. transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
  341. transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
  342. transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
  343. transformers/models/longcat_flash/modeling_longcat_flash.py +2 -1
  344. transformers/models/longcat_flash/modular_longcat_flash.py +1 -0
  345. transformers/models/longt5/modeling_longt5.py +0 -4
  346. transformers/models/m2m_100/modeling_m2m_100.py +10 -0
  347. transformers/models/mamba/modeling_mamba.py +2 -1
  348. transformers/models/mamba2/modeling_mamba2.py +24 -23
  349. transformers/models/marian/configuration_marian.py +1 -1
  350. transformers/models/marian/modeling_marian.py +3 -0
  351. transformers/models/markuplm/modeling_markuplm.py +5 -8
  352. transformers/models/mask2former/configuration_mask2former.py +3 -3
  353. transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
  354. transformers/models/mask2former/modeling_mask2former.py +9 -0
  355. transformers/models/maskformer/configuration_maskformer.py +3 -3
  356. transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
  357. transformers/models/maskformer/modeling_maskformer.py +9 -1
  358. transformers/models/maskformer/modeling_maskformer_swin.py +19 -15
  359. transformers/models/mbart/configuration_mbart.py +1 -0
  360. transformers/models/mbart/modeling_mbart.py +7 -0
  361. transformers/models/megatron_bert/modeling_megatron_bert.py +2 -0
  362. transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
  363. transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
  364. transformers/models/mimi/modeling_mimi.py +25 -4
  365. transformers/models/minimax/modeling_minimax.py +16 -3
  366. transformers/models/minimax/modular_minimax.py +12 -1
  367. transformers/models/ministral/modeling_ministral.py +1 -1
  368. transformers/models/ministral3/modeling_ministral3.py +1 -1
  369. transformers/models/mistral/modeling_mistral.py +1 -1
  370. transformers/models/mistral3/modeling_mistral3.py +10 -4
  371. transformers/models/mistral3/modular_mistral3.py +3 -1
  372. transformers/models/mixtral/modeling_mixtral.py +12 -4
  373. transformers/models/mixtral/modular_mixtral.py +6 -2
  374. transformers/models/mlcd/modeling_mlcd.py +6 -0
  375. transformers/models/mlcd/modular_mlcd.py +4 -0
  376. transformers/models/mllama/modeling_mllama.py +13 -2
  377. transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
  378. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -4
  379. transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
  380. transformers/models/mobilebert/modeling_mobilebert.py +2 -0
  381. transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
  382. transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
  383. transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
  384. transformers/models/mobilevit/modeling_mobilevit.py +4 -0
  385. transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -0
  386. transformers/models/modernbert/modeling_modernbert.py +12 -1
  387. transformers/models/modernbert/modular_modernbert.py +12 -1
  388. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -1
  389. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +9 -1
  390. transformers/models/moonshine/modeling_moonshine.py +1 -1
  391. transformers/models/moshi/modeling_moshi.py +21 -51
  392. transformers/models/mpnet/modeling_mpnet.py +2 -0
  393. transformers/models/mra/modeling_mra.py +4 -1
  394. transformers/models/mt5/configuration_mt5.py +2 -3
  395. transformers/models/mt5/modeling_mt5.py +0 -10
  396. transformers/models/musicgen/modeling_musicgen.py +5 -9
  397. transformers/models/musicgen_melody/modeling_musicgen_melody.py +4 -0
  398. transformers/models/mvp/modeling_mvp.py +7 -0
  399. transformers/models/nanochat/modeling_nanochat.py +1 -1
  400. transformers/models/nemotron/modeling_nemotron.py +3 -3
  401. transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
  402. transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
  403. transformers/models/nougat/image_processing_nougat_fast.py +0 -1
  404. transformers/models/nougat/tokenization_nougat.py +11 -16
  405. transformers/models/nystromformer/modeling_nystromformer.py +7 -0
  406. transformers/models/olmo/modeling_olmo.py +1 -1
  407. transformers/models/olmo2/modeling_olmo2.py +1 -1
  408. transformers/models/olmo3/modeling_olmo3.py +1 -1
  409. transformers/models/olmoe/modeling_olmoe.py +12 -4
  410. transformers/models/olmoe/modular_olmoe.py +4 -2
  411. transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
  412. transformers/models/omdet_turbo/modeling_omdet_turbo.py +4 -0
  413. transformers/models/oneformer/configuration_oneformer.py +3 -3
  414. transformers/models/oneformer/modeling_oneformer.py +7 -38
  415. transformers/models/openai/modeling_openai.py +12 -0
  416. transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
  417. transformers/models/ovis2/modeling_ovis2.py +15 -3
  418. transformers/models/ovis2/modular_ovis2.py +8 -0
  419. transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
  420. transformers/models/owlv2/modeling_owlv2.py +7 -3
  421. transformers/models/owlv2/modular_owlv2.py +0 -2
  422. transformers/models/owlvit/modeling_owlvit.py +7 -3
  423. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +3 -2
  424. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +28 -14
  425. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +22 -12
  426. transformers/models/paligemma/modeling_paligemma.py +25 -17
  427. transformers/models/parakeet/modeling_parakeet.py +5 -0
  428. transformers/models/parakeet/modular_parakeet.py +5 -0
  429. transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
  430. transformers/models/patchtsmixer/modeling_patchtsmixer.py +4 -0
  431. transformers/models/patchtst/modeling_patchtst.py +5 -4
  432. transformers/models/pe_audio/__init__.py +30 -0
  433. transformers/models/pe_audio/configuration_pe_audio.py +206 -0
  434. transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
  435. transformers/models/pe_audio/modeling_pe_audio.py +820 -0
  436. transformers/models/pe_audio/modular_pe_audio.py +299 -0
  437. transformers/models/pe_audio/processing_pe_audio.py +24 -0
  438. transformers/models/pe_audio_video/__init__.py +29 -0
  439. transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
  440. transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
  441. transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
  442. transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
  443. transformers/models/pe_video/__init__.py +30 -0
  444. transformers/models/pe_video/configuration_pe_video.py +211 -0
  445. transformers/models/pe_video/modeling_pe_video.py +636 -0
  446. transformers/models/pe_video/modular_pe_video.py +219 -0
  447. transformers/models/pe_video/processing_pe_video.py +10 -0
  448. transformers/models/pe_video/video_processing_pe_video.py +66 -0
  449. transformers/models/pegasus/configuration_pegasus.py +1 -0
  450. transformers/models/pegasus/modeling_pegasus.py +3 -0
  451. transformers/models/pegasus_x/modeling_pegasus_x.py +1 -0
  452. transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
  453. transformers/models/perceiver/modeling_perceiver.py +5 -1
  454. transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
  455. transformers/models/perception_lm/modeling_perception_lm.py +7 -3
  456. transformers/models/perception_lm/modular_perception_lm.py +7 -3
  457. transformers/models/persimmon/modeling_persimmon.py +1 -1
  458. transformers/models/phi/modeling_phi.py +1 -1
  459. transformers/models/phi3/modeling_phi3.py +1 -1
  460. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +4 -1
  461. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +3 -0
  462. transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
  463. transformers/models/phimoe/modeling_phimoe.py +12 -4
  464. transformers/models/phimoe/modular_phimoe.py +1 -1
  465. transformers/models/pix2struct/processing_pix2struct.py +0 -4
  466. transformers/models/pixio/__init__.py +30 -0
  467. transformers/models/pixio/configuration_pixio.py +151 -0
  468. transformers/models/pixio/modeling_pixio.py +507 -0
  469. transformers/models/pixio/modular_pixio.py +404 -0
  470. transformers/models/pixtral/modeling_pixtral.py +1 -1
  471. transformers/models/pixtral/processing_pixtral.py +3 -1
  472. transformers/models/plbart/configuration_plbart.py +1 -0
  473. transformers/models/plbart/modeling_plbart.py +7 -0
  474. transformers/models/plbart/modular_plbart.py +6 -0
  475. transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
  476. transformers/models/poolformer/modeling_poolformer.py +11 -1
  477. transformers/models/pop2piano/configuration_pop2piano.py +0 -1
  478. transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
  479. transformers/models/prophetnet/modeling_prophetnet.py +2 -1
  480. transformers/models/qwen2/modeling_qwen2.py +1 -1
  481. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +104 -64
  482. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +58 -18
  483. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -5
  484. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +26 -22
  485. transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -2
  486. transformers/models/qwen2_moe/modeling_qwen2_moe.py +12 -4
  487. transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
  488. transformers/models/qwen2_vl/modeling_qwen2_vl.py +17 -4
  489. transformers/models/qwen3/modeling_qwen3.py +1 -1
  490. transformers/models/qwen3_moe/modeling_qwen3_moe.py +12 -4
  491. transformers/models/qwen3_next/modeling_qwen3_next.py +4 -6
  492. transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
  493. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +92 -46
  494. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +48 -4
  495. transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
  496. transformers/models/qwen3_vl/modeling_qwen3_vl.py +17 -4
  497. transformers/models/qwen3_vl/modular_qwen3_vl.py +21 -10
  498. transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
  499. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +94 -112
  500. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +32 -81
  501. transformers/models/rag/configuration_rag.py +0 -8
  502. transformers/models/rag/modeling_rag.py +7 -9
  503. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +3 -2
  504. transformers/models/reformer/modeling_reformer.py +9 -1
  505. transformers/models/regnet/modeling_regnet.py +4 -0
  506. transformers/models/rembert/modeling_rembert.py +7 -1
  507. transformers/models/resnet/modeling_resnet.py +8 -3
  508. transformers/models/roberta/modeling_roberta.py +3 -0
  509. transformers/models/roberta/modular_roberta.py +3 -0
  510. transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
  511. transformers/models/roc_bert/modeling_roc_bert.py +3 -0
  512. transformers/models/rt_detr/configuration_rt_detr.py +1 -1
  513. transformers/models/rt_detr/modeling_rt_detr.py +4 -0
  514. transformers/models/rt_detr/modeling_rt_detr_resnet.py +8 -3
  515. transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
  516. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +7 -0
  517. transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
  518. transformers/models/rwkv/modeling_rwkv.py +1 -1
  519. transformers/models/sam/configuration_sam.py +1 -0
  520. transformers/models/sam/image_processing_sam_fast.py +0 -1
  521. transformers/models/sam/modeling_sam.py +4 -1
  522. transformers/models/sam2/configuration_sam2.py +1 -1
  523. transformers/models/sam2/modeling_sam2.py +5 -1
  524. transformers/models/sam2/modular_sam2.py +5 -1
  525. transformers/models/sam2_video/modeling_sam2_video.py +51 -43
  526. transformers/models/sam2_video/modular_sam2_video.py +31 -18
  527. transformers/models/sam3/configuration_sam3.py +21 -1
  528. transformers/models/sam3/modeling_sam3.py +23 -0
  529. transformers/models/sam3_tracker/modeling_sam3_tracker.py +2 -0
  530. transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -0
  531. transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
  532. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +26 -15
  533. transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
  534. transformers/models/sam3_video/configuration_sam3_video.py +14 -0
  535. transformers/models/sam3_video/modeling_sam3_video.py +3 -3
  536. transformers/models/sam3_video/processing_sam3_video.py +1 -1
  537. transformers/models/sam_hq/configuration_sam_hq.py +1 -0
  538. transformers/models/sam_hq/modeling_sam_hq.py +26 -23
  539. transformers/models/seamless_m4t/modeling_seamless_m4t.py +27 -11
  540. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +6 -0
  541. transformers/models/seed_oss/modeling_seed_oss.py +1 -1
  542. transformers/models/segformer/image_processing_segformer_fast.py +0 -1
  543. transformers/models/segformer/modeling_segformer.py +2 -2
  544. transformers/models/segformer/modular_segformer.py +0 -1
  545. transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
  546. transformers/models/siglip/modeling_siglip.py +24 -2
  547. transformers/models/siglip2/modeling_siglip2.py +63 -41
  548. transformers/models/smollm3/modeling_smollm3.py +1 -1
  549. transformers/models/smolvlm/modeling_smolvlm.py +5 -1
  550. transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
  551. transformers/models/speech_to_text/modeling_speech_to_text.py +10 -0
  552. transformers/models/speecht5/modeling_speecht5.py +28 -0
  553. transformers/models/splinter/modeling_splinter.py +9 -3
  554. transformers/models/squeezebert/modeling_squeezebert.py +2 -0
  555. transformers/models/stablelm/modeling_stablelm.py +1 -1
  556. transformers/models/starcoder2/modeling_starcoder2.py +1 -1
  557. transformers/models/superglue/image_processing_superglue_fast.py +1 -2
  558. transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
  559. transformers/models/swiftformer/modeling_swiftformer.py +4 -0
  560. transformers/models/swin/modeling_swin.py +16 -12
  561. transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
  562. transformers/models/swin2sr/modeling_swin2sr.py +49 -33
  563. transformers/models/swinv2/modeling_swinv2.py +41 -33
  564. transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
  565. transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
  566. transformers/models/t5/configuration_t5.py +7 -1
  567. transformers/models/t5/modeling_t5.py +1 -7
  568. transformers/models/t5gemma/modeling_t5gemma.py +1 -1
  569. transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
  570. transformers/models/t5gemma2/modeling_t5gemma2.py +13 -4
  571. transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
  572. transformers/models/table_transformer/configuration_table_transformer.py +1 -1
  573. transformers/models/table_transformer/modeling_table_transformer.py +1 -1
  574. transformers/models/textnet/image_processing_textnet_fast.py +0 -1
  575. transformers/models/timesfm/modeling_timesfm.py +12 -0
  576. transformers/models/timesfm/modular_timesfm.py +12 -0
  577. transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
  578. transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
  579. transformers/models/timm_wrapper/modeling_timm_wrapper.py +19 -13
  580. transformers/models/trocr/modeling_trocr.py +1 -2
  581. transformers/models/tvp/configuration_tvp.py +5 -1
  582. transformers/models/tvp/modeling_tvp.py +4 -4
  583. transformers/models/udop/configuration_udop.py +1 -0
  584. transformers/models/udop/modeling_udop.py +3 -7
  585. transformers/models/umt5/configuration_umt5.py +2 -2
  586. transformers/models/umt5/modeling_umt5.py +0 -6
  587. transformers/models/vaultgemma/modeling_vaultgemma.py +1 -1
  588. transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
  589. transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
  590. transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
  591. transformers/models/video_llava/modeling_video_llava.py +7 -3
  592. transformers/models/vilt/configuration_vilt.py +2 -2
  593. transformers/models/vilt/modeling_vilt.py +7 -0
  594. transformers/models/vipllava/modeling_vipllava.py +7 -3
  595. transformers/models/visual_bert/modeling_visual_bert.py +2 -0
  596. transformers/models/vitmatte/configuration_vitmatte.py +1 -1
  597. transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
  598. transformers/models/vitmatte/modeling_vitmatte.py +4 -0
  599. transformers/models/vitpose/configuration_vitpose.py +1 -1
  600. transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
  601. transformers/models/voxtral/modeling_voxtral.py +2 -2
  602. transformers/models/voxtral/modular_voxtral.py +2 -2
  603. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +16 -10
  604. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +7 -0
  605. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +21 -11
  606. transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
  607. transformers/models/whisper/generation_whisper.py +1 -0
  608. transformers/models/whisper/modeling_whisper.py +5 -3
  609. transformers/models/x_clip/modeling_x_clip.py +2 -0
  610. transformers/models/xcodec/modeling_xcodec.py +5 -0
  611. transformers/models/xglm/modeling_xglm.py +10 -0
  612. transformers/models/xlm/modeling_xlm.py +13 -14
  613. transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
  614. transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
  615. transformers/models/xlnet/modeling_xlnet.py +3 -1
  616. transformers/models/xmod/modeling_xmod.py +3 -0
  617. transformers/models/yoso/modeling_yoso.py +4 -1
  618. transformers/models/zamba/modeling_zamba.py +2 -1
  619. transformers/models/zamba2/modeling_zamba2.py +3 -2
  620. transformers/models/zoedepth/configuration_zoedepth.py +1 -1
  621. transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
  622. transformers/models/zoedepth/modeling_zoedepth.py +7 -0
  623. transformers/pipelines/__init__.py +9 -6
  624. transformers/pipelines/automatic_speech_recognition.py +20 -12
  625. transformers/pipelines/base.py +1 -1
  626. transformers/pipelines/document_question_answering.py +1 -1
  627. transformers/pipelines/question_answering.py +1 -1
  628. transformers/pipelines/text_to_audio.py +2 -2
  629. transformers/processing_utils.py +127 -56
  630. transformers/quantizers/auto.py +2 -4
  631. transformers/quantizers/base.py +9 -64
  632. transformers/quantizers/quantizer_aqlm.py +1 -18
  633. transformers/quantizers/quantizer_auto_round.py +1 -10
  634. transformers/quantizers/quantizer_awq.py +3 -8
  635. transformers/quantizers/quantizer_bitnet.py +1 -6
  636. transformers/quantizers/quantizer_bnb_4bit.py +9 -49
  637. transformers/quantizers/quantizer_bnb_8bit.py +9 -19
  638. transformers/quantizers/quantizer_compressed_tensors.py +1 -4
  639. transformers/quantizers/quantizer_eetq.py +2 -12
  640. transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
  641. transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
  642. transformers/quantizers/quantizer_fp_quant.py +4 -4
  643. transformers/quantizers/quantizer_gptq.py +1 -4
  644. transformers/quantizers/quantizer_higgs.py +2 -6
  645. transformers/quantizers/quantizer_mxfp4.py +2 -28
  646. transformers/quantizers/quantizer_quanto.py +14 -14
  647. transformers/quantizers/quantizer_spqr.py +3 -8
  648. transformers/quantizers/quantizer_torchao.py +28 -124
  649. transformers/quantizers/quantizer_vptq.py +1 -10
  650. transformers/testing_utils.py +28 -12
  651. transformers/tokenization_mistral_common.py +3 -2
  652. transformers/tokenization_utils_base.py +3 -2
  653. transformers/tokenization_utils_tokenizers.py +25 -2
  654. transformers/trainer.py +24 -2
  655. transformers/trainer_callback.py +8 -0
  656. transformers/trainer_seq2seq.py +4 -0
  657. transformers/training_args.py +8 -10
  658. transformers/utils/__init__.py +4 -0
  659. transformers/utils/attention_visualizer.py +4 -4
  660. transformers/utils/auto_docstring.py +34 -25
  661. transformers/utils/generic.py +20 -0
  662. transformers/utils/import_utils.py +51 -9
  663. transformers/utils/kernel_config.py +71 -18
  664. transformers/utils/quantization_config.py +8 -8
  665. transformers/video_processing_utils.py +16 -12
  666. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +5 -6
  667. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +671 -632
  668. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +0 -0
  669. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
  670. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/licenses/LICENSE +0 -0
  671. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
@@ -16,7 +16,6 @@
16
16
  import collections
17
17
  import copy
18
18
  import functools
19
- import gc
20
19
  import importlib.metadata
21
20
  import inspect
22
21
  import json
@@ -26,7 +25,7 @@ import sys
26
25
  import warnings
27
26
  from abc import abstractmethod
28
27
  from collections import defaultdict
29
- from collections.abc import Callable, Sequence
28
+ from collections.abc import Callable, Iterator, Sequence
30
29
  from contextlib import contextmanager
31
30
  from enum import Enum
32
31
  from functools import partial, wraps
@@ -63,7 +62,8 @@ from .integrations.accelerate import (
63
62
  accelerate_dispatch,
64
63
  check_and_set_device_map,
65
64
  expand_device_map,
66
- init_empty_weights,
65
+ get_device,
66
+ load_offloaded_parameter,
67
67
  )
68
68
  from .integrations.deepspeed import _load_state_dict_into_zero3_model
69
69
  from .integrations.eager_paged import eager_paged_attention_forward
@@ -86,6 +86,7 @@ from .integrations.tensor_parallel import (
86
86
  )
87
87
  from .loss.loss_utils import LOSS_MAPPING
88
88
  from .modeling_flash_attention_utils import lazy_import_flash_attention, lazy_import_paged_flash_attention
89
+ from .modeling_rope_utils import ROPE_INIT_FUNCTIONS
89
90
  from .pytorch_utils import id_tensor_storage
90
91
  from .quantizers import HfQuantizer
91
92
  from .quantizers.auto import get_hf_quantizer
@@ -108,6 +109,7 @@ from .utils import (
108
109
  is_accelerate_available,
109
110
  is_flash_attn_2_available,
110
111
  is_flash_attn_3_available,
112
+ is_grouped_mm_available,
111
113
  is_kernels_available,
112
114
  is_torch_flex_attn_available,
113
115
  is_torch_greater_or_equal,
@@ -130,7 +132,6 @@ from .utils.quantization_config import QuantizationMethod
130
132
  if is_accelerate_available():
131
133
  from accelerate.hooks import add_hook_to_module
132
134
  from accelerate.utils import extract_model_from_parallel
133
- from accelerate.utils.modeling import get_state_dict_from_offload
134
135
 
