tpu-inference 0.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (168) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_adapters.py +83 -0
  4. tests/core/test_core_tpu.py +523 -0
  5. tests/core/test_disagg_executor.py +60 -0
  6. tests/core/test_disagg_utils.py +53 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  10. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  11. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  12. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  13. tests/lora/__init__.py +0 -0
  14. tests/lora/test_lora.py +123 -0
  15. tests/test_base.py +201 -0
  16. tests/test_quantization.py +836 -0
  17. tests/test_tpu_info.py +120 -0
  18. tests/test_utils.py +218 -0
  19. tests/tpu_backend_test.py +59 -0
  20. tpu_inference/__init__.py +30 -0
  21. tpu_inference/adapters/__init__.py +0 -0
  22. tpu_inference/adapters/vllm_adapters.py +42 -0
  23. tpu_inference/adapters/vllm_config_adapters.py +134 -0
  24. tpu_inference/backend.py +69 -0
  25. tpu_inference/core/__init__.py +0 -0
  26. tpu_inference/core/adapters.py +153 -0
  27. tpu_inference/core/core_tpu.py +776 -0
  28. tpu_inference/core/disagg_executor.py +117 -0
  29. tpu_inference/core/disagg_utils.py +51 -0
  30. tpu_inference/di/__init__.py +0 -0
  31. tpu_inference/di/abstracts.py +28 -0
  32. tpu_inference/di/host.py +76 -0
  33. tpu_inference/di/interfaces.py +51 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/tpu_connector.py +699 -0
  36. tpu_inference/distributed/utils.py +59 -0
  37. tpu_inference/executors/__init__.py +0 -0
  38. tpu_inference/executors/ray_distributed_executor.py +346 -0
  39. tpu_inference/experimental/__init__.py +0 -0
  40. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  41. tpu_inference/interfaces/__init__.py +0 -0
  42. tpu_inference/interfaces/cache.py +31 -0
  43. tpu_inference/interfaces/config.py +47 -0
  44. tpu_inference/interfaces/config_parts.py +117 -0
  45. tpu_inference/interfaces/engine.py +51 -0
  46. tpu_inference/interfaces/outputs.py +22 -0
  47. tpu_inference/interfaces/params.py +21 -0
  48. tpu_inference/interfaces/platform.py +74 -0
  49. tpu_inference/interfaces/request.py +39 -0
  50. tpu_inference/interfaces/scheduler.py +31 -0
  51. tpu_inference/kernels/__init__.py +0 -0
  52. tpu_inference/kernels/collectives/__init__.py +0 -0
  53. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  54. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  55. tpu_inference/kernels/collectives/util.py +47 -0
  56. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  57. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  58. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  59. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  60. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  61. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  62. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  66. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1447 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3834 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/util.py +47 -0
  71. tpu_inference/layers/__init__.py +0 -0
  72. tpu_inference/layers/common/__init__.py +0 -0
  73. tpu_inference/layers/common/attention_metadata.py +34 -0
  74. tpu_inference/layers/jax/__init__.py +0 -0
  75. tpu_inference/layers/jax/attention/__init__.py +0 -0
  76. tpu_inference/layers/jax/attention/attention.py +254 -0
  77. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  78. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  79. tpu_inference/layers/jax/attention_interface.py +356 -0
  80. tpu_inference/layers/jax/base.py +151 -0
  81. tpu_inference/layers/jax/binary_search.py +295 -0
  82. tpu_inference/layers/jax/constants.py +88 -0
  83. tpu_inference/layers/jax/layers.py +301 -0
