tpu-inference 0.11.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_adapters.py +83 -0
- tests/core/test_core_tpu.py +523 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/test_lora.py +123 -0
- tests/test_base.py +201 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +218 -0
- tests/tpu_backend_test.py +59 -0
- tpu_inference/__init__.py +30 -0
- tpu_inference/adapters/__init__.py +0 -0
- tpu_inference/adapters/vllm_adapters.py +42 -0
- tpu_inference/adapters/vllm_config_adapters.py +134 -0
- tpu_inference/backend.py +69 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/adapters.py +153 -0
- tpu_inference/core/core_tpu.py +776 -0
- tpu_inference/core/disagg_executor.py +117 -0
- tpu_inference/core/disagg_utils.py +51 -0
- tpu_inference/di/__init__.py +0 -0
- tpu_inference/di/abstracts.py +28 -0
- tpu_inference/di/host.py +76 -0
- tpu_inference/di/interfaces.py +51 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/tpu_connector.py +699 -0
- tpu_inference/distributed/utils.py +59 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +346 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/interfaces/__init__.py +0 -0
- tpu_inference/interfaces/cache.py +31 -0
- tpu_inference/interfaces/config.py +47 -0
- tpu_inference/interfaces/config_parts.py +117 -0
- tpu_inference/interfaces/engine.py +51 -0
- tpu_inference/interfaces/outputs.py +22 -0
- tpu_inference/interfaces/params.py +21 -0
- tpu_inference/interfaces/platform.py +74 -0
- tpu_inference/interfaces/request.py +39 -0
- tpu_inference/interfaces/scheduler.py +31 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1447 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3834 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +47 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +254 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/attention_interface.py +356 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/binary_search.py +295 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +172 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +95 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
- tpu_inference/layers/jax/sharding.py +406 -0
- tpu_inference/layers/jax/transformer_block.py +76 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +184 -0
- tpu_inference/layers/vllm/fused_moe.py +399 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +34 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
- tpu_inference/layers/vllm/sharding.py +151 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +308 -0
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1233 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +433 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/llama3.py +366 -0
- tpu_inference/models/jax/llama4.py +473 -0
- tpu_inference/models/jax/llama_eagle3.py +333 -0
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +375 -0
- tpu_inference/models/jax/qwen2_5_vl.py +976 -0
- tpu_inference/models/jax/qwen3.py +302 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +164 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +588 -0
- tpu_inference/models/jax/utils/weight_utils.py +510 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +272 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_jax.py +257 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table_jax.py +122 -0
- tpu_inference/runner/compilation_manager.py +672 -0