135
136
 
136
137
  _torch_distributed_available = torch.distributed.is_available()
@@ -152,10 +153,15 @@ logger = logging.get_logger(__name__)
152
153
  XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
153
154
  XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
154
155
  SpecificPreTrainedModelType = TypeVar("SpecificPreTrainedModelType", bound="PreTrainedModel")
155
- _init_weights = True
156
156
  _is_quantized = False
157
157
  _is_ds_init_called = False
158
158
 
159
+ # Mapping from flash attention implementations to their kernel fallback repositories
160
+ FLASH_ATTN_KERNEL_FALLBACK = {
161
+ "flash_attention_2": "kernels-community/flash-attn2",
162
+ "flash_attention_3": "kernels-community/vllm-flash-attn3",
163
+ }
164
+
159
165
 
160
166
  def is_local_dist_rank_0():
161
167
  return (
@@ -165,51 +171,6 @@ def is_local_dist_rank_0():
165
171
  )
166
172
 
167
173
 
168
- TORCH_INIT_FUNCTIONS = {
169
- "uniform_": nn.init.uniform_,
170
- "normal_": nn.init.normal_,
171
- "trunc_normal_": nn.init.trunc_normal_,
172
- "constant_": nn.init.constant_,
173
- "xavier_uniform_": nn.init.xavier_uniform_,
174
- "xavier_normal_": nn.init.xavier_normal_,
175
- "kaiming_uniform_": nn.init.kaiming_uniform_,
176
- "kaiming_normal_": nn.init.kaiming_normal_,
177
- "uniform": nn.init.uniform,
178
- "normal": nn.init.normal,
179
- "xavier_uniform": nn.init.xavier_uniform,
180
- "xavier_normal": nn.init.xavier_normal,
181
- "kaiming_uniform": nn.init.kaiming_uniform,
182
- "kaiming_normal": nn.init.kaiming_normal,
183
- "orthogonal_": nn.init.orthogonal_,
184
- }
185
-
186
-
187
- @contextmanager
188
- def no_init_weights():
189
- """
190
- Context manager to globally disable weight initialization to speed up loading large models.
191
- """
192
- global _init_weights
193
- old_init_weights = _init_weights
194
-
195
- _init_weights = False
196
-
197
- def _skip_init(*args, **kwargs):
198
- pass
199
-
200
- # Save the original initialization functions
201
- for name, init_func in TORCH_INIT_FUNCTIONS.items():
202
- setattr(torch.nn.init, name, _skip_init)
203
-
204
- try:
205
- yield
206
- finally:
207
- _init_weights = old_init_weights
208
- # Restore the original initialization functions
209
- for name, init_func in TORCH_INIT_FUNCTIONS.items():
210
- setattr(torch.nn.init, name, init_func)
211
-
212
-
213
174
  @contextmanager
214
175
  def set_quantized_state():
215
176
  global _is_quantized
@@ -233,23 +194,28 @@ def set_zero3_state():
233
194
  _is_ds_init_called = False
234
195
 
235
196
 
236
- def restore_default_dtype(func):
197
+ @contextmanager
198
+ def local_torch_dtype(dtype: torch.dtype, model_class_name: str | None = None):
237
199
  """
238
- Decorator to restore the default torch dtype
239
- at the end of the function. Serves
240
- as a backup in case calling the function raises
241
- an error after the function has changed the default dtype but before it could restore it.
200
+ Locally change the torch default dtype to `dtype`, and restore the old one upon exiting the context.
201
+ If `model_class_name` is provided, it's used to provide a more helpful error message if `dtype` is not valid.
242
202
  """
203
+ # Just a more helping error before we set `torch.set_default_dtype` later on which would crash in this case
204
+ if not dtype.is_floating_point:
205
+ if model_class_name is not None:
206
+ error_message = (
207
+ f"{model_class_name} cannot be instantiated under `dtype={dtype}` as it's not a floating-point dtype"
208
+ )
209
+ else:
210
+ error_message = f"Cannot set `{dtype}` as torch's default as it's not a floating-point dtype"
211
+ raise ValueError(error_message)
243
212
 
244
- @wraps(func)
245
- def _wrapper(*args, **kwargs):
246
- old_dtype = torch.get_default_dtype()
247
- try:
248
- return func(*args, **kwargs)
249
- finally:
250
- torch.set_default_dtype(old_dtype)
251
-
252
- return _wrapper
213
+ original_dtype = torch.get_default_dtype()
214
+ try:
215
+ torch.set_default_dtype(dtype)
216
+ yield
217
+ finally:
218
+ torch.set_default_dtype(original_dtype)
253
219
 
254
220
 
255
221
  def get_torch_context_manager_or_global_device():
@@ -405,11 +371,94 @@ def _find_identical(tensors: list[set[str]], state_dict: dict[str, torch.Tensor]
405
371
  return shared_tensors, identical
406
372
 
