torchrl 0.11.0__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cp314t-win_amd64.pyd +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/LICENSE +21 -0
- torchrl-0.11.0.dist-info/METADATA +1307 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,1006 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
r"""Generic distributed data-collector using torch.distributed.rpc backend."""
|
|
7
|
+
from __future__ import annotations
|
|
8
|
+
|
|
9
|
+
import collections
|
|
10
|
+
import os
|
|
11
|
+
import socket
|
|
12
|
+
import time
|
|
13
|
+
import warnings
|
|
14
|
+
from collections import OrderedDict
|
|
15
|
+
from collections.abc import Callable, Sequence
|
|
16
|
+
from copy import copy, deepcopy
|
|
17
|
+
from typing import Any
|
|
18
|
+
|
|
19
|
+
import torch.cuda
|
|
20
|
+
|
|
21
|
+
from tensordict import TensorDict, TensorDictBase
|
|
22
|
+
from torch import nn
|
|
23
|
+
|
|
24
|
+
from torch.distributed import rpc
|
|
25
|
+
from torchrl._utils import _ProcessNoWarn, logger as torchrl_logger, VERBOSE
|
|
26
|
+
from torchrl.collectors._base import _LegacyCollectorMeta, BaseCollector
|
|
27
|
+
|
|
28
|
+
from torchrl.collectors._constants import DEFAULT_EXPLORATION_TYPE
|
|
29
|
+
from torchrl.collectors._multi_async import MultiAsyncCollector
|
|
30
|
+
from torchrl.collectors._multi_sync import MultiSyncCollector
|
|
31
|
+
from torchrl.collectors._single import Collector
|
|
32
|
+
from torchrl.collectors.distributed.default_configs import (
|
|
33
|
+
DEFAULT_SLURM_CONF,
|
|
34
|
+
DEFAULT_TENSORPIPE_OPTIONS,
|
|
35
|
+
IDLE_TIMEOUT,
|
|
36
|
+
TCP_PORT,
|
|
37
|
+
)
|
|
38
|
+
from torchrl.collectors.utils import _NON_NN_POLICY_WEIGHTS, split_trajectories
|
|
39
|
+
from torchrl.collectors.weight_update import WeightUpdaterBase
|
|
40
|
+
from torchrl.data.utils import CloudpickleWrapper
|
|
41
|
+
from torchrl.envs.common import EnvBase
|
|
42
|
+
from torchrl.envs.env_creator import EnvCreator
|
|
43
|
+
from torchrl.weight_update.weight_sync_schemes import WeightSyncScheme
|
|
44
|
+
|
|
45
|
+
SUBMITIT_ERR = None
|
|
46
|
+
try:
|
|
47
|
+
import submitit
|
|
48
|
+
|
|
49
|
+
_has_submitit = True
|
|
50
|
+
except ModuleNotFoundError as err:
|
|
51
|
+
_has_submitit = False
|
|
52
|
+
SUBMITIT_ERR = err
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def _rpc_init_collection_node(
|
|
56
|
+
rank,
|
|
57
|
+
rank0_ip,
|
|
58
|
+
tcp_port,
|
|
59
|
+
world_size,
|
|
60
|
+
visible_device,
|
|
61
|
+
tensorpipe_options,
|
|
62
|
+
backend="gloo",
|
|
63
|
+
verbose=VERBOSE,
|
|
64
|
+
):
|
|
65
|
+
os.environ["MASTER_ADDR"] = str(rank0_ip)
|
|
66
|
+
os.environ["MASTER_PORT"] = str(tcp_port)
|
|
67
|
+
|
|
68
|
+
# Initialize torch.distributed process group for efficient weight transfer
|
|
69
|
+
if verbose:
|
|
70
|
+
torchrl_logger.debug(
|
|
71
|
+
f"init distributed with rank={rank}, world_size={world_size}, backend={backend}"
|
|
72
|
+
)
|
|
73
|
+
torch.distributed.init_process_group(
|
|
74
|
+
backend=backend,
|
|
75
|
+
rank=rank,
|
|
76
|
+
world_size=world_size,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
if isinstance(visible_device, list):
|
|
80
|
+
pass
|
|
81
|
+
elif isinstance(visible_device, (str, int, torch.device)):
|
|
82
|
+
visible_device = [visible_device]
|
|
83
|
+
elif visible_device is None:
|
|
84
|
+
pass
|
|
85
|
+
else:
|
|
86
|
+
raise RuntimeError(f"unrecognised dtype {type(visible_device)}")
|
|
87
|
+
|
|
88
|
+
options = rpc.TensorPipeRpcBackendOptions(
|
|
89
|
+
devices=visible_device,
|
|
90
|
+
**tensorpipe_options,
|
|
91
|
+
)
|
|
92
|
+
if verbose:
|
|
93
|
+
torchrl_logger.debug(
|
|
94
|
+
f"init rpc with master addr: {os.environ['MASTER_ADDR']}:{os.environ['MASTER_PORT']}"
|
|
95
|
+
)
|
|
96
|
+
rpc.init_rpc(
|
|
97
|
+
f"COLLECTOR_NODE_{rank}",
|
|
98
|
+
rank=rank,
|
|
99
|
+
backend=rpc.BackendType.TENSORPIPE,
|
|
100
|
+
rpc_backend_options=options,
|
|
101
|
+
world_size=world_size,
|
|
102
|
+
)
|
|
103
|
+
rpc.shutdown()
|
|
104
|
+
torch.distributed.destroy_process_group()
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class RPCCollector(BaseCollector):
|
|
108
|
+
"""An RPC-based distributed data collector.
|
|
109
|
+
|
|
110
|
+
Supports sync and async data collection.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
create_env_fn (Callable or List[Callabled]): list of Callables, each returning an
|
|
114
|
+
instance of :class:`~torchrl.envs.EnvBase`.
|
|
115
|
+
policy (Callable): Policy to be executed in the environment.
|
|
116
|
+
Must accept :class:`tensordict.tensordict.TensorDictBase` object as input.
|
|
117
|
+
If ``None`` is provided, the policy used will be a
|
|
118
|
+
:class:`~torchrl.collectors.RandomPolicy` instance with the environment
|
|
119
|
+
``action_spec``.
|
|
120
|
+
Accepted policies are usually subclasses of :class:`~tensordict.nn.TensorDictModuleBase`.
|
|
121
|
+
This is the recommended usage of the collector.
|
|
122
|
+
Other callables are accepted too:
|
|
123
|
+
If the policy is not a ``TensorDictModuleBase`` (e.g., a regular :class:`~torch.nn.Module`
|
|
124
|
+
instances) it will be wrapped in a `nn.Module` first.
|
|
125
|
+
Then, the collector will try to assess if these
|
|
126
|
+
modules require wrapping in a :class:`~tensordict.nn.TensorDictModule` or not.
|
|
127
|
+
|
|
128
|
+
- If the policy forward signature matches any of ``forward(self, tensordict)``,
|
|
129
|
+
``forward(self, td)`` or ``forward(self, <anything>: TensorDictBase)`` (or
|
|
130
|
+
any typing with a single argument typed as a subclass of ``TensorDictBase``)
|
|
131
|
+
then the policy won't be wrapped in a :class:`~tensordict.nn.TensorDictModule`.
|
|
132
|
+
|
|
133
|
+
- In all other cases an attempt to wrap it will be undergone as such: ``TensorDictModule(policy, in_keys=env_obs_key, out_keys=env.action_keys)``.
