tpu-inference 0.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (168) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_adapters.py +83 -0
  4. tests/core/test_core_tpu.py +523 -0
  5. tests/core/test_disagg_executor.py +60 -0
  6. tests/core/test_disagg_utils.py +53 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  10. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  11. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  12. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  13. tests/lora/__init__.py +0 -0
  14. tests/lora/test_lora.py +123 -0
  15. tests/test_base.py +201 -0
  16. tests/test_quantization.py +836 -0
  17. tests/test_tpu_info.py +120 -0
  18. tests/test_utils.py +218 -0
  19. tests/tpu_backend_test.py +59 -0
  20. tpu_inference/__init__.py +30 -0
  21. tpu_inference/adapters/__init__.py +0 -0
  22. tpu_inference/adapters/vllm_adapters.py +42 -0
  23. tpu_inference/adapters/vllm_config_adapters.py +134 -0
  24. tpu_inference/backend.py +69 -0
  25. tpu_inference/core/__init__.py +0 -0
  26. tpu_inference/core/adapters.py +153 -0
  27. tpu_inference/core/core_tpu.py +776 -0
  28. tpu_inference/core/disagg_executor.py +117 -0
  29. tpu_inference/core/disagg_utils.py +51 -0
  30. tpu_inference/di/__init__.py +0 -0
  31. tpu_inference/di/abstracts.py +28 -0
  32. tpu_inference/di/host.py +76 -0
  33. tpu_inference/di/interfaces.py +51 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/tpu_connector.py +699 -0
  36. tpu_inference/distributed/utils.py +59 -0
  37. tpu_inference/executors/__init__.py +0 -0
  38. tpu_inference/executors/ray_distributed_executor.py +346 -0
  39. tpu_inference/experimental/__init__.py +0 -0
  40. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  41. tpu_inference/interfaces/__init__.py +0 -0
  42. tpu_inference/interfaces/cache.py +31 -0
  43. tpu_inference/interfaces/config.py +47 -0
  44. tpu_inference/interfaces/config_parts.py +117 -0
  45. tpu_inference/interfaces/engine.py +51 -0
  46. tpu_inference/interfaces/outputs.py +22 -0
  47. tpu_inference/interfaces/params.py +21 -0
  48. tpu_inference/interfaces/platform.py +74 -0
  49. tpu_inference/interfaces/request.py +39 -0
  50. tpu_inference/interfaces/scheduler.py +31 -0
  51. tpu_inference/kernels/__init__.py +0 -0
  52. tpu_inference/kernels/collectives/__init__.py +0 -0
  53. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  54. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  55. tpu_inference/kernels/collectives/util.py +47 -0
  56. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  57. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  58. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  59. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  60. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  61. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  62. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  66. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1447 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3834 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/util.py +47 -0
  71. tpu_inference/layers/__init__.py +0 -0
  72. tpu_inference/layers/common/__init__.py +0 -0
  73. tpu_inference/layers/common/attention_metadata.py +34 -0
  74. tpu_inference/layers/jax/__init__.py +0 -0
  75. tpu_inference/layers/jax/attention/__init__.py +0 -0
  76. tpu_inference/layers/jax/attention/attention.py +254 -0
  77. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  78. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  79. tpu_inference/layers/jax/attention_interface.py +356 -0
  80. tpu_inference/layers/jax/base.py +151 -0
  81. tpu_inference/layers/jax/binary_search.py +295 -0
  82. tpu_inference/layers/jax/constants.py +88 -0
  83. tpu_inference/layers/jax/layers.py +301 -0
  84. tpu_inference/layers/jax/misc.py +16 -0
  85. tpu_inference/layers/jax/moe/__init__.py +0 -0
  86. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  87. tpu_inference/layers/jax/moe/moe.py +209 -0
  88. tpu_inference/layers/jax/rope.py +172 -0
  89. tpu_inference/layers/jax/rope_interface.py +214 -0
  90. tpu_inference/layers/jax/sample/__init__.py +0 -0
  91. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  92. tpu_inference/layers/jax/sample/sampling.py +95 -0