  84. tpu_inference/layers/jax/misc.py +16 -0
  85. tpu_inference/layers/jax/moe/__init__.py +0 -0
  86. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  87. tpu_inference/layers/jax/moe/moe.py +209 -0
  88. tpu_inference/layers/jax/rope.py +172 -0
  89. tpu_inference/layers/jax/rope_interface.py +214 -0
  90. tpu_inference/layers/jax/sample/__init__.py +0 -0
  91. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  92. tpu_inference/layers/jax/sample/sampling.py +95 -0
  93. tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
  94. tpu_inference/layers/jax/sharding.py +406 -0
  95. tpu_inference/layers/jax/transformer_block.py +76 -0
  96. tpu_inference/layers/vllm/__init__.py +0 -0
  97. tpu_inference/layers/vllm/attention.py +184 -0
  98. tpu_inference/layers/vllm/fused_moe.py +399 -0
  99. tpu_inference/layers/vllm/linear_common.py +186 -0
  100. tpu_inference/layers/vllm/quantization/__init__.py +34 -0
  101. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  102. tpu_inference/layers/vllm/quantization/common.py +105 -0
  103. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  104. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
  105. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  106. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  108. tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
  109. tpu_inference/layers/vllm/sharding.py +151 -0
  110. tpu_inference/logger.py +10 -0
  111. tpu_inference/lora/__init__.py +0 -0
  112. tpu_inference/lora/torch_lora_ops.py +103 -0
  113. tpu_inference/lora/torch_punica_tpu.py +308 -0
  114. tpu_inference/mock/__init__.py +0 -0
  115. tpu_inference/mock/vllm_config_utils.py +28 -0
  116. tpu_inference/mock/vllm_envs.py +1233 -0
  117. tpu_inference/mock/vllm_logger.py +212 -0
  118. tpu_inference/mock/vllm_logging_utils.py +15 -0
  119. tpu_inference/models/__init__.py +0 -0
  120. tpu_inference/models/common/__init__.py +0 -0
  121. tpu_inference/models/common/model_loader.py +433 -0
  122. tpu_inference/models/jax/__init__.py +0 -0
  123. tpu_inference/models/jax/deepseek_v3.py +868 -0
  124. tpu_inference/models/jax/llama3.py +366 -0
  125. tpu_inference/models/jax/llama4.py +473 -0
  126. tpu_inference/models/jax/llama_eagle3.py +333 -0
  127. tpu_inference/models/jax/phi3.py +376 -0
  128. tpu_inference/models/jax/qwen2.py +375 -0
  129. tpu_inference/models/jax/qwen2_5_vl.py +976 -0
  130. tpu_inference/models/jax/qwen3.py +302 -0
  131. tpu_inference/models/jax/utils/__init__.py +0 -0
  132. tpu_inference/models/jax/utils/file_utils.py +96 -0
  133. tpu_inference/models/jax/utils/multi_modal_utils.py +164 -0
  134. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  135. tpu_inference/models/jax/utils/quantization/quantization_utils.py +588 -0
  136. tpu_inference/models/jax/utils/weight_utils.py +510 -0
  137. tpu_inference/models/vllm/__init__.py +0 -0
  138. tpu_inference/models/vllm/vllm_model_wrapper.py +272 -0
  139. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  140. tpu_inference/platforms/__init__.py +2 -0
  141. tpu_inference/platforms/tpu_jax.py +257 -0
  142. tpu_inference/runner/__init__.py +0 -0
  143. tpu_inference/runner/block_table_jax.py +122 -0
  144. tpu_inference/runner/compilation_manager.py +672 -0
  145. tpu_inference/runner/input_batch_jax.py +435 -0
  146. tpu_inference/runner/kv_cache.py +119 -0
  147. tpu_inference/runner/kv_cache_manager.py +460 -0
  148. tpu_inference/runner/lora_utils.py +92 -0
  149. tpu_inference/runner/multimodal_manager.py +208 -0
  150. tpu_inference/runner/persistent_batch_manager.py +244 -0
  151. tpu_inference/runner/speculative_decoding_manager.py +250 -0
  152. tpu_inference/runner/structured_decoding_manager.py +89 -0
  153. tpu_inference/runner/tpu_jax_runner.py +771 -0
  154. tpu_inference/runner/utils.py +426 -0
