tpu-inference 0.11.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_adapters.py +83 -0
- tests/core/test_core_tpu.py +523 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/test_lora.py +123 -0
- tests/test_base.py +201 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +218 -0
- tests/tpu_backend_test.py +59 -0
- tpu_inference/__init__.py +30 -0
- tpu_inference/adapters/__init__.py +0 -0
- tpu_inference/adapters/vllm_adapters.py +42 -0
- tpu_inference/adapters/vllm_config_adapters.py +134 -0
- tpu_inference/backend.py +69 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/adapters.py +153 -0
- tpu_inference/core/core_tpu.py +776 -0
- tpu_inference/core/disagg_executor.py +117 -0
- tpu_inference/core/disagg_utils.py +51 -0
- tpu_inference/di/__init__.py +0 -0
- tpu_inference/di/abstracts.py +28 -0
- tpu_inference/di/host.py +76 -0
- tpu_inference/di/interfaces.py +51 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/tpu_connector.py +699 -0
- tpu_inference/distributed/utils.py +59 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +346 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/interfaces/__init__.py +0 -0
- tpu_inference/interfaces/cache.py +31 -0
- tpu_inference/interfaces/config.py +47 -0
- tpu_inference/interfaces/config_parts.py +117 -0
- tpu_inference/interfaces/engine.py +51 -0
- tpu_inference/interfaces/outputs.py +22 -0
- tpu_inference/interfaces/params.py +21 -0
- tpu_inference/interfaces/platform.py +74 -0
- tpu_inference/interfaces/request.py +39 -0
- tpu_inference/interfaces/scheduler.py +31 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1447 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3834 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +47 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +254 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/attention_interface.py +356 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/binary_search.py +295 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +172 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +95 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
- tpu_inference/layers/jax/sharding.py +406 -0
- tpu_inference/layers/jax/transformer_block.py +76 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +184 -0
- tpu_inference/layers/vllm/fused_moe.py +399 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +34 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
- tpu_inference/layers/vllm/sharding.py +151 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +308 -0
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1233 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +433 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/llama3.py +366 -0
- tpu_inference/models/jax/llama4.py +473 -0
- tpu_inference/models/jax/llama_eagle3.py +333 -0
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +375 -0
- tpu_inference/models/jax/qwen2_5_vl.py +976 -0
- tpu_inference/models/jax/qwen3.py +302 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +164 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +588 -0