407
373
 
374
+ def remove_tied_weights_from_state_dict(
375
+ state_dict: dict[str, torch.Tensor], model: "PreTrainedModel"
376
+ ) -> dict[str, torch.Tensor]:
377
+ """
378
+ Remove all tied weights from the given `state_dict`, making sure to keep only the main weight that `model`
379
+ will expect when reloading (even if we know tie weights symmetrically, it's better to keep the intended one).
380
+ This is because `safetensors` does not allow tensor aliasing - so we're going to remove aliases before saving.
381
+ """
382
+ # To avoid any potential mistakes and mismatches between config and actual tied weights, here we check the pointers
383
+ # of the Tensors themselves -> we are guaranteed to find all the actual tied weights
384
+ ptrs = collections.defaultdict(list)
385
+ for name, tensor in state_dict.items():
386
+ if not isinstance(tensor, torch.Tensor):
387
+ # Sometimes in the state_dict we have non-tensor objects.
388
+ # e.g. in bitsandbytes we have some `str` objects in the state_dict
389
+ # In the non-tensor case, fall back to the pointer of the object itself
390
+ ptrs[id(tensor)].append(name)
391
+
392
+ elif tensor.device.type == "meta":
393
+ # In offloaded cases, there may be meta tensors in the state_dict.
394
+ # For these cases, key by the pointer of the original tensor object
395
+ # (state_dict tensors are detached and therefore no longer shared)
396
+ tensor = model.get_parameter(name)
397
+ ptrs[id(tensor)].append(name)
398
+
399
+ else:
400
+ ptrs[id_tensor_storage(tensor)].append(name)
401
+
402
+ shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
403
+
404
+ # Recursively descend to find tied weight keys
405
+ all_potential_tied_weights_keys = set(_get_tied_weight_keys(model))
406
+ error_names = []
407
+ to_delete_names = set()
408
+ # Removing the keys which are declared as known duplicates on load. This allows to make sure the name which is
409
+ # kept is consistent
410
+ if all_potential_tied_weights_keys is not None:
411
+ for names in shared_ptrs.values():
412
+ found = 0
413
+ for name in sorted(names):
414
+ matches_pattern = any(re.search(pat, name) for pat in all_potential_tied_weights_keys)
415
+ if matches_pattern and name in state_dict:
416
+ found += 1
417
+ if found < len(names):
418
+ to_delete_names.add(name)
419
+ # We are entering a place where the weights and the transformers configuration do NOT match.
420
+ shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict)
421
+ # Those are actually tensor sharing but disjoint from each other, we can safely clone them
422
+ # Reloaded won't have the same property, but it shouldn't matter in any meaningful way.
423
+ for name in disjoint_names:
424
+ state_dict[name] = state_dict[name].clone()
425
+
426
+ # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
427
+ # If the link between tensors was done at runtime then `from_pretrained` will not get
428
+ # the key back leading to random tensor. A proper warning will be shown
429
+ # during reload (if applicable), but since the file is not necessarily compatible with
430
+ # the config, better show a proper warning.
431
+ shared_names, identical_names = _find_identical(shared_names, state_dict)
432
+ # delete tensors that have identical storage
433
+ for inames in identical_names:
434
+ known = inames.intersection(to_delete_names)
435
+ for name in known:
436
+ del state_dict[name]
437
+ unknown = inames.difference(to_delete_names)
438
+ if len(unknown) > 1:
439
+ error_names.append(unknown)
440
+
441
+ if shared_names:
442
+ error_names.extend(shared_names)
443
+
444
+ if len(error_names) > 0:
445
+ raise RuntimeError(
446
+ f"The weights trying to be saved contained shared tensors {error_names} which are not properly defined. "
447
+ f"We found all the potential target tied weights keys to be: {all_potential_tied_weights_keys}.\n"
448
+ "This can also just mean that the module's tied weight keys are wrong vs the actual tied weights in the model.",
449
+ )
450
+
451
+ return state_dict
452
+
453
+
408
454
  def _load_parameter_into_model(model: "PreTrainedModel", param_name: str, tensor: torch.Tensor):
409
- """Cast a single parameter `param_name` into the `model`, with value `tensor`."""
410
- module, param_type = get_module_from_name(model, param_name)
411
- # This will check potential shape mismatch if skipped before
412
- module.load_state_dict({param_type: tensor}, strict=False, assign=True)
455
+ """Cast a single parameter or buffer `param_name` into the `model`, with value `tensor`."""
456
+ parent, param_type = get_module_from_name(model, param_name)
457
+ if param_type in parent._parameters and not isinstance(tensor, nn.Parameter):
458
+ tensor = nn.Parameter(tensor, requires_grad=tensor.is_floating_point())
459
+ # We need to use setattr here, as we set non-persistent buffers as well with this function (`load_state_dict`
460
+ # does not allow to do it)
461
+ setattr(parent, param_type, tensor)
413
462
 
414
463
 
415
464
  def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
@@ -696,23 +745,22 @@ def _get_resolved_checkpoint_files(
696
745
 
697
746
 
698
747
  def _get_dtype(
699
- cls,
700
748
  dtype: Optional[Union[str, torch.dtype, dict]],
701
749
  checkpoint_files: Optional[list[str]],
702
750
  config: PreTrainedConfig,
703
751
  sharded_metadata: Optional[dict],
704
752
  state_dict: Optional[dict],
705
753
  weights_only: bool,
706
- ) -> tuple[PreTrainedConfig, Optional[torch.dtype], Optional[torch.dtype]]:
754
+ hf_quantizer: Optional[HfQuantizer] = None,
755
+ ) -> tuple[PreTrainedConfig, torch.dtype]:
707
756
  """Find the correct `dtype` to use based on provided arguments. Also update the `config` based on the
708
757
  inferred dtype. We do the following:
709
- 1. If dtype is not None, we use that dtype
710
- 2. If dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
711
- weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
712
- we also may have config.dtype available, but we won't rely on it till v5
758
+ 1. If dtype is "auto", we try to read the config, else auto-detect dtype from the loaded state_dict, by checking
759
+ its first weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
760
+ 2. Else, use the dtype provided as a dict or str
713
761
  """
714
- dtype_orig = None
715
762
  is_sharded = sharded_metadata is not None
763
+ asked_dtype = dtype
716
764
 
717
765
  if dtype is not None:
718
766
  if isinstance(dtype, str):
@@ -736,43 +784,49 @@ def _get_dtype(
736
784
  )
737
785
  elif hasattr(torch, dtype):
738
786
  dtype = getattr(torch, dtype)
739
- config.dtype = dtype
740
- for sub_config_key in config.sub_configs:
741
- if (sub_config := getattr(config, sub_config_key)) is not None:
742
- sub_config.dtype = dtype
743
- elif isinstance(dtype, torch.dtype):
744
- config.dtype = dtype
745
- for sub_config_key in config.sub_configs:
746
- if (sub_config := getattr(config, sub_config_key)) is not None:
747
- sub_config.dtype = dtype
748
- elif isinstance(dtype, dict):
749
- for key, curr_dtype in dtype.items():
750
- if hasattr(config, key):
751
- value = getattr(config, key)
752
- curr_dtype = curr_dtype if not isinstance(curr_dtype, str) else getattr(torch, curr_dtype)
753
- value.dtype = curr_dtype
754
- # main torch dtype for modules that aren't part of any sub-config
755
- dtype = dtype.get("")
756
- dtype = dtype if not isinstance(dtype, str) else getattr(torch, dtype)
757
- config.dtype = dtype
758
- if dtype is None:
759
- dtype = torch.float32
760
- else:
787
+ else:
788
+ raise ValueError(
789
+ "`dtype` provided as a `str` can only be `'auto'`, or a string representation of a valid `torch.dtype`"
790
+ )
791
+
792
+ # cast it to a proper `torch.dtype` object
793
+ dtype = getattr(torch, dtype) if isinstance(dtype, str) else dtype
794
+ elif not isinstance(dtype, (dict, torch.dtype)):
761
795
  raise ValueError(
762
796
  f"`dtype` can be one of: `torch.dtype`, `'auto'`, a string of a valid `torch.dtype` or a `dict` with valid `dtype` "
763
797
  f"for each sub-config in composite configs, but received {dtype}"
764
798
  )
799
+ else:
800
+ # set torch.get_default_dtype() (usually fp32) as the default dtype if `None` is provided
801
+ dtype = torch.get_default_dtype()
802
+
803
+ if hf_quantizer is not None:
804
+ hf_quantizer.update_dtype(dtype)
765
805
 
766
- dtype_orig = cls._set_default_dtype(dtype)
806
+ # Get the main dtype
807
+ if isinstance(dtype, dict):
808
+ main_dtype = dtype.get("", torch.get_default_dtype())
809
+ main_dtype = getattr(torch, main_dtype) if isinstance(main_dtype, str) else main_dtype
767
810
  else:
768
- # set fp32 as the default dtype for BC
769
- default_dtype = torch.get_default_dtype()
770
- config.dtype = default_dtype
771
- for key in config.sub_configs:
772
- if (sub_config := getattr(config, key)) is not None:
773
- sub_config.dtype = default_dtype
774
- dtype = dtype if isinstance(dtype, torch.dtype) else getattr(torch, dtype)
775
- return config, dtype, dtype_orig
811
+ main_dtype = dtype
812
+
813
+ # Set it on the config and subconfigs
814
+ config.dtype = main_dtype
815
+ for sub_config_key in config.sub_configs:
816
+ if (sub_config := getattr(config, sub_config_key)) is not None:
817
+ # The dtype was "auto" -> try to read the subconfig dtype value if any
818
+ if asked_dtype == "auto":
819
+ sub_dtype = getattr(sub_config, "dtype", main_dtype)
820
+ sub_dtype = getattr(torch, sub_dtype) if isinstance(sub_dtype, str) else sub_dtype
821
+ # The dtype was provided as a dict, try to see if we match the subconfig name
822
+ elif isinstance(dtype, dict):
823
+ sub_dtype = dtype.get(sub_config_key, main_dtype)
824
+ sub_dtype = getattr(torch, sub_dtype) if isinstance(sub_dtype, str) else sub_dtype
825
+ else:
826
+ sub_dtype = main_dtype
827
+ sub_config.dtype = sub_dtype
828
+
829
+ return config, main_dtype
776
830
 
777
831
 
778
832
  class PipelineParallel(Enum):
@@ -798,11 +852,7 @@ class ModuleUtilsMixin:
798
852
  """
799
853
  `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
800
854
  """
801
- dtype = self._dtype or next(param.dtype for param in self.parameters() if param.is_floating_point())
802
- if isinstance(dtype, str):
803
- if hasattr(torch, dtype):
804
- dtype = getattr(torch, dtype)
805
- return dtype
855
+ return next(param.dtype for param in self.parameters() if param.is_floating_point())
806
856
 
807
857
  def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
808
858
  """
@@ -972,54 +1022,52 @@ class EmbeddingAccessMixin:
972
1022
  `nn.Module`: A torch module mapping vocabulary to hidden states.
973
1023
  """
974
1024
 
975
- # 1) Check if the model has an attribute named 'embed_tokens' (the standard input embedding layer
976
- # for most NLP models), and if so, return it.
977
-
978
1025
  name = getattr(self, "_input_embed_layer", "embed_tokens")
979
1026
 
1027
+ # 1) Direct attribute (most NLP models).
980
1028
  if (default_embedding := getattr(self, name, None)) is not None:
981
1029
  return default_embedding
982
- # 2) encoder/decoder and VLMs like `Gemma3nForConditionalGeneration`
1030
+ # 2) Nested embeddings (e.g., self.embeddings.patch_embedding for vision/audio models).
1031
+ if hasattr(self, "embeddings") and hasattr(self.embeddings, name):
1032
+ return getattr(self.embeddings, name)
1033
+ # 3) Encoder/decoder wrappers (e.g., `self.model.embed_tokens` or similar overrides).
1034
+ if hasattr(self, "model") and hasattr(self.model, name):
1035
+ return getattr(self.model, name)
983
1036
 
984
- if hasattr(self, "model") and hasattr(self.model, "embed_tokens"):
985
- return self.model.embed_tokens
1037
+ if hasattr(self, "base_model"):
1038
+ base_model = self.base_model
1039
+ if base_model is not None and base_model is not self:
1040
+ return base_model.get_input_embeddings()
986
1041
 
987
- # 3) vanilla decoder‑only architectures
988
- elif hasattr(self, "embed_tokens"):
989
- return self.embed_tokens
990
- else:
991
- base_model = getattr(self, "base_model_prefix", None)
992
- if base_model is not None:
993
- base_model = getattr(self, base_model, None)
994
- if base_model is not None and base_model is not self:
995
- return base_model.get_input_embeddings()
996
- raise NotImplementedError(
997
- f"`get_input_embeddings` not auto‑handled for {self.__class__.__name__}; "
998
- "please override in the subclass."
999
- )
1042
+ raise NotImplementedError(
1043
+ f"`get_input_embeddings` not auto‑handled for {self.__class__.__name__}; please override in the subclass."
1044
+ )
1000
1045
 