  93. tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
  94. tpu_inference/layers/jax/sharding.py +406 -0
  95. tpu_inference/layers/jax/transformer_block.py +76 -0
  96. tpu_inference/layers/vllm/__init__.py +0 -0
  97. tpu_inference/layers/vllm/attention.py +184 -0
  98. tpu_inference/layers/vllm/fused_moe.py +399 -0
  99. tpu_inference/layers/vllm/linear_common.py +186 -0
  100. tpu_inference/layers/vllm/quantization/__init__.py +34 -0
  101. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  102. tpu_inference/layers/vllm/quantization/common.py +105 -0
  103. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  104. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
  105. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  106. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  108. tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
  109. tpu_inference/layers/vllm/sharding.py +151 -0
  110. tpu_inference/logger.py +10 -0
  111. tpu_inference/lora/__init__.py +0 -0
  112. tpu_inference/lora/torch_lora_ops.py +103 -0
  113. tpu_inference/lora/torch_punica_tpu.py +308 -0
  114. tpu_inference/mock/__init__.py +0 -0
  115. tpu_inference/mock/vllm_config_utils.py +28 -0
  116. tpu_inference/mock/vllm_envs.py +1233 -0
  117. tpu_inference/mock/vllm_logger.py +212 -0
  118. tpu_inference/mock/vllm_logging_utils.py +15 -0
  119. tpu_inference/models/__init__.py +0 -0
  120. tpu_inference/models/common/__init__.py +0 -0
  121. tpu_inference/models/common/model_loader.py +433 -0
  122. tpu_inference/models/jax/__init__.py +0 -0
  123. tpu_inference/models/jax/deepseek_v3.py +868 -0
  124. tpu_inference/models/jax/llama3.py +366 -0
  125. tpu_inference/models/jax/llama4.py +473 -0
  126. tpu_inference/models/jax/llama_eagle3.py +333 -0
  127. tpu_inference/models/jax/phi3.py +376 -0
  128. tpu_inference/models/jax/qwen2.py +375 -0
  129. tpu_inference/models/jax/qwen2_5_vl.py +976 -0
  130. tpu_inference/models/jax/qwen3.py +302 -0
  131. tpu_inference/models/jax/utils/__init__.py +0 -0
  132. tpu_inference/models/jax/utils/file_utils.py +96 -0
  133. tpu_inference/models/jax/utils/multi_modal_utils.py +164 -0
  134. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  135. tpu_inference/models/jax/utils/quantization/quantization_utils.py +588 -0
  136. tpu_inference/models/jax/utils/weight_utils.py +510 -0
  137. tpu_inference/models/vllm/__init__.py +0 -0
  138. tpu_inference/models/vllm/vllm_model_wrapper.py +272 -0
  139. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  140. tpu_inference/platforms/__init__.py +2 -0
  141. tpu_inference/platforms/tpu_jax.py +257 -0
  142. tpu_inference/runner/__init__.py +0 -0
  143. tpu_inference/runner/block_table_jax.py +122 -0
  144. tpu_inference/runner/compilation_manager.py +672 -0
  145. tpu_inference/runner/input_batch_jax.py +435 -0
  146. tpu_inference/runner/kv_cache.py +119 -0
  147. tpu_inference/runner/kv_cache_manager.py +460 -0
  148. tpu_inference/runner/lora_utils.py +92 -0
  149. tpu_inference/runner/multimodal_manager.py +208 -0
  150. tpu_inference/runner/persistent_batch_manager.py +244 -0
  151. tpu_inference/runner/speculative_decoding_manager.py +250 -0
  152. tpu_inference/runner/structured_decoding_manager.py +89 -0
  153. tpu_inference/runner/tpu_jax_runner.py +771 -0
  154. tpu_inference/runner/utils.py +426 -0
  155. tpu_inference/spec_decode/__init__.py +0 -0
  156. tpu_inference/spec_decode/jax/__init__.py +0 -0
  157. tpu_inference/spec_decode/jax/eagle3.py +334 -0
  158. tpu_inference/tpu_info.py +77 -0
  159. tpu_inference/utils.py +294 -0
  160. tpu_inference/worker/__init__.py +0 -0
  161. tpu_inference/worker/_temporary_vllm_compat.py +129 -0
  162. tpu_inference/worker/base.py +100 -0
  163. tpu_inference/worker/tpu_worker_jax.py +321 -0
  164. tpu_inference-0.11.1.dist-info/METADATA +101 -0
  165. tpu_inference-0.11.1.dist-info/RECORD +168 -0
  166. tpu_inference-0.11.1.dist-info/WHEEL +5 -0
  167. tpu_inference-0.11.1.dist-info/licenses/LICENSE +201 -0
  168. tpu_inference-0.11.1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,212 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Logging configuration for vLLM."""