- tpu_inference/models/jax/utils/weight_utils.py +510 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +272 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_jax.py +257 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table_jax.py +122 -0
- tpu_inference/runner/compilation_manager.py +672 -0
- tpu_inference/runner/input_batch_jax.py +435 -0
- tpu_inference/runner/kv_cache.py +119 -0
- tpu_inference/runner/kv_cache_manager.py +460 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +208 -0
- tpu_inference/runner/persistent_batch_manager.py +244 -0
- tpu_inference/runner/speculative_decoding_manager.py +250 -0
- tpu_inference/runner/structured_decoding_manager.py +89 -0
- tpu_inference/runner/tpu_jax_runner.py +771 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +334 -0
- tpu_inference/tpu_info.py +77 -0
- tpu_inference/utils.py +294 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/_temporary_vllm_compat.py +129 -0
- tpu_inference/worker/base.py +100 -0
- tpu_inference/worker/tpu_worker_jax.py +321 -0
- tpu_inference-0.11.1.dist-info/METADATA +101 -0
- tpu_inference-0.11.1.dist-info/RECORD +168 -0
- tpu_inference-0.11.1.dist-info/WHEEL +5 -0
- tpu_inference-0.11.1.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.11.1.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,504 @@
|
|
|
1
|
+
import jax
|
|
2
|
+
import jax.numpy as jnp
|
|
3
|
+
import numpy as np
|
|
4
|
+
from absl.testing import absltest, parameterized
|
|
5
|
+
from jax._src import dtypes
|
|
6
|
+
from jax._src import test_util as jtu
|
|
7
|
+
|
|
8
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.kernel import (
|
|
9
|
+
ragged_paged_attention, ref_ragged_paged_attention)
|
|
10
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.util import (
|
|
11
|
+
align_to, cdiv, get_dtype_packing)
|
|
12
|
+
|
|
13
|
+
jax.config.parse_flags_with_absl()
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
17
|
+
class RaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
18
|
+
|
|
19
|
+
def _test_ragged_paged_attention(
|
|
20
|
+
self,
|
|
21
|
+
seq_lens, # List[(q_len, kv_len)]
|
|
22
|
+
num_heads, # [num_q_heads, num_kv_heads]
|
|
23
|
+
head_dim,
|
|
24
|
+
page_size,
|
|
25
|
+
q_dtype,
|
|
26
|
+
kv_dtype,
|
|
27
|
+
num_pages,
|
|
28
|
+
*,
|
|
29
|
+
num_kv_pages_per_block=8,
|
|
30
|
+
num_queries_per_block=64,
|
|
31
|
+
vmem_limit_bytes=100 * 1024 * 1024,
|
|
32
|
+
max_num_batched_tokens=512,
|
|
33
|
+
max_num_seq=8,
|
|
34
|
+
sliding_window: int | None = None,
|
|
35
|
+
soft_cap: float | None = None,
|
|
36
|
+
q_scale: float | None = None,
|
|
37
|
+
k_scale: float | None = None,
|
|
38
|
+
v_scale: float | None = None,
|
|
39
|
+
):
|
|
40
|
+
rng = np.random.default_rng(1234)
|
|
41
|
+
|
|
42
|
+
def gen_random(shape, dtype):
|
|
43
|
+
return jnp.array(rng.random(size=shape,
|
|
44
|
+
dtype=np.float32)).astype(dtype)
|
|
45
|
+
|
|
46
|
+
if not jtu.is_device_tpu_at_least(version=4):
|
|
47
|
+
self.skipTest("Expect TPUv4+")
|
|
48
|
+
cu_q_lens = [0]
|
|
49
|
+
kv_lens = []
|
|
50
|
+
for q_len, kv_len in seq_lens:
|
|
51
|
+
assert q_len <= kv_len
|
|
52
|
+
cu_q_lens.append(cu_q_lens[-1] + q_len)
|
|
53
|
+
kv_lens.append(kv_len)
|
|
54
|
+
|
|
55
|
+
max_num_batched_tokens = max(align_to(cu_q_lens[-1], 128),
|
|
56
|
+
max_num_batched_tokens)
