torchrl 0.11.0__cp314-cp314t-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cp314t-win_amd64.pyd +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/LICENSE +21 -0
- torchrl-0.11.0.dist-info/METADATA +1307 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,1580 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import math
|
|
8
|
+
import warnings
|
|
9
|
+
from dataclasses import dataclass
|
|
10
|
+
from functools import wraps
|
|
11
|
+
from numbers import Number
|
|
12
|
+
|
|
13
|
+
import numpy as np
|
|
14
|
+
import torch
|
|
15
|
+
from tensordict import TensorDict, TensorDictBase, TensorDictParams
|
|
16
|
+
from tensordict.nn import (
|
|
17
|
+
composite_lp_aggregate,
|
|
18
|
+
CompositeDistribution,
|
|
19
|
+
dispatch,
|
|
20
|
+
ProbabilisticTensorDictSequential,
|
|
21
|
+
set_composite_lp_aggregate,
|
|
22
|
+
TensorDictModule,
|
|
23
|
+
)
|
|
24
|
+
from tensordict.utils import expand_right, NestedKey
|
|
25
|
+
from torch import Tensor
|
|
26
|
+
|
|
27
|
+
from torchrl.data.tensor_specs import Composite, TensorSpec
|
|
28
|
+
from torchrl.data.utils import _find_action_space
|
|
29
|
+
from torchrl.envs.utils import ExplorationType, set_exploration_type
|
|
30
|
+
from torchrl.modules.tensordict_module.actors import ActorCriticWrapper
|
|
31
|
+
from torchrl.objectives.common import LossModule
|
|
32
|
+
from torchrl.objectives.utils import (
|
|
33
|
+
_cache_values,
|
|
34
|
+
_GAMMA_LMBDA_DEPREC_ERROR,
|
|
35
|
+
_reduce,
|
|
36
|
+
_vmap_func,
|
|
37
|
+
default_value_kwargs,
|
|
38
|
+
distance_loss,
|
|
39
|
+
ValueEstimators,
|
|
40
|
+
)
|
|
41
|
+
from torchrl.objectives.value import (
|
|
42
|
+
TD0Estimator,
|
|
43
|
+
TD1Estimator,
|
|
44
|
+
TDLambdaEstimator,
|
|
45
|
+
ValueEstimatorBase,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def _delezify(func):
|
|
50
|
+
@wraps(func)
|
|
51
|
+
def new_func(self, *args, **kwargs):
|
|
52
|
+
self.target_entropy
|
|
53
|
+
return func(self, *args, **kwargs)
|
|
54
|
+
|
|
55
|
+
return new_func
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def compute_log_prob(action_dist, action_or_tensordict, tensor_key) -> torch.Tensor:
|
|
59
|
+
"""Compute the log probability of an action given a distribution."""
|
|
60
|
+
lp = action_dist.log_prob(action_or_tensordict)
|
|
61
|
+
if isinstance(action_dist, CompositeDistribution):
|
|
62
|
+
with set_composite_lp_aggregate(False):
|
|
63
|
+
return sum(lp.sum(dim="feature").values(True, True))
|
|
64
|
+
return lp
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class SACLoss(LossModule):
|
|
68
|
+
"""TorchRL implementation of the SAC loss.
|
|
69
|
+
|
|
70
|
+
Presented in "Soft Actor-Critic: Off-Policy Maximum Entropy Deep
|
|
71
|
+
Reinforcement Learning with a Stochastic Actor" https://arxiv.org/abs/1801.01290
|
|
72
|
+
and "Soft Actor-Critic Algorithms and Applications" https://arxiv.org/abs/1812.05905
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
actor_network (ProbabilisticTensorDictSequential): stochastic actor
|
|
76
|
+
qvalue_network (TensorDictModule): Q(s, a) parametric model.
|
|
77
|
+
This module typically outputs a ``"state_action_value"`` entry.
|
|
78
|
+
If a single instance of `qvalue_network` is provided, it will be duplicated ``num_qvalue_nets``
|
|
79
|
+
times. If a list of modules is passed, their
|
|
80
|
+
parameters will be stacked unless they share the same identity (in which case
|
|
81
|
+
the original parameter will be expanded).
|
|
82
|
+
|
|
83
|
+
.. warning:: When a list of parameters if passed, it will **not** be compared against the policy parameters
|
|
84
|
+
and all the parameters will be considered as untied.
