transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +20 -1
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +68 -5
- transformers/core_model_loading.py +201 -35
- transformers/dependency_versions_table.py +1 -1
- transformers/feature_extraction_utils.py +54 -22
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +162 -122
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +101 -64
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +2 -12
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +12 -0
- transformers/integrations/accelerate.py +44 -111
- transformers/integrations/aqlm.py +3 -5
- transformers/integrations/awq.py +2 -5
- transformers/integrations/bitnet.py +5 -8
- transformers/integrations/bitsandbytes.py +16 -15
- transformers/integrations/deepspeed.py +18 -3
- transformers/integrations/eetq.py +3 -5
- transformers/integrations/fbgemm_fp8.py +1 -1
- transformers/integrations/finegrained_fp8.py +6 -16
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/higgs.py +2 -5
- transformers/integrations/hub_kernels.py +23 -5
- transformers/integrations/integration_utils.py +35 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +4 -10
- transformers/integrations/peft.py +5 -0
- transformers/integrations/quanto.py +5 -2
- transformers/integrations/spqr.py +3 -5
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/vptq.py +3 -5
- transformers/modeling_gguf_pytorch_utils.py +66 -19
- transformers/modeling_rope_utils.py +78 -81
- transformers/modeling_utils.py +583 -503
- transformers/models/__init__.py +19 -0
- transformers/models/afmoe/modeling_afmoe.py +7 -16
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/align/modeling_align.py +12 -6
- transformers/models/altclip/modeling_altclip.py +7 -3
- transformers/models/apertus/modeling_apertus.py +4 -2
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +1 -1
- transformers/models/aria/modeling_aria.py +8 -4
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +27 -0
- transformers/models/auto/feature_extraction_auto.py +7 -3
- transformers/models/auto/image_processing_auto.py +4 -2
- transformers/models/auto/modeling_auto.py +31 -0
- transformers/models/auto/processing_auto.py +4 -0
- transformers/models/auto/tokenization_auto.py +132 -153
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +18 -19
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +9 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +7 -0
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +3 -0
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +7 -0
- transformers/models/bit/modeling_bit.py +5 -1
- transformers/models/bitnet/modeling_bitnet.py +1 -1
- transformers/models/blenderbot/modeling_blenderbot.py +7 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +6 -7
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +7 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +8 -0
- transformers/models/blip_2/modeling_blip_2.py +2 -0
- transformers/models/bloom/modeling_bloom.py +13 -44
- transformers/models/blt/modeling_blt.py +162 -2
- transformers/models/blt/modular_blt.py +168 -3
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +6 -0
- transformers/models/bros/modeling_bros.py +8 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/canine/modeling_canine.py +6 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +9 -4
- transformers/models/chinese_clip/modeling_chinese_clip.py +6 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +25 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clipseg/modeling_clipseg.py +4 -0
- transformers/models/clvp/modeling_clvp.py +14 -3
- transformers/models/code_llama/tokenization_code_llama.py +1 -1
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/cohere/modeling_cohere.py +1 -1
- transformers/models/cohere2/modeling_cohere2.py +1 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +0 -1
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +4 -1
- transformers/models/convbert/modeling_convbert.py +3 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +3 -1
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +14 -2
- transformers/models/cvt/modeling_cvt.py +5 -1
- transformers/models/cwm/modeling_cwm.py +1 -1
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +46 -39
- transformers/models/d_fine/modular_d_fine.py +15 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +1 -1
- transformers/models/dac/modeling_dac.py +4 -4
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +1 -1
- transformers/models/deberta/modeling_deberta.py +2 -0
- transformers/models/deberta_v2/modeling_deberta_v2.py +2 -0
- transformers/models/decision_transformer/modeling_decision_transformer.py +8 -5
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -4
- transformers/models/deepseek_v2/modular_deepseek_v2.py +4 -2
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +9 -5
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +1 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +8 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +12 -1
- transformers/models/dia/modular_dia.py +11 -0
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +3 -3
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +3 -0
- transformers/models/dinov3_vit/modular_dinov3_vit.py +3 -0
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/doge/modeling_doge.py +1 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +16 -12
- transformers/models/dots1/modeling_dots1.py +14 -5
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +5 -2
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +13 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +14 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +5 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +8 -2
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt_fast.py +46 -14
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +1 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +16 -13
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +9 -35
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +6 -1
- transformers/models/evolla/modeling_evolla.py +9 -1
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +1 -1
- transformers/models/falcon/modeling_falcon.py +3 -3
- transformers/models/falcon_h1/modeling_falcon_h1.py +28 -23
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +6 -2
- transformers/models/falcon_mamba/modular_falcon_mamba.py +7 -2
- transformers/models/fast_vlm/modeling_fast_vlm.py +7 -3
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +23 -10
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +14 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +4 -1
- transformers/models/flex_olmo/modeling_flex_olmo.py +7 -4
- transformers/models/florence2/modeling_florence2.py +20 -3
- transformers/models/florence2/modular_florence2.py +13 -0
- transformers/models/fnet/modeling_fnet.py +7 -0
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +16 -0
- transformers/models/gemma/modeling_gemma.py +10 -12
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma2/modeling_gemma2.py +1 -1
- transformers/models/gemma2/modular_gemma2.py +1 -1
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +28 -7
- transformers/models/gemma3/modular_gemma3.py +26 -6
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +47 -9
- transformers/models/gemma3n/modular_gemma3n.py +51 -9
- transformers/models/git/modeling_git.py +181 -126
- transformers/models/glm/modeling_glm.py +1 -1
- transformers/models/glm4/modeling_glm4.py +1 -1
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +9 -5
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +15 -5
