torchrl 0.11.0__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cp314t-win_amd64.pyd +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/LICENSE +21 -0
- torchrl-0.11.0.dist-info/METADATA +1307 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,227 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
"""Discrete (DQN) CQL Example.
|
|
6
|
+
|
|
7
|
+
This is a simple self-contained example of a discrete CQL training script.
|
|
8
|
+
|
|
9
|
+
It supports state environments like gym and gymnasium.
|
|
10
|
+
|
|
11
|
+
The helper functions are coded in the utils.py associated with this script.
|
|
12
|
+
"""
|
|
13
|
+
from __future__ import annotations
|
|
14
|
+
|
|
15
|
+
import warnings
|
|
16
|
+
|
|
17
|
+
import hydra
|
|
18
|
+
import numpy as np
|
|
19
|
+
import torch
|
|
20
|
+
import torch.cuda
|
|
21
|
+
import tqdm
|
|
22
|
+
from tensordict.nn import CudaGraphModule
|
|
23
|
+
from torchrl._utils import get_available_device, timeit
|
|
24
|
+
from torchrl.envs.utils import ExplorationType, set_exploration_type
|
|
25
|
+
from torchrl.record.loggers import generate_exp_name, get_logger
|
|
26
|
+
from utils import (
|
|
27
|
+
log_metrics,
|
|
28
|
+
make_collector,
|
|
29
|
+
make_discrete_cql_optimizer,
|
|
30
|
+
make_discrete_loss,
|
|
31
|
+
make_discretecql_model,
|
|
32
|
+
make_environment,
|
|
33
|
+
make_replay_buffer,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
torch.set_float32_matmul_precision("high")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@hydra.main(version_base="1.1", config_path="", config_name="discrete_online_config")
|
|
40
|
+
def main(cfg: DictConfig): # noqa: F821
|
|
41
|
+
device = (
|
|
42
|
+
torch.device(cfg.optim.device) if cfg.optim.device else get_available_device()
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
# Create logger
|
|
46
|
+
exp_name = generate_exp_name("DiscreteCQL", cfg.logger.exp_name)
|
|
47
|
+
logger = None
|
|
48
|
+
if cfg.logger.backend:
|
|
49
|
+
logger = get_logger(
|
|
50
|
+
logger_type=cfg.logger.backend,
|
|
51
|
+
logger_name="discretecql_logging",
|
|
52
|
+
experiment_name=exp_name,
|
|
53
|
+
wandb_kwargs={
|
|
54
|
+
"mode": cfg.logger.mode,
|
|
55
|
+
"config": dict(cfg),
|
|
56
|
+
"project": cfg.logger.project_name,
|
|
57
|
+
},
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
# Set seeds
|
|
61
|
+
torch.manual_seed(cfg.env.seed)
|
|
62
|
+
np.random.seed(cfg.env.seed)
|
|
63
|
+
|
|
64
|
+
# Create environments
|
|
65
|
+
train_env, eval_env = make_environment(cfg)
|
|
66
|
+
|
|
67
|
+
# Create agent
|
|
68
|
+
model, explore_policy = make_discretecql_model(cfg, train_env, eval_env, device)
|
|
69
|
+
|
|
70
|
+
# Create loss
|
|
71
|
+
loss_module, target_net_updater = make_discrete_loss(cfg.loss, model, device=device)
|
|
72
|
+
|
|
73
|
+
compile_mode = None
|
|
74
|
+
if cfg.compile.compile:
|
|
75
|
+
if cfg.compile.compile_mode not in (None, ""):
|
|
76
|
+
compile_mode = cfg.compile.compile_mode
|
|
77
|
+
elif cfg.compile.cudagraphs:
|
|
78
|
+
compile_mode = "default"
|
|
79
|
+
else:
|
|
80
|
+
compile_mode = "reduce-overhead"
|
|
81
|
+
|
|
82
|
+
# Create off-policy collector
|
|
83
|
+
collector = make_collector(
|
|
84
|
+
cfg,
|
|
85
|
+
train_env,