- tpu_inference/runner/input_batch_jax.py +435 -0
- tpu_inference/runner/kv_cache.py +119 -0
- tpu_inference/runner/kv_cache_manager.py +460 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +208 -0
- tpu_inference/runner/persistent_batch_manager.py +244 -0
- tpu_inference/runner/speculative_decoding_manager.py +250 -0
- tpu_inference/runner/structured_decoding_manager.py +89 -0
- tpu_inference/runner/tpu_jax_runner.py +771 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +334 -0
- tpu_inference/tpu_info.py +77 -0
- tpu_inference/utils.py +294 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/_temporary_vllm_compat.py +129 -0
- tpu_inference/worker/base.py +100 -0
- tpu_inference/worker/tpu_worker_jax.py +321 -0
- tpu_inference-0.11.1.dist-info/METADATA +101 -0
- tpu_inference-0.11.1.dist-info/RECORD +168 -0
- tpu_inference-0.11.1.dist-info/WHEEL +5 -0
- tpu_inference-0.11.1.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.11.1.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,375 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import jax
|
|
4
|
+
import jax.numpy as jnp
|
|
5
|
+
from flax import nnx
|
|
6
|
+
from jax.sharding import Mesh
|
|
7
|
+
from transformers import Qwen2Config, modeling_flax_utils
|
|
8
|
+
from vllm.config import VllmConfig
|
|
9
|
+
|
|
10
|
+
from tpu_inference import utils
|
|
11
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
12
|
+
from tpu_inference.layers.jax.attention_interface import attention
|
|
13
|
+
from tpu_inference.layers.jax.rope_interface import apply_rope
|
|
14
|
+
from tpu_inference.logger import init_logger
|
|
15
|
+
from tpu_inference.models.jax.utils.weight_utils import (get_default_maps,
|
|
16
|
+
load_hf_weights)
|
|
17
|
+
|
|
18
|
+
logger = init_logger(__name__)
|
|
19
|
+
|
|
20
|
+
init_fn = nnx.initializers.uniform()
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class Qwen2MLP(nnx.Module):
|
|
24
|
+
|
|
25
|
+
def __init__(self, config: Qwen2Config, dtype: jnp.dtype, rng: nnx.Rngs):
|
|
26
|
+
hidden_size = config.hidden_size
|
|
27
|
+
intermediate_size = config.intermediate_size
|
|
28
|
+
act = config.hidden_act
|
|
29
|
+
|
|
30
|
+
self.gate_proj = nnx.Linear(
|
|
31
|
+
hidden_size,
|
|
32
|
+
intermediate_size,
|
|
33
|
+
use_bias=False,
|
|
34
|
+
param_dtype=dtype,
|
|
35
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
|
|
36
|
+
rngs=rng,
|
|
37
|
+
)
|
|
38
|
+
self.up_proj = nnx.Linear(
|
|
39
|
+
hidden_size,
|
|
40
|
+
intermediate_size,
|
|
41
|
+
use_bias=False,
|
|
42
|
+
param_dtype=dtype,
|
|
43
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
|
|
44
|
+
rngs=rng,
|
|
45
|
+
)
|
|
46
|
+
self.down_proj = nnx.Linear(
|
|
47
|
+
intermediate_size,
|
|
48
|
+
hidden_size,
|
|
49
|
+
use_bias=False,
|
|
50
|
+
param_dtype=dtype,
|
|
51
|
+
kernel_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
52
|
+
rngs=rng,
|
|
53
|
+
)
|
|
54
|
+
self.act_fn = modeling_flax_utils.ACT2FN[act]
|
|
55
|
+
|
|
56
|
+
def __call__(self, x: jax.Array) -> jax.Array:
|
|
57
|
+
gate = self.act_fn(self.gate_proj(x))
|
|
58
|
+
up = self.up_proj(x)
|
|
59
|
+
fuse = gate * up
|
|
60
|
+
result = self.down_proj(fuse)
|
|
61
|
+
return result
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class Qwen2Attention(nnx.Module):
|
|
65
|
+
|
|
66
|
+