- transformers/models/glm4v/modular_glm4v.py +11 -3
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +39 -23
- transformers/models/glm4v_moe/modular_glm4v_moe.py +12 -0
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +8 -5
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +3 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +15 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +1 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +1 -1
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +6 -9
- transformers/models/gpt_oss/modular_gpt_oss.py +5 -7
- transformers/models/gptj/modeling_gptj.py +15 -6
- transformers/models/granite/modeling_granite.py +1 -1
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +2 -3
- transformers/models/granitemoe/modular_granitemoe.py +1 -2
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +33 -23
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +2 -3
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +4 -4
- transformers/models/groupvit/modeling_groupvit.py +6 -1
- transformers/models/helium/modeling_helium.py +1 -1
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -0
- transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -0
- transformers/models/hubert/modeling_hubert.py +4 -0
- transformers/models/hubert/modular_hubert.py +4 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +12 -4
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +16 -0
- transformers/models/idefics/modeling_idefics.py +10 -0
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +9 -2
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +11 -8
- transformers/models/internvl/modular_internvl.py +5 -9
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +24 -19
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +15 -7
- transformers/models/janus/modular_janus.py +16 -7
- transformers/models/jetmoe/modeling_jetmoe.py +2 -2
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +14 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +9 -3
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/configuration_lasr.py +4 -0
- transformers/models/lasr/modeling_lasr.py +3 -2
- transformers/models/lasr/modular_lasr.py +8 -1
- transformers/models/lasr/processing_lasr.py +0 -2
- transformers/models/layoutlm/modeling_layoutlm.py +5 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +12 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1 -0
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +29 -5
- transformers/models/led/modeling_led.py +6 -0
- transformers/models/levit/modeling_levit.py +18 -0
- transformers/models/lfm2/modeling_lfm2.py +1 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +14 -4
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lilt/modeling_lilt.py +19 -15
- transformers/models/llama/modeling_llama.py +1 -1
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +8 -4
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +2 -1
- transformers/models/longcat_flash/modular_longcat_flash.py +1 -0
- transformers/models/longt5/modeling_longt5.py +0 -4
- transformers/models/m2m_100/modeling_m2m_100.py +10 -0
- transformers/models/mamba/modeling_mamba.py +2 -1
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +3 -0
- transformers/models/markuplm/modeling_markuplm.py +5 -8
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +9 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +9 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +19 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +7 -0
- transformers/models/megatron_bert/modeling_megatron_bert.py +2 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mimi/modeling_mimi.py +25 -4
- transformers/models/minimax/modeling_minimax.py +16 -3
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +1 -1
- transformers/models/mistral/modeling_mistral.py +1 -1
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +12 -4
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +13 -2
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +4 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +4 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -0
- transformers/models/modernbert/modeling_modernbert.py +12 -1
- transformers/models/modernbert/modular_modernbert.py +12 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -1
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +9 -1
- transformers/models/moonshine/modeling_moonshine.py +1 -1
- transformers/models/moshi/modeling_moshi.py +21 -51
- transformers/models/mpnet/modeling_mpnet.py +2 -0
- transformers/models/mra/modeling_mra.py +4 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +0 -10
- transformers/models/musicgen/modeling_musicgen.py +5 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +4 -0
- transformers/models/mvp/modeling_mvp.py +7 -0
- transformers/models/nanochat/modeling_nanochat.py +1 -1
- transformers/models/nemotron/modeling_nemotron.py +3 -3
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +11 -16
- transformers/models/nystromformer/modeling_nystromformer.py +7 -0
- transformers/models/olmo/modeling_olmo.py +1 -1
- transformers/models/olmo2/modeling_olmo2.py +1 -1
- transformers/models/olmo3/modeling_olmo3.py +1 -1
- transformers/models/olmoe/modeling_olmoe.py +12 -4
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +4 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +7 -38
- transformers/models/openai/modeling_openai.py +12 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +7 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +7 -3
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +3 -2
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +28 -14
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +22 -12
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/modeling_parakeet.py +5 -0
- transformers/models/parakeet/modular_parakeet.py +5 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +4 -0
- transformers/models/patchtst/modeling_patchtst.py +5 -4
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/models/pe_audio/processing_pe_audio.py +24 -0
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +3 -0
- transformers/models/pegasus_x/modeling_pegasus_x.py +1 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +5 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +1 -1
- transformers/models/phi/modeling_phi.py +1 -1
- transformers/models/phi3/modeling_phi3.py +1 -1
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +4 -1
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +3 -0
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +12 -4
- transformers/models/phimoe/modular_phimoe.py +1 -1
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +1 -1
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +7 -0
- transformers/models/plbart/modular_plbart.py +6 -0
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +11 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prophetnet/modeling_prophetnet.py +2 -1
- transformers/models/qwen2/modeling_qwen2.py +1 -1
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +104 -64
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +58 -18
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -5
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +26 -22
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +2 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +12 -4
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +17 -4
- transformers/models/qwen3/modeling_qwen3.py +1 -1
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +12 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +4 -6
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +92 -46