|
|
86
|
+
explore_policy,
|
|
87
|
+
compile=cfg.compile.compile,
|
|
88
|
+
compile_mode=compile_mode,
|
|
89
|
+
cudagraph=cfg.compile.cudagraphs,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# Create replay buffer
|
|
93
|
+
replay_buffer = make_replay_buffer(
|
|
94
|
+
batch_size=cfg.optim.batch_size,
|
|
95
|
+
prb=cfg.replay_buffer.prb,
|
|
96
|
+
buffer_size=cfg.replay_buffer.size,
|
|
97
|
+
scratch_dir=cfg.replay_buffer.scratch_dir,
|
|
98
|
+
device="cpu",
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Create optimizers
|
|
102
|
+
optimizer = make_discrete_cql_optimizer(cfg, loss_module)
|
|
103
|
+
|
|
104
|
+
def update(sampled_tensordict):
|
|
105
|
+
# Compute loss
|
|
106
|
+
optimizer.zero_grad(set_to_none=True)
|
|
107
|
+
loss_dict = loss_module(sampled_tensordict)
|
|
108
|
+
|
|
109
|
+
q_loss = loss_dict["loss_qvalue"]
|
|
110
|
+
cql_loss = loss_dict["loss_cql"]
|
|
111
|
+
loss = q_loss + cql_loss
|
|
112
|
+
|
|
113
|
+
# Update model
|
|
114
|
+
loss.backward()
|
|
115
|
+
optimizer.step()
|
|
116
|
+
|
|
117
|
+
# Update target params
|
|
118
|
+
target_net_updater.step()
|
|
119
|
+
return loss_dict.detach()
|
|
120
|
+
|
|
121
|
+
if compile_mode:
|
|
122
|
+
update = torch.compile(update, mode=compile_mode)
|
|
123
|
+
if cfg.compile.cudagraphs:
|
|
124
|
+
warnings.warn(
|
|
125
|
+
"CudaGraphModule is experimental and may lead to silently wrong results. Use with caution.",
|
|
126
|
+
category=UserWarning,
|
|
127
|
+
)
|
|
128
|
+
update = CudaGraphModule(update, warmup=50)
|
|
129
|
+
|
|
130
|
+
# Main loop
|
|
131
|
+
collected_frames = 0
|
|
132
|
+
pbar = tqdm.tqdm(total=cfg.collector.total_frames)
|
|
133
|
+
|
|
134
|
+
init_random_frames = cfg.collector.init_random_frames
|
|
135
|
+
num_updates = int(cfg.collector.frames_per_batch * cfg.optim.utd_ratio)
|
|
136
|
+
prb = cfg.replay_buffer.prb
|
|
137
|
+
eval_rollout_steps = cfg.env.max_episode_steps
|
|
138
|
+
eval_iter = cfg.logger.eval_iter
|
|
139
|
+
frames_per_batch = cfg.collector.frames_per_batch
|
|
140
|
+
|
|
141
|
+
c_iter = iter(collector)
|
|
142
|
+
total_iter = len(collector)
|
|
143
|
+
for _ in range(total_iter):
|
|
144
|
+
timeit.printevery(1000, total_iter, erase=True)
|
|
145
|
+
with timeit("collecting"):
|
|
146
|
+
torch.compiler.cudagraph_mark_step_begin()
|
|
147
|
+
tensordict = next(c_iter)
|
|
148
|
+
|
|
149
|
+
# Update exploration policy
|
|
150
|
+
explore_policy[1].step(tensordict.numel())
|
|
151
|
+
|
|
152
|
+
# Update weights of the inference policy
|
|
153
|
+
collector.update_policy_weights_()
|
|
154
|
+
|
|
155
|
+
current_frames = tensordict.numel()
|
|
156
|
+
pbar.update(current_frames)
|
|
157
|
+
|
|
158
|
+
tensordict = tensordict.reshape(-1)
|
|
159
|
+
with timeit("rb - extend"):
|
|
160
|
+
# Add to replay buffer
|
|
161
|
+
replay_buffer.extend(tensordict)
|
|
162
|
+
collected_frames += current_frames
|
|
163
|
+
|
|
164
|
+
# Optimization steps
|
|
165
|
+
if collected_frames >= init_random_frames:
|
|
166
|
+
tds = []
|
|
167
|
+
for _ in range(num_updates):
|
|
168
|
+
# Sample from replay buffer
|
|
169
|
+
with timeit("rb - sample"):
|
|
170
|
+
sampled_tensordict = replay_buffer.sample()
|
|
171
|
+
sampled_tensordict = sampled_tensordict.to(device)
