tpu-inference 0.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (168) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_adapters.py +83 -0
  4. tests/core/test_core_tpu.py +523 -0
  5. tests/core/test_disagg_executor.py +60 -0
  6. tests/core/test_disagg_utils.py +53 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  10. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  11. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  12. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  13. tests/lora/__init__.py +0 -0
  14. tests/lora/test_lora.py +123 -0
  15. tests/test_base.py +201 -0
  16. tests/test_quantization.py +836 -0
  17. tests/test_tpu_info.py +120 -0
  18. tests/test_utils.py +218 -0
  19. tests/tpu_backend_test.py +59 -0
  20. tpu_inference/__init__.py +30 -0
  21. tpu_inference/adapters/__init__.py +0 -0
  22. tpu_inference/adapters/vllm_adapters.py +42 -0
  23. tpu_inference/adapters/vllm_config_adapters.py +134 -0
  24. tpu_inference/backend.py +69 -0
  25. tpu_inference/core/__init__.py +0 -0
  26. tpu_inference/core/adapters.py +153 -0
  27. tpu_inference/core/core_tpu.py +776 -0
  28. tpu_inference/core/disagg_executor.py +117 -0
  29. tpu_inference/core/disagg_utils.py +51 -0
  30. tpu_inference/di/__init__.py +0 -0
  31. tpu_inference/di/abstracts.py +28 -0
  32. tpu_inference/di/host.py +76 -0
  33. tpu_inference/di/interfaces.py +51 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/tpu_connector.py +699 -0
  36. tpu_inference/distributed/utils.py +59 -0
  37. tpu_inference/executors/__init__.py +0 -0
  38. tpu_inference/executors/ray_distributed_executor.py +346 -0
  39. tpu_inference/experimental/__init__.py +0 -0
  40. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  41. tpu_inference/interfaces/__init__.py +0 -0
  42. tpu_inference/interfaces/cache.py +31 -0
  43. tpu_inference/interfaces/config.py +47 -0
  44. tpu_inference/interfaces/config_parts.py +117 -0
  45. tpu_inference/interfaces/engine.py +51 -0
  46. tpu_inference/interfaces/outputs.py +22 -0
  47. tpu_inference/interfaces/params.py +21 -0
  48. tpu_inference/interfaces/platform.py +74 -0
  49. tpu_inference/interfaces/request.py +39 -0
  50. tpu_inference/interfaces/scheduler.py +31 -0
  51. tpu_inference/kernels/__init__.py +0 -0
  52. tpu_inference/kernels/collectives/__init__.py +0 -0
  53. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  54. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  55. tpu_inference/kernels/collectives/util.py +47 -0
  56. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  57. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  58. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  59. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  60. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  61. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  62. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  66. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1447 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3834 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/util.py +47 -0
  71. tpu_inference/layers/__init__.py +0 -0
  72. tpu_inference/layers/common/__init__.py +0 -0
  73. tpu_inference/layers/common/attention_metadata.py +34 -0
  74. tpu_inference/layers/jax/__init__.py +0 -0
  75. tpu_inference/layers/jax/attention/__init__.py +0 -0
  76. tpu_inference/layers/jax/attention/attention.py +254 -0
  77. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  78. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  79. tpu_inference/layers/jax/attention_interface.py +356 -0
  80. tpu_inference/layers/jax/base.py +151 -0
  81. tpu_inference/layers/jax/binary_search.py +295 -0
  82. tpu_inference/layers/jax/constants.py +88 -0
  83. tpu_inference/layers/jax/layers.py +301 -0
  84. tpu_inference/layers/jax/misc.py +16 -0
  85. tpu_inference/layers/jax/moe/__init__.py +0 -0
  86. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  87. tpu_inference/layers/jax/moe/moe.py +209 -0
  88. tpu_inference/layers/jax/rope.py +172 -0
  89. tpu_inference/layers/jax/rope_interface.py +214 -0
  90. tpu_inference/layers/jax/sample/__init__.py +0 -0
  91. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  92. tpu_inference/layers/jax/sample/sampling.py +95 -0
  93. tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
  94. tpu_inference/layers/jax/sharding.py +406 -0
  95. tpu_inference/layers/jax/transformer_block.py +76 -0
  96. tpu_inference/layers/vllm/__init__.py +0 -0
  97. tpu_inference/layers/vllm/attention.py +184 -0
  98. tpu_inference/layers/vllm/fused_moe.py +399 -0
  99. tpu_inference/layers/vllm/linear_common.py +186 -0
  100. tpu_inference/layers/vllm/quantization/__init__.py +34 -0
  101. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  102. tpu_inference/layers/vllm/quantization/common.py +105 -0
  103. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  104. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
  105. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  106. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  108. tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
  109. tpu_inference/layers/vllm/sharding.py +151 -0
  110. tpu_inference/logger.py +10 -0
  111. tpu_inference/lora/__init__.py +0 -0
  112. tpu_inference/lora/torch_lora_ops.py +103 -0
  113. tpu_inference/lora/torch_punica_tpu.py +308 -0
  114. tpu_inference/mock/__init__.py +0 -0
  115. tpu_inference/mock/vllm_config_utils.py +28 -0
  116. tpu_inference/mock/vllm_envs.py +1233 -0
  117. tpu_inference/mock/vllm_logger.py +212 -0
  118. tpu_inference/mock/vllm_logging_utils.py +15 -0
  119. tpu_inference/models/__init__.py +0 -0
  120. tpu_inference/models/common/__init__.py +0 -0
  121. tpu_inference/models/common/model_loader.py +433 -0
  122. tpu_inference/models/jax/__init__.py +0 -0
  123. tpu_inference/models/jax/deepseek_v3.py +868 -0
  124. tpu_inference/models/jax/llama3.py +366 -0
  125. tpu_inference/models/jax/llama4.py +473 -0
  126. tpu_inference/models/jax/llama_eagle3.py +333 -0
  127. tpu_inference/models/jax/phi3.py +376 -0
  128. tpu_inference/models/jax/qwen2.py +375 -0
  129. tpu_inference/models/jax/qwen2_5_vl.py +976 -0
  130. tpu_inference/models/jax/qwen3.py +302 -0
  131. tpu_inference/models/jax/utils/__init__.py +0 -0
  132. tpu_inference/models/jax/utils/file_utils.py +96 -0
  133. tpu_inference/models/jax/utils/multi_modal_utils.py +164 -0
  134. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  135. tpu_inference/models/jax/utils/quantization/quantization_utils.py +588 -0
  136. tpu_inference/models/jax/utils/weight_utils.py +510 -0
  137. tpu_inference/models/vllm/__init__.py +0 -0
  138. tpu_inference/models/vllm/vllm_model_wrapper.py +272 -0
  139. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  140. tpu_inference/platforms/__init__.py +2 -0
  141. tpu_inference/platforms/tpu_jax.py +257 -0
  142. tpu_inference/runner/__init__.py +0 -0
  143. tpu_inference/runner/block_table_jax.py +122 -0
  144. tpu_inference/runner/compilation_manager.py +672 -0
  145. tpu_inference/runner/input_batch_jax.py +435 -0
  146. tpu_inference/runner/kv_cache.py +119 -0
  147. tpu_inference/runner/kv_cache_manager.py +460 -0
  148. tpu_inference/runner/lora_utils.py +92 -0
  149. tpu_inference/runner/multimodal_manager.py +208 -0