|
|
134
|
+
|
|
135
|
+
.. note:: If the policy needs to be passed as a policy factory (e.g., in case it mustn't be serialized /
|
|
136
|
+
pickled directly), the ``policy_factory`` should be used instead.
|
|
137
|
+
|
|
138
|
+
Keyword Args:
|
|
139
|
+
policy_factory (Callable[[], Callable], list of Callable[[], Callable], optional): a callable
|
|
140
|
+
(or list of callables) that returns a policy instance. This is exclusive with the `policy` argument.
|
|
141
|
+
|
|
142
|
+
.. note:: `policy_factory` comes in handy whenever the policy cannot be serialized.
|
|
143
|
+
|
|
144
|
+
frames_per_batch (int): A keyword-only argument representing the total
|
|
145
|
+
number of elements in a batch.
|
|
146
|
+
total_frames (int): A keyword-only argument representing the total
|
|
147
|
+
number of frames returned by the collector
|
|
148
|
+
during its lifespan. If the ``total_frames`` is not divisible by
|
|
149
|
+
``frames_per_batch``, an exception is raised.
|
|
150
|
+
Endless collectors can be created by passing ``total_frames=-1``.
|
|
151
|
+
Defaults to ``-1`` (endless collector).
|
|
152
|
+
device (int, str or torch.device, optional): The generic device of the
|
|
153
|
+
collector. The ``device`` args fills any non-specified device: if
|
|
154
|
+
``device`` is not ``None`` and any of ``storing_device``, ``policy_device`` or
|
|
155
|
+
``env_device`` is not specified, its value will be set to ``device``.
|
|
156
|
+
Defaults to ``None`` (No default device).
|
|
157
|
+
Lists of devices are supported.
|
|
158
|
+
storing_device (int, str or torch.device, optional): The *remote* device on which
|
|
159
|
+
the output :class:`~tensordict.TensorDict` will be stored.
|
|
160
|
+
If ``device`` is passed and ``storing_device`` is ``None``, it will
|
|
161
|
+
default to the value indicated by ``device``.
|
|
162
|
+
For long trajectories, it may be necessary to store the data on a different
|
|
163
|
+
device than the one where the policy and env are executed.
|
|
164
|
+
Defaults to ``None`` (the output tensordict isn't on a specific device,
|
|
165
|
+
leaf tensors sit on the device where they were created).
|
|
166
|
+
Lists of devices are supported.
|
|
167
|
+
env_device (int, str or torch.device, optional): The *remote* device on which
|
|
168
|
+
the environment should be cast (or executed if that functionality is
|
|
169
|
+
supported). If not specified and the env has a non-``None`` device,
|
|
170
|
+
``env_device`` will default to that value. If ``device`` is passed
|
|
171
|
+
and ``env_device=None``, it will default to ``device``. If the value
|
|
172
|
+
as such specified of ``env_device`` differs from ``policy_device``
|
|
173
|
+
and one of them is not ``None``, the data will be cast to ``env_device``
|
|
174
|
+
before being passed to the env (i.e., passing different devices to
|
|
175
|
+
policy and env is supported). Defaults to ``None``.
|
|
176
|
+
Lists of devices are supported.
|
|
177
|
+
policy_device (int, str or torch.device, optional): The *remote* device on which
|
|
178
|
+
the policy should be cast.
|
|
179
|
+
If ``device`` is passed and ``policy_device=None``, it will default
|
|
180
|
+
to ``device``. If the value as such specified of ``policy_device``
|
|
181
|
+
differs from ``env_device`` and one of them is not ``None``,
|
|
182
|
+
the data will be cast to ``policy_device`` before being passed to
|
|
183
|
+
the policy (i.e., passing different devices to policy and env is
|
|
184
|
+
supported). Defaults to ``None``.
|
|
185
|
+
Lists of devices are supported.
|
|
186
|
+
max_frames_per_traj (int, optional): Maximum steps per trajectory.
|
|
187
|
+
Note that a trajectory can span across multiple batches (unless
|
|
188
|
+
``reset_at_each_iter`` is set to ``True``, see below).
|
|
189
|
+
Once a trajectory reaches ``n_steps``, the environment is reset.
|
|
190
|
+
If the environment wraps multiple environments together, the number
|
|
191
|
+
of steps is tracked for each environment independently. Negative
|
|
192
|
+
values are allowed, in which case this argument is ignored.
|
|
193
|
+
Defaults to ``None`` (i.e., no maximum number of steps).
|
|
194
|
+
init_random_frames (int, optional): Number of frames for which the
|
|
195
|
+
policy is ignored before it is called. This feature is mainly
|
|
196
|
+
intended to be used in offline/model-based settings, where a
|
|
197
|
+
batch of random trajectories can be used to initialize training.
|
|
198
|
+
If provided, it will be rounded up to the closest multiple of frames_per_batch.
|
|
199
|
+
Defaults to ``None`` (i.e. no random frames).
|
|
200
|
+
reset_at_each_iter (bool, optional): Whether environments should be reset
|
|
201
|
+
at the beginning of a batch collection.
|
|
202
|
+
Defaults to ``False``.
|
|
203
|
+
postproc (Callable, optional): A post-processing transform, such as
|
|
204
|
+
a :class:`~torchrl.envs.Transform` or a :class:`~torchrl.data.postprocs.MultiStep`
|
|
205
|
+
instance.
|
|
206
|
+
Defaults to ``None``.
|
|
207
|
+
split_trajs (bool, optional): Boolean indicating whether the resulting
|
|
208
|
+
TensorDict should be split according to the trajectories.
|
|
209
|
+
See :func:`~torchrl.collectors.utils.split_trajectories` for more
|
|
210
|
+
information.
|
|
211
|
+
Defaults to ``False``.
|
|
212
|
+
exploration_type (ExplorationType, optional): interaction mode to be used when
|
|
213
|
+
collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
|
|
214
|
+
``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
|
|
215
|
+
or ``torchrl.envs.utils.ExplorationType.MEAN``.
|
|
216
|
+
Defaults to ``torchrl.envs.utils.ExplorationType.RANDOM``.
|
|
217
|
+
collector_class (Type or str, optional): a collector class for the remote node. Can be
|
|
218
|
+
:class:`~torchrl.collectors.Collector`,
|
|
219
|
+
:class:`~torchrl.collectors.MultiSyncCollector`,
|
|
220
|
+
:class:`~torchrl.collectors.MultiAsyncCollector`
|
|
221
|
+
or a derived class of these. The strings "single", "sync" and
|
|
222
|
+
"async" correspond to respective class.
|
|
223
|
+
Defaults to :class:`~torchrl.collectors.Collector`.
|
|
224
|
+
|
|
225
|
+
.. note::
|
|
226
|
+
|
|
227
|
+
Support for :class:`MultiSyncCollector` and :class:`MultiAsyncCollector`
|
|
228
|
+
is experimental, and :class:`~torchrl.collectors.Collector`
|
|
229
|
+
should always be preferred. If multiple simultaneous environment
|
|
230
|
+
need to be executed on a single node, consider using a
|
|
231
|
+
:class:`~torchrl.envs.ParallelEnv` instance.
|
|
232
|
+
collector_kwargs (dict or list, optional): a dictionary of parameters to be passed to the
|
|
233
|
+
remote data-collector. If a list is provided, each element will
|
|
234
|
+
correspond to an individual set of keyword arguments for the
|
|
235
|
+
dedicated collector.