|
|
172
|
+
with timeit("update"):
|
|
173
|
+
torch.compiler.cudagraph_mark_step_begin()
|
|
174
|
+
loss_dict = update(sampled_tensordict).clone()
|
|
175
|
+
tds.append(loss_dict)
|
|
176
|
+
|
|
177
|
+
# Update priority
|
|
178
|
+
if prb:
|
|
179
|
+
replay_buffer.update_priority(sampled_tensordict)
|
|
180
|
+
|
|
181
|
+
episode_end = (
|
|
182
|
+
tensordict["next", "done"]
|
|
183
|
+
if tensordict["next", "done"].any()
|
|
184
|
+
else tensordict["next", "truncated"]
|
|
185
|
+
)
|
|
186
|
+
episode_rewards = tensordict["next", "episode_reward"][episode_end]
|
|
187
|
+
|
|
188
|
+
metrics_to_log = {}
|
|
189
|
+
# Evaluation
|
|
190
|
+
with timeit("eval"):
|
|
191
|
+
if collected_frames % eval_iter < frames_per_batch:
|
|
192
|
+
with set_exploration_type(
|
|
193
|
+
ExplorationType.DETERMINISTIC
|
|
194
|
+
), torch.no_grad():
|
|
195
|
+
eval_rollout = eval_env.rollout(
|
|
196
|
+
eval_rollout_steps,
|
|
197
|
+
model,
|
|
198
|
+
auto_cast_to_device=True,
|
|
199
|
+
break_when_any_done=True,
|
|
200
|
+
)
|
|
201
|
+
eval_reward = eval_rollout["next", "reward"].sum(-2).mean().item()
|
|
202
|
+
metrics_to_log["eval/reward"] = eval_reward
|
|
203
|
+
|
|
204
|
+
# Logging
|
|
205
|
+
if len(episode_rewards) > 0:
|
|
206
|
+
episode_length = tensordict["next", "step_count"][episode_end]
|
|
207
|
+
metrics_to_log["train/reward"] = episode_rewards.mean().item()
|
|
208
|
+
metrics_to_log["train/episode_length"] = episode_length.sum().item() / len(
|
|
209
|
+
episode_length
|
|
210
|
+
)
|
|
211
|
+
metrics_to_log["train/epsilon"] = explore_policy[1].eps
|
|
212
|
+
|
|
213
|
+
if collected_frames >= init_random_frames:
|
|
214
|
+
tds = torch.stack(tds, dim=0).mean()
|
|
215
|
+
metrics_to_log["train/q_loss"] = tds["loss_qvalue"]
|
|
216
|
+
metrics_to_log["train/cql_loss"] = tds["loss_cql"]
|
|
217
|
+
|
|
218
|
+
if logger is not None:
|
|
219
|
+
metrics_to_log.update(timeit.todict(prefix="time"))
|
|
220
|
+
metrics_to_log["time/speed"] = pbar.format_dict["rate"]
|
|
221
|
+
log_metrics(logger, metrics_to_log, collected_frames)
|
|
222
|
+
|
|
223
|
+
collector.shutdown()
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
if __name__ == "__main__":
|
|
227
|
+
main()
|
|
@@ -0,0 +1,471 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import functools
|
|
8
|
+
|
|
9
|
+
import torch.nn
|
|
10
|
+
import torch.optim
|
|
11
|
+
from tensordict.nn import TensorDictModule, TensorDictSequential
|
|
12
|
+
from tensordict.nn.distributions import NormalParamExtractor
|
|
13
|
+
|
|
14
|
+
from torchrl.collectors import SyncDataCollector
|
|
15
|
+
from torchrl.data import (
|
|
16
|
+
Composite,
|
|
17
|
+
LazyMemmapStorage,
|
|
18
|
+
TensorDictPrioritizedReplayBuffer,
|
|
19
|
+
TensorDictReplayBuffer,
|
|
20
|
+
)
|
|
21
|
+
from torchrl.data.datasets.minari_data import MinariExperienceReplay
|
|
22
|
+
from torchrl.data.replay_buffers import SamplerWithoutReplacement
|
|
23
|
+
from torchrl.envs import (
|
|
24
|
+
CatTensors,
|
|
25
|
+
Compose,
|
|
26
|
+
DMControlEnv,
|
|
27
|
+
DoubleToFloat,
|
|
28
|
+
EnvCreator,
|
|
29
|
+
ParallelEnv,
|
|
30
|
+
RewardSum,
|
|
31
|
+
TransformedEnv,
|
|
32
|
+
)
|
|
33
|
+
from torchrl.envs.libs.gym import GymEnv, set_gym_backend