|
|
57
|
+
max_num_seq = max(align_to(len(seq_lens), 8), max_num_seq)
|
|
58
|
+
max_kv_len = max(kv_lens)
|
|
59
|
+
pages_per_seq = cdiv(max_kv_len, page_size)
|
|
60
|
+
num_q_heads, num_kv_heads = num_heads
|
|
61
|
+
|
|
62
|
+
q = gen_random((max_num_batched_tokens, num_q_heads, head_dim),
|
|
63
|
+
q_dtype)
|
|
64
|
+
k = gen_random((max_num_batched_tokens, num_kv_heads, head_dim),
|
|
65
|
+
kv_dtype)
|
|
66
|
+
v = gen_random((max_num_batched_tokens, num_kv_heads, head_dim),
|
|
67
|
+
kv_dtype)
|
|
68
|
+
page_cnt = 0
|
|
69
|
+
page_indices_list = []
|
|
70
|
+
kv_pages_list = []
|
|
71
|
+
kv_packing = get_dtype_packing(kv_dtype)
|
|
72
|
+
padded_head_dim = align_to(head_dim, 128)
|
|
73
|
+
num_kv_heads_x2 = align_to(num_kv_heads * 2, kv_packing)
|
|
74
|
+
for kv_len in kv_lens:
|
|
75
|
+
kv = gen_random((
|
|
76
|
+
kv_len,
|
|
77
|
+
num_kv_heads_x2 // kv_packing,
|
|
78
|
+
kv_packing,
|
|
79
|
+
padded_head_dim,
|
|
80
|
+
), kv_dtype)
|
|
81
|
+
kv = jnp.pad(
|
|
82
|
+
kv,
|
|
83
|
+
(
|
|
84
|
+
(
|
|
85
|
+
0,
|
|
86
|
+
cdiv(kv_len, page_size) * page_size - kv_len,
|
|
87
|
+
),
|
|
88
|
+
(0, 0),
|
|
89
|
+
(0, 0),
|
|
90
|
+
(0, 0),
|
|
91
|
+
),
|
|
92
|
+
constant_values=jnp.nan,
|
|
93
|
+
).reshape(
|
|
94
|
+
-1,
|
|
95
|
+
page_size,
|
|
96
|
+
num_kv_heads_x2 // kv_packing,
|
|
97
|
+
kv_packing,
|
|
98
|
+
padded_head_dim,
|
|
99
|
+
)
|
|
100
|
+
indices = page_cnt + jnp.arange(kv.shape[0], dtype=jnp.int32)
|
|
101
|
+
indices = jnp.pad(
|
|
102
|
+
indices,
|
|
103
|
+
((0, pages_per_seq - indices.shape[0]), ),
|
|
104
|
+
constant_values=jnp.nan,
|
|
105
|
+
)
|
|
106
|
+
page_indices_list.append(indices)
|
|
107
|
+
page_cnt += kv.shape[0]
|
|
108
|
+
kv_pages_list.append(kv)
|
|
109
|
+
|
|
110
|
+
kv_cache = jnp.concatenate(kv_pages_list, axis=0)
|
|
111
|
+
kv_cache = jnp.pad(
|
|
112
|
+
kv_cache,
|
|
113
|
+
((0, num_pages - kv_cache.shape[0]), (0, 0), (0, 0), (0, 0),
|
|
114
|
+
(0, 0)),
|
|
115
|
+
constant_values=jnp.nan,
|
|
116
|
+
)
|
|
117
|
+
page_indices = jnp.stack(page_indices_list, axis=0)
|
|
118
|
+
page_indices = jnp.pad(
|
|
119
|
+
page_indices,
|
|
120
|
+
((0, max_num_seq - page_indices.shape[0]), (0, 0)),
|
|
121
|
+
constant_values=jnp.nan,
|
|
122
|
+
)
|
|
123
|
+
page_indices = page_indices.reshape(-1)
|
|
124
|
+
|
|
125
|
+
cu_q_lens = jnp.array(cu_q_lens, dtype=jnp.int32)
|
|
126
|
+
cu_q_lens = jnp.pad(cu_q_lens,
|
|
127
|
+
(0, max_num_seq + 1 - cu_q_lens.shape[0]))
|
|
128
|
+
kv_lens = jnp.array(kv_lens, dtype=jnp.int32)
|
|
129
|
+
kv_lens = jnp.pad(kv_lens, (0, max_num_seq - kv_lens.shape[0]))
|
|
130
|
+
distribution = jnp.array([0, 0, len(seq_lens)], dtype=jnp.int32)
|
|
131
|
+
|
|
132
|
+
args = (
|
|
133
|
+
q,
|
|
134
|
+
k,
|
|
135
|
+
v,
|
|
136
|
+
kv_cache,
|
|
137
|
+
kv_lens,
|
|
138
|
+
page_indices,
|
|
139
|
+
cu_q_lens,
|
|
140
|
+
distribution,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
kwargs = {
|
|
144
|
+
"sliding_window": sliding_window,
|
|
145
|
+
"soft_cap": soft_cap,
|
|
146
|
+
"q_scale": q_scale,
|
|
147
|
+
"k_scale": k_scale,
|
|
148
|
+
"v_scale": v_scale,
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
