tpu-inference 0.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (168) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_adapters.py +83 -0
  4. tests/core/test_core_tpu.py +523 -0
  5. tests/core/test_disagg_executor.py +60 -0
  6. tests/core/test_disagg_utils.py +53 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  10. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  11. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  12. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  13. tests/lora/__init__.py +0 -0
  14. tests/lora/test_lora.py +123 -0
  15. tests/test_base.py +201 -0
  16. tests/test_quantization.py +836 -0
  17. tests/test_tpu_info.py +120 -0
  18. tests/test_utils.py +218 -0
  19. tests/tpu_backend_test.py +59 -0
  20. tpu_inference/__init__.py +30 -0
  21. tpu_inference/adapters/__init__.py +0 -0
  22. tpu_inference/adapters/vllm_adapters.py +42 -0
  23. tpu_inference/adapters/vllm_config_adapters.py +134 -0
  24. tpu_inference/backend.py +69 -0
  25. tpu_inference/core/__init__.py +0 -0
  26. tpu_inference/core/adapters.py +153 -0
  27. tpu_inference/core/core_tpu.py +776 -0
  28. tpu_inference/core/disagg_executor.py +117 -0
  29. tpu_inference/core/disagg_utils.py +51 -0
  30. tpu_inference/di/__init__.py +0 -0
  31. tpu_inference/di/abstracts.py +28 -0
  32. tpu_inference/di/host.py +76 -0
  33. tpu_inference/di/interfaces.py +51 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/tpu_connector.py +699 -0
  36. tpu_inference/distributed/utils.py +59 -0
  37. tpu_inference/executors/__init__.py +0 -0
  38. tpu_inference/executors/ray_distributed_executor.py +346 -0
  39. tpu_inference/experimental/__init__.py +0 -0
  40. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  41. tpu_inference/interfaces/__init__.py +0 -0
  42. tpu_inference/interfaces/cache.py +31 -0
  43. tpu_inference/interfaces/config.py +47 -0
  44. tpu_inference/interfaces/config_parts.py +117 -0
  45. tpu_inference/interfaces/engine.py +51 -0
  46. tpu_inference/interfaces/outputs.py +22 -0
  47. tpu_inference/interfaces/params.py +21 -0
  48. tpu_inference/interfaces/platform.py +74 -0
  49. tpu_inference/interfaces/request.py +39 -0
  50. tpu_inference/interfaces/scheduler.py +31 -0
  51. tpu_inference/kernels/__init__.py +0 -0
  52. tpu_inference/kernels/collectives/__init__.py +0 -0
  53. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  54. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  55. tpu_inference/kernels/collectives/util.py +47 -0
  56. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  57. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  58. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  59. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  60. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  61. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  62. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  66. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1447 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3834 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/util.py +47 -0
  71. tpu_inference/layers/__init__.py +0 -0
  72. tpu_inference/layers/common/__init__.py +0 -0
  73. tpu_inference/layers/common/attention_metadata.py +34 -0
  74. tpu_inference/layers/jax/__init__.py +0 -0
  75. tpu_inference/layers/jax/attention/__init__.py +0 -0
  76. tpu_inference/layers/jax/attention/attention.py +254 -0
  77. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  78. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  79. tpu_inference/layers/jax/attention_interface.py +356 -0
  80. tpu_inference/layers/jax/base.py +151 -0
  81. tpu_inference/layers/jax/binary_search.py +295 -0
  82. tpu_inference/layers/jax/constants.py +88 -0
  83. tpu_inference/layers/jax/layers.py +301 -0
  84. tpu_inference/layers/jax/misc.py +16 -0
  85. tpu_inference/layers/jax/moe/__init__.py +0 -0