def __init__(self, config: Qwen2Config, dtype: jnp.dtype, rng: nnx.Rngs,
|
|
67
|
+
mesh: Mesh, kv_cache_dtype: str):
|
|
68
|
+
self.hidden_size = config.hidden_size
|
|
69
|
+
self.num_heads = config.num_attention_heads
|
|
70
|
+
self.num_kv_heads = config.num_key_value_heads
|
|
71
|
+
self.rope_theta = config.rope_theta
|
|
72
|
+
self.rope_scaling = getattr(config, "rope_scaling", None)
|
|
73
|
+
|
|
74
|
+
self.head_dim_original = getattr(config, "head_dim",
|
|
75
|
+
self.hidden_size // self.num_heads)
|
|
76
|
+
self.head_dim = utils.get_padded_head_dim(self.head_dim_original)
|
|
77
|
+
|
|
78
|
+
sharding_size = mesh.shape["model"]
|
|
79
|
+
self.num_heads = utils.get_padded_num_heads(self.num_heads,
|
|
80
|
+
sharding_size)
|
|
81
|
+
self.num_kv_heads = utils.get_padded_num_heads(self.num_kv_heads,
|
|
82
|
+
sharding_size)
|
|
83
|
+
|
|
84
|
+
self.mesh = mesh
|
|
85
|
+
|
|
86
|
+
self.q_proj = nnx.Einsum(
|
|
87
|
+
"TD,DNH->TNH",
|
|
88
|
+
(self.hidden_size, self.num_heads, self.head_dim),
|
|
89
|
+
(self.num_heads, self.head_dim),
|
|
90
|
+
param_dtype=dtype,
|
|
91
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
92
|
+
bias_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
93
|
+
rngs=rng,
|
|
94
|
+
)
|
|
95
|
+
self.k_proj = nnx.Einsum(
|
|
96
|
+
"TD,DKH->TKH",
|
|
97
|
+
(self.hidden_size, self.num_kv_heads, self.head_dim),
|
|
98
|
+
(self.num_kv_heads, self.head_dim),
|
|
99
|
+
param_dtype=dtype,
|
|
100
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
101
|
+
bias_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
102
|
+
rngs=rng,
|
|
103
|
+
)
|
|
104
|
+
self.v_proj = nnx.Einsum(
|
|
105
|
+
"TD,DKH->TKH",
|
|
106
|
+
(self.hidden_size, self.num_kv_heads, self.head_dim),
|
|
107
|
+
(self.num_kv_heads, self.head_dim),
|
|
108
|
+
param_dtype=dtype,
|
|
109
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
110
|
+
bias_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
111
|
+
rngs=rng,
|
|
112
|
+
)
|
|
113
|
+
self.o_proj = nnx.Einsum(
|
|
114
|
+
"TNH,NHD->TD",
|
|
115
|
+
(self.num_heads, self.head_dim, self.hidden_size),
|
|
116
|
+
param_dtype=dtype,
|
|
117
|
+
kernel_init=nnx.with_partitioning(init_fn, ("model", None, None)),
|
|
118
|
+
rngs=rng,
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
self._q_scale = 1.0
|
|
122
|
+
self._k_scale = 1.0
|
|
123
|
+
self._v_scale = 1.0
|
|
124
|
+
self.kv_cache_quantized_dtype = None
|
|
125
|
+
if kv_cache_dtype != "auto":
|
|
126
|
+
self.kv_cache_quantized_dtype = utils.get_jax_dtype_from_str_dtype(
|
|
127
|
+
kv_cache_dtype)
|
|
128
|
+
|
|
129
|
+
def __call__(
|
|
130
|
+
self,
|
|
131
|
+
kv_cache: Optional[jax.Array],
|
|
132
|
+
x: jax.Array,
|
|
133
|
+
attention_metadata: AttentionMetadata,
|
|
134
|
+
) -> Tuple[jax.Array, jax.Array]:
|
|
135
|
+
md = attention_metadata
|
|
136
|
+
# q: (T, N, H)
|
|
137
|
+
q = self.q_proj(x)
|
|
138
|
+
q = apply_rope(q, md.input_positions, self.head_dim_original,
|
|
139
|
+
self.rope_theta, self.rope_scaling)
|
|
140
|
+
|
|
141
|
+
# k: (T, K, H)
|
|
142
|
+
k = self.k_proj(x)
|
|
143
|
+
k = apply_rope(k, md.input_positions, self.head_dim_original,
|
|
144
|
+
self.rope_theta, self.rope_scaling)
|
|
145
|
+
|
|
146
|
+
# v: (T, K, H)
|
|
147
|
+
v = self.v_proj(x)
|
|
148
|
+
# o: (T, N, H)
|
|
149
|
+
q_scale = k_scale = v_scale = None
|
|
150
|
+
if self.kv_cache_quantized_dtype:
|
|
151
|
+
# TODO(kyuyeunk/jacobplatin): Enable w8a8 when VREG spill issue is resolved.
|
|
152
|
+
# q_scale = self._q_scale
|
|
153
|
+
k_scale = self._k_scale
|
|
154
|
+
v_scale = self._v_scale
|
|
155
|
+
k, v = utils.quantize_kv(k, v, self.kv_cache_quantized_dtype,
|
|
156
|
+
k_scale, v_scale)
|
|
157
|
+
new_kv_cache, outputs = attention(
|
|
158
|
+
kv_cache,
|
|
159
|
+
q,
|
|
160
|
+
k,
|
|
161
|
+
v,
|
|
162
|
+
attention_metadata,
|
|
163
|
+
self.mesh,
|
|
164
|
+
self.head_dim_original,
|
|
165
|
+
q_scale=q_scale,
|
|
166
|
+
k_scale=k_scale,
|
|
167
|
+
v_scale=v_scale,
|
|
168
|
+
)
|
|
169
|
+
# (T, D)
|
|
170
|
+
o = self.o_proj(outputs)
|
|
171
|
+
return new_kv_cache, o
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
class Qwen2DecoderLayer(nnx.Module):
|
|
175
|
+
|
|
176
|
+
def __init__(self, config: Qwen2Config, dtype: jnp.dtype, rng: nnx.Rngs,
|
|
177
|
+
mesh: Mesh, kv_cache_dtype: str):
|
|
178
|
+
rms_norm_eps = config.rms_norm_eps
|
|
179
|
+
hidden_size = config.hidden_size
|
|
180
|
+
|
|
181
|
+
self.input_layernorm = nnx.RMSNorm(
|
|
182
|
+
hidden_size,
|
|
183
|
+
epsilon=rms_norm_eps,
|
|
184
|
+
param_dtype=dtype,
|
|
185
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
186
|
+
rngs=rng,
|
|
187
|
+
)
|
|
188
|
+
self.self_attn = Qwen2Attention(config=config,
|
|
189
|
+
dtype=dtype,
|
|
190
|
+
rng=rng,
|
|
191
|
+
mesh=mesh,
|
|
192
|
+
kv_cache_dtype=kv_cache_dtype)
|
|
193
|
+
self.post_attention_layernorm = nnx.RMSNorm(
|
|
194
|
+
hidden_size,
|
|
195
|
+
epsilon=rms_norm_eps,
|
|
196
|
+
param_dtype=dtype,
|
|
197
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
198
|
+
rngs=rng,
|
|
199
|
+
)
|
|
200
|
+
self.mlp = Qwen2MLP(
|
|
201
|
+
config=config,
|
|
202
|
+
dtype=dtype,
|
|
203
|
+
rng=rng,
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
def __call__(
|
|
207
|
+
self,
|
|
208
|
+
kv_cache: jax.Array,
|
|
209
|
+
x: jax.Array,
|
|
210
|
+
attention_metadata: AttentionMetadata,
|
|
211
|
+
) -> Tuple[jax.Array, jax.Array]:
|
|
212
|
+
hidden_states = self.input_layernorm(x)
|
|
213
|
+
kv_cache, attn_output = self.self_attn(
|
|
214
|
+
kv_cache,
|
|
215
|
+
hidden_states,
|
|
216
|
+
attention_metadata,
|
|
217
|
+
)
|
|
218
|
+
attn_output += x
|
|
219
|
+
|
|
220
|
+
residual = attn_output
|
|
221
|
+
attn_output = self.post_attention_layernorm(attn_output)
|
|
222
|
+
outputs = self.mlp(attn_output)
|
|
223
|
+
outputs = residual + outputs
|
|
224
|
+
return kv_cache, outputs
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
class Qwen2Model(nnx.Module):
|
|
228
|
+
|
|
229
|
+
def __init__(self, vllm_config: VllmConfig, rng: nnx.Rngs,
|
|
230
|
+
mesh: Mesh) -> None:
|
|
231
|
+
model_config = vllm_config.model_config
|
|
232
|
+
hf_config = model_config.hf_config
|
|
233
|
+
vocab_size = model_config.get_vocab_size()
|
|
234
|
+
dtype = model_config.dtype
|
|
235
|
+
rms_norm_eps = hf_config.rms_norm_eps
|
|
236
|
+
hidden_size = hf_config.hidden_size
|
|
237
|
+
|
|
238
|
+
self.embed = nnx.Embed(
|
|
239
|
+
num_embeddings=vocab_size,
|
|
240
|
+
features=hidden_size,
|
|
241
|
+
param_dtype=dtype,