expected, expected_kv_cache = ref_ragged_paged_attention(
|
|
152
|
+
*args,
|
|
153
|
+
**kwargs,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
output, updated_kv_cache = ragged_paged_attention(
|
|
157
|
+
*args,
|
|
158
|
+
**kwargs,
|
|
159
|
+
num_kv_pages_per_block=num_kv_pages_per_block,
|
|
160
|
+
num_queries_per_block=num_queries_per_block,
|
|
161
|
+
vmem_limit_bytes=vmem_limit_bytes,
|
|
162
|
+
)
|
|
163
|
+
output = output[:cu_q_lens[distribution[-1]]]
|
|
164
|
+
|
|
165
|
+
dtype_bits = dtypes.bit_width(jnp.dtype(kv_dtype))
|
|
166
|
+
tols = {
|
|
167
|
+
32: 0.15,
|
|
168
|
+
16: 0.2,
|
|
169
|
+
8: 0.2,
|
|
170
|
+
4: 0.2,
|
|
171
|
+
}
|
|
172
|
+
tol = tols[dtype_bits]
|
|
173
|
+
self.assertAllClose(output, expected, atol=tol, rtol=tol)
|
|
174
|
+
mask = ~jnp.isnan(expected_kv_cache)
|
|
175
|
+
self.assertArraysEqual(updated_kv_cache[mask], expected_kv_cache[mask])
|
|
176
|
+
self.assertEqual(output.shape[-1], head_dim)
|
|
177
|
+
|
|
178
|
+
@parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
|
|
179
|
+
def test_ragged_paged_attention_basic(self, dtype):
|
|
180
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
181
|
+
num_heads = (32, 8)
|
|
182
|
+
head_dim = 128
|
|
183
|
+
page_size = 16
|
|
184
|
+
num_pages = 1000
|
|
185
|
+
|
|
186
|
+
self._test_ragged_paged_attention(
|
|
187
|
+
seq_lens,
|
|
188
|
+
num_heads,
|
|
189
|
+
head_dim,
|
|
190
|
+
page_size,
|
|
191
|
+
dtype,
|
|
192
|
+
dtype,
|
|
193
|
+
num_pages,
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
# TODO: support integer (int8, int4) and fp4 kv cache
|
|
197
|
+
@parameterized.product(
|
|
198
|
+
q_dtype=[jnp.bfloat16],
|
|
199
|
+
kv_dtype=[jnp.float8_e5m2, jnp.float8_e4m3fn],
|
|
200
|
+
kv_scales=[(0.5, 0.5), (1.0, 1.0)],
|
|
201
|
+
)
|
|
202
|
+
def test_ragged_paged_attention_quantized_kv_cache(self, q_dtype, kv_dtype,
|
|
203
|
+
kv_scales):
|
|
204
|
+
if not jtu.is_device_tpu_at_least(version=5):
|
|
205
|
+
self.skipTest("Expect TPUv5+")
|
|
206
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
207
|
+
num_heads = (32, 8)
|
|
208
|
+
head_dim = 128
|
|
209
|
+
page_size = 16
|
|
210
|
+
num_pages = 1000
|
|
211
|
+
k_scale, v_scale = kv_scales
|
|
212
|
+
|
|
213
|
+
self._test_ragged_paged_attention(
|
|
214
|
+
seq_lens,
|
|
215
|
+
num_heads,
|
|
216
|
+
head_dim,
|
|
217
|
+
page_size,
|
|
218
|
+
q_dtype,
|
|
219
|
+
kv_dtype,
|
|
220
|
+
num_pages,
|
|
221
|
+
k_scale=k_scale,
|
|
222
|
+
v_scale=v_scale,
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
@parameterized.product(
|
|
226
|
+
q_dtype=[jnp.bfloat16],
|
|
227
|
+
kv_dtype=[jnp.float8_e5m2, jnp.float8_e4m3fn],
|
|
228
|
+
q_scale=[0.5, 1.0],
|
|
229
|
+
kv_scales=[(0.5, 0.5), (1.0, 1.0)],
|
|
230
|
+
)
|
|
231
|
+
def test_ragged_paged_attention_quantized_attention(
|
|
232
|
+
self, q_dtype, kv_dtype, q_scale, kv_scales):
|
|
233
|
+
if not jtu.is_device_tpu_at_least(version=5):
|
|
234
|
+
self.skipTest("Expect TPUv5+")
|
|
235
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
236
|
+
num_heads = (32, 8)
|
|
237
|
+
head_dim = 128
|
|
238
|
+
page_size = 16
|
|
239
|
+
num_pages = 1000
|
|
240
|
+
k_scale, v_scale = kv_scales
|
|
241
|
+
|
|
242
|
+