|
|
236
|
+
num_workers_per_collector (int, optional): the number of copies of the
|
|
237
|
+
env constructor that is to be used on the remote nodes.
|
|
238
|
+
Defaults to 1 (a single env per collector).
|
|
239
|
+
On a single worker node all the sub-workers will be
|
|
240
|
+
executing the same environment. If different environments need to
|
|
241
|
+
be executed, they should be dispatched across worker nodes, not
|
|
242
|
+
subnodes.
|
|
243
|
+
sync (bool, optional): if ``True``, the resulting tensordict is a stack of all the
|
|
244
|
+
tensordicts collected on each node. If ``False`` (default), each
|
|
245
|
+
tensordict results from a separate node in a "first-ready,
|
|
246
|
+
first-served" fashion.
|
|
247
|
+
slurm_kwargs (dict): a dictionary of parameters to be passed to the
|
|
248
|
+
submitit executor.
|
|
249
|
+
update_after_each_batch (bool, optional): if ``True``, the weights will
|
|
250
|
+
be updated after each collection. For ``sync=True``, this means that
|
|
251
|
+
all workers will see their weights updated. For ``sync=False``,
|
|
252
|
+
only the worker from which the data has been gathered will be
|
|
253
|
+
updated.
|
|
254
|
+
Defaults to ``False``, ie. updates have to be executed manually
|
|
255
|
+
through
|
|
256
|
+
:meth:`~torchrl.collectors.distributed.DistributedDataCollector.update_policy_weights_`.
|
|
257
|
+
max_weight_update_interval (int, optional): the maximum number of
|
|
258
|
+
batches that can be collected before the policy weights of a worker
|
|
259
|
+
is updated.
|
|
260
|
+
For sync collections, this parameter is overwritten by ``update_after_each_batch``.
|
|
261
|
+
For async collections, it may be that one worker has not seen its
|
|
262
|
+
parameters being updated for a certain time even if ``update_after_each_batch``
|
|
263
|
+
is turned on.
|
|
264
|
+
Defaults to -1 (no forced update).
|
|
265
|
+
launcher (str, optional): how jobs should be launched.
|
|
266
|
+
Can be one of "submitit" or "mp" for multiprocessing. The former
|
|
267
|
+
can launch jobs across multiple nodes, whilst the latter will only
|
|
268
|
+
launch jobs on a single machine. "submitit" requires the homonymous
|
|
269
|
+
library to be installed.
|
|
270
|
+
To find more about submitit, visit
|
|
271
|
+
https://github.com/facebookincubator/submitit
|
|
272
|
+
Defaults to "submitit".
|
|
273
|
+
tcp_port (int, optional): the TCP port to be used. Defaults to 10003.
|
|
274
|
+
backend (str, optional): the torch.distributed backend to use for weight synchronization.
|
|
275
|
+
Must be one of ``"gloo"``, ``"mpi"``, ``"nccl"`` or ``"ucc"``. See the torch.distributed
|
|
276
|
+
documentation for more information. Defaults to ``"gloo"``.
|
|
277
|
+
visible_devices (list of Union[int, torch.device, str], optional): a
|
|
278
|
+
list of the same length as the number of nodes containing the
|
|
279
|
+
device used to pass data to main.
|
|
280
|
+
tensorpipe_options (dict, optional): a dictionary of keyword argument
|
|
281
|
+
to pass to :class:`torch.distributed.rpc.TensorPipeRpcBackendOption`.
|
|
282
|
+
weight_updater (WeightUpdaterBase or constructor, optional): An instance of :class:`~torchrl.collectors.WeightUpdaterBase`
|
|
283
|
+
or its subclass, responsible for updating the policy weights on remote inference workers using RPC.
|
|
284
|
+
If not provided, an :class:`~torchrl.collectors.distributed.RPCWeightUpdater` will be used by default, which
|
|
285
|
+
handles weight synchronization via RPC.
|
|
286
|
+
Consider using a constructor if the updater needs to be serialized.
|
|
287
|
+
weight_sync_schemes (dict[str, WeightSyncScheme], optional): Dictionary of weight sync schemes for
|
|
288
|
+
SENDING weights to remote collector workers. Keys are model identifiers (e.g., "policy")
|
|
289
|
+
and values are WeightSyncScheme instances configured to send weights via RPC.
|
|
290
|
+
If not provided, an :class:`~torchrl.weight_update.RPCWeightSyncScheme` will be used by default.
|
|
291
|
+
This is for propagating weights from the main process to remote collectors.
|
|
292
|
+
weight_recv_schemes (dict[str, WeightSyncScheme], optional): Dictionary of weight sync schemes for
|
|
293
|
+
RECEIVING weights from a parent process or training loop. Keys are model identifiers (e.g., "policy")
|
|
294
|
+
and values are WeightSyncScheme instances configured to receive weights.
|
|
295
|
+
This is typically used when RPCDataCollector is itself a worker in a larger distributed setup.
|
|
296
|
+
Defaults to ``None``.
|
|
297
|
+
|
|
298
|
+
"""
|
|
299
|
+
|
|
300
|
+
_VERBOSE = VERBOSE # for debugging
|
|
301
|
+
|
|
302
|
+
def __init__(
|
|
303
|
+
self,
|
|
304
|
+
create_env_fn,
|
|
305
|
+
policy: Callable[[TensorDictBase], TensorDictBase] | None = None,
|
|
306
|
+
*,
|
|
307
|
+
policy_factory: Callable[[], Callable]
|
|
308
|
+
| list[Callable[[]], Callable]
|
|
309
|
+
| None = None,
|
|
310
|
+
frames_per_batch: int,
|
|
311
|
+
total_frames: int = -1,
|
|
312
|
+
device: torch.device | list[torch.device] = None,
|
|
313
|
+
storing_device: torch.device | list[torch.device] = None,
|
|
314
|
+
env_device: torch.device | list[torch.device] = None,
|
|
315
|
+
policy_device: torch.device | list[torch.device] = None,
|
|
316
|
+
max_frames_per_traj: int = -1,
|
|
317
|
+
init_random_frames: int = -1,
|
|
318
|
+