|
|
85
|
+
|
|
86
|
+
value_network (TensorDictModule, optional): V(s) parametric model.
|
|
87
|
+
This module typically outputs a ``"state_value"`` entry.
|
|
88
|
+
|
|
89
|
+
.. note::
|
|
90
|
+
If not provided, the second version of SAC is assumed, where
|
|
91
|
+
only the Q-Value network is needed.
|
|
92
|
+
|
|
93
|
+
Keyword Args:
|
|
94
|
+
num_qvalue_nets (integer, optional): number of Q-Value networks used.
|
|
95
|
+
Defaults to ``2``.
|
|
96
|
+
loss_function (str, optional): loss function to be used with
|
|
97
|
+
the value function loss. Default is `"smooth_l1"`.
|
|
98
|
+
alpha_init (:obj:`float`, optional): initial entropy multiplier.
|
|
99
|
+
Default is 1.0.
|
|
100
|
+
min_alpha (:obj:`float`, optional): min value of alpha.
|
|
101
|
+
Default is None (no minimum value).
|
|
102
|
+
max_alpha (:obj:`float`, optional): max value of alpha.
|
|
103
|
+
Default is None (no maximum value).
|
|
104
|
+
action_spec (TensorSpec, optional): the action tensor spec. If not provided
|
|
105
|
+
and the target entropy is ``"auto"``, it will be retrieved from
|
|
106
|
+
the actor.
|
|
107
|
+
fixed_alpha (bool, optional): if ``True``, alpha will be fixed to its
|
|
108
|
+
initial value. Otherwise, alpha will be optimized to
|
|
109
|
+
match the 'target_entropy' value.
|
|
110
|
+
Default is ``False``.
|
|
111
|
+
target_entropy (:obj:`float` or str, optional): Target entropy for the
|
|
112
|
+
stochastic policy. Default is "auto", where target entropy is
|
|
113
|
+
computed as :obj:`-prod(n_actions)`.
|
|
114
|
+
delay_actor (bool, optional): Whether to separate the target actor
|
|
115
|
+
networks from the actor networks used for data collection.
|
|
116
|
+
Default is ``False``.
|
|
117
|
+
delay_qvalue (bool, optional): Whether to separate the target Q value
|
|
118
|
+
networks from the Q value networks used for data collection.
|
|
119
|
+
Default is ``True``.
|
|
120
|
+
delay_value (bool, optional): Whether to separate the target value
|
|
121
|
+
networks from the value networks used for data collection.
|
|
122
|
+
Default is ``True``.
|
|
123
|
+
priority_key (str, optional): [Deprecated, use .set_keys(priority_key=priority_key) instead]
|
|
124
|
+
Tensordict key where to write the
|
|
125
|
+
priority (for prioritized replay buffer usage). Defaults to ``"td_error"``.
|
|
126
|
+
separate_losses (bool, optional): if ``True``, shared parameters between
|
|
127
|
+
policy and critic will only be trained on the policy loss.
|
|
128
|
+
Defaults to ``False``, i.e., gradients are propagated to shared
|
|
129
|
+
parameters for both policy and critic losses.
|
|
130
|
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
|
131
|
+
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
|
|
132
|
+
``"mean"``: the sum of the output will be divided by the number of
|
|
133
|
+
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
|
|
134
|
+
skip_done_states (bool, optional): whether the actor network used for value computation should only be run on
|
|
135
|
+
valid, non-terminating next states. If ``True``, it is assumed that the done state can be broadcast to the
|
|
136
|
+
shape of the data and that masking the data results in a valid data structure. Among other things, this may
|
|
137
|
+
not be true in MARL settings or when using RNNs. Defaults to ``False``.
|
|
138
|
+
deactivate_vmap (bool, optional): whether to deactivate vmap calls and replace them with a plain for loop.
|
|
139
|
+
Defaults to ``False``.