  150. tpu_inference/runner/persistent_batch_manager.py +244 -0
  151. tpu_inference/runner/speculative_decoding_manager.py +250 -0
  152. tpu_inference/runner/structured_decoding_manager.py +89 -0
  153. tpu_inference/runner/tpu_jax_runner.py +771 -0
  154. tpu_inference/runner/utils.py +426 -0
  155. tpu_inference/spec_decode/__init__.py +0 -0
  156. tpu_inference/spec_decode/jax/__init__.py +0 -0
  157. tpu_inference/spec_decode/jax/eagle3.py +334 -0
  158. tpu_inference/tpu_info.py +77 -0
  159. tpu_inference/utils.py +294 -0
  160. tpu_inference/worker/__init__.py +0 -0
  161. tpu_inference/worker/_temporary_vllm_compat.py +129 -0
  162. tpu_inference/worker/base.py +100 -0
  163. tpu_inference/worker/tpu_worker_jax.py +321 -0
  164. tpu_inference-0.11.1.dist-info/METADATA +101 -0
  165. tpu_inference-0.11.1.dist-info/RECORD +168 -0
  166. tpu_inference-0.11.1.dist-info/WHEEL +5 -0
  167. tpu_inference-0.11.1.dist-info/licenses/LICENSE +201 -0
  168. tpu_inference-0.11.1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,1233 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import hashlib
5
+ import os
6
+ import sys
7
+ import tempfile
8
+ from typing import TYPE_CHECKING, Any, Callable, Optional
9
+
10
+ if TYPE_CHECKING:
11
+ VLLM_HOST_IP: str = ""
12
+ VLLM_PORT: Optional[int] = None
13
+ VLLM_RPC_BASE_PATH: str = tempfile.gettempdir()
14
+ VLLM_USE_MODELSCOPE: bool = False
15
+ VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
16
+ VLLM_NCCL_SO_PATH: Optional[str] = None
17
+ LD_LIBRARY_PATH: Optional[str] = None
18
+ VLLM_USE_TRITON_FLASH_ATTN: bool = True
19
+ VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False
20
+ VLLM_USE_AITER_UNIFIED_ATTENTION: bool = False
21
+ VLLM_FLASH_ATTN_VERSION: Optional[int] = None
22
+ LOCAL_RANK: int = 0
23
+ CUDA_VISIBLE_DEVICES: Optional[str] = None
24
+ VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
25
+ VLLM_API_KEY: Optional[str] = None
26
+ S3_ACCESS_KEY_ID: Optional[str] = None
27
+ S3_SECRET_ACCESS_KEY: Optional[str] = None
28
+ S3_ENDPOINT_URL: Optional[str] = None
29
+ VLLM_MODEL_REDIRECT_PATH: Optional[str] = None
30
+ VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm")
31
+ VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
32
+ VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
33
+ VLLM_NO_USAGE_STATS: bool = False
34
+ VLLM_DO_NOT_TRACK: bool = False
35
+ VLLM_USAGE_SOURCE: str = ""
36
+ VLLM_CONFIGURE_LOGGING: int = 1
37
+ VLLM_LOGGING_LEVEL: str = "INFO"
38
+ VLLM_LOGGING_PREFIX: str = ""
39
+ VLLM_LOGGING_CONFIG_PATH: Optional[str] = None
40
+ VLLM_LOGITS_PROCESSOR_THREADS: Optional[int] = None
41
+ VLLM_LOG_STATS_INTERVAL: float = 10.
42
+ VLLM_TRACE_FUNCTION: int = 0
43
+ VLLM_ATTENTION_BACKEND: Optional[str] = None
44
+ VLLM_USE_FLASHINFER_SAMPLER: Optional[bool] = None
45
+ VLLM_FLASHINFER_FORCE_TENSOR_CORES: bool = False
46
+ VLLM_PP_LAYER_PARTITION: Optional[str] = None
47
+ VLLM_CPU_KVCACHE_SPACE: Optional[int] = 0
48
+ VLLM_CPU_OMP_THREADS_BIND: str = ""
49
+ VLLM_CPU_NUM_OF_RESERVED_CPU: Optional[int] = None
50
+ VLLM_CPU_MOE_PREPACK: bool = True
51
+ VLLM_CPU_SGL_KERNEL: bool = False
52
+ VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
53
+ VLLM_XLA_CHECK_RECOMPILATION: bool = False
54
+ VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024
55
+ VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True
56
+ VLLM_USE_RAY_SPMD_WORKER: bool = False
57
+ VLLM_USE_RAY_COMPILED_DAG: bool = False
58
+ VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: str = "auto"
59
+ VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False
60
+ VLLM_USE_RAY_WRAPPED_PP_COMM: bool = True
61
+ VLLM_XLA_USE_SPMD: bool = False
62
+ VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
63
+ VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
64
+ VLLM_IMAGE_FETCH_TIMEOUT: int = 5
65
+ VLLM_VIDEO_FETCH_TIMEOUT: int = 30
66
+ VLLM_AUDIO_FETCH_TIMEOUT: int = 10
67
+ VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8
68
+ VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25
69
+ VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
70
+ VLLM_MM_INPUT_CACHE_GIB: int = 4
71
+ VLLM_TARGET_DEVICE: str = "cuda"
72
+ MAX_JOBS: Optional[str] = None
73
+ NVCC_THREADS: Optional[str] = None
74
+ VLLM_USE_PRECOMPILED: bool = False
75
+ VLLM_DOCKER_BUILD_CONTEXT: bool = False
76
+ VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False
77
+ VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False
78
+ CMAKE_BUILD_TYPE: Optional[str] = None
79
+ VERBOSE: bool = False
80
+ VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False
81
+ VLLM_RPC_TIMEOUT: int = 10000 # ms
82
+ VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds
83
+ VLLM_PLUGINS: Optional[list[str]] = None
84
+ VLLM_LORA_RESOLVER_CACHE_DIR: Optional[str] = None
85
+ VLLM_TORCH_PROFILER_DIR: Optional[str] = None
86
+ VLLM_TORCH_PROFILER_RECORD_SHAPES: bool = False
87
+ VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: bool = False
88
+ VLLM_TORCH_PROFILER_WITH_STACK: bool = True
89
+ VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False
90
+ VLLM_USE_TRITON_AWQ: bool = False
91
+ VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
92
+ VLLM_SKIP_P2P_CHECK: bool = False
93
+ VLLM_DISABLED_KERNELS: list[str] = []
94
+ VLLM_USE_V1: bool = True
95
+ VLLM_ROCM_USE_AITER: bool = False
96
+ VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False
97
+ VLLM_ROCM_USE_AITER_LINEAR: bool = True
98
+ VLLM_ROCM_USE_AITER_MOE: bool = True
99
+ VLLM_ROCM_USE_AITER_RMSNORM: bool = True
100
+ VLLM_ROCM_USE_AITER_MLA: bool = True
101
+ VLLM_ROCM_USE_AITER_MHA: bool = True
102
+ VLLM_ROCM_USE_SKINNY_GEMM: bool = True
103
+ VLLM_ROCM_FP8_PADDING: bool = True
104
+ VLLM_ROCM_MOE_PADDING: bool = True
105
+ VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True
106
+ VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
107
+ VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
108
+ VLLM_DISABLE_COMPILE_CACHE: bool = False
109
+ Q_SCALE_CONSTANT: int = 200
110
+ K_SCALE_CONSTANT: int = 200
111
+ V_SCALE_CONSTANT: int = 100
112
+ VLLM_SERVER_DEV_MODE: bool = False
113
+ VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128
114
+ VLLM_MLA_DISABLE: bool = False
115
+ VLLM_RAY_PER_WORKER_GPUS: float = 1.0
116
+ VLLM_RAY_BUNDLE_INDICES: str = ""
117
+ VLLM_CUDART_SO_PATH: Optional[str] = None
118
+ VLLM_DP_RANK: int = 0
119
+ VLLM_DP_RANK_LOCAL: int = -1
120
+ VLLM_DP_SIZE: int = 1
121
+ VLLM_DP_MASTER_IP: str = ""
122
+ VLLM_DP_MASTER_PORT: int = 0
123
+ VLLM_MOE_DP_CHUNK_SIZE: int = 256
124
+ VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False
125
+ VLLM_MARLIN_USE_ATOMIC_ADD: bool = False
126
+ VLLM_MXFP4_USE_MARLIN: Optional[bool] = None
127
+ VLLM_V0_USE_OUTLINES_CACHE: bool = False
128
+ VLLM_V1_USE_OUTLINES_CACHE: bool = False
129
+ VLLM_TPU_BUCKET_PADDING_GAP: int = 0
130
+ VLLM_TPU_MOST_MODEL_LEN: Optional[int] = None
131
+ VLLM_TPU_USING_PATHWAYS: bool = False
132
+ VLLM_USE_DEEP_GEMM: bool = False
133
+ VLLM_USE_DEEP_GEMM_E8M0: bool = True
134
+ VLLM_SKIP_DEEP_GEMM_WARMUP: bool = False
135
+ VLLM_USE_FLASHINFER_MOE_FP8: bool = False
136
+ VLLM_USE_FLASHINFER_MOE_FP4: bool = False
137
+ VLLM_FLASHINFER_MOE_BACKEND: str = "throughput"
138
+ VLLM_XGRAMMAR_CACHE_MB: int = 0
139
+ VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
140
+ VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False
141
+ VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost"
142
+ VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5557
143
+ VLLM_ALL2ALL_BACKEND: str = "naive"
144
+ VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840
145
+ VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1
146
+ VLLM_SLEEP_WHEN_IDLE: bool = False
147
+ VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
148
+ VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300
149
+ VLLM_KV_CACHE_LAYOUT: Optional[str] = None
150
+ VLLM_COMPUTE_NANS_IN_LOGITS: bool = False
151
+ VLLM_USE_NVFP4_CT_EMULATIONS: bool = False
152
+ VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: str = "NONE"
153
+ VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True
154
+ VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: Optional[int] = None
155
+ VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 120
156
+ VLLM_USE_CUDNN_PREFILL: bool = False
157
+ VLLM_ENABLE_CUDAGRAPH_GC: bool = False
158
+ VLLM_LOOPBACK_IP: str = ""
159
+ VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE: bool = False
160
+ VLLM_ENABLE_RESPONSES_API_STORE: bool = False
161
+ VLLM_USE_TRTLLM_ATTENTION: Optional[str] = None
162
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: bool = False
163
+ VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: bool = False
164
+ VLLM_TUNED_CONFIG_FOLDER: Optional[str] = None
165
+
166
+
167
+ def get_default_cache_root():
168
+ return os.getenv(
169
+ "XDG_CACHE_HOME",
170
+ os.path.join(os.path.expanduser("~"), ".cache"),
171
+ )
172
+
173
+
174
+ def get_default_config_root():
175
+ return os.getenv(
176
+ "XDG_CONFIG_HOME",
177
+ os.path.join(os.path.expanduser("~"), ".config"),
178
+ )
179
+
180
+
181
+ def maybe_convert_int(value: Optional[str]) -> Optional[int]:
182
+ if value is None:
183
+ return None
184
+ return int(value)
185
+
186
+
187
+ def maybe_convert_bool(value: Optional[str]) -> Optional[bool]:
188
+ if value is None:
189
+ return None
190
+ return bool(int(value))
191
+
192
+
193
+ def get_vllm_port() -> Optional[int]:
194
+ """Get the port from VLLM_PORT environment variable.
195
+
196
+ Returns:
197
+ The port number as an integer if VLLM_PORT is set, None otherwise.
198
+
199
+ Raises:
200
+ ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue.
201
+ """
202
+ if 'VLLM_PORT' not in os.environ:
203
+ return None
204
+
205
+ port = os.getenv('VLLM_PORT', '0')
206
+
207
+ try:
208
+ return int(port)
209
+ except ValueError as err:
210
+ from urllib.parse import urlparse
211
+ parsed = urlparse(port)
212
+ if parsed.scheme:
213
+ raise ValueError(
214
+ f"VLLM_PORT '{port}' appears to be a URI. "
215
+ "This may be caused by a Kubernetes service discovery issue,"
216
+ "check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html"
217
+ ) from None
218
+ raise ValueError(
219
+ f"VLLM_PORT '{port}' must be a valid integer") from err
220
+
221
+
222
+ # The begin-* and end* here are used by the documentation generator
223
+ # to extract the used env vars.
224
+
225
+ # --8<-- [start:env-vars-definition]
226
+
227
+ environment_variables: dict[str, Callable[[], Any]] = {
228
+
229
+ # ================== Installation Time Env Vars ==================
230
+
231
+ # Target device of vLLM, supporting [cuda (by default),
232
+ # rocm, neuron, cpu]
233
+ "VLLM_TARGET_DEVICE":
234
+ lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(),
235
+
236
+ # Maximum number of compilation jobs to run in parallel.
237
+ # By default this is the number of CPUs
238
+ "MAX_JOBS":
239
+ lambda: os.getenv("MAX_JOBS", None),
240
+
241
+ # Number of threads to use for nvcc
242
+ # By default this is 1.
243
+ # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
244
+ "NVCC_THREADS":
245
+ lambda: os.getenv("NVCC_THREADS", None),
246
+
247
+ # If set, vllm will use precompiled binaries (*.so)
248
+ "VLLM_USE_PRECOMPILED":
249
+ lambda: os.environ.get("VLLM_USE_PRECOMPILED", "").strip().lower() in
250
+ ("1", "true") or bool(os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),
251
+
252
+ # Used to mark that setup.py is running in a Docker build context,
253
+ # in order to force the use of precompiled binaries.
254
+ "VLLM_DOCKER_BUILD_CONTEXT":
255
+ lambda: os.environ.get("VLLM_DOCKER_BUILD_CONTEXT", "").strip().lower() in
256
+ ("1", "true"),
257
+
258
+ # Whether to force using nightly wheel in python build.
259
+ # This is used for testing the nightly wheel in python build.
260
+ "VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL":
261
+ lambda: bool(int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0"))
262
+ ),
263
+
264
+ # CMake build type
265
+ # If not set, defaults to "Debug" or "RelWithDebInfo"
266
+ # Available options: "Debug", "Release", "RelWithDebInfo"
267
+ "CMAKE_BUILD_TYPE":
268
+ lambda: os.getenv("CMAKE_BUILD_TYPE"),
269
+
270
+ # If set, vllm will print verbose logs during installation
271
+ "VERBOSE":
272
+ lambda: bool(int(os.getenv('VERBOSE', '0'))),
273
+
274
+ # Root directory for vLLM configuration files
275
+ # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
276
+ # Note that this not only affects how vllm finds its configuration files
277
+ # during runtime, but also affects how vllm installs its configuration
278
+ # files during **installation**.
279
+ "VLLM_CONFIG_ROOT":
280
+ lambda: os.path.expanduser(
281
+ os.getenv(
282
+ "VLLM_CONFIG_ROOT",
283
+ os.path.join(get_default_config_root(), "vllm"),
284
+ )),
285
+
286
+ # ================== Runtime Env Vars ==================
287
+
288
+ # Root directory for vLLM cache files
289
+ # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
290
+ "VLLM_CACHE_ROOT":
291
+ lambda: os.path.expanduser(
292
+ os.getenv(
293
+ "VLLM_CACHE_ROOT",
294
+ os.path.join(get_default_cache_root(), "vllm"),
295
+ )),
296
+
297
+ # used in distributed environment to determine the ip address
298
+ # of the current node, when the node has multiple network interfaces.
299
+ # If you are using multi-node inference, you should set this differently
300
+ # on each node.
301
+ 'VLLM_HOST_IP':
302
+ lambda: os.getenv('VLLM_HOST_IP', ""),
303
+
304
+ # used in distributed environment to manually set the communication port
305
+ # Note: if VLLM_PORT is set, and some code asks for multiple ports, the
306
+ # VLLM_PORT will be used as the first port, and the rest will be generated
307
+ # by incrementing the VLLM_PORT value.
308
+ 'VLLM_PORT':
309
+ get_vllm_port,
310
+
311
+ # path used for ipc when the frontend api server is running in
312
+ # multi-processing mode to communicate with the backend engine process.
313
+ 'VLLM_RPC_BASE_PATH':
314
+ lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()),
315
+
316
+ # If true, will load models from ModelScope instead of Hugging Face Hub.
317
+ # note that the value is true or false, not numbers
318
+ "VLLM_USE_MODELSCOPE":
319
+ lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",
320
+
321
+ # Interval in seconds to log a warning message when the ring buffer is full
322
+ "VLLM_RINGBUFFER_WARNING_INTERVAL":
323
+ lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),
324
+
325
+ # path to cudatoolkit home directory, under which should be bin, include,
326
+ # and lib directories.