  155. tpu_inference/spec_decode/__init__.py +0 -0
  156. tpu_inference/spec_decode/jax/__init__.py +0 -0
  157. tpu_inference/spec_decode/jax/eagle3.py +334 -0
  158. tpu_inference/tpu_info.py +77 -0
  159. tpu_inference/utils.py +294 -0
  160. tpu_inference/worker/__init__.py +0 -0
  161. tpu_inference/worker/_temporary_vllm_compat.py +129 -0
  162. tpu_inference/worker/base.py +100 -0
  163. tpu_inference/worker/tpu_worker_jax.py +321 -0
  164. tpu_inference-0.11.1.dist-info/METADATA +101 -0
  165. tpu_inference-0.11.1.dist-info/RECORD +168 -0
  166. tpu_inference-0.11.1.dist-info/WHEEL +5 -0
  167. tpu_inference-0.11.1.dist-info/licenses/LICENSE +201 -0
  168. tpu_inference-0.11.1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,250 @@
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ from dataclasses import dataclass
5
+ from typing import TYPE_CHECKING, Optional
6
+
7
+ import jax
8
+ import jax.numpy as jnp
9
+ import numpy as np
10
+ from vllm.v1.core.sched.output import SchedulerOutput as VllmSchedulerOutput
11
+ from vllm.v1.outputs import DraftTokenIds
12
+ from vllm.v1.spec_decode.ngram_proposer import NgramProposer
13
+
14
+ from tpu_inference.runner import utils as runner_utils
15
+ from tpu_inference.spec_decode.jax.eagle3 import Eagle3Proposer
16
+ from tpu_inference.utils import device_array
17
+
18
+ if TYPE_CHECKING:
19
+ from tpu_inference.layers.common.attention_metadata import \
20
+ AttentionMetadata
21
+ from tpu_inference.runner.tpu_jax_runner import TPUModelRunner
22
+
23
+
24
+ @dataclass
25
+ class SpecDecodeMetadata:
26
+ """Metadata for speculative decoding on JAX/TPU, containing all necessary indices."""
27
+ draft_token_ids: jnp.ndarray
28
+ draft_lengths: jnp.ndarray
29
+ draft_lengths_cpu: np.ndarray
30
+ target_logits_indices: jnp.ndarray
31
+ bonus_logits_indices: jnp.ndarray
32
+ final_logits_indices: jnp.ndarray
33
+
34
+
35
+ class SpeculativeDecodingManager:
36
+
37
+ def __init__(self, runner: TPUModelRunner):
38
+ self.runner = runner
39
+ # Cached draft tokens.
40
+ self._draft_token_ids: Optional[list[list[int]]] = None
41
+
42
+ def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
43
+ if self._draft_token_ids is None:
44
+ return None
45
+ req_ids = self.runner.input_batch.req_ids
46
+ draft_token_ids = self._draft_token_ids
47
+ self._draft_token_ids = None
48
+ return DraftTokenIds(req_ids, draft_token_ids)
49
+
50
+ def propose_draft_token_ids(
51
+ self,
52
+ sampled_token_ids: list[list[int]],
53
+ aux_hidden_states: Optional[tuple[jnp.ndarray, ...]],
54
+ attn_metadata: AttentionMetadata,
55
+ spec_decode_metadata: Optional[SpecDecodeMetadata],
56
+ scheduler_output: Optional[VllmSchedulerOutput] = None,
57
+ input_ids: Optional[jnp.ndarray] = None,
58
+ ) -> None:
59
+ if self.runner.speculative_config.method == "ngram":
60
+ assert isinstance(self.runner.drafter, NgramProposer)
61
+ self._draft_token_ids = self.runner.drafter.propose(
62
+ sampled_token_ids[:self.runner.input_batch.num_reqs],
63
+ self.runner.input_batch.req_ids,
64
+ self.runner.input_batch.num_tokens_no_spec,
65
+ self.runner.input_batch.token_ids_cpu,
66
+ self.runner.input_batch.spec_decode_unsupported_reqs)
67
+ elif self.runner.speculative_config.method == "eagle3":
68
+ self._draft_token_ids = self.propose_eagle3_draft_token_ids(
69
+ sampled_token_ids,
70
+ aux_hidden_states,
71
+ attn_metadata,
72
+ spec_decode_metadata,
73
+ scheduler_output,
74
+ input_ids,
75
+ )
76
+ else:
77
+ raise NotImplementedError(
78
+ f"Speculative decoding method "
79
+ f"'{self.runner.speculative_config.method}' is not supported.")
80
+
81
+ @functools.partial(jax.jit, static_argnums=(0, ))
82
+ def _convert_list_to_device_array(self, lst: list[int]) -> jnp.ndarray:
83
+ """Jitted helper function to convert a list to a device array."""