  86. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  87. tpu_inference/layers/jax/moe/moe.py +209 -0
  88. tpu_inference/layers/jax/rope.py +172 -0
  89. tpu_inference/layers/jax/rope_interface.py +214 -0
  90. tpu_inference/layers/jax/sample/__init__.py +0 -0
  91. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  92. tpu_inference/layers/jax/sample/sampling.py +95 -0
  93. tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
  94. tpu_inference/layers/jax/sharding.py +406 -0
  95. tpu_inference/layers/jax/transformer_block.py +76 -0
  96. tpu_inference/layers/vllm/__init__.py +0 -0
  97. tpu_inference/layers/vllm/attention.py +184 -0
  98. tpu_inference/layers/vllm/fused_moe.py +399 -0
  99. tpu_inference/layers/vllm/linear_common.py +186 -0
  100. tpu_inference/layers/vllm/quantization/__init__.py +34 -0
  101. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  102. tpu_inference/layers/vllm/quantization/common.py +105 -0
  103. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  104. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
  105. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  106. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  108. tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
  109. tpu_inference/layers/vllm/sharding.py +151 -0
  110. tpu_inference/logger.py +10 -0
  111. tpu_inference/lora/__init__.py +0 -0
  112. tpu_inference/lora/torch_lora_ops.py +103 -0
  113. tpu_inference/lora/torch_punica_tpu.py +308 -0
  114. tpu_inference/mock/__init__.py +0 -0
  115. tpu_inference/mock/vllm_config_utils.py +28 -0
  116. tpu_inference/mock/vllm_envs.py +1233 -0
  117. tpu_inference/mock/vllm_logger.py +212 -0
  118. tpu_inference/mock/vllm_logging_utils.py +15 -0
  119. tpu_inference/models/__init__.py +0 -0
  120. tpu_inference/models/common/__init__.py +0 -0
  121. tpu_inference/models/common/model_loader.py +433 -0
  122. tpu_inference/models/jax/__init__.py +0 -0
  123. tpu_inference/models/jax/deepseek_v3.py +868 -0
  124. tpu_inference/models/jax/llama3.py +366 -0
  125. tpu_inference/models/jax/llama4.py +473 -0
  126. tpu_inference/models/jax/llama_eagle3.py +333 -0
  127. tpu_inference/models/jax/phi3.py +376 -0
  128. tpu_inference/models/jax/qwen2.py +375 -0
  129. tpu_inference/models/jax/qwen2_5_vl.py +976 -0
  130. tpu_inference/models/jax/qwen3.py +302 -0
  131. tpu_inference/models/jax/utils/__init__.py +0 -0
  132. tpu_inference/models/jax/utils/file_utils.py +96 -0
  133. tpu_inference/models/jax/utils/multi_modal_utils.py +164 -0
  134. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  135. tpu_inference/models/jax/utils/quantization/quantization_utils.py +588 -0
  136. tpu_inference/models/jax/utils/weight_utils.py +510 -0
  137. tpu_inference/models/vllm/__init__.py +0 -0
  138. tpu_inference/models/vllm/vllm_model_wrapper.py +272 -0
  139. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  140. tpu_inference/platforms/__init__.py +2 -0
  141. tpu_inference/platforms/tpu_jax.py +257 -0
  142. tpu_inference/runner/__init__.py +0 -0
  143. tpu_inference/runner/block_table_jax.py +122 -0
  144. tpu_inference/runner/compilation_manager.py +672 -0
  145. tpu_inference/runner/input_batch_jax.py +435 -0
  146. tpu_inference/runner/kv_cache.py +119 -0
  147. tpu_inference/runner/kv_cache_manager.py +460 -0
  148. tpu_inference/runner/lora_utils.py +92 -0
  149. tpu_inference/runner/multimodal_manager.py +208 -0
  150. tpu_inference/runner/persistent_batch_manager.py +244 -0
  151. tpu_inference/runner/speculative_decoding_manager.py +250 -0
  152. tpu_inference/runner/structured_decoding_manager.py +89 -0
  153. tpu_inference/runner/tpu_jax_runner.py +771 -0
  154. tpu_inference/runner/utils.py +426 -0
  155. tpu_inference/spec_decode/__init__.py +0 -0
  156. tpu_inference/spec_decode/jax/__init__.py +0 -0
  157. tpu_inference/spec_decode/jax/eagle3.py +334 -0
  158. tpu_inference/tpu_info.py +77 -0