|
|
34
|
+
from torchrl.envs.utils import ExplorationType, set_exploration_type
|
|
35
|
+
from torchrl.modules import (
|
|
36
|
+
EGreedyModule,
|
|
37
|
+
MLP,
|
|
38
|
+
ProbabilisticActor,
|
|
39
|
+
QValueActor,
|
|
40
|
+
TanhNormal,
|
|
41
|
+
ValueOperator,
|
|
42
|
+
)
|
|
43
|
+
from torchrl.objectives import CQLLoss, DiscreteCQLLoss, SoftUpdate
|
|
44
|
+
from torchrl.record import VideoRecorder
|
|
45
|
+
|
|
46
|
+
from torchrl.trainers.helpers.models import ACTIVATIONS
|
|
47
|
+
|
|
48
|
+
# ====================================================================
|
|
49
|
+
# Environment utils
|
|
50
|
+
# -----------------
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def env_maker(cfg, device="cpu", from_pixels=False):
|
|
54
|
+
lib = cfg.env.backend
|
|
55
|
+
if lib in ("gym", "gymnasium"):
|
|
56
|
+
with set_gym_backend(lib):
|
|
57
|
+
return GymEnv(
|
|
58
|
+
cfg.env.name, device=device, from_pixels=from_pixels, pixels_only=False
|
|
59
|
+
)
|
|
60
|
+
elif lib == "dm_control":
|
|
61
|
+
env = DMControlEnv(
|
|
62
|
+
cfg.env.name, cfg.env.task, from_pixels=from_pixels, pixels_only=False
|
|
63
|
+
)
|
|
64
|
+
return TransformedEnv(
|
|
65
|
+
env, CatTensors(in_keys=env.observation_spec.keys(), out_key="observation")
|
|
66
|
+
)
|
|
67
|
+
else:
|
|
68
|
+
raise NotImplementedError(f"Unknown lib {lib}.")
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def apply_env_transforms(
|
|
72
|
+
env,
|
|
73
|
+
):
|
|
74
|
+
transformed_env = TransformedEnv(
|
|
75
|
+
env,
|
|
76
|
+
Compose(
|
|
77
|
+
DoubleToFloat(),
|
|
78
|
+
RewardSum(),
|
|
79
|
+
),
|
|
80
|
+
)
|
|
81
|
+
return transformed_env
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def make_environment(cfg, train_num_envs=1, eval_num_envs=1, logger=None):
|
|
85
|
+
"""Make environments for training and evaluation."""
|
|
86
|
+
maker = functools.partial(env_maker, cfg)
|
|
87
|
+
parallel_env = ParallelEnv(
|
|
88
|
+
train_num_envs,
|
|
89
|
+
EnvCreator(maker),
|
|
90
|
+
serial_for_single=True,
|
|
91
|
+
)
|
|
92
|
+
parallel_env.set_seed(cfg.env.seed)
|
|
93
|
+
|
|
94
|
+
train_env = apply_env_transforms(parallel_env)
|
|
95
|
+
|
|
96
|
+
maker = functools.partial(env_maker, cfg, from_pixels=cfg.logger.video)
|
|
97
|
+
eval_env = TransformedEnv(
|
|
98
|
+
ParallelEnv(
|
|
99
|
+
eval_num_envs,
|
|
100
|
+
EnvCreator(maker),
|
|
101
|
+
serial_for_single=True,
|
|
102
|
+
),
|
|
103
|
+
train_env.transform.clone(),
|
|
104
|
+
)
|
|
105
|
+
eval_env.set_seed(0)
|
|
106
|
+
if cfg.logger.video:
|
|
107
|
+
eval_env = eval_env.insert_transform(
|
|
108
|
+
0, VideoRecorder(logger=logger, tag="rendered", in_keys=["pixels"])
|
|
109
|
+
)
|
|
110
|
+
return train_env, eval_env
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
# ====================================================================
|
|
114
|
+
# Collector and replay buffer
|
|
115
|
+
# ---------------------------
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def make_collector(
|
|
119
|
+
cfg,
|
|
120
|
+
train_env,
|
|
121
|
+
actor_model_explore,
|
|
122
|
+
compile=False,
|
|
123
|
+
compile_mode=None,
|
|
124
|
+
cudagraph=False,
|
|
125
|
+
):
|
|
126
|
+
"""Make collector."""