|
|
242
|
+
embedding_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
243
|
+
rngs=rng,
|
|
244
|
+
)
|
|
245
|
+
self.layers = [
|
|
246
|
+
Qwen2DecoderLayer(
|
|
247
|
+
config=hf_config,
|
|
248
|
+
dtype=dtype,
|
|
249
|
+
rng=rng,
|
|
250
|
+
mesh=mesh,
|
|
251
|
+
# TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
|
|
252
|
+
kv_cache_dtype=vllm_config.cache_config.cache_dtype)
|
|
253
|
+
for _ in range(hf_config.num_hidden_layers)
|
|
254
|
+
]
|
|
255
|
+
self.norm = nnx.RMSNorm(
|
|
256
|
+
hidden_size,
|
|
257
|
+
epsilon=rms_norm_eps,
|
|
258
|
+
param_dtype=dtype,
|
|
259
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
260
|
+
rngs=rng,
|
|
261
|
+
)
|
|
262
|
+
if model_config.hf_config.tie_word_embeddings:
|
|
263
|
+
self.lm_head = self.embed.embedding
|
|
264
|
+
else:
|
|
265
|
+
self.lm_head = nnx.Param(
|
|
266
|
+
init_fn(rng.params(), (hidden_size, vocab_size), dtype),
|
|
267
|
+
sharding=(None, "model"),
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
def __call__(
|
|
271
|
+
self,
|
|
272
|
+
kv_caches: List[jax.Array],
|
|
273
|
+
input_ids: Optional[jax.Array],
|
|
274
|
+
attention_metadata: AttentionMetadata,
|
|
275
|
+
inputs_embeds: Optional[jax.Array] = None,
|
|
276
|
+
) -> Tuple[List[jax.Array], jax.Array]:
|
|
277
|
+
if inputs_embeds is not None:
|
|
278
|
+
x = inputs_embeds
|
|
279
|
+
else:
|
|
280
|
+
x = self.embed(input_ids)
|
|
281
|
+
for i, layer in enumerate(self.layers):
|
|
282
|
+
kv_cache = kv_caches[i]
|
|
283
|
+
kv_cache, x = layer(
|
|
284
|
+
kv_cache,
|
|
285
|
+
x,
|
|
286
|
+
attention_metadata,
|
|
287
|
+
)
|
|
288
|
+
kv_caches[i] = kv_cache
|
|
289
|
+
x = self.norm(x)
|
|
290
|
+
return kv_caches, x
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class Qwen2ForCausalLM(nnx.Module):
|
|
294
|
+
|
|
295
|
+
def __init__(self, vllm_config: VllmConfig, rng_key: jax.Array,
|
|
296
|
+
mesh: Mesh) -> None:
|
|
297
|
+
self.vllm_config = vllm_config
|
|
298
|
+
self.rng = nnx.Rngs(rng_key)
|
|
299
|
+
self.mesh = mesh
|
|
300
|
+
|
|
301
|
+
self.model = Qwen2Model(
|
|
302
|
+
vllm_config=vllm_config,
|
|
303
|
+
rng=self.rng,
|
|
304
|
+
mesh=mesh,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
def __call__(
|
|
308
|
+
self,
|
|
309
|
+
kv_caches: List[jax.Array],
|
|
310
|
+
input_ids: Optional[jax.Array],
|
|
311
|
+
attention_metadata: AttentionMetadata,
|
|
312
|
+
inputs_embeds: Optional[jax.Array] = None,
|
|
313
|
+
*args,
|
|
314
|
+
) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
|
|
315
|
+
kv_caches, x = self.model(
|
|
316
|
+
kv_caches,
|
|
317
|
+
input_ids,
|
|
318
|
+
attention_metadata,
|
|
319
|
+
inputs_embeds,
|
|
320
|
+
)
|
|
321
|
+
return kv_caches, x, []
|
|
322
|
+
|
|
323
|
+
def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
|
|
324
|
+
if self.vllm_config.model_config.hf_config.tie_word_embeddings:
|
|
325
|
+
logits = jnp.dot(hidden_states, self.model.lm_head.value.T)
|
|
326
|
+
else:
|
|
327
|
+
logits = jnp.dot(hidden_states, self.model.lm_head.value)
|
|
328
|
+
return logits
|
|
329
|
+
|
|
330
|
+
def load_weights(self, rng_key: jax.Array):