|
|
140
|
+
|
|
141
|
+
Examples:
|
|
142
|
+
>>> import torch
|
|
143
|
+
>>> from torch import nn
|
|
144
|
+
>>> from torchrl.data import Bounded
|
|
145
|
+
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
|
|
146
|
+
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
|
|
147
|
+
>>> from torchrl.modules.tensordict_module.common import SafeModule
|
|
148
|
+
>>> from torchrl.objectives.sac import SACLoss
|
|
149
|
+
>>> from tensordict import TensorDict
|
|
150
|
+
>>> n_act, n_obs = 4, 3
|
|
151
|
+
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
|
|
152
|
+
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
|
|
153
|
+
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
|
|
154
|
+
>>> actor = ProbabilisticActor(
|
|
155
|
+
... module=module,
|
|
156
|
+
... in_keys=["loc", "scale"],
|
|
157
|
+
... spec=spec,
|
|
158
|
+
... distribution_class=TanhNormal)
|
|
159
|
+
>>> class ValueClass(nn.Module):
|
|
160
|
+
... def __init__(self):
|
|
161
|
+
... super().__init__()
|
|
162
|
+
... self.linear = nn.Linear(n_obs + n_act, 1)
|
|
163
|
+
... def forward(self, obs, act):
|
|
164
|
+
... return self.linear(torch.cat([obs, act], -1))
|
|
165
|
+
>>> module = ValueClass()
|
|
166
|
+
>>> qvalue = ValueOperator(
|
|
167
|
+
... module=module,
|
|
168
|
+
... in_keys=['observation', 'action'])
|
|
169
|
+
>>> module = nn.Linear(n_obs, 1)
|
|
170
|
+
>>> value = ValueOperator(
|
|
171
|
+
... module=module,
|
|
172
|
+
... in_keys=["observation"])
|
|
173
|
+
>>> loss = SACLoss(actor, qvalue, value)
|
|
174
|
+
>>> batch = [2, ]
|
|
175
|
+
>>> action = spec.rand(batch)
|
|
176
|
+
>>> data = TensorDict({
|
|
177
|
+
... "observation": torch.randn(*batch, n_obs),
|
|
178
|
+
... "action": action,
|
|
179
|
+
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
|
|
180
|
+
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
|
|
181
|
+
... ("next", "reward"): torch.randn(*batch, 1),
|
|
182
|
+
... ("next", "observation"): torch.randn(*batch, n_obs),
|
|
183
|
+
... }, batch)
|
|
184
|
+
>>> loss(data)
|
|
185
|
+
TensorDict(
|
|
186
|
+
fields={
|
|
187
|
+
alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
188
|
+
entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
189
|
+
loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
190
|
+
loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
191
|
+
loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
192
|
+
loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
|
|
193
|
+
batch_size=torch.Size([]),
|
|
194
|
+
device=None,
|
|
195
|
+
is_shared=False)
|
|
196
|
+
|
|
197
|
+
This class is compatible with non-tensordict based modules too and can be
|
|
198
|
+
used without recurring to any tensordict-related primitive. In this case,
|
|
199
|
+
the expected keyword arguments are:
|
|
200
|
+
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor, value, and qvalue network.
|
|
201
|
+
The return value is a tuple of tensors in the following order:
|
|
202
|
+
``["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy"]`` + ``"loss_value"`` if version one is used.
|
|
203
|
+
|
|
204
|
+
Examples:
|
|
205
|
+
>>> import torch
|
|
206
|
+
>>> from torch import nn
|
|
207
|
+
>>> from torchrl.data import Bounded
|
|
208
|
+
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
|
|
209
|
+
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
|
|
210
|
+
>>> from torchrl.modules.tensordict_module.common import SafeModule
|
|
211
|
+
>>> from torchrl.objectives.sac import SACLoss
|
|
212
|
+
>>> _ = torch.manual_seed(42)
|
|
213
|
+
>>> n_act, n_obs = 4, 3
|
|
214
|
+
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
|
|
215
|
+
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
|
|
216
|
+
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
|
|
217
|
+
>>> actor = ProbabilisticActor(
|
|
218
|
+
... module=module,
|
|
219
|
+
... in_keys=["loc", "scale"],
|
|
220
|
+
... spec=spec,
|
|
221
|
+
... distribution_class=TanhNormal)
|
|
222
|
+
>>> class ValueClass(nn.Module):
|
|
223
|
+
... def __init__(self):
|
|
224
|
+
... super().__init__()
|
|
225
|
+
... self.linear = nn.Linear(n_obs + n_act, 1)
|
|
226
|
+
... def forward(self, obs, act):
|
|
227
|
+
... return self.linear(torch.cat([obs, act], -1))
|
|
228
|
+
>>> module = ValueClass()
|
|
229
|
+
>>> qvalue = ValueOperator(
|
|
230
|
+
... module=module,
|
|
231
|
+
... in_keys=['observation', 'action'])
|
|
232
|
+
>>> module = nn.Linear(n_obs, 1)
|
|
233
|
+
>>> value = ValueOperator(
|
|
234
|
+
... module=module,
|
|
235
|
+
... in_keys=["observation"])
|
|
236
|
+
>>> loss = SACLoss(actor, qvalue, value)
|
|
237
|
+
>>> batch = [2, ]
|
|
238
|
+
>>> action = spec.rand(batch)
|
|
239
|
+
>>> loss_actor, loss_qvalue, _, _, _, _ = loss(
|
|
240
|
+
... observation=torch.randn(*batch, n_obs),
|
|
241
|
+
... action=action,
|
|
242
|
+
... next_done=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
243
|
+
... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
244
|
+
... next_observation=torch.zeros(*batch, n_obs),
|
|
245
|
+
... next_reward=torch.randn(*batch, 1))
|
|
246
|
+
>>> loss_actor.backward()
|
|
247
|
+
|
|
248
|
+
The output keys can also be filtered using the :meth:`SACLoss.select_out_keys`
|
|
249
|
+
method.