reset_at_each_iter: bool = False,
|
|
319
|
+
postproc: Callable | None = None,
|
|
320
|
+
split_trajs: bool = False,
|
|
321
|
+
exploration_type: ExporationType = DEFAULT_EXPLORATION_TYPE, # noqa
|
|
322
|
+
collector_class: type = Collector,
|
|
323
|
+
collector_kwargs: dict[str, Any] | None = None,
|
|
324
|
+
num_workers_per_collector: int = 1,
|
|
325
|
+
sync: bool = False,
|
|
326
|
+
slurm_kwargs: dict[str, Any] | None = None,
|
|
327
|
+
update_after_each_batch: bool = False,
|
|
328
|
+
max_weight_update_interval: int = -1,
|
|
329
|
+
launcher: str = "submitit",
|
|
330
|
+
tcp_port: str | None = None,
|
|
331
|
+
backend: str = "gloo",
|
|
332
|
+
visible_devices: list[torch.device] | None = None,
|
|
333
|
+
tensorpipe_options: dict[str, Any] | None = None,
|
|
334
|
+
weight_updater: WeightUpdaterBase
|
|
335
|
+
| Callable[[], WeightUpdaterBase]
|
|
336
|
+
| None = None,
|
|
337
|
+
weight_sync_schemes: dict[str, WeightSyncScheme] | None = None,
|
|
338
|
+
weight_recv_schemes: dict[str, WeightSyncScheme] | None = None,
|
|
339
|
+
):
|
|
340
|
+
|
|
341
|
+
if self._VERBOSE:
|
|
342
|
+
torchrl_logger.setLevel("DEBUG")
|
|
343
|
+
|
|
344
|
+
if collector_class == "async":
|
|
345
|
+
collector_class = MultiAsyncCollector
|
|
346
|
+
elif collector_class == "sync":
|
|
347
|
+
collector_class = MultiSyncCollector
|
|
348
|
+
elif collector_class == "single":
|
|
349
|
+
collector_class = Collector
|
|
350
|
+
self.collector_class = collector_class
|
|
351
|
+
self.env_constructors = create_env_fn
|
|
352
|
+
self.policy = policy
|
|
353
|
+
if isinstance(policy, nn.Module):
|
|
354
|
+
policy_weights = TensorDict.from_module(policy)
|
|
355
|
+
policy_weights = policy_weights.data.lock_()
|
|
356
|
+
else:
|
|
357
|
+
if weight_updater is None and (
|
|
358
|
+
policy_factory is None
|
|
359
|
+
or (isinstance(policy_factory, Sequence) and not any(policy_factory))
|
|
360
|
+
):
|
|
361
|
+
warnings.warn(_NON_NN_POLICY_WEIGHTS)
|
|
362
|
+
policy_weights = TensorDict(lock=True)
|
|
363
|
+
|
|
364
|
+
if not isinstance(policy_factory, Sequence):
|
|
365
|
+
policy_factory = [policy_factory] * len(create_env_fn)
|
|
366
|
+
self.policy_factory = policy_factory
|
|
367
|
+
self.policy_weights = policy_weights
|
|
368
|
+
self.num_workers = len(create_env_fn)
|
|
369
|
+
self.frames_per_batch = frames_per_batch
|
|
370
|
+
self.requested_frames_per_batch = frames_per_batch
|
|
371
|
+
|
|
372
|
+
self.device = device
|
|
373
|
+
self.storing_device = storing_device
|
|
374
|
+
self.env_device = env_device
|
|
375
|
+
self.policy_device = policy_device
|
|
376
|
+
|
|
377
|
+
self.storing_device = storing_device
|
|
378
|
+
# make private to avoid changes from users during collection
|
|
379
|
+
self._sync = sync
|
|
380
|
+
self.update_after_each_batch = update_after_each_batch
|
|
381
|
+
self.max_weight_update_interval = max_weight_update_interval
|
|
382
|
+
if self.update_after_each_batch and self.max_weight_update_interval > -1:
|
|
383
|
+
raise RuntimeError(
|
|
384
|
+
"Got conflicting update instructions: `update_after_each_batch` "
|
|
385
|
+
"`max_weight_update_interval` are incompatible."
|
|
386
|
+
)
|
|
387
|
+
self.launcher = launcher
|
|
388
|
+
self._batches_since_weight_update = [0 for _ in range(self.num_workers)]
|
|
389
|
+
if tcp_port is None:
|
|
390
|
+
self.tcp_port = os.environ.get("TCP_PORT", TCP_PORT)
|
|
391
|
+
else:
|
|
392
|
+
self.tcp_port = str(tcp_port)
|
|
393
|
+
self.visible_devices = visible_devices
|
|
394
|
+
if self._sync:
|
|
395
|
+
if self.frames_per_batch % self.num_workers != 0:
|
|
396
|
+
raise RuntimeError(
|
|
397
|
+
f"Cannot dispatch {self.frames_per_batch} frames across {self.num_workers}. "
|
|
398
|
+
f"Consider using a number of frames per batch that is divisible by the number of workers."
|
|
399
|
+
)
|
|
400
|
+
self._frames_per_batch_corrected = self.frames_per_batch // self.num_workers
|
|
401
|
+
else:
|
|
402
|
+
self._frames_per_batch_corrected = self.frames_per_batch
|
|
403
|
+
|
|
404
|
+
self.num_workers_per_collector = num_workers_per_collector
|
|
405
|
+
self.total_frames = total_frames
|
|
406
|
+
self.slurm_kwargs = copy(DEFAULT_SLURM_CONF)
|
|
407
|
+
if slurm_kwargs is not None:
|
|
408
|
+
self.slurm_kwargs.update(slurm_kwargs)
|
|
409
|
+
|
|
410
|
+
collector_kwargs = collector_kwargs if collector_kwargs is not None else {}
|
|
411
|
+
self.collector_kwargs = (
|
|
412
|
+
deepcopy(collector_kwargs)
|
|
413
|
+
if isinstance(collector_kwargs, (list, tuple))
|
|
414
|
+
else [copy(collector_kwargs) for _ in range(self.num_workers)]
|
|
415
|
+
)
|
|
416
|
+
|
|
417
|
+
# update collector kwargs
|
|
418
|
+
for i, collector_kwarg in enumerate(self.collector_kwargs):
|
|
419
|
+
collector_kwarg["max_frames_per_traj"] = max_frames_per_traj
|
|
420
|
+
collector_kwarg["init_random_frames"] = (
|
|
421
|
+
init_random_frames // self.num_workers
|
|
422
|
+
)
|
|
423
|
+
if not self._sync and init_random_frames > 0:
|
|
424
|
+
warnings.warn(
|
|
425
|
+
"async distributed data collection with init_random_frames > 0 "
|
|
426
|
+
"may have unforeseen consequences as we do not control that once "
|
|
427
|
+
"non-random data is being collected all nodes are returning non-random data. "
|
|
428
|
+
"If this is a feature that you feel should be fixed, please raise an issue on "
|
|
429
|
+
"torchrl's repo."