  159. tpu_inference/utils.py +294 -0
  160. tpu_inference/worker/__init__.py +0 -0
  161. tpu_inference/worker/_temporary_vllm_compat.py +129 -0
  162. tpu_inference/worker/base.py +100 -0
  163. tpu_inference/worker/tpu_worker_jax.py +321 -0
  164. tpu_inference-0.11.1.dist-info/METADATA +101 -0
  165. tpu_inference-0.11.1.dist-info/RECORD +168 -0
  166. tpu_inference-0.11.1.dist-info/WHEEL +5 -0
  167. tpu_inference-0.11.1.dist-info/licenses/LICENSE +201 -0
  168. tpu_inference-0.11.1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,272 @@
1
+ import copy
2
+ import functools
3
+ import os
4
+ from collections.abc import Sequence
5
+ from contextlib import nullcontext
6
+ from typing import Any, List, Optional, Tuple
7
+ from unittest.mock import patch
8
+
9
+ import jax
10
+ import torch
11
+ import torch.nn
12
+ import torchax
13
+ from flax.typing import PRNGKey
14
+ from jax.sharding import Mesh, NamedSharding, PartitionSpec
15
+ from torchax.interop import jax_view, torch_view
16
+ from torchax.ops.mappings import TORCH_DTYPE_TO_JAX
17
+ from vllm.config import VllmConfig
18
+ from vllm.forward_context import set_forward_context
19
+ from vllm.lora.layers import BaseLayerWithLoRA
20
+ from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
21
+ from vllm.model_executor.model_loader import get_model as vllm_get_model
22
+ from vllm.model_executor.models import supports_lora, supports_multimodal
23
+ from vllm.sequence import IntermediateTensors
24
+
25
+ from tpu_inference.layers.common.attention_metadata import AttentionMetadata
26
+ from tpu_inference.layers.vllm.quantization import get_tpu_quantization_config
27
+ from tpu_inference.layers.vllm.sharding import shard_model_to_tpu
28
+ from tpu_inference.logger import init_logger
29
+ from tpu_inference.models.vllm.vllm_model_wrapper_context import (
30
+ get_vllm_model_wrapper_context, set_vllm_model_wrapper_context)
31
+ from tpu_inference.runner.lora_utils import replace_lora_metadata
32
+
33
+ logger = init_logger(__name__)
34
+
35
+
36
+ class _VllmRunner(torch.nn.Module):
37
+
38
+ def __init__(self, vllm_model: torch.nn.Module):
39
+ super().__init__()
40
+ self.vllm_model = vllm_model
41
+
42
+ def forward(self, **kwargs) -> torch.Tensor:
43
+ # We don't support multimodal input in Gemma3, but we need patch it to
44
+ # None to workaround vLLM Gemma3 model bug that
45
+ # `get_multimodal_embeddings` returns empty list but it's caller checks
46
+ # for None.
47
+ with patch(
48
+ "vllm.model_executor.models.gemma3_mm."
49
+ "Gemma3ForConditionalGeneration."
50
+ "get_multimodal_embeddings",
51
+ return_value=None):
52
+ if "hidden_state" in kwargs:
53
+ return self.compute_logits(kwargs["hidden_state"])
54
+ else:
55
+ return self.compute_hidden_state(
56
+ kwargs["input_ids"],
57
+ kwargs["positions"],
58
+ kwargs["intermediate_tensors"],
59
+ kwargs["inputs_embeds"],
60
+ )
61
+
62
+ def compute_hidden_state(
63
+ self,
64
+ input_ids: torch.Tensor,
65
+ positions: torch.Tensor,
66
+ intermediate_tensors: Optional[IntermediateTensors],
67
+ inputs_embeds: Optional[torch.Tensor],
68
+ ) -> torch.Tensor:
69
+ hidden_state = self.vllm_model(input_ids, positions,
70
+ intermediate_tensors, inputs_embeds)
71
+ return hidden_state
72
+
73
+ def compute_logits(self, hidden_state: torch.Tensor) -> torch.Tensor:
74
+ return self.vllm_model.compute_logits(hidden_state)
75
+
76
+
77
+ class VllmModelWrapper:
78
+ """ Wraps a vLLM Pytorch model and let it run on the JAX engine. """
79
+
80
+ rng: PRNGKey
81
+ mesh: Mesh
82
+ model: _VllmRunner
83
+
84
+ def __init__(self, vllm_config: VllmConfig, rng: PRNGKey, mesh: Mesh):
85
+ self.vllm_config = vllm_config
86
+ self.rng = rng
87
+ self.mesh = mesh
88
+
89
+ self.vllm_config.quant_config = get_tpu_quantization_config(
90
+ self.vllm_config, self.mesh)
91
+
92
+ def load_weights(self):
93
+ # Set up to load the model into CPU first.