|
|
250
|
+
|
|
251
|
+
Examples:
|
|
252
|
+
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue')
|
|
253
|
+
>>> loss_actor, loss_qvalue = loss(
|
|
254
|
+
... observation=torch.randn(*batch, n_obs),
|
|
255
|
+
... action=action,
|
|
256
|
+
... next_done=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
257
|
+
... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
258
|
+
... next_observation=torch.zeros(*batch, n_obs),
|
|
259
|
+
... next_reward=torch.randn(*batch, 1))
|
|
260
|
+
>>> loss_actor.backward()
|
|
261
|
+
"""
|
|
262
|
+
|
|
263
|
+
@dataclass
|
|
264
|
+
class _AcceptedKeys:
|
|
265
|
+
"""Maintains default values for all configurable tensordict keys.
|
|
266
|
+
|
|
267
|
+
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
|
|
268
|
+
default values.
|
|
269
|
+
|
|
270
|
+
Attributes:
|
|
271
|
+
action (NestedKey): The input tensordict key where the action is expected.
|
|
272
|
+
Defaults to ``"advantage"``.
|
|
273
|
+
value (NestedKey): The input tensordict key where the state value is expected.
|
|
274
|
+
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
|
|
275
|
+
state_action_value (NestedKey): The input tensordict key where the
|
|
276
|
+
state action value is expected. Defaults to ``"state_action_value"``.
|
|
277
|
+
log_prob (NestedKey): The input tensordict key where the log probability is expected.
|
|
278
|
+
Defaults to ``"sample_log_prob"`` when :func:`~tensordict.nn.composite_lp_aggregate` returns `True`,
|
|
279
|
+
`"action_log_prob"` otherwise.
|
|
280
|
+
priority (NestedKey): The input tensordict key where the target priority is written to.
|
|
281
|
+
Defaults to ``"td_error"``.
|
|
282
|
+
reward (NestedKey): The input tensordict key where the reward is expected.
|
|
283
|
+
Will be used for the underlying value estimator. Defaults to ``"reward"``.
|
|
284
|
+
done (NestedKey): The key in the input TensorDict that indicates
|
|
285
|
+
whether a trajectory is done. Will be used for the underlying value estimator.
|
|
286
|
+
Defaults to ``"done"``.
|
|
287
|
+
terminated (NestedKey): The key in the input TensorDict that indicates
|
|
288
|
+
whether a trajectory is terminated. Will be used for the underlying value estimator.
|
|
289
|
+
Defaults to ``"terminated"``.