|
|
127
|
+
device = cfg.collector.device
|
|
128
|
+
if device in ("", None):
|
|
129
|
+
if torch.cuda.is_available():
|
|
130
|
+
device = torch.device("cuda:0")
|
|
131
|
+
else:
|
|
132
|
+
device = torch.device("cpu")
|
|
133
|
+
collector = SyncDataCollector(
|
|
134
|
+
train_env,
|
|
135
|
+
actor_model_explore,
|
|
136
|
+
init_random_frames=cfg.collector.init_random_frames,
|
|
137
|
+
frames_per_batch=cfg.collector.frames_per_batch,
|
|
138
|
+
max_frames_per_traj=cfg.collector.max_frames_per_traj,
|
|
139
|
+
total_frames=cfg.collector.total_frames,
|
|
140
|
+
device=device,
|
|
141
|
+
compile_policy={"mode": compile_mode} if compile else False,
|
|
142
|
+
cudagraph_policy=cudagraph,
|
|
143
|
+
)
|
|
144
|
+
collector.set_seed(cfg.env.seed)
|
|
145
|
+
return collector
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def make_replay_buffer(
|
|
149
|
+
batch_size,
|
|
150
|
+
prb=False,
|
|
151
|
+
buffer_size=1000000,
|
|
152
|
+
scratch_dir=None,
|
|
153
|
+
device="cpu",
|
|
154
|
+
prefetch=3,
|
|
155
|
+
):
|
|
156
|
+
if prb:
|
|
157
|
+
replay_buffer = TensorDictPrioritizedReplayBuffer(
|
|
158
|
+
alpha=0.7,
|
|
159
|
+
beta=0.5,
|
|
160
|
+
pin_memory=False,
|
|
161
|
+
prefetch=prefetch,
|
|
162
|
+
storage=LazyMemmapStorage(
|
|
163
|
+
buffer_size,
|
|
164
|
+
scratch_dir=scratch_dir,
|
|
165
|
+
device=device,
|
|
166
|
+
),
|
|
167
|
+
batch_size=batch_size,
|
|
168
|
+
)
|
|
169
|
+
else:
|
|
170
|
+
replay_buffer = TensorDictReplayBuffer(
|
|
171
|
+
pin_memory=False,
|
|
172
|
+
prefetch=prefetch,
|
|
173
|
+
storage=LazyMemmapStorage(
|
|
174
|
+
buffer_size,
|
|
175
|
+
scratch_dir=scratch_dir,
|
|
176
|
+
device=device,
|
|
177
|
+
),
|
|
178
|
+
batch_size=batch_size,
|
|
179
|
+
)
|
|
180
|
+
return replay_buffer
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def make_offline_replay_buffer(rb_cfg):
|
|
184
|
+
data = MinariExperienceReplay(
|
|
185
|
+
dataset_id=rb_cfg.dataset,
|
|
186
|
+
split_trajs=False,
|
|
187
|
+
batch_size=rb_cfg.batch_size,
|
|
188
|
+
sampler=SamplerWithoutReplacement(drop_last=True),
|
|
189
|
+
prefetch=4,
|
|
190
|
+
download=True,
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
data.append_transform(DoubleToFloat())
|
|
194
|
+
|
|
195
|
+
return data
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def make_offline_discrete_replay_buffer(rb_cfg):
|
|
199
|
+
import gymnasium as gym
|
|
200
|
+
import minari
|
|
201
|
+
from minari import DataCollector
|
|
202
|
+
|
|
203
|
+
# Create custom minari dataset from environment
|
|
204
|
+
|
|
205
|
+
env = gym.make(rb_cfg.env)
|
|
206
|
+
env = DataCollector(env)
|
|
207
|
+
|
|
208
|
+
for _ in range(rb_cfg.episodes):
|
|
209
|
+
env.reset(seed=123)
|
|
210
|
+
while True:
|
|
211
|
+
action = env.action_space.sample()
|
|
212
|
+
obs, rew, terminated, truncated, info = env.step(action)
|
|
213
|
+
if terminated or truncated:
|
|
214
|
+
break
|
|
215
|
+
|
|
216
|
+
env.create_dataset(
|
|
217
|
+
dataset_id=rb_cfg.dataset,
|
|
218
|
+
algorithm_name="Random-Policy",
|
|
219
|
+
code_permalink="https://github.com/Farama-Foundation/Minari",
|
|
220
|
+
author="Farama",
|
|
221