|
|
430
|
+
)
|
|
431
|
+
collector_kwarg["reset_at_each_iter"] = reset_at_each_iter
|
|
432
|
+
collector_kwarg["exploration_type"] = exploration_type
|
|
433
|
+
collector_kwarg["device"] = self.device[i]
|
|
434
|
+
collector_kwarg["storing_device"] = self.storing_device[i]
|
|
435
|
+
collector_kwarg["env_device"] = self.env_device[i]
|
|
436
|
+
collector_kwarg["policy_device"] = self.policy_device[i]
|
|
437
|
+
|
|
438
|
+
self.postproc = postproc
|
|
439
|
+
self.split_trajs = split_trajs
|
|
440
|
+
self.backend = backend
|
|
441
|
+
|
|
442
|
+
if tensorpipe_options is None:
|
|
443
|
+
self.tensorpipe_options = copy(DEFAULT_TENSORPIPE_OPTIONS)
|
|
444
|
+
else:
|
|
445
|
+
self.tensorpipe_options = copy(DEFAULT_TENSORPIPE_OPTIONS).update(
|
|
446
|
+
tensorpipe_options
|
|
447
|
+
)
|
|
448
|
+
|
|
449
|
+
# Set up weight synchronization - prefer new schemes over legacy updater
|
|
450
|
+
if weight_updater is None and weight_sync_schemes is None:
|
|
451
|
+
# Default to RPC weight sync scheme for RPC collectors
|
|
452
|
+
from torchrl.weight_update import RPCWeightSyncScheme
|
|
453
|
+
|
|
454
|
+
weight_sync_schemes = {"policy": RPCWeightSyncScheme()}
|
|
455
|
+
|
|
456
|
+
if weight_sync_schemes is not None:
|
|
457
|
+
# Use new weight synchronization system
|
|
458
|
+
self._weight_sync_schemes = weight_sync_schemes
|
|
459
|
+
self.weight_updater = None
|
|
460
|
+
else:
|
|
461
|
+
# Fall back to legacy weight updater system
|
|
462
|
+
if weight_updater is None:
|
|
463
|
+
weight_updater = RPCWeightUpdater(
|
|
464
|
+
collector_infos=self.collector_infos,
|
|
465
|
+
collector_class=self.collector_class,
|
|
466
|
+
collector_rrefs=self.collector_rrefs,
|
|
467
|
+
policy_weights=self.policy_weights,
|
|
468
|
+
num_workers=self.num_workers,
|
|
469
|
+
)
|
|
470
|
+
self.weight_updater = weight_updater
|
|
471
|
+
self._weight_sync_schemes = None
|
|
472
|
+
|
|
473
|
+
self._init()
|
|
474
|
+
|
|
475
|
+
if weight_sync_schemes is not None:
|
|
476
|
+
# Set up weight senders now that remote collectors exist
|
|
477
|
+
for model_id, scheme in self._weight_sync_schemes.items():
|
|
478
|
+
scheme.init_on_sender(
|
|
479
|
+
model_id=model_id,
|
|
480
|
+
num_workers=self.num_workers,
|
|
481
|
+
context=self,
|
|
482
|
+
)
|
|
483
|
+
scheme.connect()
|
|
484
|
+
|
|
485
|
+
# Set up weight receivers if provided
|
|
486
|
+
if weight_recv_schemes is not None:
|
|
487
|
+
self.register_scheme_receiver(weight_recv_schemes)
|
|
488
|
+
|
|
489
|
+
@property
|
|
490
|
+
def device(self) -> list[torch.device]:
|
|
491
|
+
return self._device
|
|
492
|
+
|
|
493
|
+
@property
|
|
494
|
+
def storing_device(self) -> list[torch.device]:
|
|
495
|
+
return self._storing_device
|
|
496
|
+
|
|
497
|
+
@property
|
|
498
|
+
def env_device(self) -> list[torch.device]:
|
|
499
|
+
return self._env_device
|
|
500
|
+
|
|
501
|
+
@property
|
|
502
|
+
def policy_device(self) -> list[torch.device]:
|
|
503
|
+
return self._policy_device
|
|
504
|
+
|
|
505
|
+
@device.setter
|
|
506
|
+
def device(self, value):
|
|
507
|
+
if isinstance(value, (tuple, list)):
|
|
508
|
+
if len(value) != self.num_workers:
|
|
509
|
+
raise RuntimeError(
|
|
510
|
+
"The number of devices passed to the collector must match the number of workers."
|
|
511
|
+
)
|
|
512
|
+
self._device = value
|
|
513
|
+
else:
|
|
514
|
+
self._device = [value] * self.num_workers
|
|
515
|
+
|
|
516
|
+
@storing_device.setter
|
|
517
|
+
def storing_device(self, value):
|
|
518
|
+
if isinstance(value, (tuple, list)):
|
|
519
|
+
if len(value) != self.num_workers:
|
|
520
|
+
raise RuntimeError(
|
|
521
|
+
"The number of devices passed to the collector must match the number of workers."
|
|
522
|
+
)
|
|
523
|
+
self._storing_device = value
|
|
524
|
+
else:
|
|
525
|
+
self._storing_device = [value] * self.num_workers
|
|
526
|
+
|
|
527
|
+
@env_device.setter
|
|
528
|
+
def env_device(self, value):
|
|
529
|
+
if isinstance(value, (tuple, list)):
|
|
530
|
+
if len(value) != self.num_workers:
|
|
531
|
+
raise RuntimeError(
|
|
532
|
+
"The number of devices passed to the collector must match the number of workers."
|
|
533
|
+
)
|
|
534
|
+
self._env_device = value
|
|
535
|
+
else:
|
|
536
|
+
self._env_device = [value] * self.num_workers
|
|
537
|
+
|
|
538
|
+
@policy_device.setter
|
|
539
|
+
def policy_device(self, value):
|
|
540
|
+
if isinstance(value, (tuple, list)):
|
|
541
|
+
if len(value) != self.num_workers:
|
|
542
|
+
raise RuntimeError(
|
|
543
|
+
"The number of devices passed to the collector must match the number of workers."
|
|
544
|
+
)
|
|
545
|
+
self._policy_device = value
|
|
546
|
+
else:
|
|
547
|
+
self._policy_device = [value] * self.num_workers
|
|
548
|
+
|
|
549
|
+
def _init_master_rpc(
|
|
550
|
+
self,
|
|
551
|
+
world_size,
|
|
552
|
+
):
|
|
553
|
+
"""Init torch.distributed and RPC on main node."""
|
|
554
|
+
# Initialize torch.distributed process group for efficient weight transfer
|
|
555
|
+
torchrl_logger.debug(
|
|
556
|
+
f"init distributed with rank=0, world_size={world_size}, backend={self.backend}"
|
|
557
|
+
)
|
|
558
|
+
torch.distributed.init_process_group(
|
|
559
|
+
backend=self.backend,
|
|
560
|
+
rank=0,
|
|
561
|
+
world_size=world_size,
|
|
562
|
+
)
|
|
563
|
+
|
|
564
|
+
# Initialize RPC for control/signaling
|
|
565
|
+
options = rpc.TensorPipeRpcBackendOptions(**self.tensorpipe_options)
|
|
566
|
+
if torch.cuda.is_available():
|
|
567
|
+
if self.visible_devices:
|
|
568
|
+
for i in range(self.num_workers):
|
|
569
|
+
rank = i + 1
|
|
570
|
+
options.set_device_map(
|
|
571
|
+
f"COLLECTOR_NODE_{rank}", {0: self.visible_devices[i]}
|
|
572
|
+
)
|
|
573
|
+
torchrl_logger.debug("init rpc")
|
|
574
|
+
rpc.init_rpc(
|
|
575
|
+
"TRAINER_NODE",
|
|
576
|
+
rank=0,
|
|
577
|
+
backend=rpc.BackendType.TENSORPIPE,
|
|
578
|
+
rpc_backend_options=options,
|
|
579
|
+
world_size=world_size,
|
|
580
|
+
)
|
|
581
|
+
|
|
582
|
+
def _start_workers(
|
|
583
|
+
self,
|
|
584
|
+
world_size,
|
|
585
|
+
env_constructors,
|
|
586
|
+
collector_class,
|
|
587
|
+
num_workers_per_collector,
|
|
588
|
+
policy,
|
|
589
|
+
policy_factory,
|
|
590
|
+
frames_per_batch,
|
|
591
|
+
total_frames,
|
|
592
|
+
collector_kwargs,
|
|
593
|
+
):
|
|
594
|
+
"""Instantiate remote collectors."""