|
|
290
|
+
"""
|
|
291
|
+
|
|
292
|
+
action: NestedKey = "action"
|
|
293
|
+
value: NestedKey = "state_value"
|
|
294
|
+
state_action_value: NestedKey = "state_action_value"
|
|
295
|
+
log_prob: NestedKey | None = None
|
|
296
|
+
priority: NestedKey = "td_error"
|
|
297
|
+
reward: NestedKey = "reward"
|
|
298
|
+
done: NestedKey = "done"
|
|
299
|
+
terminated: NestedKey = "terminated"
|
|
300
|
+
priority_weight: NestedKey = "priority_weight"
|
|
301
|
+
|
|
302
|
+
def __post_init__(self):
|
|
303
|
+
if self.log_prob is None:
|
|
304
|
+
if composite_lp_aggregate(nowarn=True):
|
|
305
|
+
self.log_prob = "sample_log_prob"
|
|
306
|
+
else:
|
|
307
|
+
self.log_prob = "action_log_prob"
|
|
308
|
+
|
|
309
|
+
default_keys = _AcceptedKeys
|
|
310
|
+
tensor_keys: _AcceptedKeys
|
|
311
|
+
default_value_estimator = ValueEstimators.TD0
|
|
312
|
+
|
|
313
|
+
actor_network: TensorDictModule
|
|
314
|
+
qvalue_network: TensorDictModule
|
|
315
|
+
value_network: TensorDictModule | None
|
|
316
|
+
actor_network_params: TensorDictParams
|
|
317
|
+
qvalue_network_params: TensorDictParams
|
|
318
|
+
value_network_params: TensorDictParams | None
|
|
319
|
+
target_actor_network_params: TensorDictParams
|
|
320
|
+
target_qvalue_network_params: TensorDictParams
|
|
321
|
+
target_value_network_params: TensorDictParams | None
|
|
322
|
+
|
|
323
|
+
def __init__(
|
|
324
|
+
self,
|
|
325
|
+
actor_network: ProbabilisticTensorDictSequential,
|
|
326
|
+
qvalue_network: TensorDictModule | list[TensorDictModule],
|
|
327
|
+
value_network: TensorDictModule | None = None,
|
|
328
|
+
*,
|
|
329
|
+
num_qvalue_nets: int = 2,
|
|
330
|
+
loss_function: str = "smooth_l1",
|
|
331
|
+
alpha_init: float = 1.0,
|
|
332
|
+
min_alpha: float | None = None,
|
|
333
|
+
max_alpha: float | None = None,
|
|
334
|
+
action_spec: TensorSpec | None = None,
|
|
335
|
+
fixed_alpha: bool = False,
|
|
336
|
+
target_entropy: str | float = "auto",
|
|
337
|
+
delay_actor: bool = False,
|
|
338
|
+
delay_qvalue: bool = True,
|
|
339
|
+
delay_value: bool = True,
|
|
340
|
+
gamma: float | None = None,
|
|
341
|
+
priority_key: str | None = None,
|
|
342
|
+
separate_losses: bool = False,
|
|
343
|
+
reduction: str | None = None,
|
|
344
|
+
skip_done_states: bool = False,
|
|
345
|
+
deactivate_vmap: bool = False,
|
|
346
|
+
use_prioritized_weights: str | bool = "auto",
|
|
347
|
+
) -> None:
|
|
348
|
+
self._in_keys = None
|
|
349
|
+
self._out_keys = None
|
|
350
|
+
if reduction is None:
|
|
351
|
+
reduction = "mean"
|
|
352
|
+
super().__init__()
|
|
353
|
+
self.use_prioritized_weights = use_prioritized_weights
|
|
354
|
+
self._set_deprecated_ctor_keys(priority_key=priority_key)
|
|
355
|
+
|
|
356
|
+
# Actor
|
|
357
|
+
self.delay_actor = delay_actor
|
|
358
|
+
self.deactivate_vmap = deactivate_vmap
|
|
359
|
+
self.convert_to_functional(
|
|
360
|
+
actor_network,
|
|
361
|
+
"actor_network",
|
|
362
|
+
create_target_params=self.delay_actor,
|
|
363
|
+
)
|
|
364
|
+
if separate_losses:
|
|
365
|
+
# we want to make sure there are no duplicates in the params: the
|
|
366
|
+
# params of critic must be refs to actor if they're shared
|
|
367
|
+
policy_params = list(actor_network.parameters())
|
|
368
|
+
else:
|
|
369
|
+
policy_params = None
|
|
370
|
+
q_value_policy_params = None
|
|
371
|
+
# Value
|
|
372
|
+
if value_network is not None:
|
|
373
|
+
self._version = 1
|
|
374
|
+
self.delay_value = delay_value
|
|
375