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +48 -4
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +17 -4
- transformers/models/qwen3_vl/modular_qwen3_vl.py +21 -10
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +94 -112
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +32 -81
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +7 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +3 -2
- transformers/models/reformer/modeling_reformer.py +9 -1
- transformers/models/regnet/modeling_regnet.py +4 -0
- transformers/models/rembert/modeling_rembert.py +7 -1
- transformers/models/resnet/modeling_resnet.py +8 -3
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +4 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +8 -3
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +7 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +1 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +5 -1
- transformers/models/sam2/modular_sam2.py +5 -1
- transformers/models/sam2_video/modeling_sam2_video.py +51 -43
- transformers/models/sam2_video/modular_sam2_video.py +31 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +23 -0
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -0
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +26 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +3 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +27 -11
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +6 -0
- transformers/models/seed_oss/modeling_seed_oss.py +1 -1
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +2 -2
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +63 -41
- transformers/models/smollm3/modeling_smollm3.py +1 -1
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +10 -0
- transformers/models/speecht5/modeling_speecht5.py +28 -0
- transformers/models/splinter/modeling_splinter.py +9 -3
- transformers/models/squeezebert/modeling_squeezebert.py +2 -0
- transformers/models/stablelm/modeling_stablelm.py +1 -1
- transformers/models/starcoder2/modeling_starcoder2.py +1 -1
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/swiftformer/modeling_swiftformer.py +4 -0
- transformers/models/swin/modeling_swin.py +16 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +49 -33
- transformers/models/swinv2/modeling_swinv2.py +41 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +1 -7
- transformers/models/t5gemma/modeling_t5gemma.py +1 -1
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +13 -4
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +1 -1
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +12 -0
- transformers/models/timesfm/modular_timesfm.py +12 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +19 -13
- transformers/models/trocr/modeling_trocr.py +1 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +4 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +3 -7
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +0 -6
- transformers/models/vaultgemma/modeling_vaultgemma.py +1 -1
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +7 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/visual_bert/modeling_visual_bert.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +4 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +16 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +7 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +21 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +5 -3
- transformers/models/x_clip/modeling_x_clip.py +2 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +10 -0
- transformers/models/xlm/modeling_xlm.py +13 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +4 -1
- transformers/models/zamba/modeling_zamba.py +2 -1
- transformers/models/zamba2/modeling_zamba2.py +3 -2
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +7 -0
- transformers/pipelines/__init__.py +9 -6
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/document_question_answering.py +1 -1
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +127 -56
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +9 -64
- transformers/quantizers/quantizer_aqlm.py +1 -18
- transformers/quantizers/quantizer_auto_round.py +1 -10
- transformers/quantizers/quantizer_awq.py +3 -8
- transformers/quantizers/quantizer_bitnet.py +1 -6
- transformers/quantizers/quantizer_bnb_4bit.py +9 -49
- transformers/quantizers/quantizer_bnb_8bit.py +9 -19
- transformers/quantizers/quantizer_compressed_tensors.py +1 -4
- transformers/quantizers/quantizer_eetq.py +2 -12
- transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
- transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
- transformers/quantizers/quantizer_fp_quant.py +4 -4
- transformers/quantizers/quantizer_gptq.py +1 -4
- transformers/quantizers/quantizer_higgs.py +2 -6
- transformers/quantizers/quantizer_mxfp4.py +2 -28
- transformers/quantizers/quantizer_quanto.py +14 -14
- transformers/quantizers/quantizer_spqr.py +3 -8
- transformers/quantizers/quantizer_torchao.py +28 -124
- transformers/quantizers/quantizer_vptq.py +1 -10
- transformers/testing_utils.py +28 -12
- transformers/tokenization_mistral_common.py +3 -2
- transformers/tokenization_utils_base.py +3 -2
- transformers/tokenization_utils_tokenizers.py +25 -2
- transformers/trainer.py +24 -2
- transformers/trainer_callback.py +8 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/training_args.py +8 -10
- transformers/utils/__init__.py +4 -0
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +34 -25
- transformers/utils/generic.py +20 -0
- transformers/utils/import_utils.py +51 -9
- transformers/utils/kernel_config.py +71 -18
- transformers/utils/quantization_config.py +8 -8
- transformers/video_processing_utils.py +16 -12
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +5 -6
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +671 -632
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -212,6 +212,10 @@ class LayoutLMv3PreTrainedModel(PreTrainedModel):
|
|
|
212
212
|
if self.config.visual_embed:
|
|
213
213
|
init.zeros_(module.cls_token)
|
|
214
214
|
init.zeros_(module.pos_embed)
|
|
215
|
+
if hasattr(module, "visual_bbox"):
|
|
216
|
+
init.copy_(module.visual_bbox, module.create_visual_bbox(image_size=(module.size, module.size)))
|
|
217
|
+
elif isinstance(module, LayoutLMv3TextEmbeddings):
|
|
218
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
215
219
|
|
|
216
220
|
|
|
217
221
|
class LayoutLMv3SelfAttention(nn.Module):
|
|
@@ -576,16 +580,18 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel):
|
|
|
576
580
|
# when the input_size is larger in fine-tuning, we will interpolate the position embeddings in forward
|
|
577
581
|
self.patch_embed = LayoutLMv3PatchEmbeddings(config)
|
|
578
582
|
|
|
579
|
-
size = int(config.input_size / config.patch_size)
|
|
583
|
+
self.size = int(config.input_size / config.patch_size)
|
|
580
584
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
|
581
|
-
self.pos_embed = nn.Parameter(torch.zeros(1, size * size + 1, config.hidden_size))
|
|
585
|
+
self.pos_embed = nn.Parameter(torch.zeros(1, self.size * self.size + 1, config.hidden_size))
|
|
582
586
|
self.pos_drop = nn.Dropout(p=0.0)
|
|
583
587
|
|
|
584
588
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
585
589
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
586
590
|
|
|
587
591
|
if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias:
|
|
588
|
-
self.
|
|
592
|
+
self.register_buffer(
|
|
593
|
+
"visual_bbox", self.create_visual_bbox(image_size=(self.size, self.size)), persistent=False
|
|
594
|
+
)
|
|
589
595
|
|
|
590
596