94
+ vllm_config_for_load = copy.deepcopy(self.vllm_config)
95
+ assert self.vllm_config.model_config.dtype in TORCH_DTYPE_TO_JAX, "The model_config.dtype must be a PyTorch dtype."
96
+ vllm_config_for_load.device_config.device = "cpu"
97
+
98
+ if os.getenv("JAX_RANDOM_WEIGHTS", False):
99
+ vllm_config_for_load.load_config.load_format = "dummy"
100
+ use_random_weights = True
101
+ else:
102
+ use_random_weights = (
103
+ vllm_config_for_load.load_config.load_format == "dummy")
104
+ if use_random_weights:
105
+ logger.info(
106
+ "Initializing vLLM model with random weights, weight loading skipped."
107
+ )
108
+ # The DummyModelLoader in vLLM calls torch._sync for torch_xla path when
109
+ # it detects the tpu platform, but we don't need it and it causes crash
110
+ # without proper setup.
111
+ load_context = patch(
112
+ "torch._sync",
113
+ return_value=None) if use_random_weights else nullcontext()
114
+
115
+ # Load the vLLM model and wrap it into a new model whose forward
116
+ # function can calculate the hidden_state and logits.
117
+ with load_context, jax.default_device(jax.devices('cpu')[0]):
118
+ vllm_model = vllm_get_model(vllm_config=vllm_config_for_load)
119
+ lora_manager = None
120
+ if vllm_config_for_load.lora_config is not None:
121
+ # Replace layers in the model with LoRA layers.
122
+ with torchax.default_env():
123
+ # Argument "device" in load_lora_model is used to set the device
124
+ # used in punica wrapper.
125
+ lora_manager, vllm_model = load_lora_model(
126
+ vllm_model, vllm_config_for_load, device="jax")
127
+ replace_set_lora(vllm_model)
128
+
129
+ static_forward_context = vllm_config_for_load.compilation_config.static_forward_context
130
+ self.vllm_config.compilation_config.static_forward_context = static_forward_context
131
+
132
+ self.model = _VllmRunner(vllm_model)
133
+ params_and_buffers = shard_model_to_tpu(self.model, self.mesh)
134
+
135
+ # Returning to the jax land, so we need to wrap it into a JaxValue.
136
+ return jax_view(params_and_buffers), lora_manager
137
+
138
+ def jit_step_func(self):
139
+
140
+ @functools.partial(
141
+ jax.jit,
142
+ donate_argnames=("kv_caches", ),
143
+ compiler_options={
144
+ "xla_tpu_all_gather_collective_matmul_mode":
145
+ "post_spmd_conservative",
146
+ "xla_tpu_reduce_scatter_collective_matmul_mode":
147
+ "post_spmd_conservative"
148
+ },
149
+ static_argnames=("layer_name_to_kvcache_index", ),
150
+ )
151
+ def step_fun(
152
+ params_and_buffers, # This has been wrapped into torchax TorchValue
153
+ kv_caches: List[jax.Array],
154
+ input_ids: jax.Array,
155
+ attn_metadata: AttentionMetadata,
156
+ input_embeds: jax.Array,
157
+ layer_name_to_kvcache_index: Sequence[Tuple[str, int]],
158
+ lora_metadata,
159
+ *args,
160
+ ) -> Tuple[List[jax.Array], jax.Array]:
161
+ layer_name_to_kvcache_index = dict(layer_name_to_kvcache_index)
162
+ lora_metadata = torch_view(lora_metadata)
163
+ with torchax.default_env(), set_vllm_model_wrapper_context(
164
+ kv_caches=kv_caches,
165
+ mesh=self.mesh,
166
+ layer_name_to_kvcache_index=layer_name_to_kvcache_index
167
+ ), set_forward_context(attn_metadata=attn_metadata,
168
+ vllm_config=self.vllm_config):
169
+ # We need to wrap args from jax land into TorchValue with
170
+ # torch_view in order to call the Torch function.