327
+ "CUDA_HOME":
328
+ lambda: os.environ.get("CUDA_HOME", None),
329
+
330
+ # Path to the NCCL library file. It is needed because nccl>=2.19 brought
331
+ # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
332
+ "VLLM_NCCL_SO_PATH":
333
+ lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
334
+
335
+ # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
336
+ # library file in the locations specified by `LD_LIBRARY_PATH`
337
+ "LD_LIBRARY_PATH":
338
+ lambda: os.environ.get("LD_LIBRARY_PATH", None),
339
+
340
+ # flag to control if vllm should use triton flash attention
341
+ "VLLM_USE_TRITON_FLASH_ATTN":
342
+ lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
343
+ ("true", "1")),
344
+
345
+ # Use separate prefill and decode kernels for V1 attention instead of
346
+ # the unified triton kernel.
347
+ "VLLM_V1_USE_PREFILL_DECODE_ATTENTION":
348
+ lambda:
349
+ (os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in
350
+ ("true", "1")),
351
+
352
+ # Use AITER triton unified attention for V1 attention
353
+ "VLLM_USE_AITER_UNIFIED_ATTENTION":
354
+ lambda:
355
+ (os.getenv("VLLM_USE_AITER_UNIFIED_ATTENTION", "False").lower() in
356
+ ("true", "1")),
357
+
358
+ # Force vllm to use a specific flash-attention version (2 or 3), only valid
359
+ # when using the flash-attention backend.
360
+ "VLLM_FLASH_ATTN_VERSION":
361
+ lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)),
362
+
363
+ # Internal flag to enable Dynamo fullgraph capture
364
+ "VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
365
+ lambda: bool(
366
+ os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"),
367
+
368
+ # Feature flag to enable/disable Inductor standalone compile.
369
+ # In torch <= 2.7 we ignore this flag; in torch >= 2.8 this is
370
+ # enabled by default.
371
+ "VLLM_USE_STANDALONE_COMPILE":
372
+ lambda: os.environ.get("VLLM_USE_STANDALONE_COMPILE", "1") == "1",
373
+
374
+ # local rank of the process in the distributed setting, used to determine
375
+ # the GPU device id
376
+ "LOCAL_RANK":
377
+ lambda: int(os.environ.get("LOCAL_RANK", "0")),
378
+
379
+ # used to control the visible devices in the distributed setting
380
+ "CUDA_VISIBLE_DEVICES":
381
+ lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
382
+
383
+ # timeout for each iteration in the engine
384
+ "VLLM_ENGINE_ITERATION_TIMEOUT_S":
385
+ lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),
386
+
387
+ # API key for vLLM API server
388
+ "VLLM_API_KEY":
389
+ lambda: os.environ.get("VLLM_API_KEY", None),
390
+
391
+ # Whether to log responses from API Server for debugging
392
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE":
393
+ lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
394
+ ).lower() == "true",
395
+
396
+ # S3 access information, used for tensorizer to load model from S3
397
+ "S3_ACCESS_KEY_ID":
398
+ lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
399
+ "S3_SECRET_ACCESS_KEY":
400
+ lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
401
+ "S3_ENDPOINT_URL":
402
+ lambda: os.environ.get("S3_ENDPOINT_URL", None),
403
+
404
+ # Usage stats collection
405
+ "VLLM_USAGE_STATS_SERVER":
406
+ lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
407
+ "VLLM_NO_USAGE_STATS":
408
+ lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
409
+ "VLLM_DO_NOT_TRACK":
410
+ lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
411
+ "DO_NOT_TRACK", None) or "0") == "1",
412
+ "VLLM_USAGE_SOURCE":
413
+ lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
414
+
415
+ # Logging configuration
416
+ # If set to 0, vllm will not configure logging
417
+ # If set to 1, vllm will configure logging using the default configuration
418
+ # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
419
+ "VLLM_CONFIGURE_LOGGING":
420
+ lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
421
+ "VLLM_LOGGING_CONFIG_PATH":
422
+ lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
423
+
424
+ # this is used for configuring the default logging level
425
+ "VLLM_LOGGING_LEVEL":
426
+ lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),
427
+
428
+ # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
429
+ "VLLM_LOGGING_PREFIX":
430
+ lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
431
+
432
+ # if set, vllm will call logits processors in a thread pool with this many
433
+ # threads. This is useful when using custom logits processors that either
434
+ # (a) launch additional CUDA kernels or (b) do significant CPU-bound work
435
+ # while not holding the python GIL, or both.
436
+ "VLLM_LOGITS_PROCESSOR_THREADS":
437
+ lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0"))
438
+ if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None,
439
+
440
+ # If set, vllm will log stats at this interval in seconds
441
+ # If not set, vllm will log stats every 10 seconds.
442
+ "VLLM_LOG_STATS_INTERVAL":
443
+ lambda: val if (val := float(os.getenv("VLLM_LOG_STATS_INTERVAL", "10.")))
444
+ > 0. else 10.,
445
+
446
+ # Trace function calls
447
+ # If set to 1, vllm will trace function calls
448
+ # Useful for debugging
449
+ "VLLM_TRACE_FUNCTION":
450
+ lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
451
+
452
+ # Backend for attention computation
453
+ # Available options:
454
+ # - "TORCH_SDPA": use torch.nn.MultiheadAttention
455
+ # - "FLASH_ATTN": use FlashAttention
456
+ # - "XFORMERS": use XFormers
457
+ # - "ROCM_FLASH": use ROCmFlashAttention
458
+ # - "FLASHINFER": use flashinfer
459
+ # - "FLASHMLA": use FlashMLA
460
+ "VLLM_ATTENTION_BACKEND":
461
+ lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),
462
+
463
+ # If set, vllm will use flashinfer sampler
464
+ "VLLM_USE_FLASHINFER_SAMPLER":
465
+ lambda: bool(int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"]))
466
+ if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None,
467
+
468
+ # If set, vllm will force flashinfer to use tensor cores;
469
+ # otherwise will use heuristic based on model architecture.
470
+ "VLLM_FLASHINFER_FORCE_TENSOR_CORES":
471
+ lambda: bool(int(os.getenv("VLLM_FLASHINFER_FORCE_TENSOR_CORES", "0"))),
472
+
473
+ # Pipeline stage partition strategy
474
+ "VLLM_PP_LAYER_PARTITION":
475
+ lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),
476
+
477
+ # (CPU backend only) CPU key-value cache space.
478
+ # default is None and will be set as 4 GB
479
+ "VLLM_CPU_KVCACHE_SPACE":
480
+ lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0"))
481
+ if "VLLM_CPU_KVCACHE_SPACE" in os.environ else None,
482
+
483
+ # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
484
+ # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
485
+ "VLLM_CPU_OMP_THREADS_BIND":
486
+ lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"),
487
+
488
+ # (CPU backend only) CPU cores not used by OMP threads .
489
+ # Those CPU cores will not be used by OMP threads of a rank.
490
+ "VLLM_CPU_NUM_OF_RESERVED_CPU":
491
+ lambda: int(os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0"))
492
+ if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ else None,
493
+
494
+ # (CPU backend only) whether to use prepack for MoE layer. This will be
495
+ # passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might
496
+ # need to set this to "0" (False).
497
+ "VLLM_CPU_MOE_PREPACK":
498
+ lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))),
499
+
500
+ # (CPU backend only) whether to use SGL kernels, optimized for small batch.
501
+ "VLLM_CPU_SGL_KERNEL":
502
+ lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))),
503
+
504
+ # If the env var is set, then all workers will execute as separate
505
+ # processes from the engine, and we use the same mechanism to trigger
506
+ # execution on all workers.
507
+ # Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
508
+ "VLLM_USE_RAY_SPMD_WORKER":
509
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))),
510
+
511
+ # If the env var is set, it uses the Ray's Compiled Graph
512
+ # (previously known as ADAG) API which optimizes the
513
+ # control plane overhead.
514
+ # Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
515
+ # Note that this variable is set to 1 in V1 by default
516
+ # when ray distributed executor is used.
517
+ "VLLM_USE_RAY_COMPILED_DAG":
518
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))),
519
+
520
+ # If the env var is set, Ray Compiled Graph uses the specified
521
+ # channel type to communicate between workers belonging to
522
+ # different pipeline-parallel stages.
523
+ # Available options:
524
+ # - "auto": use the default channel type
525
+ # - "nccl": use NCCL for communication
526
+ # - "shm": use shared memory and gRPC for communication
527
+ # This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
528
+ "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE":
529
+ lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto"),
530
+
531
+ # If the env var is set, it enables GPU communication overlap
532
+ # (experimental feature) in Ray's Compiled Graph. This flag is ignored if
533
+ # VLLM_USE_RAY_COMPILED_DAG is not set.