1001
1046
  def set_input_embeddings(self, value: nn.Module):
1002
1047
  """Fallback setter that handles **~70%** of models in the code-base.
1003
1048
 
1004
1049
  Order of attempts:
1005
- 1. `self.model.embed_tokens`
1006
- 2. `self.embed_tokens`
1007
- 3. delegate to the *base model* if one exists
1008
- 4. otherwise raise `NotImplementedError` so subclasses still can (and
1050
+ 1. `self.<_input_embed_layer>` (direct attribute)
1051
+ 2. `self.embeddings.<_input_embed_layer>` (nested embeddings for vision/audio models)
1052
+ 3. `self.model.<_input_embed_layer>` (encoder/decoder models)
1053
+ 4. delegate to the *base model* if one exists
1054
+ 5. otherwise raise `NotImplementedError` so subclasses still can (and
1009
1055
  should) override for exotic layouts.
1010
1056
  """
1011
1057
 
1012
- # 1) encoder/decoder and VLMs like `Gemma3nForConditionalGeneration`
1013
1058
  name = getattr(self, "_input_embed_layer", "embed_tokens")
1014
- if hasattr(self, "model") and hasattr(self.model, name):
1015
- setattr(self.model, name, value)
1016
- # 2) as well as vanilla decoder‑only architectures
1017
- elif hasattr(self, name):
1059
+ # 1) Direct attribute (most NLP models)
1060
+ if hasattr(self, name):
1018
1061
  setattr(self, name, value)
1019
- # 3) recurse once into the registered *base* model (e.g. for encoder/decoder)
1020
- elif getattr(self, self.base_model_prefix, self) is not self:
1021
- base_model = getattr(self, self.base_model_prefix, self)
1022
- base_model.set_input_embeddings(value)
1062
+ # 2) Nested embeddings (e.g., self.embeddings.patch_embedding for vision models)
1063
+ elif hasattr(self, "embeddings") and hasattr(self.embeddings, name):
1064
+ setattr(self.embeddings, name, value)
1065
+ # 3) encoder/decoder and VLMs like `Gemma3nForConditionalGeneration`
1066
+ elif hasattr(self, "model") and hasattr(self.model, name):
1067
+ setattr(self.model, name, value)
1068
+ # 4) recurse once into the registered *base* model (e.g. for encoder/decoder)
1069
+ elif hasattr(self, "base_model") and self.base_model is not self:
1070
+ self.base_model.set_input_embeddings(value)
1023
1071
  else:
1024
1072
  raise NotImplementedError(
1025
1073
  f"`set_input_embeddings` not auto‑handled for {self.__class__.__name__}; please override in the subclass."
@@ -1081,7 +1129,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1081
1129
  _keep_in_fp32_modules_strict = None
1082
1130
 
1083
1131
  dtype_plan: Optional[dict[str, torch.dtype]] = None
1084
- _dtype: Optional[Union[str, torch.dtype]] = torch.get_default_dtype()
1085
1132
 
1086
1133
  # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
1087
1134
  # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
@@ -1226,14 +1273,17 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1226
1273
  f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1227
1274
  )
1228
1275
  self.config = config
1229
- default_dtype = torch.get_default_dtype()
1230
- self._dtype = default_dtype
1231
1276
 
1232
1277
  # Check the attention implementation is supported, or set it if not yet set (on the internal attr, to avoid
1233
1278
  # setting it recursively)
1234
1279
  self.config._attn_implementation_internal = self._check_and_adjust_attn_implementation(
1235
1280
  self.config._attn_implementation, is_init_check=True
1236
1281
  )
1282
+ # Check the experts implementation is supported, or set it if not yet set (on the internal attr, to avoid
1283
+ # setting it recursively)
1284
+ self.config._experts_implementation_internal = self._check_and_adjust_experts_implementation(
1285
+ self.config._experts_implementation
1286
+ )
1237
1287
  if self.can_generate():
1238
1288
  self.generation_config = GenerationConfig.from_model_config(config)
1239
1289
 
@@ -1349,7 +1399,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1349
1399
  def pp_plan(self, plan: dict[str, tuple[str, str]]):
1350
1400
  self._pp_plan = plan
1351
1401
 
1352
- def dequantize(self):
1402
+ def dequantize(self, dtype=None):
1353
1403
  """
1354
1404
  Potentially dequantize the model in case it has been quantized by a quantization method that support
1355
1405
  dequantization.
@@ -1359,7 +1409,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1359
1409
  if hf_quantizer is None:
1360
1410
  raise ValueError("You need to first quantize your model in order to dequantize it")
1361
1411
 
1362
- return hf_quantizer.dequantize(self)
1412
+ return hf_quantizer.dequantize(self, dtype=dtype)
1363
1413
 
1364
1414
  def _backward_compatibility_gradient_checkpointing(self):
1365
1415
  if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
@@ -1400,7 +1450,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1400
1450
  self.model_tags.append(tag)
1401
1451
 
1402
1452
  @classmethod
1403
- @restore_default_dtype
1404
1453
  def _from_config(cls, config, **kwargs):
1405
1454
  """
1406
1455
  All context managers that the model should be initialized under go here.
@@ -1409,9 +1458,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1409
1458
  dtype (`torch.dtype`, *optional*):
1410
1459
  Override the default `dtype` and load the model under this dtype.
1411
1460
  """
1412
- # when we init a model from within another model (e.g. VLMs) and dispatch on FA2
1413
- # a warning is raised that dtype should be fp16. Since we never pass dtype from within
1414
- # modeling code, we can try to infer it here same way as done in `from_pretrained`
1415
1461
  # For BC on the old `torch_dtype`
1416
1462
  dtype = kwargs.pop("dtype", config.dtype)
1417
1463
  if (torch_dtype := kwargs.pop("torch_dtype", None)) is not None:
@@ -1421,67 +1467,32 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1421
1467
  if isinstance(dtype, str):
1422
1468
  dtype = getattr(torch, dtype)
1423
1469
 
1424
- # override default dtype if needed
1425
- dtype_orig = None
1426
- if dtype is not None:
1427
- dtype_orig = cls._set_default_dtype(dtype)
1428
-
1429
1470
  # If passing `attn_implementation` as kwargs, respect it (it will be applied recursively on subconfigs)
1430
1471
  if "attn_implementation" in kwargs:
1431
1472
  config._attn_implementation = kwargs.pop("attn_implementation")
1432
1473
 
1474
+ # If passing `experts_implementation` as kwargs, respect it (it will be applied recursively on subconfigs)
1475
+ if "experts_implementation" in kwargs:
1476
+ config._experts_implementation = kwargs.pop("experts_implementation")
1477
+
1478
+ init_contexts = []
1479
+ if dtype is not None:
1480
+ init_contexts.append(local_torch_dtype(dtype, cls.__name__))
1481
+
1433
1482
  if is_deepspeed_zero3_enabled() and not _is_quantized and not _is_ds_init_called:
1434
1483
  logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
1435
1484
  # this immediately partitions the model across all gpus, to avoid the overhead in time
1436
1485
  # and memory copying it on CPU or each GPU first
1437
1486
  import deepspeed
1438
1487
 
1439
- init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config()), set_zero3_state()]
1440
- with ContextManagers(init_contexts):
1441
- model = cls(config, **kwargs)
1488
+ init_contexts.extend([deepspeed.zero.Init(config_dict_or_path=deepspeed_config()), set_zero3_state()])
1442
1489
 
1443
- else:
1490
+ # Instantiate the model
1491
+ with ContextManagers(init_contexts):
1444
1492
  model = cls(config, **kwargs)
1445
1493
 
1446
- # restore default dtype if it was modified
1447
- if dtype_orig is not None:
1448
- torch.set_default_dtype(dtype_orig)
1449
-
1450
1494
  return model
1451
1495
 
1452
- @classmethod
1453
- def _set_default_dtype(cls, dtype: torch.dtype) -> torch.dtype:
1454
- """
1455
- Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
1456
- under specific dtype.
1457
-
1458
- Args:
1459
- dtype (`torch.dtype`):
1460
- a floating dtype to set to.
1461
-
1462
- Returns:
1463
- `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
1464
- modified. If it wasn't, returns `None`.
1465
-
1466
- Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
1467
- `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1468
- """
1469
- if isinstance(dtype, str):
1470
- if hasattr(torch, dtype):
1471
- dtype = getattr(torch, dtype)
1472
- else:
1473
- raise ValueError(f"Received an invalid string dtype: {dtype}")
1474
- if not dtype.is_floating_point:
1475
- raise ValueError(
1476
- f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
1477
- )
1478
-
1479
- logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
1480
- dtype_orig = torch.get_default_dtype()
1481
- torch.set_default_dtype(dtype)
1482
- cls._dtype = dtype
1483
- return dtype_orig
1484
-
1485
1496
  @property
1486
1497
  def base_model(self) -> nn.Module:
1487
1498
  """
@@ -1558,7 +1569,9 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1558
1569
  return True
1559
1570
 
1560
1571
  if is_torch_xpu_available():
1561
- logger.info("Detect using FlashAttention2 (via kernel `kernels-community/flash-attn2`) on XPU.")
1572
+ logger.info(
1573
+ f"Detect using FlashAttention2 (via kernel `{FLASH_ATTN_KERNEL_FALLBACK['flash_attention_2']}`) on XPU."
1574
+ )
1562
1575
  return True
1563
1576
 
1564
1577
  if importlib.util.find_spec("flash_attn") is None:
@@ -1727,6 +1740,22 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1727
1740
 
1728
1741
  return True
1729
1742
 
1743
+ def _grouped_mm_can_dispatch(self) -> bool:
1744
+ """
1745
+ Check the availability of Grouped MM for a given model.
1746
+ """
1747
+
1748
+ if not self._can_set_experts_implementation():
1749
+ raise ValueError(f"{self.__class__.__name__} does not support setting experts implementation.")
1750
+
1751
+ if not is_grouped_mm_available():
1752
+ raise ImportError(
1753
+ "PyTorch Grouped MM requirements in Transformers are not met. Please install torch>=2.9.0."
1754
+ )
1755
+
1756
+ # If no error raised by this point, we can return `True`
1757
+ return True
1758
+
1730
1759
  def _flex_attn_can_dispatch(self, is_init_check: bool = False) -> bool:
1731
1760
  """
1732
1761
  Check the availability of Flex Attention for a given model.
@@ -1790,14 +1819,12 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1790
1819
  and is_kernels_available()
1791
1820
  and not is_torch_npu_available()
1792
1821
  ):
1793
- if attn_implementation.endswith("2"):
1794
- applicable_attn_implementation = "kernels-community/flash-attn2"
1795
- if is_torch_xpu_available():
1796
- # On XPU, kernels library is the native implementation
1797
- # Disabling this flag to avoid giving wrong fallbacks on errors and warnings
1798
- requested_original_flash_attn = False
1799
- else:
1800
- applicable_attn_implementation = "kernels-community/vllm-flash-attn3"
1822
+ applicable_attn_implementation = FLASH_ATTN_KERNEL_FALLBACK[attn_implementation.removeprefix("paged|")]
1823
+
1824
+ if is_torch_xpu_available() and attn_implementation.removeprefix("paged|") == "flash_attention_2":
1825
+ # On XPU, kernels library is the native implementation
1826
+ # Disabling this flag to avoid giving wrong fallbacks on errors and warnings
1827
+ requested_original_flash_attn = False
1801
1828
 
1802
1829
  if is_paged:
1803
1830
  applicable_attn_implementation = f"paged|{applicable_attn_implementation}"
@@ -1837,6 +1864,19 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1837
1864
 
1838
1865
  return applicable_attn_implementation
1839
1866
 
1867
+ def _check_and_adjust_experts_implementation(self, experts_implementation: Optional[str]) -> str:
1868
+ """
1869
+ Check that the `experts_implementation` exists and is supported by the models.
1870
+
1871
+ Args:
1872
+ experts_implementation (`str` or `None`):
1873
+ The experts implementation to check for existence/validity.
1874
+ Returns:
1875
+ `str`: The final experts implementation to use.
1876
+ """
1877
+ applicable_experts_implementation = self.get_correct_experts_implementation(experts_implementation)
1878
+ return applicable_experts_implementation
1879
+
1840
1880
  def get_correct_attn_implementation(self, requested_attention: Optional[str], is_init_check: bool = False) -> str:
1841
1881
  applicable_attention = "sdpa" if requested_attention is None else requested_attention
1842
1882
  if applicable_attention not in ["eager"] + ALL_ATTENTION_FUNCTIONS.valid_keys():
@@ -1871,6 +1911,26 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1871
1911
 