|
self.norm = nn.LayerNorm(config.hidden_size, eps=1e-6)
|
|
591
597
|
|
|
@@ -599,7 +605,7 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel):
|
|
|
599
605
|
def set_input_embeddings(self, value):
|
|
600
606
|
self.embeddings.word_embeddings = value
|
|
601
607
|
|
|
602
|
-
def
|
|
608
|
+
def create_visual_bbox(self, image_size=(14, 14), max_len=1000):
|
|
603
609
|
"""
|
|
604
610
|
Create the bounding boxes for the visual (patch) tokens.
|
|
605
611
|
"""
|
|
@@ -620,7 +626,7 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel):
|
|
|
620
626
|
).view(-1, 4)
|
|
621
627
|
|
|
622
628
|
cls_token_box = torch.tensor([[0 + 1, 0 + 1, max_len - 1, max_len - 1]])
|
|
623
|
-
|
|
629
|
+
return torch.cat([cls_token_box, visual_bbox], dim=0)
|
|
624
630
|
|
|
625
631
|
def calculate_visual_bbox(self, device, dtype, batch_size):
|
|
626
632
|
visual_bbox = self.visual_bbox.repeat(batch_size, 1, 1)
|
|
@@ -884,6 +890,12 @@ class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel):
|
|
|
884
890
|
|
|
885
891
|
self.post_init()
|
|
886
892
|
|
|
893
|
+
def get_input_embeddings(self):
|
|
894
|
+
return self.layoutlmv3.get_input_embeddings()
|
|
895
|
+
|
|
896
|
+
def set_input_embeddings(self, value):
|
|
897
|
+
self.layoutlmv3.set_input_embeddings(value)
|
|
898
|
+
|
|
887
899
|
@auto_docstring
|
|
888
900
|
def forward(
|
|
889
901
|
self,
|
|
@@ -984,6 +996,12 @@ class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel):
|
|
|
984
996
|
|
|
985
997
|
self.post_init()
|
|
986
998
|
|
|
999
|
+
def get_input_embeddings(self):
|
|
1000
|
+
return self.layoutlmv3.get_input_embeddings()
|
|
1001
|
+
|
|
1002
|
+
def set_input_embeddings(self, value):
|
|
1003
|
+
self.layoutlmv3.set_input_embeddings(value)
|
|
1004
|
+
|
|
987
1005
|
@auto_docstring
|
|
988
1006
|
def forward(
|
|
989
1007
|
self,
|
|
@@ -1104,6 +1122,12 @@ class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel):
|
|
|
1104
1122
|
|
|
1105
1123
|
self.post_init()
|
|
1106
1124
|
|
|
1125
|
+
def get_input_embeddings(self):
|
|
1126
|
+
return self.layoutlmv3.get_input_embeddings()
|
|
1127
|
+
|
|
1128
|
+
def set_input_embeddings(self, value):
|
|
1129
|
+
self.layoutlmv3.set_input_embeddings(value)
|
|
1130
|
+
|
|
1107
1131
|
@auto_docstring
|
|
1108
1132
|
def forward(
|
|
1109
1133
|
self,
|
|
@@ -23,6 +23,7 @@ import torch
|
|
|
23
23
|
from torch import nn
|
|
24
24
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
25
25
|
|
|
26
|
+
from ... import initialization as init
|
|
26
27
|
from ...activations import ACT2FN
|
|
27
28
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
28
29
|
from ...generation import GenerationMixin
|
|
@@ -1077,6 +1078,11 @@ class LEDPreTrainedModel(PreTrainedModel):
|
|
|
1077
1078
|
}
|
|
1078
1079
|
return dummy_inputs
|
|
1079
1080
|
|
|
1081
|
+
def _init_weights(self, module):
|
|
1082
|
+
super()._init_weights(module)
|
|
1083
|
+
if isinstance(module, LEDForConditionalGeneration):
|
|
1084
|
+
init.zeros_(module.final_logits_bias)
|
|
1085
|
+
|
|
1080
1086
|
|
|
1081
1087
|
@dataclass
|
|
1082
1088
|
@auto_docstring(
|
|
@@ -21,6 +21,7 @@ from typing import Optional, Union
|
|
|
21
21
|
import torch
|
|
22
22
|
from torch import nn
|
|
23
23
|
|
|
24
|
+
from ... import initialization as init
|
|
24
25
|
from ...modeling_outputs import (
|
|
25
26
|
BaseModelOutputWithNoAttention,
|
|
26
27
|
BaseModelOutputWithPoolingAndNoAttention,
|
|
@@ -165,6 +166,7 @@ class LevitAttention(nn.Module):
|
|
|
165
166
|
|
|
166
167
|
points = list(itertools.product(range(resolution), range(resolution)))
|
|
167
168
|
len_points = len(points)
|
|
169
|
+
self.len_points = len_points
|
|
168
170
|
attention_offsets, indices = {}, []
|
|
169
171
|
for p1 in points:
|
|
170
172
|
for p2 in points:
|
|
@@ -172,6 +174,7 @@ class LevitAttention(nn.Module):
|
|
|
172
174
|
if offset not in attention_offsets:
|
|
173
175
|
attention_offsets[offset] = len(attention_offsets)
|
|
174
176
|
indices.append(attention_offsets[offset])
|
|
177
|
+
self.indices = indices
|
|
175
178
|
|
|
176
179
|
self.attention_bias_cache = {}
|
|
177
180
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
|
|
@@ -243,6 +246,8 @@ class LevitAttentionSubsample(nn.Module):
|
|
|
243
246
|
points = list(itertools.product(range(resolution_in), range(resolution_in)))
|
|
244
247
|
points_ = list(itertools.product(range(resolution_out), range(resolution_out)))
|
|
245
248
|
len_points, len_points_ = len(points), len(points_)
|
|
249
|
+
self.len_points_ = len_points_
|
|
250
|
+
self.len_points = len_points
|
|
246
251
|
attention_offsets, indices = {}, []
|
|
247
252
|
for p1 in points_:
|
|
248
253
|
for p2 in points:
|
|
@@ -251,6 +256,7 @@ class LevitAttentionSubsample(nn.Module):
|
|
|
251
256
|
if offset not in attention_offsets:
|
|
252
257
|
attention_offsets[offset] = len(attention_offsets)
|
|
253
258
|
indices.append(attention_offsets[offset])
|
|
259
|
+
self.indices = indices
|
|
254
260
|
|
|
255
261
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
|
|
256
262
|
self.register_buffer(
|
|
@@ -472,6 +478,18 @@ class LevitPreTrainedModel(PreTrainedModel):
|
|
|
472
478
|
input_modalities = ("image",)
|
|
473
479
|
_no_split_modules = ["LevitResidualLayer"]
|
|
474
480
|
|
|
481
|
+
def _init_weights(self, module):
|
|
482
|
+
super()._init_weights(module)
|
|
483
|
+
if isinstance(module, LevitAttention):
|
|
484
|
+
init.copy_(
|
|
485
|
+
module.attention_bias_idxs, torch.LongTensor(module.indices).view(module.len_points, module.len_points)
|
|
486
|
+
)
|
|
487
|
+
elif isinstance(module, LevitAttentionSubsample):
|
|
488
|
+
init.copy_(
|
|
489
|
+
module.attention_bias_idxs,
|
|
490
|
+
torch.LongTensor(module.indices).view(module.len_points_, module.len_points),
|
|
491
|
+
)
|
|
492
|
+
|
|
475
493
|
|
|
476
494
|
@auto_docstring
|
|
477
495
|
class LevitModel(LevitPreTrainedModel):
|
|
@@ -83,7 +83,7 @@ class Lfm2RotaryEmbedding(nn.Module):
|
|
|
83
83
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
84
84
|
|
|
85
85
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
86
|
-
self.original_inv_freq =
|
|
86
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
87
87
|
|
|
88
88
|
@staticmethod
|
|
89
89
|
def compute_default_rope_parameters(
|
|
@@ -27,7 +27,12 @@ from torch import nn
|
|
|
27
27
|
from ... import initialization as init
|
|
28
28
|
from ...cache_utils import Cache
|
|
29
29
|
from ...generation import GenerationMixin
|
|
30
|
-
from ...integrations import
|
|
30
|
+
from ...integrations import (
|
|
31
|
+
use_experts_implementation,
|
|
32
|
+
use_kernel_forward_from_hub,
|
|
33
|
+
use_kernel_func_from_hub,
|
|
34
|
+
use_kernelized_func,
|
|
35
|
+
)
|
|
31
36
|
from ...masking_utils import create_causal_mask
|
|
32
37
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
33
38
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, MoeModelOutputWithPast
|
|
@@ -84,7 +89,7 @@ class Lfm2MoeRotaryEmbedding(nn.Module):
|
|
|
84
89
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
85
90
|
|
|
86
91
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
87
|
-
self.original_inv_freq =
|
|
92
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
88
93
|
|
|
89
94
|
@staticmethod
|
|
90
95
|
def compute_default_rope_parameters(
|
|
@@ -145,6 +150,7 @@ class Lfm2MoeMLP(nn.Module):
|
|
|
145
150
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
146
151
|
|
|
147
152
|
|
|
153
|
+
@use_experts_implementation
|
|
148
154
|
class Lfm2MoeExperts(nn.Module):
|
|
149
155
|
"""Collection of expert weights stored as 3D tensors."""