171
+ original_lora_metadata = replace_lora_metadata(
172
+ self.model, lora_metadata, self.vllm_config.lora_config)
173
+ hidden_states = torch.func.functional_call(
174
+ self.model,
175
+ torch_view(params_and_buffers),
176
+ kwargs={
177
+ "input_ids": torch_view(input_ids),
178
+ "positions": torch_view(attn_metadata.input_positions),
179
+ "intermediate_tensors": None,
180
+ "inputs_embeds": None,
181
+ },
182
+ tie_weights=False,
183
+ )
184
+ replace_lora_metadata(self.model, original_lora_metadata,
185
+ self.vllm_config.lora_config)
186
+ vllm_model_wrapper_context = get_vllm_model_wrapper_context()
187
+ new_kv_caches = vllm_model_wrapper_context.kv_caches
188
+ # Wrap the hidden_states from torch land into a JaxValue for the jax
189
+ # code to consume.
190
+ hidden_states = jax_view(hidden_states)
191
+
192
+ return new_kv_caches, hidden_states, []
193
+
194
+ return step_fun
195
+
196
+ def jit_compute_logits_func(self):
197
+
198
+ @functools.partial(
199
+ jax.jit,
200
+ out_shardings=(NamedSharding(self.mesh,
201
+ PartitionSpec(None, "model"))),
202
+ )
203
+ def compute_logits_func(
204
+ params_and_buffers: Any,
205
+ hidden_states: jax.Array,
206
+ lora_metadata,
207
+ ) -> jax.Array:
208
+ lora_metadata = torch_view(lora_metadata)
209
+ with torchax.default_env(), set_vllm_model_wrapper_context(
210
+ kv_caches=None, mesh=self.mesh):
211
+ original_lora_metadata = replace_lora_metadata(
212
+ self.model, lora_metadata, self.vllm_config.lora_config)
213
+ logits = torch.func.functional_call(
214
+ self.model,
215
+ torch_view(params_and_buffers),
216
+ kwargs={
217
+ "hidden_state": torch_view(hidden_states),
218
+ },
219
+ tie_weights=False,
220
+ )
221
+ replace_lora_metadata(self.model, original_lora_metadata,
222
+ self.vllm_config.lora_config)
223
+ return jax_view(logits)
224
+
225
+ return compute_logits_func
226
+
227
+
228
+ def load_lora_model(model: torch.nn.Module, vllm_config: VllmConfig,
229
+ device: str) -> torch.nn.Module:
230
+ if not supports_lora(model):
231
+ raise ValueError(
232
+ f"{model.__class__.__name__} does not support LoRA yet.")
233
+
234
+ if supports_multimodal(model):
235
+ logger.warning("Regarding multimodal models, vLLM currently "
236
+ "only supports adding LoRA to language model.")
237
+
238
+ # Add LoRA Manager to the Model Runner
239
+ lora_manager = LRUCacheWorkerLoRAManager(
240
+ vllm_config,
241
+ device,
242
+ model.embedding_modules,
243
+ model.embedding_padding_modules,
244
+ )
245
+ return lora_manager, lora_manager.create_lora_manager(model)
246
+
247
+
248
+ # The reason why replace the method is that the set_lora and reset_lora need to
249
+ # run under torchax env.
250
+ def replace_set_lora(model):
251
+
252
+ def _tpu_set_lora(
253
+ self,
254
+ index: int,
255
+ lora_a: torch.Tensor,
256
+ lora_b: torch.Tensor,
257
+ embeddings_tensor: Optional[torch.Tensor],
258
+ ):
259
+ with torchax.default_env():
260
+ self._original_set_lora(index, lora_a, lora_b, embeddings_tensor)
261
+
262
+ def _tpu_reset_lora(self, index: int):
263
+ with torchax.default_env():
264
+ self._original_reset_lora(index)
265
+
266
+ for _, module in model.named_modules():
267
+ if isinstance(module, BaseLayerWithLoRA):
268
+ module._original_set_lora = module.set_lora
269
+ module._original_reset_lora = module.reset_lora
270
+ module.set_lora = _tpu_set_lora.__get__(module, module.__class__)
271
+ module.reset_lora = _tpu_reset_lora.__get__(
272
+ module, module.__class__)
@@ -0,0 +1,45 @@
1
+ from contextlib import contextmanager
2
+ from dataclasses import dataclass
3
+ from typing import Dict, List, Optional
4
+
5
+ import jax
6
+ from jax.sharding import Mesh
7
+
8
+
9
+ @dataclass
10
+ class VllmModelWrapperContext:
11
+ kv_caches: List[jax.Array]
12
+ mesh: Mesh
13
+ layer_name_to_kvcache_index: Dict[str, int]
14
+
15
+
16
+ _vllm_model_wrapper_context: Optional[VllmModelWrapperContext] = None
17
+
18
+
19
+ def get_vllm_model_wrapper_context() -> VllmModelWrapperContext:
20
+ assert _vllm_model_wrapper_context is not None, (
21
+ "VllmModelWrapperContext is not set. "
22
+ "Please use `set_vllm_model_wrapper_context` to set the VllmModelWrapperContext."