84
+ arr = jnp.array(lst, dtype=jnp.int32)
85
+ return device_array(self.runner.mesh, arr)
86
+
87
+ def propose_eagle3_draft_token_ids(
88
+ self,
89
+ sampled_token_ids: list[list[int]],
90
+ aux_hidden_states: Optional[tuple[jnp.ndarray, ...]],
91
+ attn_metadata: AttentionMetadata,
92
+ spec_decode_metadata: Optional[SpecDecodeMetadata],
93
+ scheduler_output: VllmSchedulerOutput,
94
+ input_ids: jnp.ndarray,
95
+ ) -> list[list[int]]:
96
+ assert isinstance(self.runner.drafter, Eagle3Proposer)
97
+
98
+ # TODO(woosuk): Refactor the loop.
99
+ req_ids = self.runner.input_batch.req_ids
100
+ next_token_ids: list[int] = []
101
+ for i, token_ids in enumerate(sampled_token_ids):
102
+ if token_ids:
103
+ # Common case.
104
+ next_token_id = token_ids[-1]
105
+ else:
106
+ # Partial prefill (rare case).
107
+ # Get the next token id from the request state.
108
+ req_id = req_ids[i]
109
+ req_state = self.runner.requests[req_id]
110
+ seq_len = (req_state.num_computed_tokens +
111
+ scheduler_output.num_scheduled_tokens[req_id])
112
+ next_token_id = req_state.get_token_id(seq_len)
113
+ next_token_ids.append(next_token_id)
114
+
115
+ # Pad the batch size to match with existing padding for target model
116
+ pad_len = attn_metadata.seq_lens.shape[0] - len(next_token_ids)
117
+ assert pad_len >= 0
118
+ next_token_ids += [0] * pad_len
119
+
120
+ next_token_ids = self._convert_list_to_device_array(next_token_ids)
121
+
122
+ if spec_decode_metadata is None:
123
+ num_rejected_tokens = None
124
+ else:
125
+ num_draft_tokens = spec_decode_metadata.draft_lengths_cpu
126
+ num_rejected_tokens = [
127
+ int(n) + 1 - len(sampled_token_ids[i]) if n > 0 else 0
128
+ for i, n in enumerate(num_draft_tokens)
129
+ ]
130
+
131
+ pad_len = self.runner.max_num_reqs - len(num_rejected_tokens)
132
+ num_rejected_tokens += [0] * pad_len
133
+ num_rejected_tokens = self._convert_list_to_device_array(
134
+ num_rejected_tokens)
135
+
136
+ attn_metadata, target_token_ids, target_hidden_states = self.runner.drafter.prepare_inputs(
137
+ attn_metadata,
138
+ input_ids,
139
+ aux_hidden_states,
140
+ num_rejected_tokens,
141
+ )
142
+ self.runner.kv_caches, draft_token_ids = self.runner.drafter.propose(
143
+ kv_caches=self.runner.kv_caches,
144
+ next_token_ids=next_token_ids,
145
+ attn_metadata=attn_metadata,
146
+ target_token_ids=target_token_ids,
147
+ target_hidden_states=target_hidden_states,
148
+ )
149
+ result = draft_token_ids.tolist()
150
+ return result
151
+
152
+ def get_spec_decode_metadata(
153
+ self,
154
+ num_draft_tokens: np.ndarray,
155
+ cu_num_scheduled_tokens: np.ndarray,
156
+ padded_num_reqs: int,
157
+ ) -> SpecDecodeMetadata:
158
+ # Inputs:
159
+ # cu_num_scheduled_tokens: [ 4, 104, 107, 207, 209]
160
+ # num_draft_tokens: [ 3, 0, 2, 0, 1]
161
+ # Outputs:
162
+ # cu_num_draft_tokens: [ 3, 3, 5, 5, 6]
163
+ # logits_indices: [ 0, 1, 2, 3, 103, 104, 105, 106,
164
+ # 206, 207, 208]
165
+ # target_logits_indices: [ 0, 1, 2, 5, 6, 9]
166
+ # bonus_logits_indices: [ 3, 4, 7, 8, 10]
167
+
168
+ # Compute the logits indices.