|
+
author_email="contact@farama.org",
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
data = MinariExperienceReplay(
|
|
225
|
+
dataset_id=rb_cfg.dataset,
|
|
226
|
+
split_trajs=False,
|
|
227
|
+
batch_size=rb_cfg.batch_size,
|
|
228
|
+
load_from_local_minari=True,
|
|
229
|
+
sampler=SamplerWithoutReplacement(drop_last=True),
|
|
230
|
+
prefetch=4,
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
data.append_transform(DoubleToFloat())
|
|
234
|
+
|
|
235
|
+
# Clean up
|
|
236
|
+
minari.delete_dataset(rb_cfg.dataset)
|
|
237
|
+
|
|
238
|
+
return data
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
# ====================================================================
|
|
242
|
+
# Model
|
|
243
|
+
# -----
|
|
244
|
+
#
|
|
245
|
+
# We give one version of the model for learning from pixels, and one for state.
|
|
246
|
+
# TorchRL comes in handy at this point, as the high-level interactions with
|
|
247
|
+
# these models is unchanged, regardless of the modality.
|
|
248
|
+
#
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def make_cql_model(cfg, train_env, eval_env, device="cpu"):
|
|
252
|
+
model_cfg = cfg.model
|
|
253
|
+
|
|
254
|
+
action_spec = train_env.action_spec_unbatched
|
|
255
|
+
|
|
256
|
+
actor_net, q_net = make_cql_modules_state(model_cfg, eval_env)
|
|
257
|
+
in_keys = ["observation"]
|
|
258
|
+
out_keys = ["loc", "scale"]
|
|
259
|
+
|
|
260
|
+
actor_module = TensorDictModule(actor_net, in_keys=in_keys, out_keys=out_keys)
|
|
261
|
+
|
|
262
|
+
# We use a ProbabilisticActor to make sure that we map the
|
|
263
|
+
# network output to the right space using a TanhDelta
|
|
264
|
+
# distribution.
|
|
265
|
+
actor = ProbabilisticActor(
|
|
266
|
+
module=actor_module,
|
|
267
|
+
in_keys=["loc", "scale"],
|
|
268
|
+
spec=action_spec,
|
|
269
|
+
distribution_class=TanhNormal,
|
|
270
|
+
# Wrapping the kwargs in a TensorDictParams such that these items are
|
|
271
|
+
# send to device when necessary - not compatible with compile yet
|
|
272
|
+
# distribution_kwargs=TensorDictParams(
|
|
273
|
+
# TensorDict(
|
|
274
|
+
# {
|
|
275
|
+
# "low": torch.as_tensor(action_spec.space.low, device=device),
|
|
276
|
+
# "high": torch.as_tensor(action_spec.space.high, device=device),
|
|
277
|
+
# "tanh_loc": NonTensorData(False),
|
|
278
|
+
# }
|
|
279
|
+
# ),
|
|
280
|
+
# no_convert=True,
|
|
281
|
+
# ),
|
|
282
|
+
distribution_kwargs={
|
|
283
|
+
"low": action_spec.space.low.to(device),
|
|
284
|
+
"high": action_spec.space.high.to(device),
|
|
285
|
+
"tanh_loc": False,
|
|
286
|
+
},
|
|
287
|
+
default_interaction_type=ExplorationType.RANDOM,
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
in_keys = ["observation", "action"]
|
|
291
|
+
|
|
292
|
+
out_keys = ["state_action_value"]
|
|
293
|
+
qvalue = ValueOperator(
|
|
294
|
+
in_keys=in_keys,
|
|
295
|
+
out_keys=out_keys,
|
|
296
|
+
module=q_net,
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
model = torch.nn.ModuleList([actor, qvalue]).to(device)
|
|
300
|
+
# init nets
|
|
301
|
+
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
|
|
302
|
+
td = eval_env.reset()
|
|
303
|
+