|
+
self.convert_to_functional(
|
|
376
|
+
value_network,
|
|
377
|
+
"value_network",
|
|
378
|
+
create_target_params=self.delay_value,
|
|
379
|
+
compare_against=policy_params,
|
|
380
|
+
)
|
|
381
|
+
else:
|
|
382
|
+
self._version = 2
|
|
383
|
+
self.value_network_params = None
|
|
384
|
+
self.target_value_network_params = None
|
|
385
|
+
|
|
386
|
+
# Q value
|
|
387
|
+
self.delay_qvalue = delay_qvalue
|
|
388
|
+
self.num_qvalue_nets = num_qvalue_nets
|
|
389
|
+
if self._version == 1:
|
|
390
|
+
if separate_losses:
|
|
391
|
+
value_params = list(value_network.parameters())
|
|
392
|
+
q_value_policy_params = policy_params + value_params
|
|
393
|
+
else:
|
|
394
|
+
q_value_policy_params = policy_params
|
|
395
|
+
else:
|
|
396
|
+
q_value_policy_params = policy_params
|
|
397
|
+
self.convert_to_functional(
|
|
398
|
+
qvalue_network,
|
|
399
|
+
"qvalue_network",
|
|
400
|
+
num_qvalue_nets,
|
|
401
|
+
create_target_params=self.delay_qvalue,
|
|
402
|
+
compare_against=q_value_policy_params,
|
|
403
|
+
)
|
|
404
|
+
|
|
405
|
+
self.loss_function = loss_function
|
|
406
|
+
try:
|
|
407
|
+
device = next(self.parameters()).device
|
|
408
|
+
except AttributeError:
|
|
409
|
+
device = getattr(torch, "get_default_device", lambda: torch.device("cpu"))()
|
|
410
|
+
self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device))
|
|
411
|
+
if bool(min_alpha) ^ bool(max_alpha):
|
|
412
|
+
min_alpha = min_alpha if min_alpha else 0.0
|
|
413
|
+
if max_alpha == 0:
|
|
414
|
+
raise ValueError("max_alpha must be either None or greater than 0.")
|
|
415
|
+
max_alpha = max_alpha if max_alpha else 1e9
|
|
416
|
+
if min_alpha:
|
|
417
|
+
self.register_buffer(
|
|
418
|
+
"min_log_alpha", torch.tensor(min_alpha, device=device).log()
|
|
419
|
+
)
|
|
420
|
+
else:
|
|
421
|
+
self.min_log_alpha = None
|
|
422
|
+
if max_alpha:
|
|
423
|
+
self.register_buffer(
|
|
424
|
+
"max_log_alpha", torch.tensor(max_alpha, device=device).log()
|
|
425
|
+
)
|
|
426
|
+
else:
|
|
427
|
+
self.max_log_alpha = None
|
|
428
|
+
self.fixed_alpha = fixed_alpha
|
|
429
|
+
if fixed_alpha:
|
|
430
|
+
self.register_buffer(
|
|
431
|
+
"log_alpha", torch.tensor(math.log(alpha_init), device=device)
|
|
432
|
+
)
|
|
433
|
+
else:
|
|
434
|
+
self.register_parameter(
|
|
435
|
+
"log_alpha",
|
|
436
|
+
torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)),
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
self._target_entropy = target_entropy
|
|
440
|
+
self._action_spec = action_spec
|
|
441
|
+
if self._version == 1:
|
|
442
|
+
self.__dict__["actor_critic"] = ActorCriticWrapper(
|
|
443
|
+
self.actor_network, self.value_network
|
|
444
|
+
)
|
|
445
|
+
if gamma is not None:
|
|
446
|
+
raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
|
|
447
|
+
self._make_vmap()
|
|
448
|
+
self.reduction = reduction
|
|
449
|
+
self.skip_done_states = skip_done_states
|
|
450
|
+
|
|
451
|
+
log_prob_keys = getattr(self.actor_network, "log_prob_keys", [])
|
|
452
|
+
action_keys = getattr(self.actor_network, "dist_sample_keys", [])
|
|
453
|
+
if len(log_prob_keys) > 1:
|
|
454
|
+
self.set_keys(log_prob=log_prob_keys, action=action_keys)
|
|
455
|
+
else:
|
|
456
|
+
self.set_keys(log_prob=log_prob_keys[0], action=action_keys[0])
|
|
457
|
+
|
|
458
|
+
def _make_vmap(self):
|
|
459
|
+
self._vmap_qnetworkN0 = _vmap_func(
|
|
460
|
+
self.qvalue_network,
|
|
461
|
+
(None, 0),
|
|
462
|
+
randomness=self.vmap_randomness,