169
+ # [4, 1, 3, 1, 2]
170
+ num_sampled_tokens = num_draft_tokens + 1
171
+
172
+ # Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
173
+ # arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
174
+ cu_num_sampled_tokens = np.cumsum(num_sampled_tokens)
175
+ arange = np.concatenate(
176
+ [self.runner.arange_cpu[:n] for n in num_sampled_tokens])
177
+ # Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
178
+ logits_indices = np.repeat(
179
+ cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
180
+ # Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
181
+ logits_indices += arange
182
+ # Compute the bonus logits indices.
183
+ bonus_logits_indices = cu_num_sampled_tokens - 1
184
+
185
+ # Compute the draft logits indices.
186
+ # arange: [0, 1, 2, 0, 1, 0]
187
+ arange = np.concatenate(
188
+ [self.runner.arange_cpu[:n] for n in num_draft_tokens])
189
+ # [0, 0, 0, 5, 5, 9]
190
+ target_logits_indices = np.repeat(
191
+ cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
192
+ # [0, 1, 2, 5, 6, 9]
193
+ target_logits_indices += arange
194
+
195
+ # Compute the draft token ids.
196
+ # draft_token_indices: [ 1, 2, 3, 105, 106, 208]
197
+ draft_token_ids = self.runner.input_ids_cpu[logits_indices]
198
+ draft_token_ids = draft_token_ids[target_logits_indices + 1]
199
+ padded_logits_length = runner_utils.get_padded_token_len(
200
+ self.runner.num_logits_paddings, logits_indices.shape[0])
201
+ padded_logits_indices = np.concatenate([
202
+ logits_indices,
203
+ np.zeros(padded_logits_length - logits_indices.shape[0],
204
+ dtype=np.int32)
205
+ ])
206
+
207
+ assert bonus_logits_indices.shape[0] <= padded_num_reqs, (
208
+ f"bonus_logits_indices.shape[0]={bonus_logits_indices.shape[0]} "
209
+ f"padded_num_reqs={padded_num_reqs}")
210
+
211
+ padded_bonus_logits_indices = np.concatenate([
212
+ bonus_logits_indices,
213
+ np.zeros(padded_num_reqs - bonus_logits_indices.shape[0],
214
+ dtype=np.int32)
215
+ ])
216
+ padded_num_draft_tokens = np.concatenate([
217
+ num_draft_tokens,
218
+ np.zeros(padded_num_reqs - num_draft_tokens.shape[0],
219
+ dtype=np.int32)
220
+ ])
221
+ padded_draft_token_ids = np.concatenate([
222
+ draft_token_ids,
223
+ np.zeros(padded_logits_length - draft_token_ids.shape[0],
224
+ dtype=np.int32)
225
+ ])
226
+ padded_target_logits_indices = np.concatenate([
227
+ target_logits_indices,
228
+ np.zeros(padded_logits_length - target_logits_indices.shape[0],
229
+ dtype=np.int32)
230
+ ])
231
+
232
+ padded_num_draft_tokens_cpu = padded_num_draft_tokens
233
+ # CPU -> TPU copy.