1872
1912
  return applicable_attention
1873
1913
 
1914
+ def get_correct_experts_implementation(self, requested_experts: Optional[str]) -> str:
1915
+ applicable_experts = "grouped_mm" if requested_experts is None else requested_experts
1916
+ if applicable_experts not in ["eager", "grouped_mm", "batched_mm"]:
1917
+ message = (
1918
+ f'Specified `experts_implementation="{applicable_experts}"` is not supported. The only possible arguments are '
1919
+ '`experts_implementation="eager"`, `"experts_implementation=grouped_mm"` and `"experts_implementation=batched_mm"`.'
1920
+ )
1921
+ raise ValueError(message)
1922
+
1923
+ # Perform relevant checks
1924
+ if applicable_experts == "grouped_mm":
1925
+ try:
1926
+ self._grouped_mm_can_dispatch()
1927
+ except (ValueError, ImportError) as e:
1928
+ if requested_experts == "grouped_mm":
1929
+ raise e
1930
+ applicable_experts = "eager"
1931
+
1932
+ return applicable_experts
1933
+
1874
1934
  @classmethod
1875
1935
  def _can_set_attn_implementation(cls) -> bool:
1876
1936
  """Detect whether the class supports setting its attention implementation dynamically. It is an ugly check based on
@@ -1889,6 +1949,17 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1889
1949
  # If no attention layer, assume `True`. Most probably a multimodal model or inherits from existing models
1890
1950
  return True
1891
1951
 
1952
+ @classmethod
1953
+ def _can_set_experts_implementation(cls) -> bool:
1954
+ """Detect whether the class supports setting its experts implementation dynamically. It is an ugly check based on
1955
+ opening the file, but avoids maintaining yet another property flag.
1956
+ """
1957
+ class_file = sys.modules[cls.__module__].__file__
1958
+ with open(class_file, "r") as f:
1959
+ code = f.read()
1960
+ # heuristic -> if we the use_experts_implementation decorator is used, then we can set it
1961
+ return "@use_experts_implementation" in code
1962
+
1892
1963
  def set_attn_implementation(self, attn_implementation: Union[str, dict]):
1893
1964
  """
1894
1965
  Set the requested `attn_implementation` for this model.
@@ -1988,6 +2059,50 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1988
2059
  if hasattr(subconfig, "_attn_was_changed"):
1989
2060
  del subconfig._attn_was_changed
1990
2061
 
2062
+ def set_experts_implementation(self, experts_implementation: Union[str, dict]):
2063
+ """
2064
+ Set the requested `experts_implementation` for this model.
2065
+
2066
+ Args:
2067
+ experts_implementation (`str` or `dict`):
2068
+ The experts implementation to set for this model. It can be either a `str`, in which case it will be
2069
+ dispatched to all submodels if relevant, or a `dict` where keys are the sub_configs name, in which case each
2070
+ submodel will dispatch the corresponding value.
2071
+ """
2072
+ requested_implementation = (
2073
+ experts_implementation
2074
+ if not isinstance(experts_implementation, dict)
2075
+ else experts_implementation.get("", self.config._experts_implementation)
2076
+ )
2077
+
2078
+ if requested_implementation != self.config._experts_implementation:
2079
+ requested_implementation = self._check_and_adjust_experts_implementation(requested_implementation)
2080
+ # Apply the change (on the internal attr, to avoid setting it recursively)
2081
+ self.config._experts_implementation_internal = requested_implementation
2082
+
2083
+ # Apply it to all submodels as well
2084
+ for submodule in self.modules():
2085
+ # We found a submodel (which is not self) with a different config (otherwise, it may be the same "actual model",
2086
+ # e.g. ForCausalLM has a Model inside, but no need to check it again)
2087
+ if (
2088
+ submodule is not self
2089
+ and isinstance(submodule, PreTrainedModel)
2090
+ and submodule.config.__class__ != self.config.__class__
2091
+ ):
2092
+ # Set the experts on the submodule
2093
+ sub_implementation = requested_implementation
2094
+ if isinstance(experts_implementation, dict):
2095
+ for subconfig_key in self.config.sub_configs:
2096
+ # We need to check for exact object match here, with `is`
2097
+ if getattr(self.config, subconfig_key) is submodule.config:
2098
+ sub_implementation = experts_implementation.get(
2099
+ subconfig_key, submodule.config._experts_implementation
2100
+ )
2101
+ break
2102
+ # Check the module can use correctly, otherwise we raise an error if requested experts can't be set for submodule
2103
+ sub_implementation = submodule.get_correct_experts_implementation(sub_implementation)
2104
+ submodule.config._experts_implementation_internal = sub_implementation
2105
+
1991
2106
  def enable_input_require_grads(self):
1992
2107
  """
1993
2108
  Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
@@ -1999,14 +2114,18 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
1999
2114
 
2000
2115
  hooks = []
2001
2116
  seen_modules = set()
2117
+ found_embeddings = False
2002
2118
 
2003
2119
  for module in self.modules():
2004
2120
  if not (isinstance(module, PreTrainedModel) and hasattr(module, "get_input_embeddings")):
2005
2121
  continue
2006
2122
 
2007
- input_embeddings = module.get_input_embeddings()
2123
+ try:
2124
+ input_embeddings = module.get_input_embeddings()
2125
+ except NotImplementedError:
2126
+ continue
2008
2127
 
2009
- if input_embeddings is None:
2128
+ if input_embeddings is None or not hasattr(input_embeddings, "register_forward_hook"):
2010
2129
  continue
2011
2130
 
2012
2131
  embedding_id = id(input_embeddings)
@@ -2015,11 +2134,18 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2015
2134
 
2016
2135
  seen_modules.add(embedding_id)
2017
2136
  hooks.append(input_embeddings.register_forward_hook(make_inputs_require_grads))
2137
+ found_embeddings = True
2018
2138
 
2019
2139
  self._require_grads_hooks = hooks
2020
2140
  if hooks:
2021
2141
  # for BC
2022
2142
  self._require_grads_hook = hooks[0]
2143
+ if not found_embeddings:
2144
+ logger.warning_once(
2145
+ f"{self.__class__.__name__} does not expose input embeddings. Gradients cannot flow back to the token "
2146
+ "embeddings when using adapters or gradient checkpointing. Override `get_input_embeddings` to fully "
2147
+ "support those features, or set `_input_embed_layer` to the attribute name that holds the embeddings."
2148
+ )
2023
2149
 
2024
2150
  def disable_input_require_grads(self):
2025
2151
  """
@@ -2154,14 +2280,13 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2154
2280
  if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose1d, nn.ConvTranspose2d)):
2155
2281
  if getattr(module, "weight", None) is not None:
2156
2282
  init.normal_(module.weight, mean=0.0, std=std)
2157
- if getattr(module, "bias", None) is not None:
2283
+ if module.bias is not None:
2158
2284
  init.zeros_(module.bias)
2159
2285
  elif isinstance(module, nn.Embedding):
2160
- if getattr(module, "weight", None) is not None:
2161
- init.normal_(module.weight, mean=0.0, std=std)
2162
- # Here we need the check explicitly, as we slice the weight in the `zeros_` call, so it looses the flag
2163
- if module.padding_idx is not None and not getattr(module.weight, "_is_hf_initialized", False):
2164
- init.zeros_(module.weight[module.padding_idx])
2286
+ init.normal_(module.weight, mean=0.0, std=std)
2287
+ # Here we need the check explicitly, as we slice the weight in the `zeros_` call, so it looses the flag
2288
+ if module.padding_idx is not None and not getattr(module.weight, "_is_hf_initialized", False):
2289
+ init.zeros_(module.weight[module.padding_idx])
2165
2290
  elif isinstance(module, nn.MultiheadAttention):
2166
2291
  # This uses torch's original init
2167
2292
  module._reset_parameters()
@@ -2173,10 +2298,25 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2173
2298
  or "RMSNorm" in module.__class__.__name__
2174
2299
  ):
2175
2300
  # Norms can exist without weights (in which case they are None from torch primitives)
2176
- if hasattr(module, "weight") and module.weight is not None:
2301
+ if getattr(module, "weight", None) is not None:
2177
2302
  init.ones_(module.weight)
2178
- if hasattr(module, "bias") and module.bias is not None:
2303
+ if getattr(module, "bias", None) is not None:
2179
2304
  init.zeros_(module.bias)
2305
+ # And the potential buffers for the BatchNorms
2306
+ if getattr(module, "running_mean", None) is not None:
2307
+ init.zeros_(module.running_mean)
2308
+ init.ones_(module.running_var)
2309
+ init.zeros_(module.num_batches_tracked)
2310
+ # This matches all the usual RotaryEmbeddings modules
2311
+ elif "RotaryEmbedding" in module.__class__.__name__ and hasattr(module, "original_inv_freq"):
2312
+ rope_fn = (
2313
+ ROPE_INIT_FUNCTIONS[module.rope_type]
2314
+ if module.rope_type != "default"
2315
+ else module.compute_default_rope_parameters
2316
+ )
2317
+ buffer_value, _ = rope_fn(module.config)
2318
+ init.copy_(module.inv_freq, buffer_value)
2319
+ init.copy_(module.original_inv_freq, buffer_value)
2180
2320
 
2181
2321
  def _initialize_weights(self, module):
2182
2322
  """
@@ -2281,7 +2421,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2281
2421
 
2282
2422
  tied_mapping = self._tied_weights_keys
2283
2423
  # If the config does not specify any tying, return empty dict
2284
- if not self.config.tie_word_embeddings and not self.config.tie_encoder_decoder:
2424
+ if not self.config.tie_word_embeddings:
2285
2425
  return {}
2286
2426
  # If None, return empty dict
2287
2427
  elif tied_mapping is None:
@@ -2347,30 +2487,26 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2347
2487
 
2348
2488
  tied_keys = list(tied_keys.items())
2349
2489
  for i, (target_param_name, source_param_name) in enumerate(tied_keys):
2350
- # Usually we tie a single target to a single source, but when both are missing we may later tie
2351
- # both the source and target to a third "backup" parameter that is present in the checkpoint, so we use
2352
- # a list here
2353
- target_param_names = [target_param_name]
2354
-
2355
2490
  # This is `from_pretrained` -> let's check symmetrically in case the source key is not present
2356
2491
  if missing_keys is not None:
2357
2492
  remove_from_missing = True
2358
2493
  source_is_there = source_param_name not in missing_keys
2359
2494
  target_is_there = target_param_name not in missing_keys
2360
2495
  # Both are already present -> it means the config is wrong and do not reflect the actual
2361
- # checkpoint -> let's raise a warning and do nothing
2496
+ # checkpoint -> let's raise a warning and NOT tie them
2362
2497
  if source_is_there and target_is_there:
2363
2498
  logger.warning(
2364
2499
  f"The tied weights mapping and config for this model specifies to tie {source_param_name} to "
2365
2500
  f"{target_param_name}, but both are present in the checkpoints, so we will NOT tie them. "
2366
2501
  "You should update the config with `tie_word_embeddings=False` to silence this warning"
2367
2502
  )
2503
+ # Remove from internal attribute to correctly reflect actual tied weights
2504
+ self.all_tied_weights_keys.pop(target_param_name)
2368
2505
  # Skip to next iteration
2369
2506
  continue
2370
2507
  # We're missing the source but we have the target -> we swap them, tying the parameter that exists
2371
2508
  elif not source_is_there and target_is_there:
2372
2509
  target_param_name, source_param_name = source_param_name, target_param_name
2373
- target_param_names = [target_param_name]
2374
2510
  # Both are missing -> check other keys in case more than 2 keys are tied to the same weight
2375
2511
  elif not source_is_there and not target_is_there:
2376
2512
  for target_backup, source_backup in tied_keys[i + 1 :]:
@@ -2379,10 +2515,10 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2379
2515
  if source_backup == source_param_name:
2380
2516
  target_backup_is_there = target_backup not in missing_keys
2381
2517
  # If the target is present, we found the correct weight to tie into (we know the source is missing)
2518
+ # Note here that we do not tie the missing source right now as well, as it will be done anyway when
2519
+ # the pair (target_backup, source_backup) becomes the main pair (target_param_name, source_param_name)
2382
2520
  if target_backup_is_there:
2383
2521
  source_param_name = target_backup
2384
- # Append the source as well, since both are missing we'll tie both
2385
- target_param_names.append(source_param_name)
2386
2522
  break
2387
2523
  # If we did not break from the loop, it was impossible to find a source key -> let's raise
2388
2524
  else:
@@ -2398,19 +2534,18 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2398
2534
 
2399
2535
  # Perform the actual tying
2400
2536
  source_param = self.get_parameter_or_buffer(source_param_name)
2401
- for target_param_name in target_param_names:
2402
- if "." in target_param_name:
2403
- parent_name, name = target_param_name.rsplit(".", 1)
2404
- parent = self.get_submodule(parent_name)
2405
- else:
2406
- name = target_param_name
2407
- parent = self
2408
- # Tie the weights
2409
- setattr(parent, name, source_param)
2410
- self._adjust_bias(parent, source_param)
2411
- # Remove from missing if necesary
2412
- if missing_keys is not None and remove_from_missing:
2413
- missing_keys.discard(target_param_name)
2537
+ if "." in target_param_name:
2538
+ parent_name, name = target_param_name.rsplit(".", 1)
2539
+ parent = self.get_submodule(parent_name)
2540
+ else:
2541
+ name = target_param_name
2542
+ parent = self
2543
+ # Tie the weights
2544
+ setattr(parent, name, source_param)
2545
+ self._adjust_bias(parent, source_param)
2546
+ # Remove from missing if necesary
2547
+ if missing_keys is not None and remove_from_missing:
2548
+ missing_keys.discard(target_param_name)
2414
2549
 