534
+ "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM":
535
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
536
+ ),
537
+
538
+ # If the env var is set, it uses a Ray Communicator wrapping
539
+ # vLLM's pipeline parallelism communicator to interact with Ray's
540
+ # Compiled Graph. Otherwise, it uses Ray's NCCL communicator.
541
+ # This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
542
+ "VLLM_USE_RAY_WRAPPED_PP_COMM":
543
+ lambda: bool(int(os.getenv("VLLM_USE_RAY_WRAPPED_PP_COMM", "1"))),
544
+
545
+ # Use dedicated multiprocess context for workers.
546
+ # Both spawn and fork work
547
+ "VLLM_WORKER_MULTIPROC_METHOD":
548
+ lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),
549
+
550
+ # Path to the cache for storing downloaded assets
551
+ "VLLM_ASSETS_CACHE":
552
+ lambda: os.path.expanduser(
553
+ os.getenv(
554
+ "VLLM_ASSETS_CACHE",
555
+ os.path.join(get_default_cache_root(), "vllm", "assets"),
556
+ )),
557
+
558
+ # Timeout for fetching images when serving multimodal models
559
+ # Default is 5 seconds
560
+ "VLLM_IMAGE_FETCH_TIMEOUT":
561
+ lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
562
+
563
+ # Timeout for fetching videos when serving multimodal models
564
+ # Default is 30 seconds
565
+ "VLLM_VIDEO_FETCH_TIMEOUT":
566
+ lambda: int(os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")),
567
+
568
+ # Timeout for fetching audio when serving multimodal models
569
+ # Default is 10 seconds
570
+ "VLLM_AUDIO_FETCH_TIMEOUT":
571
+ lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")),
572
+
573
+ # Max number of workers for the thread pool handling
574
+ # media bytes loading. Set to 1 to disable parallel processing.
575
+ # Default is 8
576
+ "VLLM_MEDIA_LOADING_THREAD_COUNT":
577
+ lambda: int(os.getenv("VLLM_MEDIA_LOADING_THREAD_COUNT", "8")),
578
+
579
+ # Maximum filesize in MB for a single audio file when processing
580
+ # speech-to-text requests. Files larger than this will be rejected.
581
+ # Default is 25 MB
582
+ "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB":
583
+ lambda: int(os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25")),
584
+
585
+ # Backend for Video IO
586
+ # - "opencv": Default backend that uses OpenCV stream buffered backend.
587
+ #
588
+ # Custom backend implementations can be registered
589
+ # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and
590
+ # imported at runtime.
591
+ # If a non-existing backend is used, an AssertionError will be thrown.
592
+ "VLLM_VIDEO_LOADER_BACKEND":
593
+ lambda: os.getenv("VLLM_VIDEO_LOADER_BACKEND", "opencv"),
594
+
595
+ # [DEPRECATED] Cache size (in GiB per process) for multimodal input cache
596
+ # Default is 4 GiB per API process + 4 GiB per engine core process
597
+ "VLLM_MM_INPUT_CACHE_GIB":
598
+ lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")),
599
+
600
+ # Path to the XLA persistent cache directory.
601
+ # Only used for XLA devices such as TPUs.
602
+ "VLLM_XLA_CACHE_PATH":
603
+ lambda: os.path.expanduser(
604
+ os.getenv(
605
+ "VLLM_XLA_CACHE_PATH",
606
+ os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
607
+ )),
608
+
609
+ # If set, assert on XLA recompilation after each execution step.
610
+ "VLLM_XLA_CHECK_RECOMPILATION":
611
+ lambda: bool(int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))),
612
+
613
+ # Enable SPMD mode for TPU backend.
614
+ "VLLM_XLA_USE_SPMD":
615
+ lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))),
616
+ "VLLM_FUSED_MOE_CHUNK_SIZE":
617
+ lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")),
618
+ # Control whether to use fused MoE activation chunking. Current chunking
619
+ # logic is incompatible with torch.compile and causes IMA. See issue
620
+ # https://github.com/vllm-project/vllm/issues/19631.
621
+ "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING":
622
+ lambda: bool(
623
+ int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))),
624
+
625
+ # If set, the OpenAI API server will stay alive even after the underlying
626
+ # AsyncLLMEngine errors and stops serving requests
627
+ "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH":
628
+ lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)),
629
+
630
+ # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
631
+ # the user to specify a max sequence length greater than
632
+ # the max length derived from the model's config.json.
633
+ # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
634
+ "VLLM_ALLOW_LONG_MAX_MODEL_LEN":
635
+ lambda:
636
+ (os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in
637
+ ("1", "true")),
638
+
639
+ # If set, forces FP8 Marlin to be used for FP8 quantization regardless
640
+ # of the hardware support for FP8 compute.
641
+ "VLLM_TEST_FORCE_FP8_MARLIN":
642
+ lambda:
643
+ (os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in
644
+ ("1", "true")),
645
+ "VLLM_TEST_FORCE_LOAD_FORMAT":
646
+ lambda: os.getenv("VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"),
647
+
648
+ # Time in ms for the zmq client to wait for a response from the backend
649
+ # server for simple data operations
650
+ "VLLM_RPC_TIMEOUT":
651
+ lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),
652
+
653
+ # Timeout in seconds for keeping HTTP connections alive in API server
654
+ "VLLM_HTTP_TIMEOUT_KEEP_ALIVE":
655
+ lambda: int(os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")),
656
+
657
+ # a list of plugin names to load, separated by commas.
658
+ # if this is not set, it means all plugins will be loaded
659
+ # if this is set to an empty string, no plugins will be loaded
660
+ "VLLM_PLUGINS":
661
+ lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[
662
+ "VLLM_PLUGINS"].split(","),
663
+
664
+ # a local directory to look in for unrecognized LoRA adapters.
665
+ # only works if plugins are enabled and
666
+ # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled.
667
+ "VLLM_LORA_RESOLVER_CACHE_DIR":
668
+ lambda: os.getenv("VLLM_LORA_RESOLVER_CACHE_DIR", None),
669
+
670
+ # Enables torch profiler if set. Path to the directory where torch profiler
671
+ # traces are saved. Note that it must be an absolute path.
672
+ "VLLM_TORCH_PROFILER_DIR":
673
+ lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
674
+ .path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", "."))),
675
+
676
+ # Enable torch profiler to record shapes if set
677
+ # VLLM_TORCH_PROFILER_RECORD_SHAPES=1. If not set, torch profiler will
678
+ # not record shapes.
679
+ "VLLM_TORCH_PROFILER_RECORD_SHAPES":
680
+ lambda: bool(os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES", "0") != "0"),
681
+
682
+ # Enable torch profiler to profile memory if set
683
+ # VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1. If not set, torch profiler
684
+ # will not profile memory.
685
+ "VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY":
686
+ lambda: bool(
687
+ os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY", "0") != "0"),
688
+
689
+ # Enable torch profiler to profile stack if set
690
+ # VLLM_TORCH_PROFILER_WITH_STACK=1. If not set, torch profiler WILL
691
+ # profile stack by default.
692
+ "VLLM_TORCH_PROFILER_WITH_STACK":
693
+ lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_STACK", "1") != "0"),
694
+
695
+ # Enable torch profiler to profile flops if set
696
+ # VLLM_TORCH_PROFILER_WITH_FLOPS=1. If not set, torch profiler will
697
+ # not profile flops.
698
+ "VLLM_TORCH_PROFILER_WITH_FLOPS":
699
+ lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS", "0") != "0"),
700
+
701
+ # If set, vLLM will use Triton implementations of AWQ.
702
+ "VLLM_USE_TRITON_AWQ":
703
+ lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
704
+
705
+ # If set, allow loading or unloading lora adapters in runtime,
706
+ "VLLM_ALLOW_RUNTIME_LORA_UPDATING":
707
+ lambda:
708
+ (os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in
709
+ ("1", "true")),
710
+
711
+ # We assume drivers can report p2p status correctly.