234
+ (padded_num_draft_tokens, padded_draft_token_ids,
235
+ padded_logits_indices, padded_target_logits_indices,
236
+ padded_bonus_logits_indices) = device_array(
237
+ self.runner.mesh,
238
+ (padded_num_draft_tokens, padded_draft_token_ids,
239
+ padded_logits_indices, padded_target_logits_indices,
240
+ padded_bonus_logits_indices))
241
+
242
+ metadata = SpecDecodeMetadata(
243
+ draft_token_ids=padded_draft_token_ids,
244
+ draft_lengths=padded_num_draft_tokens,
245
+ draft_lengths_cpu=padded_num_draft_tokens_cpu,
246
+ target_logits_indices=padded_target_logits_indices,
247
+ bonus_logits_indices=padded_bonus_logits_indices,
248
+ final_logits_indices=padded_logits_indices,
249
+ )
250
+ return metadata
@@ -0,0 +1,89 @@
1
+ import functools
2
+ from typing import TYPE_CHECKING, Tuple
3
+
4
+ import jax
5
+ import jax.numpy as jnp
6
+
7
+ from tpu_inference.utils import device_array
8
+
9
+ if TYPE_CHECKING:
10
+ from vllm.v1.core.sched.output import \
11
+ SchedulerOutput as VllmSchedulerOutput
12
+
13
+ from tpu_inference.runner.tpu_jax_runner import TPUModelRunner
14
+
15
+
16
+ class StructuredDecodingManager:
17
+
18
+ def __init__(self, runner: "TPUModelRunner"):
19
+ self.runner = runner
20
+
21
+ @functools.partial(jax.jit, static_argnums=(0, ))
22
+ def structured_decode_fn(self, require_struct_decoding: jax.Array,
23
+ grammar_bitmask: jax.Array, logits: jax.Array,
24
+ arange: jax.Array) -> jax.Array:
25
+ return jax.lax.cond(
26
+ jnp.any(require_struct_decoding),
27
+ lambda: self._apply_grammar_bitmask_kernel(
28
+ logits, grammar_bitmask, require_struct_decoding, arange),
29
+ lambda: logits)
30
+
31
+ @functools.partial(jax.jit, static_argnums=(0, ))
32
+ def _apply_grammar_bitmask_kernel(self, logits: jax.Array,
33
+ grammar_bitmask: jax.Array,
34
+ require_struct_decoding: jax.Array,
35
+ arange: jax.Array) -> jax.Array:
36
+
37
+ # Unpack the bitmask for the entire batch at once.
38
+ # grammar_bitmask: (B, N) where B=num_reqs, N=cdiv(vocab_size, 32)
39
+ # arange: (32,)
40
+ # (B, N, 1) and (1, 1, 32) broadcast to (B, N, 32)
41
+ unpacked_bitmask = jnp.right_shift(grammar_bitmask[:, :, None],
42
+ arange[None, None, :]) & 1 == 0
43
+
44
+ # Reshape to (B, vocab_size) and apply to logits.
45
+ # (B, N * 32) -> (B, vocab_size)
46
+ unpacked_bitmask = unpacked_bitmask.reshape(
47
+ logits.shape[0], -1)[:, :self.runner.vocab_size]
48
+
49
+ masked_logits = jnp.where(unpacked_bitmask, -jnp.inf, logits)
50
+
51
+ return jnp.where(require_struct_decoding, masked_logits, logits)
52
+
53
+ def prepare_structured_decoding_input(
54
+ self, logits: jax.Array, scheduler_output: "VllmSchedulerOutput"
55
+ ) -> Tuple[jax.Array, jax.Array, jax.Array]:
56
+ grammar_bitmask = scheduler_output.grammar_bitmask
57
+ assert grammar_bitmask is not None
58
+ num_reqs, _ = logits.shape
59
+
60
+ # Reset pre-allocated tensors
61
+ self.runner.grammar_bitmask_cpu.fill(0)
62
+ self.runner.require_structured_out_cpu.fill(0)
63
+
64
+ sorted_struct_requests = sorted(
65
+ scheduler_output.structured_output_request_ids.items(),
66
+ key=lambda item: item[1])
67
+
68
+ cumulative_mask_idx = 0
69
+ for req_id, _ in sorted_struct_requests:
70
+ if req_id not in self.runner.input_batch.req_id_to_index:
71
+ continue
72
+ batch_index = self.runner.input_batch.req_id_to_index[req_id]
73
+ self.runner.grammar_bitmask_cpu[batch_index] = grammar_bitmask[
74
+ cumulative_mask_idx]
75
+ # It's not guaranteed that all requests in this batch require
76
+ # structured output, so create a bool tensor to represent
77
+ # the requests that need structured output.
78
+ self.runner.require_structured_out_cpu[batch_index] = True
79
+ cumulative_mask_idx += 1
80
+
81
+ (require_structured_out_cpu,
82
+ grammar_bitmask_cpu, structured_decode_arange) = device_array(
83
+ self.runner.mesh,
84
+ (self.runner.require_structured_out_cpu[:num_reqs],
85
+ self.runner.grammar_bitmask_cpu[:num_reqs],
86
+ self.runner.structured_decode_arange))
87
+
88
+ return (require_structured_out_cpu, grammar_bitmask_cpu,
89
+ structured_decode_arange)