4
+ import datetime
5
+ import json
6
+ import logging
7
+ import sys
8
+ from collections.abc import Hashable
9
+ from functools import lru_cache, partial
10
+ from logging import Logger
11
+ from logging.config import dictConfig
12
+ from os import path
13
+ from types import MethodType
14
+ from typing import Any, cast
15
+
16
+ import tpu_inference.mock.vllm_envs as envs
17
+
18
+ VLLM_CONFIGURE_LOGGING = envs.VLLM_CONFIGURE_LOGGING
19
+ VLLM_LOGGING_CONFIG_PATH = envs.VLLM_LOGGING_CONFIG_PATH
20
+ VLLM_LOGGING_LEVEL = envs.VLLM_LOGGING_LEVEL
21
+ VLLM_LOGGING_PREFIX = envs.VLLM_LOGGING_PREFIX
22
+
23
+ _FORMAT = (f"{VLLM_LOGGING_PREFIX}%(levelname)s %(asctime)s "
24
+ "[%(filename)s:%(lineno)d] %(message)s")
25
+ _DATE_FORMAT = "%m-%d %H:%M:%S"
26
+
27
+ DEFAULT_LOGGING_CONFIG = {
28
+ "formatters": {
29
+ "vllm": {
30
+ "class": "tpu_inference.vllm_logging_utils.NewLineFormatter",
31
+ "datefmt": _DATE_FORMAT,
32
+ "format": _FORMAT,
33
+ },
34
+ },
35
+ "handlers": {
36
+ "vllm": {
37
+ "class": "logging.StreamHandler",
38
+ "formatter": "vllm",
39
+ "level": VLLM_LOGGING_LEVEL,
40
+ "stream": "ext://sys.stdout",
41
+ },
42
+ },
43
+ "loggers": {
44
+ "vllm": {
45
+ "handlers": ["vllm"],
46
+ "level": "DEBUG",
47
+ "propagate": False,
48
+ },
49
+ },
50
+ "version": 1,
51
+ "disable_existing_loggers": False
52
+ }
53
+
54
+
55
+ @lru_cache
56
+ def _print_debug_once(logger: Logger, msg: str, *args: Hashable) -> None:
57
+ # Set the stacklevel to 2 to print the original caller's line info
58
+ logger.debug(msg, *args, stacklevel=2)
59
+
60
+
61
+ @lru_cache
62
+ def _print_info_once(logger: Logger, msg: str, *args: Hashable) -> None:
63
+ # Set the stacklevel to 2 to print the original caller's line info
64
+ logger.info(msg, *args, stacklevel=2)
65
+
66
+
67
+ @lru_cache
68
+ def _print_warning_once(logger: Logger, msg: str, *args: Hashable) -> None:
69
+ # Set the stacklevel to 2 to print the original caller's line info
70
+ logger.warning(msg, *args, stacklevel=2)
71
+
72
+
73
+ class _VllmLogger(Logger):
74
+ """
75
+ Note:
76
+ This class is just to provide type information.
77
+ We actually patch the methods directly on the [`logging.Logger`][]
78
+ instance to avoid conflicting with other libraries such as
79
+ `intel_extension_for_pytorch.utils._logger`.
80
+ """
81
+
82
+ def debug_once(self, msg: str, *args: Hashable) -> None:
83
+ """
84
+ As [`debug`][logging.Logger.debug], but subsequent calls with
85
+ the same message are silently dropped.
86
+ """
87
+ _print_debug_once(self, msg, *args)
88
+
89
+ def info_once(self, msg: str, *args: Hashable) -> None:
90
+ """
91
+ As [`info`][logging.Logger.info], but subsequent calls with
92
+ the same message are silently dropped.
93
+ """
94
+ _print_info_once(self, msg, *args)
95
+
96
+ def warning_once(self, msg: str, *args: Hashable) -> None:
97
+ """
98
+ As [`warning`][logging.Logger.warning], but subsequent calls with
99
+ the same message are silently dropped.
100
+ """
101
+ _print_warning_once(self, msg, *args)
102
+
103
+
104
+ # Pre-defined methods mapping to avoid repeated dictionary creation
105
+ _METHODS_TO_PATCH = {
106
+ "debug_once": _print_debug_once,
107
+ "info_once": _print_info_once,
108
+ "warning_once": _print_warning_once,
109
+ }
110
+
111
+
112
+ def _configure_vllm_root_logger() -> None:
113
+ logging_config = dict[str, Any]()
114
+
115
+ if not VLLM_CONFIGURE_LOGGING and VLLM_LOGGING_CONFIG_PATH:
116
+ raise RuntimeError(
117
+ "VLLM_CONFIGURE_LOGGING evaluated to false, but "
118
+ "VLLM_LOGGING_CONFIG_PATH was given. VLLM_LOGGING_CONFIG_PATH "
119
+ "implies VLLM_CONFIGURE_LOGGING. Please enable "
120
+ "VLLM_CONFIGURE_LOGGING or unset VLLM_LOGGING_CONFIG_PATH.")
121
+
122
+ if VLLM_CONFIGURE_LOGGING:
123
+ logging_config = DEFAULT_LOGGING_CONFIG
124
+
125
+ if VLLM_LOGGING_CONFIG_PATH:
126
+ if not path.exists(VLLM_LOGGING_CONFIG_PATH):
127
+ raise RuntimeError(
128
+ "Could not load logging config. File does not exist: %s",
129
+ VLLM_LOGGING_CONFIG_PATH)
130
+ with open(VLLM_LOGGING_CONFIG_PATH, encoding="utf-8") as file:
131
+ custom_config = json.loads(file.read())
132
+
133
+ if not isinstance(custom_config, dict):
134
+ raise ValueError("Invalid logging config. Expected dict, got %s.",
135
+ type(custom_config).__name__)
136
+ logging_config = custom_config
137
+
138
+ for formatter in logging_config.get("formatters", {}).values():
139
+ # This provides backwards compatibility after #10134.