2415
2550
  def _adjust_bias(self, output_embeddings, input_embeddings):
2416
2551
  if getattr(output_embeddings, "bias", None) is not None and hasattr(output_embeddings, "weight"):
@@ -2923,7 +3058,8 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2923
3058
  Maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
2924
3059
  initialization logic in `_init_weights`.
2925
3060
  """
2926
- if _init_weights:
3061
+ # If we are initializing on meta device, there is no point in trying to run inits
3062
+ if get_torch_context_manager_or_global_device() != torch.device("meta"):
2927
3063
  # Initialize weights
2928
3064
  self.initialize_weights()
2929
3065
  # Tie weights needs to be called here, but it can use the pre-computed `all_tied_weights_keys`
@@ -2961,7 +3097,10 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
2961
3097
  "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
2962
3098
  )
2963
3099
 
2964
- if getattr(self, "_hf_peft_config_loaded", False):
3100
+ needs_embedding_grads = self.main_input_name == "input_ids"
3101
+ # we use that also to detect whether or not we have to raise if embeddings are missing (the submodel might not have embeddings at all)
3102
+ enable_input_grads = needs_embedding_grads or getattr(self, "_hf_peft_config_loaded", False)
3103
+ if enable_input_grads:
2965
3104
  # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
2966
3105
  # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
2967
3106
  # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
@@ -3172,29 +3311,23 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3172
3311
  current_peft_config = self.peft_config[active_adapter]
3173
3312
  current_peft_config.save_pretrained(save_directory)
3174
3313
 
3175
- # for offloaded modules
3176
- module_map = {}
3177
-
3178
- # Save the model
3314
+ # Get the model state_dict
3179
3315
  if state_dict is None:
3180
- # if any model parameters are offloaded, make module map
3181
- if (
3182
- hasattr(self, "hf_device_map")
3183
- and len(set(self.hf_device_map.values())) > 1
3184
- and ("cpu" in self.hf_device_map.values() or "disk" in self.hf_device_map.values())
3185
- ):
3186
- warnings.warn(
3187
- "Attempting to save a model with offloaded modules. Ensure that unallocated cpu memory exceeds the `shard_size` (5GB default)"
3188
- )
3189
- for name, module in model_to_save.named_modules():
3190
- if name == "":
3191
- continue
3192
- module_state_dict = module.state_dict()
3193
-
3194
- for key in module_state_dict:
3195
- module_map[name + f".{key}"] = module
3196
3316
  state_dict = model_to_save.state_dict()
3197
3317
 
3318
+ # if any model parameters are offloaded, we need to know it for later
3319
+ is_offloaded = False
3320
+ if (
3321
+ hasattr(self, "hf_device_map")
3322
+ and len(set(self.hf_device_map.values())) > 1
3323
+ and ("cpu" in self.hf_device_map.values() or "disk" in self.hf_device_map.values())
3324
+ ):
3325
+ is_offloaded = True
3326
+ warnings.warn(
3327
+ "Attempting to save a model with offloaded modules. Ensure that unallocated cpu memory "
3328
+ "exceeds the `shard_size` (50GB default)"
3329
+ )
3330
+
3198
3331
  # Translate state_dict from smp to hf if saving with smp >= 1.10
3199
3332
  if IS_SAGEMAKER_MP_POST_1_10:
3200
3333
  for smp_to_hf, _ in smp.state.module_manager.translate_functions:
@@ -3211,76 +3344,12 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3211
3344
  if self._tp_size is not None:
3212
3345
  state_dict = replace_state_dict_local_with_dtensor(state_dict, self._tp_plan, self._device_mesh)
3213
3346
 
3214
- # Safetensors does not allow tensor aliasing - we're going to remove aliases before saving
3215
- ptrs = collections.defaultdict(list)
3216
- for name, tensor in state_dict.items():
3217
- if not isinstance(tensor, torch.Tensor):
3218
- # Sometimes in the state_dict we have non-tensor objects.
3219
- # e.g. in bitsandbytes we have some `str` objects in the state_dict
3220
- # In the non-tensor case, fall back to the pointer of the object itself
3221
- ptrs[id(tensor)].append(name)
3222
-
3223
- elif tensor.device.type == "meta":
3224
- # In offloaded cases, there may be meta tensors in the state_dict.
3225
- # For these cases, key by the pointer of the original tensor object
3226
- # (state_dict tensors are detached and therefore no longer shared)
3227
- tensor = self.get_parameter(name)
3228
- ptrs[id(tensor)].append(name)
3229
-
3230
- else:
3231
- ptrs[id_tensor_storage(tensor)].append(name)
3232
-
3233
- shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
3234
-
3235
- # Recursively descend to find tied weight keys
3236
- _tied_weights_keys = set(_get_tied_weight_keys(self))
3237
- error_names = []
3238
- to_delete_names = set()
3239
- for names in shared_ptrs.values():
3240
- # Removing the keys which are declared as known duplicates on
3241
- # load. This allows to make sure the name which is kept is consistent.
3242
- if _tied_weights_keys is not None:
3243
- found = 0
3244
- for name in sorted(names):
3245
- matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys)
3246
- if matches_pattern and name in state_dict:
3247
- found += 1
3248
- if found < len(names):
3249
- to_delete_names.add(name)
3250
- # We are entering a place where the weights and the transformers configuration do NOT match.
3251
- shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict)
3252
- # Those are actually tensor sharing but disjoint from each other, we can safely clone them
3253
- # Reloaded won't have the same property, but it shouldn't matter in any meaningful way.
3254
- for name in disjoint_names:
3255
- state_dict[name] = state_dict[name].clone()
3256
-
3257
- # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
3258
- # If the link between tensors was done at runtime then `from_pretrained` will not get
3259
- # the key back leading to random tensor. A proper warning will be shown
3260
- # during reload (if applicable), but since the file is not necessarily compatible with
3261
- # the config, better show a proper warning.
3262
- shared_names, identical_names = _find_identical(shared_names, state_dict)
3263
- # delete tensors that have identical storage
3264
- for inames in identical_names:
3265
- known = inames.intersection(to_delete_names)
3266
- for name in known:
3267
- del state_dict[name]
3268
- unknown = inames.difference(to_delete_names)
3269
- if len(unknown) > 1:
3270
- error_names.append(unknown)
3271
-
3272
- if shared_names:
3273
- error_names.extend(shared_names)
3274
-
3275
- if len(error_names) > 0:
3276
- raise RuntimeError(
3277
- f"The weights trying to be saved contained shared tensors {error_names} which are not properly defined. We found `_tied_weights_keys` to be: {_tied_weights_keys}.\n"
3278
- "This can also just mean that the module's tied weight keys are wrong vs the actual tied weights in the model.",
3279
- )
3347
+ # Remove tied weights as safetensors do not handle them
3348
+ state_dict = remove_tied_weights_from_state_dict(state_dict, model_to_save)
3280
3349
 
3281
3350
  # Revert all renaming and/or weight operations
3282
3351
  if save_original_format:
3283
- state_dict = revert_weight_conversion(self, state_dict)
3352
+ state_dict = revert_weight_conversion(model_to_save, state_dict)
3284
3353
 
3285
3354
  # Shard the model if it is too big.
3286
3355
  if not _hf_peft_config_loaded:
@@ -3320,47 +3389,39 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3320
3389
  and reg.fullmatch(filename_no_suffix) is not None
3321
3390
  ):
3322
3391
  os.remove(full_filename)
3392
+
3323
3393
  # Save the model
3324
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
3325
- if module_map:
3326
- filename_to_tensors = logging.tqdm(filename_to_tensors, desc="Saving checkpoint shards")
3327
- for shard_file, tensors in filename_to_tensors:
3328
- shard = {}
3329
- for tensor in tensors:
3330
- if _is_dtensor_available and isinstance(state_dict[tensor], DTensor):
3331
- full_tensor = state_dict[tensor].full_tensor()
3394
+ for shard_file, tensor_names in logging.tqdm(
3395
+ state_dict_split.filename_to_tensors.items(), desc="Writing model shards"
3396
+ ):
3397
+ filename = os.path.join(save_directory, shard_file)
3398
+ shard_state_dict = {}
3399
+ for tensor_name in tensor_names:
3400
+ # Get the tensor, and remove it from state_dict to avoid keeping the ref
3401
+ tensor = state_dict.pop(tensor_name)
3402
+
3403
+ # In case of TP, get the full parameter back
3404
+ if _is_dtensor_available and isinstance(tensor, DTensor):
3405
+ tensor = tensor.full_tensor()
3332
3406
  # to get the correctly ordered tensor we need to repack if packed
3333
- if _get_parameter_tp_plan(tensor, self._tp_plan) == "local_packed_rowwise":
3334
- full_tensor = repack_weights(full_tensor, -1, self._tp_size, 2)
3335
- shard[tensor] = full_tensor.contiguous() # only do contiguous after it's permuted correctly
3336
- else:
3337
- shard[tensor] = state_dict[tensor].contiguous()
3338
- # delete reference, see https://github.com/huggingface/transformers/pull/34890
3339
- del state_dict[tensor]
3340
-
3341
- # remake shard with onloaded parameters if necessary
3342
- if module_map:
3343
- # init state_dict for this shard
3344
- shard_state_dict = dict.fromkeys(shard, "")
3345
- for module_name in shard:
3346
- # note that get_state_dict_from_offload can update with meta tensors
3347
- # if both a parent module and its descendant are offloaded
3348
- tensor = shard_state_dict[module_name]
3349
- if tensor == "" or (isinstance(tensor, torch.Tensor) and tensor.device.type == "meta"):
3350
- # update state dict with onloaded parameters
3351
- module = module_map[module_name]
3352
- shard_state_dict = get_state_dict_from_offload(module, module_name, shard_state_dict)
3353
-
3354
- # assign shard to be the completed state dict
3355
- shard = shard_state_dict
3356
- del shard_state_dict
3357
- gc.collect()
3358
-
3359
- # TODO: we should def parallelize this we are otherwise just waiting
3360
- # too much before scheduling the next write when its in a different file
3361
- safe_save_file(shard, os.path.join(save_directory, shard_file), metadata=metadata)
3362
-
3363
- del state_dict
3407
+ if _get_parameter_tp_plan(tensor_name, self._tp_plan) == "local_packed_rowwise":
3408
+ tensor = repack_weights(tensor, -1, self._tp_size, 2)
3409
+
3410
+ # If the param was offloaded, we need to load it back from disk to resave it. It's a strange pattern,
3411
+ # but it would otherwise not be contained in the saved shard if we were to simply move the file
3412
+ # or something
3413
+ if is_offloaded and tensor.device.type == "meta":
3414
+ tensor = load_offloaded_parameter(model_to_save, tensor_name)
3415
+
3416
+ # only do contiguous after it's permuted correctly in case of TP
3417
+ shard_state_dict[tensor_name] = tensor.contiguous()
3418
+
3419
+ # TODO: it would be very nice to do the writing concurrently, but safetensors never releases the GIL,
3420
+ # so it's not possible for now....
3421
+ # Write the shard to disk
3422
+ safe_save_file(shard_state_dict, filename, metadata=metadata)
3423
+ # Cleanup the data before next loop (important with offloading, so we don't blowup cpu RAM)
3424
+ del shard_state_dict
3364
3425
 
3365
3426
  if index is None:
3366
3427
  path_to_weights = os.path.join(save_directory, weights_name)
@@ -3537,19 +3598,26 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3537
3598
  return super().float(*args)
3538
3599
 
3539
3600
  @classmethod
3540
- def get_init_context(cls, is_quantized: bool, _is_ds_init_called: bool):
3601
+ def get_init_context(cls, dtype: torch.dtype, is_quantized: bool, _is_ds_init_called: bool):
3602
+ # Need to instantiate with correct dtype
3603
+ init_contexts = [local_torch_dtype(dtype, cls.__name__)]
3541
3604
  if is_deepspeed_zero3_enabled():
3542
3605
  import deepspeed
3543
3606
 
3544
- init_contexts = [no_init_weights()]
3545
3607
  # We cannot initialize the model on meta device with deepspeed when not quantized
3546
3608
  if not is_quantized and not _is_ds_init_called:
3547
3609
  logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3548
- init_contexts.extend([deepspeed.zero.Init(config_dict_or_path=deepspeed_config()), set_zero3_state()])
3610
+ init_contexts.extend(
3611
+ [
3612
+ init.no_init_weights(),
3613
+ deepspeed.zero.Init(config_dict_or_path=deepspeed_config()),
3614
+ set_zero3_state(),
3615
+ ]
3616
+ )
3549
3617
  elif is_quantized:
3550
- init_contexts.extend([init_empty_weights(), set_quantized_state()])
3618
+ init_contexts.extend([torch.device("meta"), set_quantized_state()])
3551
3619
  else:
3552
- init_contexts = [no_init_weights(), init_empty_weights()]
3620
+ init_contexts.append(torch.device("meta"))
3553
3621
 