|
|
150
156
|
|
|
@@ -155,6 +161,7 @@ class Lfm2MoeExperts(nn.Module):
|
|
|
155
161
|
self.intermediate_dim = config.moe_intermediate_size
|
|
156
162
|
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, 2 * self.intermediate_dim, self.hidden_dim))
|
|
157
163
|
self.down_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim, self.intermediate_dim))
|
|
164
|
+
self.act_fn = F.silu
|
|
158
165
|
|
|
159
166
|
def forward(
|
|
160
167
|
self,
|
|
@@ -175,7 +182,7 @@ class Lfm2MoeExperts(nn.Module):
|
|
|
175
182
|
top_k_pos, token_idx = torch.where(expert_mask[expert_idx])
|
|
176
183
|
current_state = hidden_states[token_idx]
|
|
177
184
|
gate, up = nn.functional.linear(current_state, self.gate_up_proj[expert_idx]).chunk(2, dim=-1)
|
|
178
|
-
current_hidden_states =
|
|
185
|
+
current_hidden_states = self.act_fn(gate) * up
|
|
179
186
|
current_hidden_states = nn.functional.linear(current_hidden_states, self.down_proj[expert_idx])
|
|
180
187
|
current_hidden_states = current_hidden_states * top_k_weights[token_idx, top_k_pos, None]
|
|
181
188
|
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
|
|
@@ -671,7 +678,7 @@ class Lfm2MoePreTrainedModel(PreTrainedModel):
|
|
|
671
678
|
_supports_flash_attn = True
|
|
672
679
|
_supports_sdpa = True
|
|
673
680
|
_supports_flex_attn = True
|
|
674
|
-
_can_compile_fullgraph = False
|
|
681
|
+
_can_compile_fullgraph = False # uses a non-compilable custom cache class Lfm2MoeHybridConvCache
|
|
675
682
|
_supports_attention_backend = True
|
|
676
683
|
_can_record_outputs = {
|
|
677
684
|
"hidden_states": Lfm2MoeDecoderLayer,
|
|
@@ -684,6 +691,9 @@ class Lfm2MoePreTrainedModel(PreTrainedModel):
|
|
|
684
691
|
if isinstance(module, Lfm2MoeExperts):
|
|
685
692
|
init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
|
|
686
693
|
init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
|
|
694
|
+
elif isinstance(module, Lfm2MoeSparseMoeBlock):
|
|
695
|
+
if module.use_expert_bias:
|
|
696
|
+
init.zeros_(module.expert_bias)
|
|
687
697
|
|
|
688
698
|
|
|
689
699
|
@auto_docstring
|
|
@@ -72,33 +72,7 @@ class Lfm2MoeMLP(Lfm2MLP):
|
|
|
72
72
|
class Lfm2MoeExperts(Qwen2MoeExperts):
|
|
73
73
|
def __init__(self, config):
|
|
74
74
|
super().__init__(config)
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
def forward(
|
|
78
|
-
self,
|
|
79
|
-
hidden_states: torch.Tensor,
|
|
80
|
-
top_k_index: torch.Tensor,
|
|
81
|
-
top_k_weights: torch.Tensor,
|
|
82
|
-
) -> torch.Tensor:
|
|
83
|
-
final_hidden_states = torch.zeros_like(hidden_states)
|
|
84
|
-
with torch.no_grad():
|
|
85
|
-
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts)
|
|
86
|
-
expert_mask = expert_mask.permute(2, 1, 0)
|
|
87
|
-
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
|
88
|
-
|
|
89
|
-
for expert_idx in expert_hit:
|
|
90
|
-
expert_idx = expert_idx[0]
|
|
91
|
-
if expert_idx == self.num_experts:
|
|
92
|
-
continue
|
|
93
|
-
top_k_pos, token_idx = torch.where(expert_mask[expert_idx])
|
|
94
|
-
current_state = hidden_states[token_idx]
|
|
95
|
-
gate, up = nn.functional.linear(current_state, self.gate_up_proj[expert_idx]).chunk(2, dim=-1)
|
|
96
|
-
current_hidden_states = F.silu(gate) * up
|
|
97
|
-
current_hidden_states = nn.functional.linear(current_hidden_states, self.down_proj[expert_idx])
|
|
98
|
-
current_hidden_states = current_hidden_states * top_k_weights[token_idx, top_k_pos, None]
|
|
99
|
-
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
|
|
100
|
-
|
|
101
|
-
return final_hidden_states
|
|
75
|
+
self.act_fn = F.silu
|
|
102
76
|
|
|
103
77
|
|
|
104
78
|
class Lfm2MoeSparseMoeBlock(nn.Module):
|
|
@@ -160,7 +134,7 @@ class Lfm2MoeDecoderLayer(Lfm2DecoderLayer):
|
|
|
160
134
|
|
|
161
135
|
|
|
162
136
|
class Lfm2MoePreTrainedModel(LlamaPreTrainedModel):
|
|
163
|
-
_can_compile_fullgraph = False
|
|
137
|
+
_can_compile_fullgraph = False # uses a non-compilable custom cache class Lfm2MoeHybridConvCache
|
|
164
138
|
|
|
165
139
|
@torch.no_grad()
|
|
166
140
|
def _init_weights(self, module):
|
|
@@ -168,6 +142,9 @@ class Lfm2MoePreTrainedModel(LlamaPreTrainedModel):
|
|
|
168
142
|
if isinstance(module, Lfm2MoeExperts):
|
|
169
143
|
init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
|
|
170
144
|
init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
|
|
145
|
+
elif isinstance(module, Lfm2MoeSparseMoeBlock):
|
|
146
|
+
if module.use_expert_bias:
|
|
147
|
+
init.zeros_(module.expert_bias)
|
|
171
148
|
|
|
172
149
|
|
|
173
150
|
class Lfm2MoeModel(MixtralModel):
|
|
@@ -46,6 +46,8 @@ class Lfm2VlConfig(PreTrainedConfig):
|
|
|
46
46
|
The hidden size of the multimodal projector.
|
|
47
47
|
projector_bias (`bool`, *optional*, defaults to `True`):
|
|
48
48
|
Whether to use bias in the multimodal projector.