23
+ )
24
+ return _vllm_model_wrapper_context
25
+
26
+
27
+ @contextmanager
28
+ def set_vllm_model_wrapper_context(
29
+ *,
30
+ kv_caches: List[jax.Array],
31
+ mesh: Mesh,
32
+ layer_name_to_kvcache_index: Dict[str, int] = None,
33
+ ):
34
+ global _vllm_model_wrapper_context
35
+ prev_context = _vllm_model_wrapper_context
36
+ _vllm_model_wrapper_context = VllmModelWrapperContext(
37
+ kv_caches=kv_caches,
38
+ mesh=mesh,
39
+ layer_name_to_kvcache_index=layer_name_to_kvcache_index,
40
+ )
41
+
42
+ try:
43
+ yield
44
+ finally:
45
+ _vllm_model_wrapper_context = prev_context
@@ -0,0 +1,2 @@
1
+ # ruff: noqa
2
+ from tpu_inference.platforms.tpu_jax import TpuPlatform
@@ -0,0 +1,257 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import os
4
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, cast
5
+
6
+ import jax.numpy as jnp
7
+ import vllm.envs as envs
8
+ from torchax.ops.mappings import j2t_dtype
9
+ from tpu_info import device
10
+ from vllm.inputs import ProcessorInputs, PromptType
11
+ from vllm.platforms.interface import Platform, PlatformEnum
12
+ from vllm.sampling_params import SamplingParams, SamplingType
13
+
14
+ from tpu_inference.logger import init_logger
15
+ from tpu_inference.models.jax.utils.quantization.quantization_utils import \
16
+ update_vllm_config_for_qwix_quantization
17
+
18
+ if TYPE_CHECKING:
19
+ from vllm.attention.backends.registry import _Backend
20
+ from vllm.config import BlockSize, ModelConfig, VllmConfig
21
+ from vllm.pooling_params import PoolingParams
22
+ else:
23
+ BlockSize = None
24
+ ModelConfig = None
25
+ VllmConfig = None
26
+ PoolingParams = None
27
+ _Backend = None
28
+
29
+ logger = init_logger(__name__)
30
+
31
+ _DTYPE: dict[str, jnp.dtype] = {
32
+ "bfloat16": jnp.bfloat16,
33
+ "float": jnp.float32,
34
+ "float32": jnp.float32,
35
+ }
36
+
37
+
38
+ class TpuPlatform(Platform):
39
+ _enum = PlatformEnum.TPU
40
+ device_name: str = "tpu"
41
+ device_type: str = "tpu"
42
+ dispatch_key: str = "XLA"
43
+ ray_device_key: str = "TPU"
44
+ device_control_env_var: str = "TPU_VISIBLE_CHIPS"
45
+ simple_compile_backend: str = "openxla"
46
+
47
+ supported_quantization: list[str] = [
48
+ "tpu_int8", "compressed-tensors", "awq", "fp8"
49
+ ]
50
+
51
+ additional_env_vars: list[str] = [
52
+ "JAX_RANDOM_WEIGHTS", "PHASED_PROFILING_DIR",
53
+ "TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS",
54
+ "TPU_MULTIHOST_BACKEND", "VLLM_MLA_DISABLE", "NEW_MODEL_DESIGN",
55
+ "TPU_BACKEND_TYPE"
56
+ ]
57
+
58
+ @classmethod
59
+ def get_attn_backend_cls(cls, selected_backend: "_Backend", head_size: int,
60
+ dtype: jnp.dtype, kv_cache_dtype: Optional[str],
61
+ block_size: int, use_v1: bool, use_mla: bool,
62
+ has_sink: bool, use_sparse: bool) -> str:
63
+ from vllm.attention.backends.registry import _Backend
64
+ if selected_backend != _Backend.PALLAS:
65
+ logger.info("Cannot use %s backend on TPU.", selected_backend)
66
+
67
+ if use_v1:
68
+ logger.info("Using Pallas V1 backend.")