self._test_ragged_paged_attention(
|
|
243
|
+
seq_lens,
|
|
244
|
+
num_heads,
|
|
245
|
+
head_dim,
|
|
246
|
+
page_size,
|
|
247
|
+
q_dtype,
|
|
248
|
+
kv_dtype,
|
|
249
|
+
num_pages,
|
|
250
|
+
q_scale=q_scale,
|
|
251
|
+
k_scale=k_scale,
|
|
252
|
+
v_scale=v_scale,
|
|
253
|
+
)
|
|
254
|
+
|
|
255
|
+
@parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
|
|
256
|
+
def test_ragged_paged_attention_decode_only(self, dtype):
|
|
257
|
+
seq_lens = [
|
|
258
|
+
(1, 18),
|
|
259
|
+
(1, 129),
|
|
260
|
+
(1, 597),
|
|
261
|
+
(1, 122),
|
|
262
|
+
(1, 64),
|
|
263
|
+
(1, 322),
|
|
264
|
+
(1, 463),
|
|
265
|
+
(1, 181),
|
|
266
|
+
(1, 1107),
|
|
267
|
+
(1, 123),
|
|
268
|
+
(1, 31),
|
|
269
|
+
(1, 18),
|
|
270
|
+
(1, 1229),
|
|
271
|
+
(1, 229),
|
|
272
|
+
(1, 87),
|
|
273
|
+
(1, 1328),
|
|
274
|
+
]
|
|
275
|
+
num_heads = (32, 8)
|
|
276
|
+
head_dim = 128
|
|
277
|
+
page_size = 16
|
|
278
|
+
num_pages = 1000
|
|
279
|
+
|
|
280
|
+
self._test_ragged_paged_attention(
|
|
281
|
+
seq_lens,
|
|
282
|
+
num_heads,
|
|
283
|
+
head_dim,
|
|
284
|
+
page_size,
|
|
285
|
+
dtype,
|
|
286
|
+
dtype,
|
|
287
|
+
num_pages,
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
@parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
|
|
291
|
+
def test_ragged_paged_attention_prefill_only(self, dtype):
|
|
292
|
+
seq_lens = [
|
|
293
|
+
(5, 18),
|
|
294
|
+
(15, 129),
|
|
295
|
+
(120, 597),
|
|
296
|
+
(100, 122),
|
|
297
|
+
(21, 64),
|
|
298
|
+
(32, 322),
|
|
299
|
+
(251, 463),
|
|
300
|
+
(40, 181),
|
|
301
|
+
(64, 1107),
|
|
302
|
+
(99, 123),
|
|
303
|
+
(10, 31),
|
|
304
|
+
(5, 18),
|
|
305
|
+
(3, 1229),
|
|
306
|
+
(120, 229),
|
|
307
|
+
(9, 87),
|
|
308
|
+
(2, 1328),
|
|
309
|
+
]
|
|
310
|
+
num_heads = (32, 8)
|
|
311
|
+
head_dim = 128
|
|
312
|
+
page_size = 16
|
|
313
|
+
num_pages = 1000
|
|
314
|
+
|
|
315
|
+
self._test_ragged_paged_attention(
|
|
316
|
+
seq_lens,
|
|
317
|
+
num_heads,
|
|
318
|
+
head_dim,
|
|
319
|
+
page_size,
|
|
320
|
+
dtype,
|
|
321
|
+
dtype,
|
|
322
|
+
num_pages,
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
@parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
|
|
326
|
+
def test_ragged_paged_attention_mixed(self, dtype):
|
|
327
|
+
seq_lens = [
|
|
328
|
+
(5, 18),
|
|
329
|
+
(1, 129),
|
|
330
|
+
(120, 597),
|
|
331
|
+
(1, 122),
|
|
332
|
+
(1, 64),
|
|
333
|
+
(32, 322),
|
|
334
|
+
(251, 463),
|
|
335
|
+
(1, 181),
|
|
336
|
+
(1, 1107),
|
|
337
|
+
(99, 123),
|
|
338
|
+
(1, 31),
|
|
339
|
+
(5, 18),
|
|
340
|
+
(3, 1229),
|
|
341
|
+
(117, 229),
|
|
342
|
+
(1, 87),
|
|
343
|
+
(1, 1328),
|
|
344
|
+
]
|
|
345
|
+
num_heads = (32, 8)
|
|
346
|
+
head_dim = 128
|
|
347
|
+
page_size = 16
|
|
348
|
+
num_pages = 1000
|
|
349
|
+
|
|
350
|
+
self._test_ragged_paged_attention(
|
|
351
|
+
seq_lens,
|
|
352
|
+
num_heads,
|
|
353
|
+
head_dim,
|
|
354
|
+
page_size,
|
|
355
|
+
dtype,
|
|
356
|
+
dtype,
|
|
357
|
+
num_pages,
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
@parameterized.product(
|
|
361
|
+
num_seqs=[1, 17],
|
|
362
|
+
num_heads=[(32, 8), (12, 2), (5, 1), (3, 3)],
|
|
363
|
+
head_dim=[80, 240],
|
|
364
|
+
dtype=[jnp.float32, jnp.bfloat16],
|
|
365
|
+