td = td.to(device)
|
|
304
|
+
for net in model:
|
|
305
|
+
net(td)
|
|
306
|
+
del td
|
|
307
|
+
eval_env.close()
|
|
308
|
+
|
|
309
|
+
return model
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def make_discretecql_model(cfg, train_env, eval_env, device="cpu"):
|
|
313
|
+
model_cfg = cfg.model
|
|
314
|
+
|
|
315
|
+
action_spec = train_env.action_spec
|
|
316
|
+
|
|
317
|
+
actor_net_kwargs = {
|
|
318
|
+
"num_cells": model_cfg.hidden_sizes,
|
|
319
|
+
"out_features": action_spec.shape[-1],
|
|
320
|
+
"activation_class": ACTIVATIONS[model_cfg.activation],
|
|
321
|
+
}
|
|
322
|
+
actor_net = MLP(**actor_net_kwargs)
|
|
323
|
+
qvalue_module = QValueActor(
|
|
324
|
+
module=actor_net,
|
|
325
|
+
spec=Composite(action=action_spec),
|
|
326
|
+
in_keys=["observation"],
|
|
327
|
+
)
|
|
328
|
+
qvalue_module = qvalue_module.to(device)
|
|
329
|
+
# init nets
|
|
330
|
+
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
|
|
331
|
+
td = eval_env.reset()
|
|
332
|
+
td = td.to(device)
|
|
333
|
+
qvalue_module(td)
|
|
334
|
+
|
|
335
|
+
del td
|
|
336
|
+
greedy_module = EGreedyModule(
|
|
337
|
+
annealing_num_steps=cfg.collector.annealing_frames,
|
|
338
|
+
eps_init=cfg.collector.eps_start,
|
|
339
|
+
eps_end=cfg.collector.eps_end,
|
|
340
|
+
spec=action_spec,
|
|
341
|
+
)
|
|
342
|
+
model_explore = TensorDictSequential(
|
|
343
|
+
qvalue_module,
|
|
344
|
+
greedy_module,
|
|
345
|
+
).to(device)
|
|
346
|
+
return qvalue_module, model_explore
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
def make_cql_modules_state(model_cfg, proof_environment):
|
|
350
|
+
action_spec = proof_environment.action_spec_unbatched
|
|
351
|
+
|
|
352
|
+
actor_net_kwargs = {
|
|
353
|
+
"num_cells": model_cfg.hidden_sizes,
|
|
354
|
+
"out_features": 2 * action_spec.shape[-1],
|
|
355
|
+
"activation_class": ACTIVATIONS[model_cfg.activation],
|
|
356
|
+
}
|
|
357
|
+
actor_net = MLP(**actor_net_kwargs)
|
|
358
|
+
actor_extractor = NormalParamExtractor(
|
|
359
|
+
scale_mapping=f"biased_softplus_{model_cfg.default_policy_scale}",
|
|
360
|
+
scale_lb=model_cfg.scale_lb,
|
|
361
|
+
)
|
|
362
|
+
actor_net = torch.nn.Sequential(actor_net, actor_extractor)
|
|
363
|
+
|
|
364
|
+
qvalue_net_kwargs = {
|
|
365
|
+
"num_cells": model_cfg.hidden_sizes,
|
|
366
|
+
"out_features": 1,
|
|
367
|
+
"activation_class": ACTIVATIONS[model_cfg.activation],
|
|
368
|
+
}
|
|
369
|
+
|
|
370
|
+
q_net = MLP(**qvalue_net_kwargs)
|
|
371
|
+
|
|
372
|
+
return actor_net, q_net
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
# ====================================================================
|
|
376
|
+
# CQL Loss
|
|
377
|
+
# ---------
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
def make_continuous_loss(loss_cfg, model, device: torch.device | None = None):
|
|
381
|
+
loss_module = CQLLoss(
|
|
382
|
+
model[0],
|
|
383
|
+
model[1],
|
|
384
|
+
loss_function=loss_cfg.loss_function,
|
|
385
|
+
temperature=loss_cfg.temperature,
|
|
386
|
+
min_q_weight=loss_cfg.min_q_weight,
|
|
387
|
+
max_q_backup=loss_cfg.max_q_backup,
|
|
388
|
+
deterministic_backup=loss_cfg.deterministic_backup,
|
|
389