69
+ return "tpu_inference.layers.vllm.attention.PallasAttentionBackend"
70
+ else:
71
+ logger.info("Using Pallas backend.")
72
+ return "vllm.attention.backends.pallas.PallasAttentionBackend"
73
+
74
+ @classmethod
75
+ def get_device_name(cls, device_id: int = 0) -> str:
76
+ try:
77
+ if envs.VLLM_TPU_USING_PATHWAYS:
78
+ # Causes mutliprocess accessing IFRT when calling jax.devices()
79
+ return "TPU v6 lite"
80
+ else:
81
+ chip_type, _ = device.get_local_chips()
82
+ return f"TPU {chip_type.name}"
83
+ except Exception as e:
84
+ logger.warning(f"Error getting device name: {e}")
85
+ return 'TPU'
86
+
87
+ @classmethod
88
+ def get_device_total_memory(cls, device_id: int = 0) -> int:
89
+ raise NotImplementedError
90
+
91
+ @classmethod
92
+ def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
93
+ return not envs.VLLM_USE_V1
94
+
95
+ @classmethod
96
+ def get_punica_wrapper(cls) -> str:
97
+ return "tpu_inference.lora.torch_punica_tpu.PunicaWrapperTPU"
98
+
99
+ @classmethod
100
+ def get_infinity_values(cls, dtype: jnp.dtype) -> Tuple[float, float]:
101
+ return jnp.finfo(dtype).min, jnp.finfo(dtype).max
102
+
103
+ @classmethod
104
+ def can_update_inplace(cls):
105
+ return False
106
+
107
+ @classmethod
108
+ def get_lora_vocab_padding_size(cls) -> int:
109
+ return 1
110
+
111
+ @classmethod
112
+ def inference_mode(cls):
113
+ return True
114
+
115
+ @classmethod
116
+ def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
117
+ if not envs.VLLM_USE_V1:
118
+ raise RuntimeError("VLLM_USE_V1=1 must be set for JAX backend.")
119
+
120
+ if envs.VLLM_TPU_USING_PATHWAYS:
121
+ assert not envs.VLLM_ENABLE_V1_MULTIPROCESSING, (
122
+ "VLLM_ENABLE_V1_MULTIPROCESSING must be 0 when using Pathways(JAX_PLATFORMS=proxy)"
123
+ )
124
+
125
+ from vllm.config import CompilationLevel
126
+
127
+ cache_config = vllm_config.cache_config
128
+ # For v0, the default block size is 16.
129
+ if cache_config and cache_config.block_size is None:
130
+ cache_config.block_size = cast(BlockSize, 16)
131
+ compilation_config = vllm_config.compilation_config
132
+
133
+ # TPU only supports DYNAMO_ONCE compilation level
134
+ # NOTE(xiang): the compilation_config is not used by jax.
135
+ if compilation_config.level != CompilationLevel.DYNAMO_ONCE:
136
+ compilation_config.level = CompilationLevel.DYNAMO_ONCE
137
+
138
+ if compilation_config.backend == "":
139
+ compilation_config.backend = "openxla"
140
+
141
+ # If we use vLLM's model implementation in PyTorch, we should set it with torch version of the dtype.
142
+ impl = os.getenv("MODEL_IMPL_TYPE", "flax_nnx").lower()
143
+
144
+ # NOTE(xiang): convert dtype to jnp.dtype
145
+ # NOTE(wenlong): skip this logic for mm model preprocessing
146
+ # For mm model preprocessors, it may need the output dtype to be torch.
147
+ # In order to avoid a PR to vLLM, we postpone the dtype checking during tpu_worker initialization
148
+ if not vllm_config.scheduler_config.is_multimodal_model or impl == "vllm":
149
+ if not isinstance(vllm_config.model_config.dtype, str):
150
+ logger.warning(
151
+ "The model dtype is not properly set for JAX backend. "
152
+ "Overwriting it to jnp.bfloat16")
153
+ vllm_config.model_config.dtype = jnp.bfloat16
154
+ else:
155
+ vllm_config.model_config.dtype = _DTYPE.get(
156
+ vllm_config.model_config.dtype, jnp.bfloat16)
157
+
158
+ if impl == "vllm":
159
+ vllm_config.model_config.dtype = j2t_dtype(
160
+ vllm_config.model_config.dtype.dtype)
161
+
162
+ if envs.VLLM_USE_V1:
163
+ # TODO(cuiq): remove this dependency.