# num_kv_pages_per_block=[8, 16],
|
|
366
|
+
# num_queries_per_block=[16, 32],
|
|
367
|
+
)
|
|
368
|
+
def test_ragged_paged_attention_complex(
|
|
369
|
+
self,
|
|
370
|
+
num_seqs,
|
|
371
|
+
num_heads,
|
|
372
|
+
head_dim,
|
|
373
|
+
dtype,
|
|
374
|
+
# num_kv_pages_per_block,
|
|
375
|
+
# num_queries_per_block,
|
|
376
|
+
):
|
|
377
|
+
rng = np.random.default_rng(1234)
|
|
378
|
+
q_lens = rng.integers(1, 100, num_seqs)
|
|
379
|
+
kv_lens = q_lens + rng.integers(0, 50, num_seqs)
|
|
380
|
+
seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
|
|
381
|
+
page_size = 16
|
|
382
|
+
num_pages = 1000
|
|
383
|
+
|
|
384
|
+
self._test_ragged_paged_attention(
|
|
385
|
+
seq_lens,
|
|
386
|
+
num_heads,
|
|
387
|
+
head_dim,
|
|
388
|
+
page_size,
|
|
389
|
+
dtype,
|
|
390
|
+
dtype,
|
|
391
|
+
num_pages,
|
|
392
|
+
# num_kv_pages_per_block=num_kv_pages_per_block,
|
|
393
|
+
# num_queries_per_block=num_queries_per_block,
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
@parameterized.product(sliding_window=[None, 5, 128], )
|
|
397
|
+
def test_ragged_paged_attention_sliding_window(
|
|
398
|
+
self,
|
|
399
|
+
sliding_window: int | None,
|
|
400
|
+
):
|
|
401
|
+
num_seqs = 5
|
|
402
|
+
num_heads = (4, 4)
|
|
403
|
+
dtype = jnp.float32
|
|
404
|
+
rng = np.random.default_rng(1234)
|
|
405
|
+
q_lens = rng.integers(1, 100, num_seqs)
|
|
406
|
+
kv_lens = q_lens + rng.integers(0, 50, num_seqs)
|
|
407
|
+
seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
|
|
408
|
+
head_dim = 128
|
|
409
|
+
page_size = 16
|
|
410
|
+
num_pages = 1000
|
|
411
|
+
|
|
412
|
+
self._test_ragged_paged_attention(
|
|
413
|
+
seq_lens,
|
|
414
|
+
num_heads,
|
|
415
|
+
head_dim,
|
|
416
|
+
page_size,
|
|
417
|
+
dtype,
|
|
418
|
+
dtype,
|
|
419
|
+
num_pages,
|
|
420
|
+
sliding_window=sliding_window,
|
|
421
|
+
)
|
|
422
|
+
|
|
423
|
+
@parameterized.product(soft_cap=[None, 50.0], )
|
|
424
|
+
def test_ragged_paged_attention_logit_soft_capping(
|
|
425
|
+
self,
|
|
426
|
+
soft_cap: float | None,
|
|
427
|
+
):
|
|
428
|
+
num_heads = (16, 2)
|
|
429
|
+
num_seqs = 2
|
|
430
|
+
dtype = jnp.float32
|
|
431
|
+
rng = np.random.default_rng(1234)
|
|
432
|
+
q_lens = rng.integers(1, 100, num_seqs)
|
|
433
|
+
kv_lens = q_lens + rng.integers(0, 50, num_seqs)
|
|
434
|
+
seq_lens = list(zip(q_lens.tolist(), kv_lens.tolist()))
|
|
435
|
+
head_dim = 128
|
|
436
|
+
page_size = 16
|
|
437
|
+
num_pages = 1000
|
|
438
|
+
|
|
439
|
+
self._test_ragged_paged_attention(
|
|
440
|
+
seq_lens,
|
|
441
|
+
num_heads,
|
|
442
|
+
head_dim,
|
|
443
|
+
page_size,
|
|
444
|
+
dtype,
|
|
445
|
+
dtype,
|
|
446
|
+
num_pages,
|
|
447
|
+
soft_cap=soft_cap,
|
|
448
|
+
)
|
|
449
|
+
|
|
450
|
+
def test_ragged_paged_attention_sliding_window_should_be_positive(self):
|
|
451
|
+
dtype = jnp.float32
|
|
452
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
453
|
+
num_heads = (32, 8)
|
|
454
|
+
head_dim = 128
|
|
455
|
+
page_size = 16
|
|
456
|
+
num_pages = 1000
|
|
457
|
+
|
|
458
|
+
with self.assertRaisesRegex(ValueError, "must be positive"):
|
|
459
|
+
self._test_ragged_paged_attention(
|
|
460
|
+
seq_lens,
|
|
461
|
+
num_heads,
|
|
462
|
+