|
+
num_random=loss_cfg.num_random,
|
|
390
|
+
with_lagrange=loss_cfg.with_lagrange,
|
|
391
|
+
lagrange_thresh=loss_cfg.lagrange_thresh,
|
|
392
|
+
)
|
|
393
|
+
loss_module.make_value_estimator(gamma=loss_cfg.gamma, device=device)
|
|
394
|
+
target_net_updater = SoftUpdate(loss_module, tau=loss_cfg.tau)
|
|
395
|
+
|
|
396
|
+
return loss_module, target_net_updater
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
def make_discrete_loss(loss_cfg, model, device: torch.device | None = None):
|
|
400
|
+
|
|
401
|
+
if "action_space" in loss_cfg: # especify action space
|
|
402
|
+
loss_module = DiscreteCQLLoss(
|
|
403
|
+
model,
|
|
404
|
+
loss_function=loss_cfg.loss_function,
|
|
405
|
+
action_space=loss_cfg.action_space,
|
|
406
|
+
delay_value=True,
|
|
407
|
+
)
|
|
408
|
+
else:
|
|
409
|
+
loss_module = DiscreteCQLLoss(
|
|
410
|
+
model,
|
|
411
|
+
loss_function=loss_cfg.loss_function,
|
|
412
|
+
delay_value=True,
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
loss_module.make_value_estimator(gamma=loss_cfg.gamma, device=device)
|
|
416
|
+
target_net_updater = SoftUpdate(loss_module, tau=loss_cfg.tau)
|
|
417
|
+
|
|
418
|
+
return loss_module, target_net_updater
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
def make_discrete_cql_optimizer(cfg, loss_module):
|
|
422
|
+
optim = torch.optim.Adam(
|
|
423
|
+
loss_module.parameters(),
|
|
424
|
+
lr=cfg.optim.lr,
|
|
425
|
+
weight_decay=cfg.optim.weight_decay,
|
|
426
|
+
)
|
|
427
|
+
return optim
|
|
428
|
+
|
|
429
|
+
|
|
430
|
+
def make_continuous_cql_optimizer(cfg, loss_module):
|
|
431
|
+
critic_params = loss_module.qvalue_network_params.flatten_keys().values()
|
|
432
|
+
actor_params = loss_module.actor_network_params.flatten_keys().values()
|
|
433
|
+
actor_optim = torch.optim.Adam(
|
|
434
|
+
actor_params,
|
|
435
|
+
lr=cfg.optim.actor_lr,
|
|
436
|
+
weight_decay=cfg.optim.weight_decay,
|
|
437
|
+
)
|
|
438
|
+
critic_optim = torch.optim.Adam(
|
|
439
|
+
critic_params,
|
|
440
|
+
lr=cfg.optim.critic_lr,
|
|
441
|
+
weight_decay=cfg.optim.weight_decay,
|
|
442
|
+
)
|
|
443
|
+
alpha_optim = torch.optim.Adam(
|
|
444
|
+
[loss_module.log_alpha],
|
|
445
|
+
lr=cfg.optim.actor_lr,
|
|
446
|
+
weight_decay=cfg.optim.weight_decay,
|
|
447
|
+
)
|
|
448
|
+
if loss_module.with_lagrange:
|
|
449
|
+
alpha_prime_optim = torch.optim.Adam(
|
|
450
|
+
[loss_module.log_alpha_prime],
|
|
451
|
+
lr=cfg.optim.critic_lr,
|
|
452
|
+
)
|
|
453
|
+
else:
|
|
454
|
+
alpha_prime_optim = None
|
|
455
|
+
return actor_optim, critic_optim, alpha_optim, alpha_prime_optim
|
|
456
|
+
|
|
457
|
+
|
|
458
|
+
# ====================================================================
|
|
459
|
+
# General utils
|
|
460
|
+
# ---------
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
def log_metrics(logger, metrics, step):
|
|
464
|
+
if logger is not None:
|
|
465
|
+
for metric_name, metric_value in metrics.items():
|
|
466
|
+
logger.log_scalar(metric_name, metric_value, step)
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+
def dump_video(module):
|
|
470
|
+
if isinstance(module, VideoRecorder):
|
|
471
|
+
module.dump()
|