140
+ if formatter.get(
141
+ "class"
142
+ ) == "tpu_inference.vllm_logging_utils.NewLineFormatter":
143
+ formatter[
144
+ "class"] = "tpu_inference.mock.vllm_logging_utils.NewLineFormatter"
145
+
146
+ if logging_config:
147
+ dictConfig(logging_config)
148
+
149
+
150
+ # The root logger is initialized when the module is imported.
151
+ # This is thread-safe as the module is only imported once,
152
+ # guaranteed by the Python GIL.
153
+ _configure_vllm_root_logger()
154
+
155
+
156
+ def init_logger(name: str) -> _VllmLogger:
157
+ """The main purpose of this function is to ensure that loggers are
158
+ retrieved in such a way that we can be sure the root vllm logger has
159
+ already been configured."""
160
+
161
+ logger = logging.getLogger(name)
162
+
163
+ for method_name, method in _METHODS_TO_PATCH.items():
164
+ setattr(logger, method_name, MethodType(method, logger))
165
+
166
+ return cast(_VllmLogger, logger)
167
+
168
+
169
+ logger = init_logger(__name__)
170
+
171
+
172
+ def _trace_calls(log_path, root_dir, frame, event, arg=None):
173
+ if event in ['call', 'return']:
174
+ # Extract the filename, line number, function name, and the code object
175
+ filename = frame.f_code.co_filename
176
+ lineno = frame.f_lineno
177
+ func_name = frame.f_code.co_name
178
+ if not filename.startswith(root_dir):
179
+ # only log the functions in the vllm root_dir
180
+ return
181
+ # Log every function call or return
182
+ try:
183
+ last_frame = frame.f_back
184
+ if last_frame is not None:
185
+ last_filename = last_frame.f_code.co_filename
186
+ last_lineno = last_frame.f_lineno
187
+ last_func_name = last_frame.f_code.co_name
188
+ else:
189
+ # initial frame
190
+ last_filename = ""
191
+ last_lineno = 0
192
+ last_func_name = ""
193
+ with open(log_path, 'a') as f:
194
+ ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
195
+ if event == 'call':
196
+ f.write(f"{ts} Call to"
197
+ f" {func_name} in {filename}:{lineno}"
198
+ f" from {last_func_name} in {last_filename}:"
199
+ f"{last_lineno}\n")
200
+ else:
201
+ f.write(f"{ts} Return from"
202
+ f" {func_name} in {filename}:{lineno}"
203
+ f" to {last_func_name} in {last_filename}:"
204
+ f"{last_lineno}\n")
205
+ except NameError:
206
+ # modules are deleted during shutdown
207
+ pass
208
+ return partial(_trace_calls, log_path, root_dir)
209
+
210
+
211
+ def enable_trace_function_call(log_file_path: str, root_dir: str):
212
+ sys.settrace(partial(_trace_calls, log_file_path, root_dir))
@@ -0,0 +1,15 @@
1
+ import logging
2
+
3
+
4
+ class NewLineFormatter(logging.Formatter):
5
+ """Adds logging prefix to newlines to align multi-line messages."""
6
+
7
+ def __init__(self, fmt, datefmt=None, style="%"):
8
+ logging.Formatter.__init__(self, fmt, datefmt, style)
9
+
10
+ def format(self, record):
11
+ msg = logging.Formatter.format(self, record)
12
+ if record.message != "":
13
+ parts = msg.split(record.message)
14
+ msg = msg.replace("\n", "\r\n" + parts[0])
15
+ return msg
File without changes
File without changes
@@ -0,0 +1,433 @@
1
+ import functools
2
+ import os
3
+ from typing import Any, Optional
4
+
5
+ import jax
6
+ import torch
7
+ from flax import nnx
8
+ from jax.sharding import Mesh, NamedSharding, PartitionSpec
9
+ from torchax.ops.mappings import j2t_dtype
10
+ from transformers import PretrainedConfig
11
+ from vllm.config import VllmConfig
12
+ from vllm.utils import supports_kw
13
+
14
+ from tpu_inference.logger import init_logger
15
+ from tpu_inference.models.jax.utils.quantization.quantization_utils import (
16
+ apply_qwix_on_abstract_model, apply_qwix_quantization,
17
+ load_random_weights_into_qwix_abstract_model)
18
+
19
+ logger = init_logger(__name__)
20
+
21
+ _MODEL_REGISTRY = {}
22
+
23
+
24
+ class UnsupportedArchitectureError(ValueError):
25
+ """Raised when a model architecture is not supported in the registry."""