712
+ # If the program hangs when using custom allreduce,
713
+ # potantially caused by a bug in the driver (535 series),
714
+ # if might be helpful to set VLLM_SKIP_P2P_CHECK=0
715
+ # so that vLLM can verify if p2p is actually working.
716
+ # See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
717
+ "VLLM_SKIP_P2P_CHECK":
718
+ lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "1") == "1",
719
+
720
+ # List of quantization kernels that should be disabled, used for testing
721
+ # and performance comparisons. Currently only affects MPLinearKernel
722
+ # selection
723
+ # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
724
+ "VLLM_DISABLED_KERNELS":
725
+ lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[
726
+ "VLLM_DISABLED_KERNELS"].split(","),
727
+
728
+ # If set, use the V1 code path.
729
+ "VLLM_USE_V1":
730
+ lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))),
731
+
732
+ # Disable aiter ops unless specifically enabled.
733
+ # Acts as a parent switch to enable the rest of the other operations.
734
+ "VLLM_ROCM_USE_AITER":
735
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in
736
+ ("true", "1")),
737
+
738
+ # Whether to use aiter paged attention.
739
+ # By default is disabled.
740
+ "VLLM_ROCM_USE_AITER_PAGED_ATTN":
741
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in
742
+ ("true", "1")),
743
+
744
+ # use aiter linear op if aiter ops are enabled
745
+ # The following list of related ops
746
+ # - scaled_mm (per-tensor / rowwise)
747
+ "VLLM_ROCM_USE_AITER_LINEAR":
748
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in
749
+ ("true", "1")),
750
+
751
+ # Whether to use aiter moe ops.
752
+ # By default is enabled.
753
+ "VLLM_ROCM_USE_AITER_MOE":
754
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in
755
+ ("true", "1")),
756
+
757
+ # use aiter rms norm op if aiter ops are enabled.
758
+ "VLLM_ROCM_USE_AITER_RMSNORM":
759
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in
760
+ ("true", "1")),
761
+
762
+ # Whether to use aiter mla ops.
763
+ # By default is enabled.
764
+ "VLLM_ROCM_USE_AITER_MLA":
765
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in
766
+ ("true", "1")),
767
+
768
+ # Whether to use aiter mha ops.
769
+ # By default is enabled.
770
+ "VLLM_ROCM_USE_AITER_MHA":
771
+ lambda: (os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in
772
+ ("true", "1")),
773
+
774
+ # use rocm skinny gemms
775
+ "VLLM_ROCM_USE_SKINNY_GEMM":
776
+ lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in
777
+ ("true", "1")),
778
+
779
+ # Pad the fp8 weights to 256 bytes for ROCm
780
+ "VLLM_ROCM_FP8_PADDING":
781
+ lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
782
+
783
+ # Pad the weights for the moe kernel
784
+ "VLLM_ROCM_MOE_PADDING":
785
+ lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),
786
+
787
+ # custom paged attention kernel for MI3* cards
788
+ "VLLM_ROCM_CUSTOM_PAGED_ATTN":
789
+ lambda: (os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in
790
+ ("true", "1")),
791
+
792
+ # Custom quick allreduce kernel for MI3* cards
793
+ # Choice of quantization level: FP, INT8, INT6, INT4 or NONE
794
+ # Recommended for large models to get allreduce
795
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION":
796
+ lambda: os.getenv("VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "NONE").upper(),
797
+
798
+ # Custom quick allreduce kernel for MI3* cards
799
+ # Due to the lack of the bfloat16 asm instruction, bfloat16
800
+ # kernels are slower than fp16,
801
+ # If environment variable is set to 1, the input is converted to fp16
802
+ "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16":
803
+ lambda:
804
+ (os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower() in
805
+ ("true", "1")),
806
+
807
+ # Custom quick allreduce kernel for MI3* cards.
808
+ # Controls the maximum allowed number of data bytes(MB) for custom quick
809
+ # allreduce communication.
810
+ # Default: 2048 MB.
811
+ # Data exceeding this size will use either custom allreduce or RCCL
812
+ # communication.
813
+ "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB":
814
+ lambda: maybe_convert_int(
815
+ os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)),
816
+
817
+ # Divisor for dynamic query scale factor calculation for FP8 KV Cache
818
+ "Q_SCALE_CONSTANT":
819
+ lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
820
+ # Divisor for dynamic key scale factor calculation for FP8 KV Cache
821
+ "K_SCALE_CONSTANT":
822
+ lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
823
+ # Divisor for dynamic value scale factor calculation for FP8 KV Cache
824
+ "V_SCALE_CONSTANT":
825
+ lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
826
+
827
+ # If set, enable multiprocessing in LLM for the V1 code path.
828
+ "VLLM_ENABLE_V1_MULTIPROCESSING":
829
+ lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))),
830
+ "VLLM_LOG_BATCHSIZE_INTERVAL":
831
+ lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")),
832
+ "VLLM_DISABLE_COMPILE_CACHE":
833
+ lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))),
834
+
835
+ # If set, vllm will run in development mode, which will enable
836
+ # some additional endpoints for developing and debugging,
837
+ # e.g. `/reset_prefix_cache`
838
+ "VLLM_SERVER_DEV_MODE":
839
+ lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),
840
+
841
+ # Controls the maximum number of requests to handle in a
842
+ # single asyncio task when processing per-token outputs in the
843
+ # V1 AsyncLLM interface. It is applicable when handling a high
844
+ # concurrency of streaming requests.
845
+ # Setting this too high can result in a higher variance of
846
+ # inter-message latencies. Setting it too low can negatively impact
847
+ # TTFT and overall throughput.
848
+ "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE":
849
+ lambda: int(os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")),
850
+
851
+ # If set, vLLM will disable the MLA attention optimizations.
852
+ "VLLM_MLA_DISABLE":
853
+ lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),
854
+
855
+ # Number of GPUs per worker in Ray, if it is set to be a fraction,
856
+ # it allows ray to schedule multiple actors on a single GPU,
857
+ # so that users can colocate other actors on the same GPUs as vLLM.
858
+ "VLLM_RAY_PER_WORKER_GPUS":
859
+ lambda: float(os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")),
860
+
861
+ # Bundle indices for Ray, if it is set, it can control precisely
862
+ # which indices are used for the Ray bundle, for every worker.
863
+ # Format: comma-separated list of integers, e.g. "0,1,2,3"
864
+ "VLLM_RAY_BUNDLE_INDICES":
865
+ lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),
866
+
867
+ # In some system, find_loaded_library() may not work. So we allow users to
868
+ # specify the path through environment variable VLLM_CUDART_SO_PATH.
869
+ "VLLM_CUDART_SO_PATH":
870
+ lambda: os.getenv("VLLM_CUDART_SO_PATH", None),
871
+
872
+ # Rank of the process in the data parallel setting
873
+ "VLLM_DP_RANK":
874
+ lambda: int(os.getenv("VLLM_DP_RANK", "0")),
875
+
876
+ # Rank of the process in the data parallel setting.
877
+ # Defaults to VLLM_DP_RANK when not set.
878
+ "VLLM_DP_RANK_LOCAL":
879
+ lambda: int(
880
+ os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)),
881
+
882
+ # World size of the data parallel setting
883
+ "VLLM_DP_SIZE":
884
+ lambda: int(os.getenv("VLLM_DP_SIZE", "1")),
885
+
886
+ # IP address of the master node in the data parallel setting
887
+ "VLLM_DP_MASTER_IP":
888
+ lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),
889
+
890
+ # Port of the master node in the data parallel setting
891
+ "VLLM_DP_MASTER_PORT":
892
+ lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),
893
+
894
+ # In the context of executing MoE models with Data-Parallel, Expert-Parallel
895
+ # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE
896
+ # dictates the quantum of tokens that can be dispatched from a DP
897
+ # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE
898
+ # units.
899
+ "VLLM_MOE_DP_CHUNK_SIZE":
900
+ lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")),
901
+
902
+ # Randomize inputs during dummy runs when using Data Parallel
903
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS":
904
+ lambda: os.environ.get("VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0") == "1",
905
+
906
+ # Whether to use S3 path for model loading in CI via RunAI Streamer
907
+ "VLLM_CI_USE_S3":
908
+ lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",
909
+
910
+ # Use model_redirect to redirect the model name to a local folder.