|
|
331
|
+
# NOTE: Since we are using nnx.eval_shape to init the model,
|
|
332
|
+
# we have to pass dynamic arrays here for __call__'s usage.
|
|
333
|
+
self.rng = nnx.Rngs(rng_key)
|
|
334
|
+
|
|
335
|
+
# Key: path to a HF layer weight
|
|
336
|
+
# Value: path to a nnx layer weight
|
|
337
|
+
mappings = {
|
|
338
|
+
"model.embed_tokens": "model.embed.embedding",
|
|
339
|
+
"model.layers.*.input_layernorm":
|
|
340
|
+
"model.layers.*.input_layernorm.scale",
|
|
341
|
+
"model.layers.*.mlp.down_proj":
|
|
342
|
+
"model.layers.*.mlp.down_proj.kernel",
|
|
343
|
+
"model.layers.*.mlp.gate_proj":
|
|
344
|
+
"model.layers.*.mlp.gate_proj.kernel",
|
|
345
|
+
"model.layers.*.mlp.up_proj": "model.layers.*.mlp.up_proj.kernel",
|
|
346
|
+
"model.layers.*.post_attention_layernorm":
|
|
347
|
+
"model.layers.*.post_attention_layernorm.scale",
|
|
348
|
+
"model.layers.*.self_attn.k_proj":
|
|
349
|
+
"model.layers.*.self_attn.k_proj.kernel",
|
|
350
|
+
"model.layers.*.self_attn.o_proj":
|
|
351
|
+
"model.layers.*.self_attn.o_proj.kernel",
|
|
352
|
+
"model.layers.*.self_attn.q_proj":
|
|
353
|
+
"model.layers.*.self_attn.q_proj.kernel",
|
|
354
|
+
"model.layers.*.self_attn.v_proj":
|
|
355
|
+
"model.layers.*.self_attn.v_proj.kernel",
|
|
356
|
+
"model.layers.*.self_attn.q_proj.bias":
|
|
357
|
+
"model.layers.*.self_attn.q_proj.bias",
|
|
358
|
+
"model.layers.*.self_attn.k_proj.bias":
|
|
359
|
+
"model.layers.*.self_attn.k_proj.bias",
|
|
360
|
+
"model.layers.*.self_attn.v_proj.bias":
|
|
361
|
+
"model.layers.*.self_attn.v_proj.bias",
|
|
362
|
+
"model.norm": "model.norm.scale",
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
# Add lm_head mapping only if it's not tied to embeddings
|
|
366
|
+
if not self.vllm_config.model_config.hf_config.tie_word_embeddings:
|
|
367
|
+
mappings.update({
|
|
368
|
+
"lm_head": "model.lm_head",
|
|
369
|
+
})
|
|
370
|
+
|
|
371
|
+
metadata_map = get_default_maps(self.vllm_config, self.mesh, mappings)
|
|
372
|
+
load_hf_weights(vllm_config=self.vllm_config,
|
|
373
|
+
model=self,
|
|
374
|
+
metadata_map=metadata_map,
|
|
375
|
+
mesh=self.mesh)
|