3554
3622
  return init_contexts
3555
3623
 
@@ -3574,7 +3642,9 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3574
3642
 
3575
3643
  # This is a context manager to override the default kernel mapping
3576
3644
  # We are calling kernelize inside this context manager using the use_kernels setter
3577
- with use_kernel_mapping(kernel_config.kernel_mapping):
3645
+ # Param inherit_mapping should be False to avoid still loading kernel from remote
3646
+ inherit_mapping = not kernel_config.use_local_kernel
3647
+ with use_kernel_mapping(kernel_config.kernel_mapping, inherit_mapping=inherit_mapping):
3578
3648
  self.use_kernels = True
3579
3649
  # We use the default kernel mapping in .integrations.hub_kernels
3580
3650
  else:
@@ -3583,7 +3653,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3583
3653
  self.use_kernels = False
3584
3654
 
3585
3655
  @classmethod
3586
- @restore_default_dtype
3587
3656
  def from_pretrained(
3588
3657
  cls: type[SpecificPreTrainedModelType],
3589
3658
  pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
@@ -3692,10 +3761,18 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3692
3761
  "org/model@main"
3693
3762
  "org/model:custom_kernel"
3694
3763
  "org/model@v1.2.3:custom_kernel"
3764
+ experts_implementation (`str`, *optional*):
3765
+ The experts implementation to use in the model (if relevant). Can be any of:
3766
+
3767
+ - `"eager"` (sequential implementation of the experts matrix multiplications).
3768
+ - `"batched_mm"` (using [`torch.bmm`](https://pytorch.org/docs/stable/generated/torch.bmm.html)).
3769
+ - `"grouped_mm"` (using [`torch._grouped_mm`](https://docs.pytorch.org/docs/main/generated/torch.nn.functional.grouped_mm.html)).
3770
+
3771
+ By default, if available, `grouped_mm` will be used for torch>=2.9.0. The default is otherwise the sequential `"eager"` implementation.
3695
3772
 
3696
3773
  > Parameters for big model inference
3697
3774
 
3698
- dtype (`str` or `torch.dtype`, *optional*):
3775
+ dtype (`str` or `torch.dtype`, *optional*, defaults to `"auto"`):
3699
3776
  Override the default `torch_dtype` and load the model under a specific `dtype`. The different options
3700
3777
  are:
3701
3778
 
@@ -3915,8 +3992,11 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3915
3992
  if "attn_implementation" in kwargs:
3916
3993
  config._attn_implementation = kwargs.pop("attn_implementation")
3917
3994
 
3918
- hf_quantizer, config, dtype, device_map = get_hf_quantizer(
3919
- config, quantization_config, dtype, device_map, weights_only, user_agent
3995
+ if "experts_implementation" in kwargs:
3996
+ config._experts_implementation = kwargs.pop("experts_implementation")
3997
+
3998
+ hf_quantizer, config, device_map = get_hf_quantizer(
3999
+ config, quantization_config, device_map, weights_only, user_agent
3920
4000
  )
3921
4001
 
3922
4002
  if gguf_file:
@@ -3963,33 +4043,29 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3963
4043
  ]
3964
4044
 
3965
4045
  # Find the correct dtype based on current state
3966
- config, dtype, dtype_orig = _get_dtype(
3967
- cls, dtype, checkpoint_files, config, sharded_metadata, state_dict, weights_only
4046
+ config, dtype = _get_dtype(
4047
+ dtype, checkpoint_files, config, sharded_metadata, state_dict, weights_only, hf_quantizer
3968
4048
  )
3969
4049
 
3970
4050
  config.name_or_path = pretrained_model_name_or_path
3971
- model_init_context = cls.get_init_context(is_quantized, _is_ds_init_called)
4051
+ model_init_context = cls.get_init_context(dtype, is_quantized, _is_ds_init_called)
3972
4052
  config = copy.deepcopy(config) # We do not want to modify the config inplace in from_pretrained.
3973
4053
  with ContextManagers(model_init_context):
3974
4054
  # Let's make sure we don't run the init function of buffer modules
3975
4055
  model = cls(config, *model_args, **model_kwargs)
3976
4056
 
4057
+ if hf_quantizer is not None: # replace module with quantized modules (does not touch weights)
4058
+ hf_quantizer.preprocess_model(
4059
+ model=model,
4060
+ dtype=dtype,
4061
+ device_map=device_map,
4062
+ checkpoint_files=checkpoint_files,
4063
+ use_kernels=use_kernels,
4064
+ )
4065
+
3977
4066
  # Obtain the weight conversion mapping for this model if any are registered
3978
4067
  weight_conversions = get_model_conversion_mapping(model, key_mapping, hf_quantizer)
3979
4068
 
3980
- # make sure we use the model's config since the __init__ call might have copied it
3981
- config = model.config
3982
-
3983
- if hf_quantizer is not None: # replace module with quantized modules (does not touch weights)
3984
- hf_quantizer.preprocess_model(
3985
- model=model,
3986
- device_map=device_map,
3987
- keep_in_fp32_modules=model._keep_in_fp32_modules, # TODO prob no longer needed?
3988
- config=config,
3989
- checkpoint_files=checkpoint_files,
3990
- use_kernels=use_kernels,
3991
- )
3992
-
3993
4069
  if _torch_distributed_available and device_mesh is not None: # add hooks to nn.Modules: no weights
3994
4070
  model = distribute_model(model, tp_plan, distributed_config, device_mesh, tp_size)
3995
4071
 
@@ -3997,10 +4073,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
3997
4073
  if device_map is not None:
3998
4074
  device_map = _get_device_map(model, device_map, max_memory, hf_quantizer)
3999
4075
 
4000
- # restore default dtype
4001
- if dtype_orig is not None:
4002
- torch.set_default_dtype(dtype_orig)
4003
-
4004
4076
  # Finalize model weight initialization
4005
4077
  model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs = cls._load_pretrained_model(
4006
4078
  model,
@@ -4011,6 +4083,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4011
4083
  sharded_metadata=sharded_metadata,
4012
4084
  device_map=device_map,
4013
4085
  disk_offload_folder=offload_folder,
4086
+ offload_buffers=offload_buffers,
4014
4087
  dtype=dtype,
4015
4088
  hf_quantizer=hf_quantizer,
4016
4089
  device_mesh=device_mesh,
@@ -4018,7 +4091,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4018
4091
  weight_mapping=weight_conversions,
4019
4092
  )
4020
4093
 
4021
- model.eval() # Set model in evaluation mode to deactivate DropOut modules by default
4094
+ model.eval() # Set model in evaluation mode to deactivate Dropout modules by default
4022
4095
  model.set_use_kernels(use_kernels, kernel_config)
4023
4096
 
4024
4097
  # If it is a model with generation capabilities, attempt to load generation files (generation config,
@@ -4034,13 +4107,15 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4034
4107
  **kwargs,
4035
4108
  )
4036
4109
 
4037
- # for device_map="auto" : dispatch model with hooks on all devices if necessary
4038
- if device_map is not None and device_mesh is None:
4110
+ # If the device_map has more than 1 device: dispatch model with hooks on all devices
4111
+ if device_map is not None and len(set(device_map.values())) > 1:
4039
4112
  accelerate_dispatch(model, hf_quantizer, device_map, offload_folder, offload_index, offload_buffers)
4040
4113
 
4041
4114
  if hf_quantizer is not None:
4042
4115
  model.hf_quantizer = hf_quantizer
4043
- hf_quantizer.postprocess_model(model, config=config) # usually a no-op but sometimes needed
4116
+ hf_quantizer.postprocess_model(
4117
+ model
4118
+ ) # usually a no-op but sometimes needed, e.g to remove the quant config when dequantizing
4044
4119
 
4045
4120
  if _adapter_model_path is not None:
4046
4121
  adapter_kwargs["key_mapping"] = key_mapping
@@ -4072,6 +4147,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4072
4147
  sharded_metadata: Optional[dict] = None,
4073
4148
  device_map: Optional[dict] = None,
4074
4149
  disk_offload_folder: Optional[str] = None,
4150
+ offload_buffers: bool = False,
4075
4151
  dtype: Optional[torch.dtype] = None,
4076
4152
  hf_quantizer: Optional[HfQuantizer] = None,
4077
4153
  device_mesh: Optional["torch.distributed.device_mesh.DeviceMesh"] = None,
@@ -4086,6 +4162,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4086
4162
 
4087
4163
  # Model's definition arriving here is final (TP hooks added, quantized layers replaces)
4088
4164
  expected_keys = list(model.state_dict().keys())
4165
+
4089
4166
  if logger.level >= logging.WARNING:
4090
4167
  verify_tp_plan(expected_keys, getattr(model, "_tp_plan", None))
4091
4168
 
@@ -4108,7 +4185,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4108
4185
  expanded_device_map = expand_device_map(device_map, expected_keys)
4109
4186
  caching_allocator_warmup(model, expanded_device_map, hf_quantizer)
4110
4187
 
4111
- tp_plan = getattr(model, "_tp_plan", None)
4112
4188
  error_msgs = []
4113
4189
 
4114
4190
  if is_deepspeed_zero3_enabled() and not is_quantized:
@@ -4117,9 +4193,9 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4117
4193
  for ckpt_file in checkpoint_files:
4118
4194
  merged_state_dict.update(load_state_dict(ckpt_file, map_location="cpu", weights_only=weights_only))
4119
4195
  state_dict = merged_state_dict
4120
- error_msgs += _load_state_dict_into_zero3_model(model, state_dict)
4196
+ error_msgs, missing_keys = _load_state_dict_into_zero3_model(model, state_dict)
4121
4197
  # This is not true but for now we assume only best-case scenario with deepspeed, i.e. perfectly matching checkpoints
4122
- missing_keys, unexpected_keys, mismatched_keys, conversion_errors = set(), set(), set(), set()
4198
+ unexpected_keys, mismatched_keys, conversion_errors = set(), set(), set()
4123
4199
  else:
4124
4200
  all_pointer = set()
4125
4201
  # Checkpoints are safetensors
@@ -4143,17 +4219,18 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4143
4219
 
4144
4220
  missing_keys, unexpected_keys, mismatched_keys, disk_offload_index, conversion_errors = (
4145
4221
  convert_and_load_state_dict_in_model(
4146
- model,
4147
- merged_state_dict,
4148
- weight_mapping,
4149
- tp_plan,
4150
- hf_quantizer,
4151
- dtype,
4152
- device_map,
4153
- model.dtype_plan,
4154
- device_mesh,
4155
- disk_offload_index,
4156
- disk_offload_folder,
4222
+ model=model,
4223
+ state_dict=merged_state_dict,
4224
+ weight_mapping=weight_mapping,
4225
+ tp_plan=model._tp_plan,
4226
+ hf_quantizer=hf_quantizer,
4227
+ dtype=dtype,
4228
+ device_map=device_map,
4229
+ dtype_plan=model.dtype_plan,
4230
+ device_mesh=device_mesh,
4231
+ disk_offload_index=disk_offload_index,
4232
+ disk_offload_folder=disk_offload_folder,
4233
+ offload_buffers=offload_buffers,
4157
4234
  )
4158
4235
  )
4159
4236
 
@@ -4164,12 +4241,12 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4164
4241
  # Marks tied weights as `_is_hf_initialized` to avoid initializing them (it's very important for efficiency)
4165
4242
  model.mark_tied_weights_as_initialized()
4166
4243
 
4167
- # Move missing (and potentially mismatched) keys back to cpu from meta device (because they won't be moved when
4168
- # loading the weights as they are not in the loaded state dict)
4169
- miss_and_mismatched = missing_keys | {k[0] for k in mismatched_keys}
4170
- model._move_missing_keys_from_meta_to_cpu(miss_and_mismatched, dtype, hf_quantizer)
4244
+ # Move missing (and potentially mismatched) keys and non-persistent buffers back to their expected device from
4245
+ # meta device (because they were not moved when loading the weights as they were not in the loaded state dict)
4246
+ missing_and_mismatched = missing_keys | {k[0] for k in mismatched_keys}
4247
+ model._move_missing_keys_from_meta_to_device(missing_and_mismatched, device_map, device_mesh, hf_quantizer)
4171
4248
 
4172
- # Correctly initialize the missing (and potentially mismatched) keys (all parameters without the `_is_hf_initialzed` flag)
4249
+ # Correctly initialize the missing (and potentially mismatched) keys (all parameters without the `_is_hf_initialized` flag)
4173
4250
  model._initialize_missing_keys(is_quantized)
4174
4251
 
4175
4252
  # Tie the weights
@@ -4178,34 +4255,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4178
4255
  # Adjust missing and unexpected keys
4179
4256
  missing_keys, unexpected_keys = model._adjust_missing_and_unexpected_keys(missing_keys, unexpected_keys)
4180
4257
 