|
|
595
|
+
num_workers = world_size - 1
|
|
596
|
+
time_interval = 1.0
|
|
597
|
+
collector_infos = []
|
|
598
|
+
for i in range(num_workers):
|
|
599
|
+
counter = 0
|
|
600
|
+
while True:
|
|
601
|
+
counter += 1
|
|
602
|
+
time.sleep(time_interval)
|
|
603
|
+
try:
|
|
604
|
+
torchrl_logger.debug(f"trying to connect to collector node {i + 1}")
|
|
605
|
+
collector_info = rpc.get_worker_info(f"COLLECTOR_NODE_{i + 1}")
|
|
606
|
+
break
|
|
607
|
+
except RuntimeError as err:
|
|
608
|
+
if counter * time_interval > self.tensorpipe_options["rpc_timeout"]:
|
|
609
|
+
raise RuntimeError("Could not connect to remote node") from err
|
|
610
|
+
continue
|
|
611
|
+
collector_infos.append(collector_info)
|
|
612
|
+
|
|
613
|
+
collector_rrefs = []
|
|
614
|
+
for i in range(num_workers):
|
|
615
|
+
env_make = env_constructors[i]
|
|
616
|
+
if not isinstance(env_make, (EnvBase, EnvCreator)):
|
|
617
|
+
env_make = CloudpickleWrapper(env_make)
|
|
618
|
+
torchrl_logger.debug("Making collector in remote node")
|
|
619
|
+
# When using weight sync schemes together with a policy_factory, the
|
|
620
|
+
# main-node `policy` should be used only as a weight source on the
|
|
621
|
+
# trainer, and NOT sent to remote collectors (which will build their
|
|
622
|
+
# own policies from the factory). This mirrors the behaviour of
|
|
623
|
+
# `DistributedDataCollector` with multi-process collectors.
|
|
624
|
+
policy_to_send = (
|
|
625
|
+
None
|
|
626
|
+
if (
|
|
627
|
+
policy is not None
|
|
628
|
+
and policy_factory[i] is not None
|
|
629
|
+
and getattr(self, "_weight_sync_schemes", None) is not None
|
|
630
|
+
)
|
|
631
|
+
else policy
|
|
632
|
+
)
|
|
633
|
+
|
|
634
|
+
collector_rref = rpc.remote(
|
|
635
|
+
collector_infos[i],
|
|
636
|
+
collector_class,
|
|
637
|
+
args=(
|
|
638
|
+
[env_make] * num_workers_per_collector
|
|
639
|
+
if collector_class is not Collector
|
|
640
|
+
else env_make,
|
|
641
|
+
policy_to_send,
|
|
642
|
+
),
|
|
643
|
+
kwargs={
|
|
644
|
+
"policy_factory": policy_factory[i],
|
|
645
|
+
"frames_per_batch": frames_per_batch,
|
|
646
|
+
"total_frames": -1,
|
|
647
|
+
"split_trajs": False,
|
|
648
|
+
"weight_recv_schemes": self._weight_sync_schemes,
|
|
649
|
+
"worker_idx": i,
|
|
650
|
+
**collector_kwargs[i],
|
|
651
|
+
},
|
|
652
|
+
)
|
|
653
|
+
collector_rrefs.append(collector_rref)
|
|
654
|
+
|
|
655
|
+
# Set up receiver schemes on remote collectors (if using new weight sync system)
|
|
656
|
+
# This enables cascading: RPC -> MultiSync -> Sync
|
|
657
|
+
if getattr(self, "_weight_sync_schemes", None) is not None:
|
|
658
|
+
for i in range(num_workers):
|
|
659
|
+
torchrl_logger.debug(
|
|
660
|
+
f"Setting up receiver schemes on remote collector {i}"
|
|
661
|
+
)
|
|
662
|
+
# Call register_scheme_receiver on the remote collector using rref.rpc_sync()
|
|
663
|
+
# This properly dereferences the rref and calls the instance method
|
|
664
|
+
collector_rrefs[i].rpc_sync().register_scheme_receiver(
|
|
665
|
+
self._weight_sync_schemes
|
|
666
|
+
)
|
|
667
|
+
|
|
668
|
+
futures = collections.deque(maxlen=self.num_workers)
|
|
669
|
+
|
|
670
|
+
if not self._sync:
|
|
671
|
+
for i in range(num_workers):
|
|
672
|
+
torchrl_logger.debug("Asking for the first batch")
|
|
673
|
+
# Use rref.rpc_async() to properly call instance method
|
|
674
|
+
future = collector_rrefs[i].rpc_async().next()
|
|
675
|
+
futures.append((future, i))
|
|
676
|
+
self.futures = futures
|
|
677
|
+
self.collector_rrefs = collector_rrefs
|
|
678
|
+
self.collector_infos = collector_infos
|
|
679
|
+
|
|
680
|
+
def _init_worker_rpc(self, executor, i):
|
|
681
|
+
"""Init RPC node if necessary."""
|
|
682
|
+
visible_device = (
|
|
683
|
+
self.visible_devices[i] if self.visible_devices is not None else None
|
|
684
|
+
)
|
|
685
|
+
if self.launcher == "submitit":
|
|
686
|
+
if not _has_submitit:
|
|
687
|
+
raise ImportError("submitit not found.") from SUBMITIT_ERR
|
|
688
|
+
job = executor.submit(
|
|
689
|
+
_rpc_init_collection_node,
|
|
690
|
+
i + 1,
|
|
691
|
+
self.IPAddr,
|
|
692
|
+
self.tcp_port,
|
|
693
|
+
self.num_workers + 1,
|
|
694
|
+
visible_device,
|
|
695
|
+
self.tensorpipe_options,
|
|
696
|
+
self.backend,
|
|
697
|
+
self._VERBOSE,
|
|
698
|
+
)
|
|
699
|
+
torchrl_logger.debug(f"job id {job.job_id}") # ID of your job
|
|
700
|
+
return job
|
|
701
|
+
elif self.launcher == "mp":
|
|
702
|
+
job = _ProcessNoWarn(
|
|
703
|
+
target=_rpc_init_collection_node,
|
|
704
|
+
args=(
|
|
705
|
+
i + 1,
|
|
706
|
+
self.IPAddr,
|
|
707
|
+
self.tcp_port,
|
|
708
|
+
self.num_workers + 1,
|
|
709
|
+
visible_device,
|
|
710
|
+
self.tensorpipe_options,
|
|
711
|
+
self.backend,
|
|
712
|
+
self._VERBOSE,
|
|
713
|
+
),
|
|
714
|
+
)
|
|
715
|
+
job.start()
|
|
716
|
+
return job
|
|
717
|
+
elif self.launcher == "submitit_delayed":
|
|
718
|
+
# job is already launched
|
|
719
|
+
return None
|
|
720
|
+
else:
|
|
721
|
+
raise NotImplementedError(f"Unknown launcher {self.launcher}")
|
|
722
|
+
|
|
723
|
+
def _init(self):
|
|
724
|
+
self._shutdown = False
|
|
725
|
+
if self.launcher == "submitit":
|
|
726
|
+
executor = submitit.AutoExecutor(folder="log_test")
|
|
727
|
+
executor.update_parameters(**self.slurm_kwargs)
|
|
728
|
+
else:
|
|
729
|
+
executor = None
|
|
730
|
+
|
|
731
|
+