164
+ from vllm.v1.attention.backends.pallas import \
165
+ PallasAttentionBackend
166
+ cache_config.block_size = PallasAttentionBackend.get_page_size(
167
+ vllm_config) # type: ignore[assignment]
168
+ min_page_size = PallasAttentionBackend.get_min_page_size(
169
+ vllm_config)
170
+ if min_page_size > cache_config.block_size:
171
+ logger.warning(
172
+ "Increase the page size from %s to %s to make sure there's"
173
+ "no SMEM OOM",
174
+ cache_config.block_size,
175
+ min_page_size,
176
+ )
177
+ cache_config.block_size = min_page_size # type: ignore[assignment]
178
+
179
+ parallel_config = vllm_config.parallel_config
180
+ scheduler_config = vllm_config.scheduler_config
181
+ parallel_config.worker_cls = \
182
+ "tpu_inference.worker.tpu_worker_jax.TPUWorker"
183
+
184
+ multihost_backend = os.environ.get("TPU_MULTIHOST_BACKEND", "").lower()
185
+ if not multihost_backend: # Single host
186
+ logger.info("Force using UniProcExecutor for JAX on single host.")
187
+ parallel_config.distributed_executor_backend = "uni"
188
+ elif multihost_backend == "ray":
189
+ from tpu_inference.executors.ray_distributed_executor import \
190
+ RayDistributedExecutor
191
+ parallel_config.distributed_executor_backend = RayDistributedExecutor
192
+ logger.info(
193
+ "Force using RayDistributedExecutor for JAX on single host.")
194
+ else:
195
+ logger.warning(
196
+ f"Unknown TPU multihost backend: {multihost_backend}. "
197
+ "Using uniproc_executor.")
198
+ parallel_config.distributed_executor_backend = "uni"
199
+
200
+ if scheduler_config.is_multimodal_model and not \
201
+ scheduler_config.disable_chunked_mm_input:
202
+ logger.warning("TPU does not support running Multimodal models"\
203
+ " without setting `--disable_chunked_mm_input`. " \
204
+ "Forcing --disable_chunked_mm_input.")
205
+ scheduler_config.disable_chunked_mm_input = True
206
+
207
+ kv_transfer_config = vllm_config.kv_transfer_config
208
+ if kv_transfer_config is not None:
209
+ assert kv_transfer_config.kv_connector == "TPUConnector"
210
+
211
+ update_vllm_config_for_qwix_quantization(vllm_config)
212
+
213
+ @classmethod
214
+ def is_pin_memory_available(cls):
215
+ logger.warning("Pin memory is not supported on TPU.")
216
+ return False
217
+
218
+ @classmethod
219
+ def get_device_communicator_cls(cls) -> str:
220
+ return "vllm.distributed.device_communicators.tpu_communicator.TpuCommunicator" # noqa
221
+
222
+ @classmethod
223
+ def use_all_gather(cls) -> bool:
224
+ return True
225
+
226
+ @classmethod
227
+ def supports_v1(cls, model_config: ModelConfig) -> bool:
228
+ # V1 support on TPU is experimental
229
+ return True
230
+
231
+ @classmethod
232
+ def validate_request(
233
+ cls,
234
+ prompt: PromptType,
235
+ params: Union[SamplingParams, PoolingParams],
236
+ processed_inputs: ProcessorInputs,
237
+ ) -> None:
238
+ """Raises if this request is unsupported on this platform"""
239
+
240
+ if isinstance(params, SamplingParams):
241
+ if params.structured_outputs is not None and not envs.VLLM_USE_V1:
242
+ raise ValueError("Structured output is not supported on "
243
+ f"{cls.device_name} V0.")
244
+ if params.sampling_type == SamplingType.RANDOM_SEED:
245
+ raise ValueError("JAX does not support per-request seed.")
246
+
247
+ @classmethod
248
+ def is_kv_cache_dtype_supported(cls, kv_cache_dtype: str,
249
+ model_config: ModelConfig) -> bool:
250
+ return True
251
+
252
+ @classmethod
253
+ def use_sync_weight_loader(cls) -> bool:
254
+ """
255
+ Returns if the current platform needs to sync weight loader.
256
+ """
257
+ return True
File without changes