4181
- # Post-processing for tensor parallelism
4182
- if device_mesh is not None:
4183
- # When using TP, the device map is a single device for all parameters
4184
- tp_device = list(device_map.values())[0]
4185
- # This is needed for the RotaryEmbedding, which was not initialized on the correct device as it is
4186
- # not part of the state_dict (persistent=False)
4187
- for buffer in model.buffers(): # TODO to avoid this buffer could be added to the ckpt
4188
- if buffer.device != tp_device:
4189
- buffer.data = buffer.to(tp_device)
4190
-
4191
- # In this case, the top-most task module weights were not moved to device and parallelized as they
4192
- # were not part of the loaded weights: do it now
4193
- if missing_keys:
4194
- state_dict = model.state_dict()
4195
- for name in missing_keys:
4196
- param = state_dict[name]
4197
- # Shard the param
4198
- shard_and_distribute_module(
4199
- model,
4200
- param.to(tp_device),
4201
- param,
4202
- name,
4203
- None,
4204
- False,
4205
- device_mesh.get_local_rank(),
4206
- device_mesh,
4207
- )
4208
-
4209
4258
  log_state_dict_report(
4210
4259
  model=model,
4211
4260
  pretrained_model_name_or_path=pretrained_model_name_or_path,
@@ -4403,33 +4452,54 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4403
4452
  def is_backend_compatible(cls):
4404
4453
  return cls._supports_attention_backend
4405
4454
 
4406
- def _move_missing_keys_from_meta_to_cpu(
4407
- self, missing_keys: list[str], dtype: torch.dtype, hf_quantizer: Optional[HfQuantizer]
4455
+ def _move_missing_keys_from_meta_to_device(
4456
+ self,
4457
+ missing_keys: list[str],
4458
+ device_map: dict | None,
4459
+ device_mesh: "torch.distributed.device_mesh.DeviceMesh | None",
4460
+ hf_quantizer: HfQuantizer | None,
4408
4461
  ) -> None:
4409
- """Move the missing keys (keys that are part of the model parameters, but were NOT found in the loaded state dicts) back
4410
- from meta device to cpu.
4462
+ """Move the missing keys (keys that are part of the model parameters, but were NOT found in the loaded state dicts)
4463
+ back from meta device to their device according to the `device_map` if any, else cpu. Takes care of sharding those
4464
+ missing parameters if `device_mesh` is provided, i.e. we are using TP.
4465
+ All non-persistent buffers are also moved back to the correct device (they are not part of the state_dict, but are
4466
+ not missing either).
4411
4467
  """
4412
4468
  is_quantized = hf_quantizer is not None
4469
+ # This is the only case where we do not initialize the model on meta device, so we don't have to do anything here
4470
+ if is_deepspeed_zero3_enabled() and not is_quantized:
4471
+ return
4413
4472
 
4414
4473
  # In this case we need to move everything back
4415
4474
  if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized:
4416
- # We only do it for the parameters, as the buffers are not initialized on the meta device by default
4417
4475
  for key, param in self.named_parameters():
4418
- value = torch.empty_like(param, dtype=dtype, device="cpu")
4476
+ value = torch.empty_like(param, device="cpu")
4477
+ _load_parameter_into_model(self, key, value)
4478
+ for key, buffer in self.named_buffers():
4479
+ value = torch.empty_like(buffer, device="cpu")
4419
4480
  _load_parameter_into_model(self, key, value)
4420
4481
  return
4421
4482
 
4422
- model_state_dict = self.state_dict()
4423
4483
  # The tied weight keys are in the "missing" usually, but they should not be moved (they will be tied anyway)
4424
4484
  # This is especially important because if they are moved, they will lose the `_is_hf_initialized` flag, and they
4425
4485
  # will be re-initialized for nothing (which can be quite long)
4426
4486
  for key in missing_keys - self.all_tied_weights_keys.keys():
4427
- param = model_state_dict[key]
4428
- # Buffers are not initialized on the meta device, so we still need this check to avoid overwriting them
4429
- if param.device == torch.device("meta"):
4430
- value = torch.empty_like(param, dtype=dtype, device="cpu")
4431
- if not is_quantized or not hf_quantizer.param_needs_quantization(self, key):
4432
- _load_parameter_into_model(self, key, value)
4487
+ param = self.get_parameter_or_buffer(key)
4488
+ param_device = get_device(device_map, key, valid_torch_device=True)
4489
+ value = torch.empty_like(param, device=param_device)
4490
+ # For TP, we may need to shard the param
4491
+ if device_mesh is not None:
4492
+ shard_and_distribute_module(
4493
+ self, value, param, key, None, False, device_mesh.get_local_rank(), device_mesh
4494
+ )
4495
+ # Otherwise, just move it to device
4496
+ else:
4497
+ _load_parameter_into_model(self, key, value)
4498
+ # We need to move back non-persistent buffers as well, as they are not part of loaded weights anyway
4499
+ for key, buffer in self.named_non_persistent_buffers():
4500
+ buffer_device = get_device(device_map, key, valid_torch_device=True)
4501
+ value = torch.empty_like(buffer, device=buffer_device)
4502
+ _load_parameter_into_model(self, key, value)
4433
4503
 
4434
4504
  def _initialize_missing_keys(self, is_quantized: bool) -> None:
4435
4505
  """
@@ -4457,8 +4527,6 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4457
4527
  ) -> tuple[set[str], set[str]]:
4458
4528
  """Adjust the `missing_keys` and `unexpected_keys` based on current model's exception rules, to avoid
4459
4529
  raising unneeded warnings/errors.
4460
- Also, set the `_is_hf_initialized` on tied weight keys, to avoid initializing them as they are going to
4461
- be tied anyway.
4462
4530
  """
4463
4531
  # Old checkpoints may have keys for rotary_emb.inv_freq forach layer, however we moved this buffer to the main model
4464
4532
  # (so the buffer name has changed). Remove them in such a case. This is another exception that was not added to
@@ -4517,6 +4585,19 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
4517
4585
 
4518
4586
  raise AttributeError(f"`{target}` is neither a parameter, buffer, nor extra state.")
4519
4587
 
4588
+ def named_non_persistent_buffers(
4589
+ self, recurse: bool = True, remove_duplicate: bool = True
4590
+ ) -> Iterator[tuple[str, torch.Tensor]]:
4591
+ """Similar to `named_buffers`, but only yield non-persistent ones. It is handy as it's not perfectly straightforward
4592
+ to know if they are persistent or not"""
4593
+ for name, tensor in self.named_buffers(recurse=recurse, remove_duplicate=remove_duplicate):
4594
+ # We have to grab the parent here, as the attribute `_non_persistent_buffers_set` is on the immediate
4595
+ # parent only
4596
+ parent, buf_name = name.rsplit(".", 1) if "." in name else ("", name)
4597
+ parent = self.get_submodule(parent)
4598
+ if buf_name in parent._non_persistent_buffers_set:
4599
+ yield name, tensor
4600
+
4520
4601
  def train(self, mode: bool = True):
4521
4602
  out = super().train(mode)
4522
4603
  if self.use_kernels:
@@ -4569,6 +4650,40 @@ def is_accelerator_device(device: Union[str, int, torch.device]) -> bool:
4569
4650
  return torch.device(device).type not in ["meta", "cpu"]
4570
4651
 
4571
4652
 
4653
+ def get_total_byte_count(
4654
+ model: PreTrainedModel, accelerator_device_map: dict, hf_quantizer: Optional[HfQuantizer] = None
4655
+ ):
4656
+ """
4657
+ This utility function calculates the total bytes count needed to load the model on each device.
4658
+ This is useful for caching_allocator_warmup as we want to know how much cache we need to pre-allocate.
4659
+ """
4660
+
4661
+ total_byte_count = defaultdict(lambda: 0)
4662
+ tied_param_names = model.all_tied_weights_keys.keys()
4663
+ tp_plan = model._tp_plan if torch.distributed.is_available() and torch.distributed.is_initialized() else []
4664
+
4665
+ for param_name, device in accelerator_device_map.items():
4666
+ # Skip if the parameter has already been accounted for (tied weights)
4667
+ if param_name in tied_param_names:
4668
+ continue
4669
+
4670
+ param = model.get_parameter_or_buffer(param_name)
4671
+
4672
+ if hf_quantizer is not None:
4673
+ dtype_size = hf_quantizer.param_element_size(model, param_name, param)
4674
+ else:
4675
+ dtype_size = param.element_size()
4676
+
4677
+ param_byte_count = param.numel() * dtype_size
4678
+
4679
+ if len(tp_plan) > 0:
4680
+ is_part_of_plan = _get_parameter_tp_plan(param_name, tp_plan, is_weight=True) is not None
4681
+ param_byte_count //= torch.distributed.get_world_size() if is_part_of_plan else 1
4682
+
4683
+ total_byte_count[device] += param_byte_count
4684
+ return total_byte_count
4685
+
4686
+
4572
4687
  def caching_allocator_warmup(model: PreTrainedModel, expanded_device_map: dict, hf_quantizer: Optional[HfQuantizer]):
4573
4688
  """This function warm-ups the caching allocator based on the size of the model tensors that will reside on each
4574
4689
  device. It allows to have one large call to Malloc, instead of recursively calling it later when loading
@@ -4588,8 +4703,6 @@ def caching_allocator_warmup(model: PreTrainedModel, expanded_device_map: dict,
4588
4703
  - Loading speed bottleneck is now almost only tensor copy (i.e. changing the dtype) and moving the tensors to the devices.
4589
4704
  However, we cannot really improve on those aspects obviously, as the data needs to be moved/copied in the end.
4590
4705
  """
4591
- factor = 2 if hf_quantizer is None else hf_quantizer.get_accelerator_warm_up_factor()
4592
-
4593
4706
  # Remove disk, cpu and meta devices, and cast to proper torch.device
4594
4707
  accelerator_device_map = {
4595
4708
  param: torch.device(device) for param, device in expanded_device_map.items() if is_accelerator_device(device)
@@ -4597,40 +4710,7 @@ def caching_allocator_warmup(model: PreTrainedModel, expanded_device_map: dict,
4597
4710
  if not accelerator_device_map:
4598
4711
  return
4599
4712
 
4600
- tp_plan = getattr(model, "_tp_plan", []) or []
4601
- tp_plan_regex = (
4602
- re.compile("|".join([re.escape(plan) for plan in tp_plan]))
4603
- if _torch_distributed_available and torch.distributed.is_initialized()
4604
- else None
4605
- )
4606
- total_byte_count = defaultdict(lambda: 0)
4607
- tied_param_names = model.all_tied_weights_keys.keys()
4608
- for param_name, device in accelerator_device_map.items():
4609
- # Skip if the parameter has already been accounted for (tied weights)
4610
- if param_name in tied_param_names:
4611
- continue
4612
-
4613
- # For example in the case of MXFP4 quantization, we need to update the param name to the original param name
4614
- # because the checkpoint contains blocks, and scales, but since we are dequantizing, we need to use the original param name
4615
- if hf_quantizer is not None:
4616
- param_name = hf_quantizer.get_param_name(param_name)
4617
-
4618
- try:
4619
- param = model.get_parameter_or_buffer(param_name)
4620
- except AttributeError:
4621
- # TODO: for now let's skip if we can't find the parameters
4622
- if hf_quantizer is not None:
4623
- continue
4624
- raise AttributeError(f"Parameter {param_name} not found in model")
4625
-
4626
- # The dtype of different parameters may be different with composite models or `keep_in_fp32_modules`
4627
- param_byte_count = param.numel() * param.element_size()
4628
-
4629
- if tp_plan_regex is not None:
4630
- generic_name = re.sub(r"\.\d+\.", ".*.", param_name)
4631
- param_byte_count //= torch.distributed.get_world_size() if tp_plan_regex.search(generic_name) else 1
4632
-
4633
- total_byte_count[device] += param_byte_count
4713
+ total_byte_count = get_total_byte_count(model, accelerator_device_map, hf_quantizer)
4634
4714
 
4635
4715
  # This will kick off the caching allocator to avoid having to Malloc afterwards
4636
4716
  for device, byte_count in total_byte_count.items():
@@ -4650,9 +4730,9 @@ def caching_allocator_warmup(model: PreTrainedModel, expanded_device_map: dict,
4650
4730
  unused_memory = torch_accelerator_module.memory_reserved(
4651
4731
  index
4652
4732
  ) - torch_accelerator_module.memory_allocated(index)
4653
- byte_count = max(0, byte_count - unused_memory)
4654
- # Allocate memory
4655
- _ = torch.empty(byte_count // factor, dtype=torch.float16, device=device, requires_grad=False)
4733
+ byte_count = int(max(0, byte_count - unused_memory))
4734
+ # We divide by 2 here as we allocate in fp16
4735
+ _ = torch.empty(byte_count // 2, dtype=torch.float16, device=device, requires_grad=False)
4656
4736
 
4657
4737
 
4658
4738
  class AttentionInterface(GeneralInterface):