head_dim,
|
|
463
|
+
page_size,
|
|
464
|
+
dtype,
|
|
465
|
+
dtype,
|
|
466
|
+
num_pages,
|
|
467
|
+
sliding_window=0,
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
with self.assertRaisesRegex(ValueError, "must be positive"):
|
|
471
|
+
self._test_ragged_paged_attention(
|
|
472
|
+
seq_lens,
|
|
473
|
+
num_heads,
|
|
474
|
+
head_dim,
|
|
475
|
+
page_size,
|
|
476
|
+
dtype,
|
|
477
|
+
dtype,
|
|
478
|
+
num_pages,
|
|
479
|
+
sliding_window=-1,
|
|
480
|
+
)
|
|
481
|
+
|
|
482
|
+
def test_ragged_paged_attention_soft_cap_cannot_be_zero(self):
|
|
483
|
+
dtype = jnp.float32
|
|
484
|
+
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
485
|
+
num_heads = (32, 8)
|
|
486
|
+
head_dim = 128
|
|
487
|
+
page_size = 16
|
|
488
|
+
num_pages = 1000
|
|
489
|
+
|
|
490
|
+
with self.assertRaisesRegex(ValueError, "must not be 0.0"):
|
|
491
|
+
self._test_ragged_paged_attention(
|
|
492
|
+
seq_lens,
|
|
493
|
+
num_heads,
|
|
494
|
+
head_dim,
|
|
495
|
+
page_size,
|
|
496
|
+
dtype,
|
|
497
|
+
dtype,
|
|
498
|
+
num_pages,
|
|
499
|
+
soft_cap=0.0,
|
|
500
|
+
)
|
|
501
|
+
|
|
502
|
+
|
|
503
|
+
if __name__ == "__main__":
|
|
504
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|
tests/lora/__init__.py
ADDED
|
File without changes
|
tests/lora/test_lora.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
# https://github.com/vllm-project/vllm/blob/ed10f3cea199a7a1f3532fbe367f5c5479a6cae9/tests/tpu/lora/test_lora.py
|
|
2
|
+
import pytest
|
|
3
|
+
import vllm
|
|
4
|
+
from vllm.lora.request import LoRARequest
|
|
5
|
+
|
|
6
|
+
# This file contains tests to ensure that LoRA works correctly on the TPU
|
|
7
|
+
# backend. We use a series of custom trained adapters for Qwen2.5-3B-Instruct
|
|
8
|
+
# for this. The adapters are:
|
|
9
|
+
# Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_x_adapter, where x ranges
|
|
10
|
+
# from 1 to 4.
|
|
11
|
+
|
|
12
|
+
# These adapters are trained using a standard huggingface peft training script,
|
|
13
|
+
# where all the inputs are "What is 1+1? \n" and all the outputs are "x". We run
|
|
14
|
+
# 100 training iterations with a training batch size of 100.
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@pytest.fixture(scope="function", autouse=True)
|
|
18
|
+
def use_v1_only(monkeypatch: pytest.MonkeyPatch):
|
|
19
|
+
"""
|
|
20
|
+
Since Multi-LoRA is only supported on the v1 TPU backend, set VLLM_USE_V1=1
|
|
21
|
+
for all tests in this file
|
|
22
|
+
"""
|
|
23
|
+
with monkeypatch.context() as m:
|
|
24
|
+
m.setenv("VLLM_USE_V1", "1")
|
|
25
|
+
yield
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def setup_vllm(num_loras: int) -> vllm.LLM:
|
|
29
|
+
return vllm.LLM(model="Qwen/Qwen2.5-3B-Instruct",
|
|
30
|
+
max_model_len=256,
|
|
31
|
+
max_num_seqs=8,
|
|
32
|
+
enable_lora=True,
|
|
33
|
+
max_loras=num_loras,
|
|
34
|
+
max_lora_rank=8)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def test_single_lora():
|
|
38
|
+
"""
|
|
39
|
+
This test ensures we can run a single LoRA adapter on the TPU backend.
|
|
40
|
+
We run "Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_2_adapter" which
|
|
41
|
+
will force Qwen2.5-3B-Instruct to claim 1+1=2.