26
+ pass
27
+
28
+
29
+ def _get_model_architecture(config: PretrainedConfig) -> nnx.Module:
30
+ # NOTE: Use inline imports here, otherwise the normal imports
31
+ # would cause JAX init failure when using multi hosts with Ray.
32
+
33
+ from tpu_inference.models.jax.deepseek_v3 import DeepSeekV3
34
+ from tpu_inference.models.jax.llama4 import Llama4ForCausalLM
35
+ from tpu_inference.models.jax.llama_eagle3 import EagleLlama3ForCausalLM
36
+ from tpu_inference.models.jax.phi3 import Phi3ForCausalLM
37
+ from tpu_inference.models.jax.qwen2 import Qwen2ForCausalLM
38
+ from tpu_inference.models.jax.qwen2_5_vl import \
39
+ Qwen2_5_VLForConditionalGeneration
40
+ from tpu_inference.models.jax.qwen3 import Qwen3ForCausalLM
41
+
42
+ if os.getenv("NEW_MODEL_DESIGN", False):
43
+ from tpu_inference.experimental.llama3_jax_stashed import \
44
+ LlamaForCausalLM
45
+ else:
46
+ from tpu_inference.models.jax.llama3 import LlamaForCausalLM
47
+
48
+ _MODEL_REGISTRY["Llama4ForCausalLM"] = Llama4ForCausalLM
49
+ _MODEL_REGISTRY["DeepseekV3ForCausalLM"] = DeepSeekV3
50
+ _MODEL_REGISTRY["LlamaForCausalLM"] = LlamaForCausalLM
51
+ _MODEL_REGISTRY["Qwen2ForCausalLM"] = Qwen2ForCausalLM
52
+ _MODEL_REGISTRY["Qwen3ForCausalLM"] = Qwen3ForCausalLM
53
+ _MODEL_REGISTRY[
54
+ "Qwen2_5_VLForConditionalGeneration"] = Qwen2_5_VLForConditionalGeneration
55
+ _MODEL_REGISTRY["Phi3ForCausalLM"] = Phi3ForCausalLM
56
+ _MODEL_REGISTRY["Eagle3LlamaForCausalLM"] = EagleLlama3ForCausalLM
57
+
58
+ architectures = getattr(config, "architectures", [])
59
+ for arch in architectures:
60
+ if arch in _MODEL_REGISTRY:
61
+ return _MODEL_REGISTRY[arch]
62
+ raise UnsupportedArchitectureError(
63
+ f"Model architectures {architectures} are not supported for now. "
64
+ f"Supported architectures: {list(_MODEL_REGISTRY.keys())}")
65
+
66
+
67
+ def _get_nnx_model(
68
+ model_class: Any,
69
+ vllm_config: VllmConfig,
70
+ rng: jax.Array,
71
+ mesh: Mesh,
72
+ ) -> nnx.Module:
73
+
74
+ def create_abstract_model() -> nnx.Module:
75
+ """
76
+ Helper class to create an abstract model for `nnx.eval_shape`.
77
+
78
+ Returns:
79
+ An abstract model function.
80
+ """
81
+ return model_class(vllm_config, rng, mesh)
82
+
83
+ @nnx.jit(donate_argnums=(0, ),
84
+ static_argnames=('use_qwix_on_abstract_model', ))
85
+ def create_jit_model(
86
+ model: nnx.Module,
87
+ use_qwix_on_abstract_model: bool = False) -> nnx.Module:
88
+ """
89
+ Create a jit model.
90
+
91
+ Args:
92
+ model: The model to jit.
93
+ use_qwix_on_abstract_model: Whether to apply Qwix on the abstract model.
94
+
95
+ Returns:
96
+ The jitted model.
97
+ """
98
+ state = nnx.state(model)
99
+ nnx.update(model, state)
100
+ if not use_qwix_on_abstract_model:
101
+ # NOTE: if Qwix is not configured, this will be a no-op
102
+ model = apply_qwix_quantization(vllm_config,
103
+ model,
104
+ rng,
105
+ mesh,
106
+ apply_to_abstract_model=False)
107
+ return model
108
+
109
+ if os.getenv("JAX_RANDOM_WEIGHTS", False):
110
+ # Create a sharded model with random inited weights.
111
+ # TODO: currently Qwen2ForCausalLM is using legacy model implementation
112
+ # will merge the random init logic when all model are migrated to new model implementation
113
+
114
+ # Handle the case where we want to load in random weights to a Qwix-quantized model. Here, we
115
+ # need to run an abstract pass for Qwix first and then load in the random weights.