911
+ # `model_redirect` can be a json file mapping the model between
912
+ # repo_id and local folder:
913
+ # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
914
+ # or a space separated values table file:
915
+ # meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B
916
+ "VLLM_MODEL_REDIRECT_PATH":
917
+ lambda: os.environ.get("VLLM_MODEL_REDIRECT_PATH", None),
918
+
919
+ # Whether to use atomicAdd reduce in gptq/awq marlin kernel.
920
+ "VLLM_MARLIN_USE_ATOMIC_ADD":
921
+ lambda: os.environ.get("VLLM_MARLIN_USE_ATOMIC_ADD", "0") == "1",
922
+
923
+ # Whether to use marlin kernel in mxfp4 quantization method
924
+ "VLLM_MXFP4_USE_MARLIN":
925
+ lambda: maybe_convert_bool(os.environ.get("VLLM_MXFP4_USE_MARLIN", None)),
926
+
927
+ # Whether to turn on the outlines cache for V0
928
+ # This cache is unbounded and on disk, so it's not safe to use in
929
+ # an environment with potentially malicious users.
930
+ "VLLM_V0_USE_OUTLINES_CACHE":
931
+ lambda: os.environ.get("VLLM_V0_USE_OUTLINES_CACHE", "0") == "1",
932
+
933
+ # Whether to turn on the outlines cache for V1
934
+ # This cache is unbounded and on disk, so it's not safe to use in
935
+ # an environment with potentially malicious users.
936
+ "VLLM_V1_USE_OUTLINES_CACHE":
937
+ lambda: os.environ.get("VLLM_V1_USE_OUTLINES_CACHE", "0") == "1",
938
+
939
+ # Gap between padding buckets for the forward pass. So we have
940
+ # 8, we will run forward pass with [16, 24, 32, ...].
941
+ "VLLM_TPU_BUCKET_PADDING_GAP":
942
+ lambda: int(os.environ["VLLM_TPU_BUCKET_PADDING_GAP"])
943
+ if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0,
944
+ "VLLM_TPU_MOST_MODEL_LEN":
945
+ lambda: maybe_convert_int(os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)),
946
+
947
+ # Whether using Pathways
948
+ "VLLM_TPU_USING_PATHWAYS":
949
+ lambda: bool("proxy" in os.getenv("JAX_PLATFORMS", "").lower()),
950
+
951
+ # Allow use of DeepGemm kernels for fused moe ops.
952
+ "VLLM_USE_DEEP_GEMM":
953
+ lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "0"))),
954
+
955
+ # Whether to use E8M0 scaling when DeepGEMM is used on Blackwell GPUs.
956
+ # E8M0 is faster on B200 but may reduce accuracy.
957
+ "VLLM_USE_DEEP_GEMM_E8M0":
958
+ lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0", "1"))),
959
+ # DeepGemm JITs the kernels on-demand. The warmup attempts to make DeepGemm
960
+ # JIT all the required kernels before model execution so there is no
961
+ # JIT'ing in the hot-path. However, this warmup increases the engine
962
+ # startup time by a couple of minutes.
963
+ # Set `VLLM_SKIP_DEEP_GEMM_WARMUP` to disable the warmup.
964
+ "VLLM_SKIP_DEEP_GEMM_WARMUP":
965
+ lambda: bool(int(os.getenv("VLLM_SKIP_DEEP_GEMM_WARMUP", "0"))),
966
+
967
+ # Allow use of FlashInfer MoE kernels for fused moe ops.
968
+ "VLLM_USE_FLASHINFER_MOE_FP8":
969
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))),
970
+
971
+ # Allow use of FlashInfer CUTLASS kernels for fused moe ops.
972
+ "VLLM_USE_FLASHINFER_MOE_FP4":
973
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))),
974
+
975
+ # If set to 1, use the FlashInfer
976
+ # MXFP8 (activation) x MXFP4 (weight) MoE backend.
977
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8":
978
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "0"))),
979
+
980
+ # If set to 1, use the FlashInfer
981
+ # BF16 (activation) x MXFP4 (weight) MoE backend.
982
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16":
983
+ lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "0"))),
984
+
985
+ # Control the cache sized used by the xgrammar compiler. The default
986
+ # of 512 MB should be enough for roughly 1000 JSON schemas.
987
+ # It can be changed with this variable if needed for some reason.
988
+ "VLLM_XGRAMMAR_CACHE_MB":
989
+ lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),
990
+
991
+ # Control the threshold for msgspec to use 'zero copy' for
992
+ # serialization/deserialization of tensors. Tensors below
993
+ # this limit will be encoded into the msgpack buffer, and
994
+ # tensors above will instead be sent via a separate message.
995
+ # While the sending side still actually copies the tensor
996
+ # in all cases, on the receiving side, tensors above this
997
+ # limit will actually be zero-copy decoded.
998
+ "VLLM_MSGPACK_ZERO_COPY_THRESHOLD":
999
+ lambda: int(os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")),
1000
+
1001
+ # If set, allow insecure serialization using pickle.
1002
+ # This is useful for environments where it is deemed safe to use the
1003
+ # insecure method and it is needed for some reason.
1004
+ "VLLM_ALLOW_INSECURE_SERIALIZATION":
1005
+ lambda: bool(int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))),
1006
+
1007
+ # IP address used for NIXL handshake between remote agents.
1008
+ "VLLM_NIXL_SIDE_CHANNEL_HOST":
1009
+ lambda: os.getenv("VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"),
1010
+
1011
+ # Port used for NIXL handshake between remote agents.
1012
+ "VLLM_NIXL_SIDE_CHANNEL_PORT":
1013
+ lambda: int(os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5557")),
1014
+
1015
+ # all2all backend for vllm's expert parallel communication
1016
+ # Available options:
1017
+ # - "naive": naive all2all implementation using all-reduce
1018
+ # - "pplx": use pplx kernels
1019
+ # - "deepep_high_throughput", use deepep high-throughput kernels
1020
+ # - "deepep_low_latency", use deepep low-latency kernels
1021
+ "VLLM_ALL2ALL_BACKEND":
1022
+ lambda: os.getenv("VLLM_ALL2ALL_BACKEND", "naive"),
1023
+
1024
+ # Flashinfer MoE backend for vLLM's fused Mixture-of-Experts support. Both
1025
+ # require compute capability 10.0 or above.
1026
+ # Available options:
1027
+ # - "throughput": [default]
1028
+ # Uses CUTLASS kernels optimized for high-throughput batch inference.
1029
+ # - "latency":
1030
+ # Uses TensorRT-LLM kernels optimized for low-latency inference.
1031
+ # To set this backend, define the environment variable:
1032
+ # export VLLM_FLASHINFER_MOE_BACKEND=latency.
1033
+ # If not set, defaults to "throughput".
1034
+ "VLLM_FLASHINFER_MOE_BACKEND": lambda: os.getenv(
1035
+ "VLLM_FLASHINFER_MOE_BACKEND", "throughput"
1036
+ ),
1037
+
1038
+ # Control the maximum number of tokens per expert supported by the
1039
+ # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
1040
+ # the blockscale tensor of activations NVFP4 Quantization.
1041
+ # This is used to prevent the kernel from running out of memory.
1042
+ "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE":
1043
+ lambda: int(os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")),
1044
+
1045
+ # MoE routing strategy selector.
1046
+ # See `RoutingSimulator.get_available_strategies()` # for available
1047
+ # strategies.
1048
+ # Cutstom routing strategies can be registered by
1049
+ # RoutingSimulator.register_strategy()
1050
+ # Note: custom strategies may not produce correct model outputs
1051
+ "VLLM_MOE_ROUTING_SIMULATION_STRATEGY":
1052
+ lambda: os.environ.get("VLLM_MOE_ROUTING_SIMULATION_STRATEGY", "").lower(),
1053
+
1054
+ # Regex timeout for use by the vLLM tool parsing plugins.
1055
+ "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS":
1056
+ lambda: int(os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")),
1057
+
1058
+ # Reduce CPU usage when vLLM is idle. Enabling this will incur small
1059
+ # latency penalty when a request eventually comes.
1060
+ "VLLM_SLEEP_WHEN_IDLE":
1061
+ lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))),
1062
+
1063
+ # Control the max chunk bytes (in MB) for the rpc message queue.