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
llm = setup_vllm(1)
|
|
45
|
+
|
|
46
|
+
prompt = "What is 1+1? \n"
|
|
47
|
+
|
|
48
|
+
lora_request = LoRARequest(
|
|
49
|
+
"lora_adapter_2", 2,
|
|
50
|
+
"Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_2_adapter")
|
|
51
|
+
output = llm.generate(prompt,
|
|
52
|
+
sampling_params=vllm.SamplingParams(max_tokens=16,
|
|
53
|
+
temperature=0),
|
|
54
|
+
lora_request=lora_request)[0].outputs[0].text
|
|
55
|
+
|
|
56
|
+
answer = output.strip()[0]
|
|
57
|
+
|
|
58
|
+
assert answer.isdigit()
|
|
59
|
+
assert int(answer) == 2
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def test_lora_hotswapping():
|
|
63
|
+
"""
|
|
64
|
+
This test ensures we can run multiple LoRA adapters on the TPU backend, even
|
|
65
|
+
if we only have space to store 1.
|
|
66
|
+
|
|
67
|
+
We run "Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_x_adapter" which
|
|
68
|
+
will force Qwen2.5-3B-Instruct to claim 1+1=x, for a range of x.
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
lora_name_template = \
|
|
72
|
+
"Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_{}_adapter"
|
|
73
|
+
lora_requests = [
|
|
74
|
+
LoRARequest(f"lora_adapter_{i}", i, lora_name_template.format(i))
|
|
75
|
+
for i in range(1, 5)
|
|
76
|
+
]
|
|
77
|
+
|
|
78
|
+
llm = setup_vllm(1)
|
|
79
|
+
|
|
80
|
+
prompt = "What is 1+1? \n"
|
|
81
|
+
|
|
82
|
+
for i, req in enumerate(lora_requests):
|
|
83
|
+
output = llm.generate(prompt,
|
|
84
|
+
sampling_params=vllm.SamplingParams(
|
|
85
|
+
max_tokens=16, temperature=0),
|
|
86
|
+
lora_request=req)[0].outputs[0].text
|
|
87
|
+
answer = output.strip()[0]
|
|
88
|
+
|
|
89
|
+
assert answer.isdigit()
|
|
90
|
+
assert int(answer) == i + 1, f"Expected {i + 1}, got {answer}"
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def test_multi_lora():
|
|
94
|
+
"""
|
|
95
|
+
This test ensures we can run multiple LoRA adapters on the TPU backend, when
|
|
96
|
+
we have enough space to store all of them.
|
|
97
|
+
|
|
98
|
+
We run "Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_x_adapter" which
|
|
99
|
+
will force Qwen2.5-3B-Instruct to claim 1+1=x, for a range of x.
|
|
100
|
+
"""
|
|
101
|
+
lora_name_template = \
|
|
102
|
+
"Username6568/Qwen2.5-3B-Instruct-1_plus_1_equals_{}_adapter"
|
|
103
|
+
lora_requests = [
|
|
104
|
+
LoRARequest(f"lora_adapter_{i}", i, lora_name_template.format(i))
|
|
105
|
+
for i in range(1, 5)
|
|
106
|
+
]
|
|
107
|
+
|
|
108
|
+
llm = setup_vllm(4)
|
|
109
|
+
|
|
110
|
+
prompt = "What is 1+1? \n"
|
|
111
|
+
|
|
112
|
+
for i, req in enumerate(lora_requests):
|
|
113
|
+
output = llm.generate(prompt,
|
|
114
|
+
sampling_params=vllm.SamplingParams(
|
|
115
|
+
max_tokens=16, temperature=0),
|
|
116
|
+
lora_request=req)[0].outputs[0].text
|
|
117
|
+
|
|
118
|
+
answer = output.strip()[0]
|
|
119
|
+
|
|
120
|
+
assert answer.isdigit()
|
|
121
|
+
assert int(
|
|
122
|
+
output.strip()
|
|
123
|
+
[0]) == i + 1, f"Expected {i + 1}, got {int(output.strip()[0])}"
|