hostname = socket.gethostname()
|
|
732
|
+
if self.launcher != "mp":
|
|
733
|
+
IPAddr = socket.gethostbyname(hostname)
|
|
734
|
+
else:
|
|
735
|
+
IPAddr = "localhost"
|
|
736
|
+
self.IPAddr = IPAddr
|
|
737
|
+
|
|
738
|
+
os.environ["MASTER_ADDR"] = str(self.IPAddr)
|
|
739
|
+
os.environ["MASTER_PORT"] = str(self.tcp_port)
|
|
740
|
+
|
|
741
|
+
self.jobs = []
|
|
742
|
+
for i in range(self.num_workers):
|
|
743
|
+
torchrl_logger.debug(f"Submitting job {i}")
|
|
744
|
+
job = self._init_worker_rpc(
|
|
745
|
+
executor,
|
|
746
|
+
i,
|
|
747
|
+
)
|
|
748
|
+
self.jobs.append(job)
|
|
749
|
+
|
|
750
|
+
self._init_master_rpc(
|
|
751
|
+
self.num_workers + 1,
|
|
752
|
+
)
|
|
753
|
+
self._start_workers(
|
|
754
|
+
world_size=self.num_workers + 1,
|
|
755
|
+
env_constructors=self.env_constructors,
|
|
756
|
+
collector_class=self.collector_class,
|
|
757
|
+
num_workers_per_collector=self.num_workers_per_collector,
|
|
758
|
+
policy=self.policy,
|
|
759
|
+
policy_factory=self.policy_factory,
|
|
760
|
+
frames_per_batch=self._frames_per_batch_corrected,
|
|
761
|
+
total_frames=self.total_frames,
|
|
762
|
+
collector_kwargs=self.collector_kwargs,
|
|
763
|
+
)
|
|
764
|
+
|
|
765
|
+
def iterator(self):
|
|
766
|
+
self._collected_frames = 0
|
|
767
|
+
while self._collected_frames < self.total_frames:
|
|
768
|
+
if self._sync:
|
|
769
|
+
data = self._next_sync_rpc()
|
|
770
|
+
else:
|
|
771
|
+
data = self._next_async_rpc()
|
|
772
|
+
|
|
773
|
+
if self.split_trajs:
|
|
774
|
+
data = split_trajectories(data)
|
|
775
|
+
if self.postproc is not None:
|
|
776
|
+
data = self.postproc(data)
|
|
777
|
+
yield data
|
|
778
|
+
|
|
779
|
+
if self.max_weight_update_interval > -1 and not self._sync:
|
|
780
|
+
for j in range(self.num_workers):
|
|
781
|
+
if (
|
|
782
|
+
self._batches_since_weight_update[j]
|
|
783
|
+
> self.max_weight_update_interval
|
|
784
|
+
):
|
|
785
|
+
torchrl_logger.debug(
|
|
786
|
+
f"Updating policy of worker {j} with wait=False"
|
|
787
|
+
)
|
|
788
|
+
self.update_policy_weights_(worker_ids=[j], wait=False)
|
|
789
|
+
elif self.max_weight_update_interval > -1:
|
|
790
|
+
ranks = [
|
|
791
|
+
1
|
|
792
|
+
for j in range(self.num_workers)
|
|
793
|
+
if self._batches_since_weight_update[j]
|
|
794
|
+
> self.max_weight_update_interval
|
|
795
|
+
]
|
|
796
|
+
torchrl_logger.debug(
|
|
797
|
+
f"Updating policy of workers {ranks} with wait=True"
|
|
798
|
+
)
|
|
799
|
+
self.update_policy_weights_(worker_ids=ranks, wait=True)
|
|
800
|
+
|
|
801
|
+
def _next_async_rpc(self):
|
|
802
|
+
torchrl_logger.debug("next async")
|
|
803
|
+
if not len(self.futures):
|
|
804
|
+
raise StopIteration(
|
|
805
|
+
f"The queue is empty, the collector has ran out of data after {self._collected_frames} collected frames."
|
|
806
|
+
)
|
|
807
|
+
while True:
|
|
808
|
+
future, i = self.futures.popleft()
|
|
809
|
+
if future.done():
|
|
810
|
+
if self.update_after_each_batch:
|
|
811
|
+
self.update_policy_weights_(worker_ids=(i,), wait=False)
|
|
812
|
+
torchrl_logger.debug(f"future {i} is done")
|
|
813
|
+
data = future.value()
|
|
814
|
+
self._collected_frames += data.numel()
|
|
815
|
+
if self._collected_frames < self.total_frames:
|
|
816
|
+
# Use rref.rpc_async() to properly call instance method
|
|
817
|
+
future = self.collector_rrefs[i].rpc_async().next()
|
|
818
|
+
self.futures.append((future, i))
|
|
819
|
+
return data
|
|
820
|
+
self.futures.append((future, i))
|
|
821
|
+
|
|
822
|
+
def _next_sync_rpc(self):
|
|
823
|
+
torchrl_logger.debug("next sync: futures")
|
|
824
|
+
if self.update_after_each_batch:
|
|
825
|
+
self.update_policy_weights_()
|
|
826
|
+
for i in range(self.num_workers):
|
|
827
|
+
# Use rref.rpc_async() to properly call instance method
|
|
828
|
+
future = self.collector_rrefs[i].rpc_async().next()
|
|
829
|
+
self.futures.append((future, i))
|
|
830
|
+
data = []
|
|
831
|
+
while len(self.futures):
|
|
832
|
+
future, i = self.futures.popleft()
|
|
833
|
+
# the order is NOT guaranteed: should we change that?
|
|
834
|
+
if future.done():
|
|
835
|
+
data += [future.value()]
|
|
836
|
+
torchrl_logger.debug(
|
|
837
|
+
f"got data from {i} // data has len {len(data)} / {self.num_workers}"
|
|
838
|
+
)
|
|
839
|
+
else:
|
|
840
|
+
self.futures.append((future, i))
|
|
841
|
+
data = torch.cat(data)
|
|
842
|
+
traj_ids = data.get(("collector", "traj_ids"), None)
|
|
843
|
+
if traj_ids is not None:
|
|
844
|
+
for i in range(1, self.num_workers):
|
|
845
|
+
traj_ids[i] += traj_ids[i - 1].max()
|
|
846
|
+
data.set_(("collector", "traj_ids"), traj_ids)
|
|
847
|
+
self._collected_frames += data.numel()
|
|
848
|
+
return data
|
|
849
|
+
|
|
850
|
+
def set_seed(self, seed: int, static_seed: bool = False) -> int:
|
|
851
|
+
for worker in self.collector_infos:
|
|
852
|
+
seed = rpc.rpc_sync(worker, self.collector_class.set_seed, args=(seed,))
|
|
853
|
+
|
|
854
|
+
def state_dict(self) -> OrderedDict:
|
|
855
|
+
raise NotImplementedError
|
|
856
|
+
|
|
857
|
+
def load_state_dict(self, state_dict: OrderedDict) -> None:
|
|
858
|
+
raise NotImplementedError
|
|
859
|
+
|
|
860
|
+
def shutdown(self, timeout: float | None = None) -> None:
|
|
861
|
+
if not hasattr(self, "_shutdown"):
|
|
862
|
+
warnings.warn("shutdown has no effect has `_init` has not been called yet.")