1064
+ # Object larger than this threshold will be broadcast to worker
1065
+ # processes via zmq.
1066
+ "VLLM_MQ_MAX_CHUNK_BYTES_MB":
1067
+ lambda: int(os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")),
1068
+
1069
+ # Timeout in seconds for execute_model RPC calls in multiprocessing
1070
+ # executor (only applies when TP > 1).
1071
+ "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS":
1072
+ lambda: int(os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")),
1073
+
1074
+ # KV Cache layout used throughout vllm.
1075
+ # Some common values are:
1076
+ # - NHD
1077
+ # - HND
1078
+ # Where N=num_blocks, H=num_heads and D=head_size. The default value will
1079
+ # leave the layout choice to the backend. Mind that backends may only
1080
+ # implement and support a subset of all possible layouts.
1081
+ "VLLM_KV_CACHE_LAYOUT":
1082
+ lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None),
1083
+
1084
+ # Enable checking whether the generated logits contain NaNs,
1085
+ # indicating corrupted output. Useful for debugging low level bugs
1086
+ # or bad hardware but it may add compute overhead.
1087
+ "VLLM_COMPUTE_NANS_IN_LOGITS":
1088
+ lambda: bool(int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))),
1089
+
1090
+ # Controls whether or not emulations are used for NVFP4
1091
+ # generations on machines < 100 for compressed-tensors
1092
+ # models
1093
+ "VLLM_USE_NVFP4_CT_EMULATIONS":
1094
+ lambda: bool(int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))),
1095
+
1096
+ # Time (in seconds) after which the KV cache on the producer side is
1097
+ # automatically cleared if no READ notification is received from the
1098
+ # consumer. This is only applicable when using NixlConnector in a
1099
+ # disaggregated decode-prefill setup.
1100
+ "VLLM_NIXL_ABORT_REQUEST_TIMEOUT":
1101
+ lambda: int(os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "120")),
1102
+
1103
+ # Controls whether or not to use cudnn prefill
1104
+ "VLLM_USE_CUDNN_PREFILL":
1105
+ lambda: bool(int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))),
1106
+
1107
+ # If set to 1, use the TRTLLM attention backend in flashinfer.
1108
+ "VLLM_USE_TRTLLM_ATTENTION":
1109
+ lambda: os.getenv("VLLM_USE_TRTLLM_ATTENTION", None),
1110
+
1111
+ # If set to 1, force the use of TRTLLM FP4 GEMM backend in flashinfer.
1112
+ # Otherwise, uses the first available of: flashinfer cutlass GEMM,
1113
+ # vllm cutlass GEMM, marlin GEMM.
1114
+ "VLLM_USE_TRTLLM_FP4_GEMM":
1115
+ lambda: bool(int(os.getenv("VLLM_USE_TRTLLM_FP4_GEMM", "0"))),
1116
+
1117
+ # Controls garbage collection during CUDA graph capture.
1118
+ # If set to 0 (default), enables GC freezing to speed up capture time.
1119
+ # If set to 1, allows GC to run during capture.
1120
+ "VLLM_ENABLE_CUDAGRAPH_GC":
1121
+ lambda: bool(int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0"))),
1122
+
1123
+ # Used to force set up loopback IP
1124
+ "VLLM_LOOPBACK_IP":
1125
+ lambda: os.getenv("VLLM_LOOPBACK_IP", ""),
1126
+
1127
+ # Used to set the process name prefix for vLLM processes.
1128
+ # This is useful for debugging and monitoring purposes.
1129
+ # The default value is "VLLM".
1130
+ "VLLM_PROCESS_NAME_PREFIX":
1131
+ lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"),
1132
+
1133
+ # Allow chunked local attention with hybrid kv cache manager.
1134
+ # Currently using the Hybrid KV cache manager with chunked local attention
1135
+ # in the Llama4 models (the only models currently using chunked local attn)
1136
+ # causes a latency regression. For this reason, we disable it by default.
1137
+ # This flag is used to allow users to enable it if they want to (to save on
1138
+ # kv-cache memory usage and enable longer contexts)
1139
+ # TODO(lucas): Remove this flag once latency regression is resolved.
1140
+ "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE":
1141
+ lambda: bool(int(os.getenv(\
1142
+ "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE", "0"))),
1143
+
1144
+ # Enables support for the "store" option in the OpenAI Responses API.
1145
+ # When set to 1, vLLM's OpenAI server will retain the input and output
1146
+ # messages for those requests in memory. By default, this is disabled (0),
1147
+ # and the "store" option is ignored.
1148
+ # NOTE/WARNING:
1149
+ # 1. Messages are kept in memory only (not persisted to disk) and will be
1150
+ # lost when the vLLM server shuts down.
1151
+ # 2. Enabling this option will cause a memory leak, as stored messages are
1152
+ # never removed from memory until the server terminates.
1153
+ "VLLM_ENABLE_RESPONSES_API_STORE":
1154
+ lambda: bool(int(os.getenv("VLLM_ENABLE_RESPONSES_API_STORE", "0"))),
1155
+
1156
+ # Allows vllm to find tuned config under customized folder
1157
+ "VLLM_TUNED_CONFIG_FOLDER":
1158
+ lambda: os.getenv("VLLM_TUNED_CONFIG_FOLDER", None),
1159
+
1160
+ }
1161
+
1162
+ # --8<-- [end:env-vars-definition]
1163
+
1164
+
1165
+ def __getattr__(name: str):
1166
+ # lazy evaluation of environment variables
1167
+ if name in environment_variables:
1168
+ return environment_variables[name]()
1169
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1170
+
1171
+
1172
+ def __dir__():
1173
+ return list(environment_variables.keys())
1174
+
1175
+
1176
+ def is_set(name: str):
1177
+ """Check if an environment variable is explicitly set."""
1178
+ if name in environment_variables:
1179
+ return name in os.environ
1180
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1181
+
1182
+
1183
+ def set_vllm_use_v1(use_v1: bool):
1184
+ if is_set("VLLM_USE_V1"):
1185
+ raise ValueError(
1186
+ "Should not call set_vllm_use_v1() if VLLM_USE_V1 is set "
1187
+ "explicitly by the user. Please raise this as a Github "
1188
+ "Issue and explicitly set VLLM_USE_V1=0 or 1.")
1189
+ os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0"
1190
+
1191
+
1192
+ def compute_hash() -> str:
1193
+ """
1194
+ WARNING: Whenever a new key is added to this environment
1195
+ variables, ensure that it is included in the factors list if
1196
+ it affects the computation graph. For example, different values
1197
+ of VLLM_PP_LAYER_PARTITION will generate different computation
1198
+ graphs, so it is included in the factors list. The env vars that
1199
+ affect the choice of different kernels or attention backends should
1200
+ also be included in the factors list.
1201
+ """
1202
+ factors: list[Any] = []
1203
+
1204
+ # summarize environment variables
1205
+ def factorize(name: str):
1206
+ if __getattr__(name):
1207
+ factors.append(__getattr__(name))
1208
+ else:
1209
+ factors.append("None")
1210
+
1211
+ # The values of envs may affects the computation graph.
1212
+ # TODO(DefTruth): hash all environment variables?
1213
+ # for key in environment_variables:
1214
+ # factorize(key)
1215
+ environment_variables_to_hash = [
1216
+ "VLLM_PP_LAYER_PARTITION",
1217
+ "VLLM_MLA_DISABLE",
1218
+ "VLLM_USE_TRITON_FLASH_ATTN",
1219
+ "VLLM_USE_TRITON_AWQ",
1220
+ "VLLM_DP_RANK",
1221
+ "VLLM_DP_SIZE",
1222
+ "VLLM_USE_STANDALONE_COMPILE",
1223
+ "VLLM_FUSED_MOE_CHUNK_SIZE",
1224
+ "VLLM_USE_TRTLLM_FP4_GEMM",
1225
+ ]
1226
+ for key in environment_variables_to_hash:
1227
+ if key in environment_variables:
1228
+ factorize(key)
1229
+
1230
+ hash_str = hashlib.md5(str(factors).encode(),
1231
+ usedforsecurity=False).hexdigest()
1232
+
1233
+ return hash_str