116
+ if apply_qwix_on_abstract_model(vllm_config):
117
+ abstract_model_fn = apply_qwix_quantization(
118
+ vllm_config,
119
+ create_abstract_model,
120
+ rng,
121
+ mesh,
122
+ apply_to_abstract_model=True)
123
+
124
+ model = nnx.eval_shape(abstract_model_fn)
125
+ quantization_config = vllm_config.model_config.hf_config.quantization_config if hasattr(
126
+ vllm_config.model_config.hf_config,
127
+ "quantization_config") else {}
128
+ load_random_weights_into_qwix_abstract_model(
129
+ rng, model, mesh, quantization_config)
130
+ with mesh:
131
+ jit_model = create_jit_model(model,
132
+ use_qwix_on_abstract_model=True)
133
+ return jit_model
134
+
135
+ @nnx.jit
136
+ def create_sharded_model():
137
+ model = model_class(vllm_config, rng, mesh)
138
+ state = nnx.state(model)
139
+ pspecs = nnx.get_partition_spec(state)
140
+ sharded_state = jax.lax.with_sharding_constraint(state, pspecs)
141
+ nnx.update(model, sharded_state)
142
+ # NOTE: we don't support quantization for the old Qwen2ForCausalLM implementation
143
+ return model
144
+
145
+ with mesh:
146
+ jit_model = create_sharded_model()
147
+ # In this case, we are applying Qwix quantization to the true, concrete model
148
+ jit_model = apply_qwix_quantization(vllm_config,
149
+ jit_model,
150
+ rng,
151
+ mesh,
152
+ apply_to_abstract_model=False)
153
+ if hasattr(jit_model, 'initialize_cache'):
154
+ jit_model.initialize_cache()
155
+ else:
156
+ # We first create an abstract model without allocating any weights,
157
+ # then fill in its weigths during load_weights from HF.
158
+ # This shows 2 advantages than the normal way:
159
+ # 1. The model weights will only be allocated once. Otherwise the normal way
160
+ # will random-init the model weights first, then load the real weights.
161
+ # The two pass weights allocation causes model loading slow.
162
+ # 2. The model loading won't be OOM. Otherwise the normal way will hold
163
+ # a full model weights after random-init, then duplicate a layer during
164
+ # the load_weights. This would be easy to OOM if the layer is super large.
165
+ abstract_model_fn = create_abstract_model
166
+ # NOTE: only one of the abstract (this) or or concrete Qwix quantization paths should
167
+ # be taken
168
+ if should_apply_qwix_on_abstract_model := apply_qwix_on_abstract_model(
169
+ vllm_config):
170
+ # NOTE: if Qwix is not configured, this will return `create_abstract_model` and
171
+ # thus be a no-op
172
+ abstract_model_fn = apply_qwix_quantization(
173
+ vllm_config,
174
+ create_abstract_model,
175
+ rng,
176
+ mesh,
177
+ apply_to_abstract_model=True)
178
+ model = nnx.eval_shape(abstract_model_fn)
179
+ # Although the created model can already work, we still need to jit
180
+ # the model creation again, otherwise the model forward will have
181
+ # non-trivial overhead in PjitFunction.
182
+ with mesh:
183
+ model.load_weights(rng)
184
+ jit_model = create_jit_model(
185
+ model,
186
+ use_qwix_on_abstract_model=should_apply_qwix_on_abstract_model)
187
+ return jit_model
188
+
189
+
190
+ # TODO(pooyam): We need to refactor this. This is returning a bunch of functions that do not work with all models and this is not very easy to see from the code.
191
+ def get_flax_model(
192
+ vllm_config: VllmConfig,
193
+ rng: jax.Array,
194
+ mesh: Mesh,
195
+ is_draft_model: bool = False,
196
+ ) -> nnx.Module:
197
+ if is_draft_model:
198
+ model_class = _get_model_architecture(
199
+ vllm_config.speculative_config.draft_model_config.hf_config)
200
+ else:
201
+ model_class = _get_model_architecture(
202
+ vllm_config.model_config.hf_config)
203
+ jit_model = _get_nnx_model(model_class, vllm_config, rng, mesh)
204
+ kv_cache_sharding = NamedSharding(mesh, PartitionSpec(None, None, "model"))
205
+ hidden_states_sharding = NamedSharding(mesh, PartitionSpec(None,
206
+ None)) # (T, D)
207
+
208
+ # For performance consideration, refer to:
209
+ # https://flax.readthedocs.io/en/latest/guides/performance.html
210
+ graphdef, state = nnx.split(jit_model)
211
+
212
+ @functools.partial(
213
+ jax.jit,
214
+ out_shardings=(
215
+ kv_cache_sharding,
216
+ hidden_states_sharding,
217
+ hidden_states_sharding, # aux hidden states
218
+ ),
219
+ donate_argnums=2, # 0 is graphdef, 1 is state, 2 is kv_cache
220
+ static_argnums=6, #6 is layer_name_to_kvcache_index