|
|
863
|
+
return
|
|
864
|
+
if self._shutdown:
|
|
865
|
+
return
|
|
866
|
+
|
|
867
|
+
torchrl_logger.debug("shutting down")
|
|
868
|
+
for future, i in self.futures:
|
|
869
|
+
# clear the futures
|
|
870
|
+
while future is not None and not future.done():
|
|
871
|
+
torchrl_logger.debug(f"waiting for proc {i} to clear")
|
|
872
|
+
future.wait()
|
|
873
|
+
for i in range(self.num_workers):
|
|
874
|
+
torchrl_logger.debug(f"shutting down {i}")
|
|
875
|
+
# Use rref.rpc_sync() to properly call instance method
|
|
876
|
+
self.collector_rrefs[i].rpc_sync(timeout=int(IDLE_TIMEOUT)).shutdown()
|
|
877
|
+
torchrl_logger.debug("rpc shutdown")
|
|
878
|
+
rpc.shutdown(timeout=int(IDLE_TIMEOUT))
|
|
879
|
+
|
|
880
|
+
if self.launcher == "mp":
|
|
881
|
+
for job in self.jobs:
|
|
882
|
+
job.join(int(IDLE_TIMEOUT))
|
|
883
|
+
elif self.launcher == "submitit":
|
|
884
|
+
for job in self.jobs:
|
|
885
|
+
_ = job.result()
|
|
886
|
+
elif self.launcher == "submitit_delayed":
|
|
887
|
+
pass
|
|
888
|
+
else:
|
|
889
|
+
raise NotImplementedError(f"Unknown launcher {self.launcher}")
|
|
890
|
+
|
|
891
|
+
# Clean up weight sync schemes AFTER workers have exited
|
|
892
|
+
if getattr(self, "_weight_sync_schemes", None) is not None:
|
|
893
|
+
torchrl_logger.debug("shutting down weight sync schemes")
|
|
894
|
+
for scheme in self._weight_sync_schemes.values():
|
|
895
|
+
try:
|
|
896
|
+
scheme.shutdown()
|
|
897
|
+
except Exception as e:
|
|
898
|
+
torchrl_logger.warning(
|
|
899
|
+
f"Error shutting down weight sync scheme: {e}"
|
|
900
|
+
)
|
|
901
|
+
self._weight_sync_schemes = None
|
|
902
|
+
|
|
903
|
+
# Destroy torch.distributed process group
|
|
904
|
+
if torch.distributed.is_initialized():
|
|
905
|
+
torch.distributed.destroy_process_group()
|
|
906
|
+
|
|
907
|
+
self._shutdown = True
|
|
908
|
+
|
|
909
|
+
|
|
910
|
+
class RPCWeightUpdater(WeightUpdaterBase):
|
|
911
|
+
"""A remote weight updater for synchronizing policy weights across remote workers using RPC.
|
|
912
|
+
|
|
913
|
+
The `RPCWeightUpdater` class provides a mechanism for updating the weights of a policy
|
|
914
|
+
across remote inference workers using RPC. It is designed to work with the :class:`~torchrl.collectors.distributed.RPCDataCollector`
|
|
915
|
+
to ensure that each worker receives the latest policy weights.
|
|
916
|
+
This class is typically used in distributed data collection scenarios where remote workers
|
|
917
|
+
are managed via RPC and need to be kept in sync with the central policy weights.
|
|
918
|
+
|
|
919
|
+
Args:
|
|
920
|
+
collector_infos: Information about the collectors, used for RPC communication.
|
|
921
|
+
collector_class: The class of the collectors being used.
|
|
922
|
+
collector_rrefs: Remote references to the collectors.
|
|
923
|
+
policy_weights (TensorDictBase): The current weights of the policy that need to be distributed
|
|
924
|
+
to the workers.
|
|
925
|
+
num_workers (int): The number of remote workers that will receive the updated policy weights.
|
|
926
|
+
|
|
927
|
+
Methods:
|
|
928
|
+
update_weights: Updates the weights on specified or all remote workers using RPC.
|
|
929
|
+
all_worker_ids: Returns a list of all worker identifiers (not implemented in this class).
|
|
930
|
+
_sync_weights_with_worker: Synchronizes the server weights with a specific worker (not implemented).
|
|
931
|
+
_get_server_weights: Retrieves the latest weights from the server (not implemented).
|
|
932
|
+
_maybe_map_weights: Optionally maps server weights before distribution (not implemented).
|
|
933
|
+
|
|
934
|
+
.. note::
|
|
935
|
+
This class assumes that the server weights can be directly applied to the remote workers
|
|
936
|
+
without any additional processing. If your use case requires more complex weight mapping or
|
|
937
|
+
synchronization logic, consider extending `WeightUpdaterBase` with a custom implementation.
|
|
938
|
+
|
|
939
|
+
.. seealso:: :class:`~torchrl.collectors.WeightUpdaterBase` and
|
|
940
|
+
:class:`~torchrl.collectors.distributed.RPCDataCollector`.
|
|
941
|
+
|
|
942
|
+
"""
|
|
943
|
+
|
|
944
|
+
_VERBOSE = VERBOSE # for debugging
|
|
945
|
+
|
|
946
|
+
def __init__(
|
|
947
|
+
self,
|
|
948
|
+
collector_infos,
|
|
949
|
+
collector_class,
|
|
950
|
+
collector_rrefs,
|
|
951
|
+
policy_weights: TensorDictBase,
|
|
952
|
+
num_workers: int,
|
|
953
|
+
):
|
|
954
|
+
super().__init__()
|
|
955
|
+
self.collector_infos = collector_infos
|
|
956
|
+
self.collector_class = collector_class
|
|
957
|
+
self.collector_rrefs = collector_rrefs
|
|
958
|
+
self.policy_weights = policy_weights
|
|
959
|
+
self.num_workers = num_workers
|
|
960
|
+
|
|
961
|
+
def _sync_weights_with_worker(
|
|
962
|
+
self, worker_id: int | torch.device, server_weights: TensorDictBase
|
|
963
|
+
) -> TensorDictBase:
|
|
964
|
+
raise NotImplementedError
|
|
965
|
+
|
|
966
|
+
def _get_server_weights(self) -> TensorDictBase:
|
|
967
|
+
raise NotImplementedError
|
|
968
|
+
|
|
969
|
+
def _maybe_map_weights(self, server_weights: TensorDictBase) -> TensorDictBase:
|
|
970
|
+
raise NotImplementedError
|
|
971
|
+
|
|
972
|
+
def all_worker_ids(self) -> list[int] | list[torch.device]:
|
|
973
|
+
raise NotImplementedError
|
|
974
|
+
|
|
975
|
+
def push_weights(
|
|
976
|
+
self,
|
|
977
|
+
weights: TensorDictBase | None = None,
|
|
978
|
+
worker_ids: torch.device | int | list[int] | list[torch.device] | None = None,
|
|
979
|
+
**kwargs,
|
|
980
|
+
):
|
|
981
|
+
workers = worker_ids
|
|
982
|
+
if isinstance(workers, int):
|
|
983
|
+
workers = [workers]
|
|
984
|
+
if workers is None:
|
|
985
|
+
workers = list(range(self.num_workers))
|
|
986
|
+
else:
|
|
987
|
+
workers = list(workers)
|
|
988
|
+
futures = []
|
|
989
|
+
weights = self.policy_weights if weights is None else weights
|
|
990
|
+
for i in workers:
|
|
991
|
+
torchrl_logger.debug(f"calling update on worker {i}")
|
|
992
|
+
# Use rref.rpc_async() to properly call instance method
|
|
993
|
+
futures.append(
|
|
994
|
+
self.collector_rrefs[i].rpc_async().update_policy_weights_(weights)
|
|
995
|
+
)
|
|
996
|
+
if kwargs.get("wait", True):
|
|
997
|
+
for i in workers:
|
|
998
|
+
torchrl_logger.debug(f"waiting for worker {i}")
|
|
999
|
+
futures[i].wait()
|
|
1000
|
+
torchrl_logger.debug("got it!")
|
|
1001
|
+
|
|
1002
|
+
|
|
1003
|
+
class RPCDataCollector(RPCCollector, metaclass=_LegacyCollectorMeta):
|
|
1004
|
+
"""Deprecated version of :class:`~torchrl.collectors.distributed.RPCCollector`."""
|
|
1005
|
+
|
|
1006
|
+
...
|