|
|
49
|
+
projector_use_layernorm (`bool`, *optional*, defaults to `True`):
|
|
50
|
+
Whether to use layernorm in the multimodal projector.
|
|
49
51
|
downsample_factor (`int`, *optional*, defaults to 2):
|
|
50
52
|
The downsample_factor factor of the vision backbone.
|
|
51
53
|
"""
|
|
@@ -61,6 +63,7 @@ class Lfm2VlConfig(PreTrainedConfig):
|
|
|
61
63
|
projector_hidden_act="gelu",
|
|
62
64
|
projector_hidden_size=2560,
|
|
63
65
|
projector_bias=True,
|
|
66
|
+
projector_use_layernorm=True,
|
|
64
67
|
downsample_factor=2,
|
|
65
68
|
**kwargs,
|
|
66
69
|
):
|
|
@@ -68,6 +71,7 @@ class Lfm2VlConfig(PreTrainedConfig):
|
|
|
68
71
|
self.projector_hidden_act = projector_hidden_act
|
|
69
72
|
self.projector_hidden_size = projector_hidden_size
|
|
70
73
|
self.projector_bias = projector_bias
|
|
74
|
+
self.projector_use_layernorm = projector_use_layernorm
|
|
71
75
|
self.downsample_factor = downsample_factor
|
|
72
76
|
|
|
73
77
|
if isinstance(vision_config, dict):
|
|
@@ -41,7 +41,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
41
41
|
super().__init__()
|
|
42
42
|
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
|
43
43
|
self.factor = config.downsample_factor
|
|
44
|
-
self.
|
|
44
|
+
self.use_layer_norm = config.projector_use_layernorm
|
|
45
|
+
self.layer_norm = nn.LayerNorm(in_channels) if config.projector_use_layernorm else None
|
|
45
46
|
self.linear_1 = nn.Linear(
|
|
46
47
|
in_channels,
|
|
47
48
|
config.projector_hidden_size,
|
|
@@ -56,7 +57,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
56
57
|
|
|
57
58
|
def forward(self, image_features: torch.Tensor):
|
|
58
59
|
image_features = self.pixel_unshuffle(image_features)
|
|
59
|
-
|
|
60
|
+
if self.use_layer_norm:
|
|
61
|
+
image_features = self.layer_norm(image_features)
|
|
60
62
|
hidden_states = self.linear_1(image_features)
|
|
61
63
|
hidden_states = self.act(hidden_states)
|
|
62
64
|
hidden_states = self.linear_2(hidden_states)
|
|
@@ -448,6 +450,7 @@ class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
|
|
448
450
|
attention_mask=None,
|
|
449
451
|
cache_position=None,
|
|
450
452
|
logits_to_keep=None,
|
|
453
|
+
is_first_iteration=False,
|
|
451
454
|
**kwargs,
|
|
452
455
|
):
|
|
453
456
|
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
@@ -459,12 +462,15 @@ class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
|
|
459
462
|
attention_mask=attention_mask,
|
|
460
463
|
cache_position=cache_position,
|
|
461
464
|
logits_to_keep=logits_to_keep,
|
|
465
|
+
is_first_iteration=is_first_iteration,
|
|
462
466
|
**kwargs,
|
|
463
467
|
)
|
|
464
468
|
|
|
465
|
-
if
|
|
466
|
-
#
|
|
467
|
-
#
|
|
469
|
+
if is_first_iteration or not kwargs.get("use_cache", True):
|
|
470
|
+
# Pixel values are used only in the first iteration if available
|
|
471
|
+
# In subsquent iterations, they are already merged with text and cached
|
|
472
|
+
# NOTE: first iteration doesn't have to be prefill, it can be the first
|
|
473
|
+
# iteration with a question and cached system prompt (continue generate from cache)
|
|
468
474
|
model_inputs["pixel_values"] = pixel_values
|
|
469
475
|
|
|
470
476
|
return model_inputs
|
|
@@ -41,7 +41,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
41
41
|
super().__init__()
|
|
42
42
|
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
|
43
43
|
self.factor = config.downsample_factor
|
|
44
|
-
self.
|
|
44
|
+
self.use_layer_norm = config.projector_use_layernorm
|
|
45
|
+
self.layer_norm = nn.LayerNorm(in_channels) if config.projector_use_layernorm else None
|
|
45
46
|
self.linear_1 = nn.Linear(
|
|
46
47
|
in_channels,
|
|
47
48
|
config.projector_hidden_size,
|
|
@@ -56,7 +57,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
56
57
|
|
|
57
58
|
def forward(self, image_features: torch.Tensor):
|
|
58
59
|
image_features = self.pixel_unshuffle(image_features)
|
|
59
|
-
|
|
60
|
+
if self.use_layer_norm:
|
|
61
|
+
image_features = self.layer_norm(image_features)
|
|
60
62
|
hidden_states = self.linear_1(image_features)
|
|
61
63
|
hidden_states = self.act(hidden_states)
|
|
62
64
|
hidden_states = self.linear_2(hidden_states)
|
|
@@ -165,63 +165,103 @@ class Lfm2VlProcessor(ProcessorMixin):
|
|
|
165
165
|
image_sizes: list[list[int]],
|
|
166
166
|
use_image_special_tokens: bool,
|
|
167
167
|
**images_kwargs,
|
|
168
|
-
):
|
|
169
|
-
|
|
168
|
+
) -> list[str]:
|
|
169
|
+
use_thumbnail = images_kwargs.get("use_thumbnail", self.image_processor.use_thumbnail)
|
|
170
|
+
image_data = iter(zip(image_rows, image_cols, image_sizes))
|
|
170
171
|
|
|
171
|
-
|
|
172
|
+
prompt_strings = []
|
|
172
173
|
for sample_text, sample_images in zip(text, images):
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
sample_text_with_image_tokens += self.image_start_token
|
|
174
|
+
text_parts = sample_text.split(self.image_token)
|
|
175
|
+
result_parts = []
|
|
176
|
+
|
|
177
|
+
for i, _ in enumerate(sample_images):
|
|
178
|
+
result_parts.append(text_parts[i])
|
|
179
179
|
|
|
180
180
|
rows, cols, image_size = next(image_data)
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
if use_image_special_tokens:
|
|
192
|
-
sample_text_with_image_tokens += self.image_thumbnail_token
|
|
193
|
-
sample_text_with_image_tokens += self.image_token * num_thumbnail_tokens
|
|
194
|
-
else:
|
|
195
|
-
sample_text_with_image_tokens += self.image_token * num_thumbnail_tokens
|
|
181
|
+
tokens_per_tile, tokens_for_image = self._get_image_num_tokens(image_size, **images_kwargs)
|
|
182
|
+
image_tokens = self._build_image_tokens(
|
|
183
|
+
rows,
|
|
184
|
+
cols,
|
|
185
|
+
tokens_per_tile,
|
|
186
|
+
tokens_for_image,
|
|
187
|
+
use_thumbnail,
|
|
188
|
+
use_image_special_tokens,
|
|
189
|
+
)
|
|
190
|
+
result_parts.append(image_tokens)
|
|
196
191
|
|
|
197
|
-
|
|
198
|
-
|
|
192
|
+
# Add remaining text after the last image
|
|
193
|
+
if len(sample_images) < len(text_parts):
|
|
194
|
+
result_parts.append(text_parts[-1])
|
|
199
195
|
|
|
200
|
-
|
|
201
|
-
prompt_strings.append(sample_text_with_image_tokens)
|
|
196
|
+
prompt_strings.append("".join(result_parts))
|
|
202
197
|
|
|
203
198
|
return prompt_strings
|
|
204
199
|
|
|
200
|
+
def _build_image_tokens(
|
|
201
|
+
self,
|
|
202
|
+
rows: int,
|
|
203
|
+
cols: int,
|
|
204
|
+
tokens_per_tile: int,
|
|
205
|
+
tokens_for_image: int,
|
|
206
|
+
use_thumbnail: bool,
|
|
207
|
+
use_image_special_tokens: bool,
|
|
208
|
+
) -> str:
|
|
209
|
+
"""Build the expanded token string for a single image."""