221
+ )
222
+ def run_model(graphdef, state, *args):
223
+ model = nnx.merge(graphdef, state)
224
+ return model(*args)
225
+
226
+ logits_sharding = NamedSharding(mesh, PartitionSpec(None, "model"))
227
+
228
+ @functools.partial(
229
+ jax.jit,
230
+ out_shardings=(logits_sharding),
231
+ )
232
+ def run_compute_logits(graphdef, state, *args):
233
+ model = nnx.merge(graphdef, state)
234
+ hidden_state, *_ = args
235
+ return model.compute_logits(hidden_state)
236
+
237
+ # Multi-modal support only
238
+ # This function calculates the image token's embeddings by VIT
239
+ def run_get_multimodal_embeddings(graphdef, state, image_grid_thw,
240
+ **kwargs):
241
+ model = nnx.merge(graphdef, state)
242
+ return model.get_multimodal_embeddings(image_grid_thw, **kwargs)
243
+
244
+ # This function will calculates the embeddings of input texts and then merge with the image embeddings
245
+ @functools.partial(
246
+ jax.jit,
247
+ out_shardings=(logits_sharding),
248
+ )
249
+ def run_get_input_embeddings(graphdef, state, *args, **kwargs):
250
+ model = nnx.merge(graphdef, state)
251
+ return model.get_input_embeddings(*args, **kwargs)
252
+
253
+ # For models that want to work with EAGLE-3 speculative decoding
254
+ @functools.partial(
255
+ jax.jit,
256
+ out_shardings=(logits_sharding),
257
+ )
258
+ def combine_hidden_states(graphdef, state, hidden_states):
259
+ model = nnx.merge(graphdef, state)
260
+ return model.combine_hidden_states(hidden_states)
261
+
262
+ model_fn = functools.partial(run_model, graphdef)
263
+ compute_logits_fn = functools.partial(run_compute_logits, graphdef)
264
+ get_multimodal_embeddings_fn = functools.partial(
265
+ run_get_multimodal_embeddings, graphdef)
266
+ get_input_embeddings_fn = functools.partial(run_get_input_embeddings,
267
+ graphdef)
268
+ lora_manager, model = None, None
269
+ combine_hidden_states_fn = functools.partial(combine_hidden_states,
270
+ graphdef)
271
+
272
+ get_mrope_input_positions_fn = None if not hasattr(
273
+ model_class,
274
+ "get_mrope_input_positions") else model_class.get_mrope_input_positions
275
+
276
+ return model_fn, compute_logits_fn, combine_hidden_states_fn, get_multimodal_embeddings_fn, get_input_embeddings_fn, get_mrope_input_positions_fn, state, lora_manager, model
277
+
278
+
279
+ def get_vllm_model(
280
+ vllm_config: VllmConfig,
281
+ rng: jax.Array,
282
+ mesh: Mesh,
283
+ ):
284
+ from tpu_inference.models.vllm.vllm_model_wrapper import VllmModelWrapper
285
+
286
+ model = VllmModelWrapper(
287
+ vllm_config=vllm_config,
288
+ rng=rng,
289
+ mesh=mesh,
290
+ )
291
+ params, lora_manager = model.load_weights()
292
+
293
+ jit_model = model.jit_step_func()
294
+ compute_logits_fn = model.jit_compute_logits_func()
295
+ # the model needs to be returned because lora weights are neither torch.nn.parameter nor torch.nn.buffer. After we load the lora weights and set it to the torch.nn.Module, we can shard it and move it to TPU.
296
+ combine_hidden_states_fn = None
297
+ return jit_model, compute_logits_fn, combine_hidden_states_fn, None, None, None, params, lora_manager, model
298
+
299
+
300
+ def get_model(
301
+ vllm_config: VllmConfig,
302
+ rng: jax.Array,
303
+ mesh: Mesh,
304
+ is_draft_model: bool = False,
305
+ ) -> Any:
306
+ impl = os.getenv("MODEL_IMPL_TYPE", "flax_nnx").lower()
307
+ logger.info(f"Loading model with MODEL_IMPL_TYPE={impl}")
308
+
309
+ if impl == "flax_nnx":
310
+ try:
311
+ # Try to load the flax model first
312
+ return get_flax_model(vllm_config, rng, mesh, is_draft_model)
313
+ except UnsupportedArchitectureError as e:
314
+ # Convert the error message to a string to check its contents
315
+ error_msg = str(e)
316
+
317
+ logger.warning(f"Flax model failed with: '{error_msg}'. "
318
+ "Falling back to vLLM implementation.")
319
+ # Fall back to the vLLM model and updating the dtype accordingly
320
+ vllm_config.model_config.dtype = j2t_dtype(
321
+ vllm_config.model_config.dtype.dtype)
322
+ return get_vllm_model(vllm_config, rng, mesh)
323
+ elif impl == "vllm":
324
+ return get_vllm_model(vllm_config, rng, mesh)
325
+ else:
326
+ raise NotImplementedError("Unsupported MODEL_IMPL_TYPE")
327
+
328
+
329
+ def _validate_model_interface(model: Any) -> None:
330
+ """Validates that the model class has the required methods and signatures.