|
|
210
|
+
parts = []
|
|
211
|
+
|
|
212
|
+
if use_image_special_tokens:
|
|
213
|
+
parts.append(self.image_start_token)
|
|
214
|
+
|
|
215
|
+
is_multi_tile = rows > 1 or cols > 1
|
|
216
|
+
if is_multi_tile:
|
|
217
|
+
for row in range(rows):
|
|
218
|
+
for col in range(cols):
|
|
219
|
+
if use_image_special_tokens:
|
|
220
|
+
parts.append(f"<|img_row_{row + 1}_col_{col + 1}|>")
|
|
221
|
+
parts.append(self.image_token * tokens_per_tile)
|
|
222
|
+
|
|
223
|
+
if use_thumbnail:
|
|
224
|
+
if use_image_special_tokens:
|
|
225
|
+
parts.append(self.image_thumbnail_token)
|
|
226
|
+
parts.append(self.image_token * tokens_for_image)
|
|
227
|
+
else:
|
|
228
|
+
parts.append(self.image_token * tokens_for_image)
|
|
229
|
+
|
|
230
|
+
if use_image_special_tokens:
|
|
231
|
+
parts.append(self.image_end_token)
|
|
232
|
+
|
|
233
|
+
return "".join(parts)
|
|
234
|
+
|
|
235
|
+
def _compute_tokens_per_tile(self, tile_size: int, encoder_patch_size: int, downsample_factor: int) -> int:
|
|
236
|
+
"""Compute the number of tokens for a single tile."""
|
|
237
|
+
num_patches = tile_size // encoder_patch_size
|
|
238
|
+
downsampled_patches = math.ceil(num_patches / downsample_factor)
|
|
239
|
+
return downsampled_patches * downsampled_patches
|
|
240
|
+
|
|
241
|
+
def _compute_tokens_for_image(self, image_size: list[int], encoder_patch_size: int, downsample_factor: int) -> int:
|
|
242
|
+
"""Compute the number of tokens for a resized image (used for single-tile or thumbnail)."""
|
|
243
|
+
image_height, image_width = image_size
|
|
244
|
+
patches_h = math.ceil((image_height // encoder_patch_size) / downsample_factor)
|
|
245
|
+
patches_w = math.ceil((image_width // encoder_patch_size) / downsample_factor)
|
|
246
|
+
return patches_h * patches_w
|
|
247
|
+
|
|
205
248
|
def _get_image_num_tokens(self, image_size: list[int], **images_kwargs) -> tuple[int, int]:
|
|
249
|
+
"""
|
|
250
|
+
Compute token counts for image processing.
|
|
251
|
+
|
|
252
|
+
Returns:
|
|
253
|
+
tuple[int, int]: (tokens_per_tile, tokens_for_image)
|
|
254
|
+
- tokens_per_tile: tokens for each tile in multi-tile mode
|
|
255
|
+
- tokens_for_image: tokens for the resized image (single-tile) or thumbnail (multi-tile)
|
|
256
|
+
"""
|
|
206
257
|
tile_size = images_kwargs.get("tile_size", self.image_processor.tile_size)
|
|
207
258
|
downsample_factor = images_kwargs.get("downsample_factor", self.image_processor.downsample_factor)
|
|
208
259
|
encoder_patch_size = images_kwargs.get("encoder_patch_size", self.image_processor.encoder_patch_size)
|
|
209
|
-
use_thumbnail = images_kwargs.get("use_thumbnail", self.image_processor.use_thumbnail)
|
|
210
|
-
|
|
211
|
-
thumbnail_tokens = 0
|
|
212
|
-
if use_thumbnail:
|
|
213
|
-
image_height, image_width = image_size
|
|
214
|
-
num_patches_height = image_height // encoder_patch_size
|
|
215
|
-
num_patches_width = image_width // encoder_patch_size
|
|
216
|
-
dwn_num_patches_height = math.ceil(num_patches_height / downsample_factor)
|
|
217
|
-
dwn_num_patches_width = math.ceil(num_patches_width / downsample_factor)
|
|
218
|
-
thumbnail_tokens = dwn_num_patches_height * dwn_num_patches_width
|
|
219
260
|
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
tile_tokens = dwn_num_patches_tile * dwn_num_patches_tile
|
|
261
|
+
tokens_per_tile = self._compute_tokens_per_tile(tile_size, encoder_patch_size, downsample_factor)
|
|
262
|
+
tokens_for_image = self._compute_tokens_for_image(image_size, encoder_patch_size, downsample_factor)
|
|
223
263
|
|
|
224
|
-
return
|
|
264
|
+
return tokens_per_tile, tokens_for_image
|
|
225
265
|
|
|
226
266
|
def batch_decode(self, *args, **kwargs):
|
|
227
267
|
"""
|
|
@@ -174,9 +174,8 @@ class LightGlueImageProcessorFast(BaseImageProcessorFast):
|
|
|
174
174
|
stacked_pairs = [torch.stack(pair, dim=0) for pair in image_pairs]
|
|
175
175
|
|
|
176
176
|
# Return in same format as slow processor
|
|
177
|
-
image_pairs = torch.stack(stacked_pairs, dim=0) if return_tensors else stacked_pairs
|
|
178
177
|
|
|
179
|
-
return BatchFeature(data={"pixel_values":
|
|
178
|
+
return BatchFeature(data={"pixel_values": stacked_pairs}, tensor_type=return_tensors)
|
|
180
179
|
|
|
181
180
|
def post_process_keypoint_matching(
|
|
182
181
|
self,
|
|
@@ -21,6 +21,7 @@ import torch
|
|
|
21
21
|
from torch import nn
|
|
22
22
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
23
23
|
|
|
24
|
+
from ... import initialization as init
|
|
24
25
|
from ...activations import ACT2FN
|
|
25
26
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
26
27
|
from ...modeling_outputs import (
|
|
@@ -279,11 +280,9 @@ class LiltSelfAttention(nn.Module):
|
|
|
279
280
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
280
281
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
281
282
|
|
|
282
|
-
outputs = (
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
else ((context_layer, layout_context_layer),)
|
|
286
|
-
)
|
|
283
|
+
outputs = (context_layer, layout_context_layer)
|
|
284
|
+
if output_attentions:
|
|
285
|
+
outputs = outputs + (attention_probs,)
|
|
287
286
|
|
|
288
287
|
return outputs
|
|
289
288
|
|
|
@@ -327,9 +326,9 @@ class LiltAttention(nn.Module):
|
|
|
327
326
|
attention_mask,
|
|
328
327
|
output_attentions,
|
|
329
328
|
)
|
|
330
|
-
attention_output = self.output(self_outputs[0]
|
|
331
|
-
layout_attention_output = self.layout_output(self_outputs[
|
|
332
|
-
outputs = (
|
|
329
|
+
attention_output = self.output(self_outputs[0], hidden_states)
|
|
330
|
+
layout_attention_output = self.layout_output(self_outputs[1], layout_inputs)
|
|
331
|
+
outputs = (attention_output, layout_attention_output) + self_outputs[2:] # add attentions if we output them
|
|
333
332
|
return outputs
|
|
334
333
|
|
|
335
334
|
|
|
@@ -395,10 +394,10 @@ class LiltLayer(GradientCheckpointingLayer):
|
|
|
395
394
|
attention_mask,
|
|
396
395
|
output_attentions=output_attentions,
|
|
397
396
|
)
|
|
398
|
-
attention_output = self_attention_outputs[0]
|
|
399
|
-
layout_attention_output = self_attention_outputs[
|
|
397
|
+
attention_output = self_attention_outputs[0]
|
|
398
|
+
layout_attention_output = self_attention_outputs[1]
|
|
400
399
|
|
|
401
|
-
outputs = self_attention_outputs[
|
|
400
|
+
outputs = self_attention_outputs[2:] # add self attentions if we output attention weights
|
|
402
401
|
|
|
403
402
|
layer_output = apply_chunking_to_forward(
|
|
404
403
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
|
@@ -406,7 +405,7 @@ class LiltLayer(GradientCheckpointingLayer):
|
|
|
406
405
|
layout_layer_output = apply_chunking_to_forward(
|
|
407
406
|
self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output
|
|
408
407
|
)
|
|
409
|
-
outputs = (
|
|
408
|
+
outputs = (layer_output, layout_layer_output) + outputs
|
|
410
409
|
|
|
411
410
|
return outputs
|
|
412
411
|
|
|
@@ -451,11 +450,11 @@ class LiltEncoder(nn.Module):
|
|
|
451
450
|
output_attentions,
|
|
452
451
|
)
|
|
453
452
|
|
|
454
|
-
hidden_states = layer_outputs[0]
|
|
455
|
-
layout_inputs = layer_outputs[
|
|
453
|
+
hidden_states = layer_outputs[0]
|
|
454
|
+
layout_inputs = layer_outputs[1]
|
|
456
455
|
|
|
457
456
|
if output_attentions:
|
|
458
|
-
all_self_attentions = all_self_attentions + (layer_outputs[
|
|
457
|
+
all_self_attentions = all_self_attentions + (layer_outputs[2],)
|
|
459
458
|
|
|
460
459
|
if output_hidden_states:
|
|
461
460
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
@@ -500,6 +499,11 @@ class LiltPreTrainedModel(PreTrainedModel):
|
|
|
500
499
|
supports_gradient_checkpointing = True
|
|
501
500
|
_no_split_modules = []
|
|
502
501
|
|
|
502
|
+
def _init_weights(self, module):
|
|
503
|
+
super()._init_weights(module)
|
|
504
|
+
if isinstance(module, LiltTextEmbeddings):
|
|
505
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
506
|
+
|
|
503
507
|
|
|
504
508
|
@auto_docstring
|
|
505
509
|
class LiltModel(LiltPreTrainedModel):
|
|
@@ -87,7 +87,7 @@ class LlamaRotaryEmbedding(nn.Module):
|
|
|
87
87
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
88
88
|
|
|
89
89
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
90
|
-
self.original_inv_freq =
|
|
90
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
91
91
|
|
|
92
92
|
@staticmethod
|
|
93
93
|
def compute_default_rope_parameters(
|
|
@@ -419,10 +419,9 @@ class Llama4ImageProcessorFast(BaseImageProcessorFast):
|
|
|
419
419
|
)
|
|
420
420
|
grouped_processed_images[shape] = torch.cat([processed_images, global_tiles.unsqueeze(1)], dim=1)
|
|
421
421
|
processed_images = reorder_images(grouped_processed_images, grouped_images_index)
|
|
422
|
-
|
|
422
|
+
aspect_ratios = reorder_images(grouped_aspect_ratios, grouped_images_index)
|
|
423
423
|
|
|
424
424
|
processed_images = torch.cat(processed_images, dim=0) if return_tensors else processed_images
|
|
425
|
-
aspect_ratios = torch.stack(aspect_ratios_list, dim=0) if return_tensors else aspect_ratios_list
|
|
426
425
|
return BatchFeature(
|
|
427
426
|
data={"pixel_values": processed_images, "aspect_ratios": aspect_ratios}, tensor_type=return_tensors
|
|
428
427
|
)
|