331
+
332
+ A valid model must have:
333
+ - An __init__ method that accepts a 'vllm_config' keyword argument.
334
+ - A __call__ method that accepts 'kv_caches', 'input_ids', and
335
+ 'attention_metadata' keyword arguments.
336
+
337
+ Args:
338
+ model: The model class to validate.
339
+
340
+ Raises:
341
+ TypeError: If the model does not meet the interface requirements.
342
+ """
343
+ # Check for __init__ with vllm_config
344
+ model_init = getattr(model, "__init__", None)
345
+ if not callable(model_init):
346
+ raise TypeError(
347
+ f"Model {model.__name__} must have an __init__ method.")
348
+
349
+ if not supports_kw(model_init, "vllm_config"):
350
+ raise TypeError(
351
+ f"Model {model.__name__} __init__ method must accept a "
352
+ "'vllm_config' keyword argument.")
353
+
354
+ # Check for __call__ with required arguments
355
+ model_call = getattr(model, "__call__", None)
356
+ # A class object is always callable (it produces an instance).
357
+ # We need to check if the class _explicitly_ defines a __call__ method for its
358
+ # instance, which is different from `type.__call__`.
359
+ has_defined_call = False
360
+ if isinstance(model, type):
361
+ if any("__call__" in C.__dict__ for C in model.__mro__):
362
+ has_defined_call = True
363
+ elif callable(model_call):
364
+ # For an instance, a simple callable check is sufficient.
365
+ has_defined_call = True
366
+
367
+ if not has_defined_call:
368
+ raise TypeError(f"Model {model.__name__} must have a __call__ method.")
369
+
370
+ required_call_args = ("kv_caches", "input_ids", "attention_metadata")
371
+ missing_args = tuple(arg for arg in required_call_args
372
+ if not supports_kw(model_call, arg))
373
+
374
+ if missing_args:
375
+ raise TypeError(
376
+ f"Model {model.__name__} __call__ method is missing required "
377
+ f"keyword arguments: {missing_args}")
378
+
379
+
380
+ def register_model(arch: str, model: Any) -> None:
381
+ """
382
+ Registers a model class for a given architecture name.
383
+
384
+ This function registers the model with both the tpu_inference registry
385
+ and the vLLM registry. For vLLM, it creates a compatible wrapper
386
+ around the JAX model.
387
+
388
+ Args:
389
+ arch: The name of the architecture (e.g., "LlamaForCausalLM").
390
+ model: The JAX model class to register (e.g., a flax.nnx.Module).
391
+ """
392
+ _validate_model_interface(model)
393
+
394
+ # Register with tpu_inference registry for the JAX backend
395
+ _MODEL_REGISTRY[arch] = model
396
+
397
+ # Create a vLLM-compatible wrapper for the JAX model class.
398
+ # This wrapper inherits from the JAX model and torch.nn.Module
399
+ # to pass vLLM's type checks. It is not meant to be instantiated
400
+ # or executed by vLLM's PyTorch backend.
401
+ def unimplemented_forward(
402
+ self,
403
+ input_ids: "torch.Tensor",
404
+ positions: "torch.Tensor",
405
+ intermediate_tensors: Optional[Any] = None,
406
+ inputs_embeds: Optional["torch.Tensor"] = None,
407
+ ) -> None:
408
+ raise NotImplementedError(
409
+ "This is a JAX model and does not implement the PyTorch forward method."
410
+ )
411
+
412
+ # We need a custom __init__ that only calls torch.nn.Module's init,
413
+ # to avoid triggering JAX logic when vLLM inspects the class.
414
+ def wrapper_init(self, *args, **kwargs):
415
+ torch.nn.Module.__init__(self)
416
+
417
+ # Dynamically create the wrapper class that is a subclass of both the
418
+ # JAX model and torch.nn.Module.
419
+ VllmCompatibleModel = type(
420
+ f"VllmCompatible{model.__name__}",
421
+ (model, torch.nn.Module),
422
+ {
423
+ "__init__": wrapper_init,
424
+ "forward": unimplemented_forward,
425
+ # Prevent vLLM from trying to load weights into this dummy class.
426
+ "load_weights": lambda self, *args, **kwargs: None,
427
+ })
428
+
429
+ # Register the wrapped model with vLLM's registry.
430
+ from vllm.model_executor.models.registry import ModelRegistry
431
+ ModelRegistry.register_model(arch, VllmCompatibleModel)
432
+ logger.info(
433
+ f"Registered JAX model {arch} with tpu_inference and vLLM registries.")
File without changes