|
|
463
|
+
pseudo_vmap=self.deactivate_vmap,
|
|
464
|
+
)
|
|
465
|
+
if self._version == 1:
|
|
466
|
+
self._vmap_qnetwork00 = _vmap_func(
|
|
467
|
+
self.qvalue_network,
|
|
468
|
+
randomness=self.vmap_randomness,
|
|
469
|
+
pseudo_vmap=self.deactivate_vmap,
|
|
470
|
+
)
|
|
471
|
+
|
|
472
|
+
@property
|
|
473
|
+
def target_entropy_buffer(self):
|
|
474
|
+
return self.target_entropy
|
|
475
|
+
|
|
476
|
+
@property
|
|
477
|
+
def target_entropy(self):
|
|
478
|
+
target_entropy = self._buffers.get("_target_entropy", None)
|
|
479
|
+
if target_entropy is not None:
|
|
480
|
+
return target_entropy
|
|
481
|
+
target_entropy = self._target_entropy
|
|
482
|
+
action_spec = self._action_spec
|
|
483
|
+
actor_network = self.actor_network
|
|
484
|
+
device = next(self.parameters()).device
|
|
485
|
+
if target_entropy == "auto":
|
|
486
|
+
action_spec = (
|
|
487
|
+
action_spec
|
|
488
|
+
if action_spec is not None
|
|
489
|
+
else getattr(actor_network, "spec", None)
|
|
490
|
+
)
|
|
491
|
+
if action_spec is None:
|
|
492
|
+
raise RuntimeError(
|
|
493
|
+
"Cannot infer the dimensionality of the action. Consider providing "
|
|
494
|
+
"the target entropy explicitly or provide the spec of the "
|
|
495
|
+
"action tensor in the actor network."
|
|
496
|
+
)
|
|
497
|
+
if not isinstance(action_spec, Composite):
|
|
498
|
+
action_spec = Composite({self.tensor_keys.action: action_spec})
|
|
499
|
+
if (
|
|
500
|
+
isinstance(self.tensor_keys.action, tuple)
|
|
501
|
+
and len(self.tensor_keys.action) > 1
|
|
502
|
+
):
|
|
503
|
+
action_container_shape = action_spec[self.tensor_keys.action[:-1]].shape
|
|
504
|
+
else:
|
|
505
|
+
action_container_shape = action_spec.shape
|
|
506
|
+
action_spec_leaf = action_spec[self.tensor_keys.action]
|
|
507
|
+
if action_spec_leaf is None:
|
|
508
|
+
raise RuntimeError(
|
|
509
|
+
"Cannot infer the dimensionality of the action. The action spec "
|
|
510
|
+
f"for key '{self.tensor_keys.action}' is None. This can happen when "
|
|
511
|
+
"using composite action distributions. Consider providing the "
|
|
512
|
+
"'action_spec' or 'target_entropy' argument explicitly to the loss."
|
|
513
|
+
)
|
|
514
|
+
if isinstance(action_spec_leaf, Composite):
|
|
515
|
+
# For composite action specs, sum the numel of all leaf specs
|
|
516
|
+
target_entropy = -float(
|
|
517
|
+
self._compute_composite_spec_numel(
|
|
518
|
+
action_spec_leaf, action_container_shape
|
|
519
|
+
)
|
|
520
|
+
)
|
|
521
|
+
else:
|
|
522
|
+
target_entropy = -float(
|
|
523
|
+
action_spec_leaf.shape[len(action_container_shape) :].numel()
|
|
524
|
+
)
|
|
525
|
+
delattr(self, "_target_entropy")
|
|
526
|
+
self.register_buffer(
|
|
527
|
+
"_target_entropy", torch.tensor(target_entropy, device=device)
|
|
528
|
+
)
|
|
529
|
+
return self._target_entropy
|
|
530
|
+
|
|
531
|
+
state_dict = _delezify(LossModule.state_dict)
|
|
532
|
+
load_state_dict = _delezify(LossModule.load_state_dict)
|
|
533
|
+
|
|
534
|
+
def _compute_composite_spec_numel(
|
|
535
|
+
self, spec: Composite, container_shape: torch.Size
|
|
536
|
+
) -> int:
|
|
537
|
+
"""Compute the total number of action elements in a Composite spec.
|
|
538
|
+
|
|
539
|
+
This handles composite action distributions where multiple sub-actions
|
|
540
|
+
are grouped together.
|
|
541
|
+
"""
|
|
542
|
+
total = 0
|
|
543
|
+
for subspec in spec.values():
|
|
544
|
+
if subspec is None:
|
|
545
|
+
continue
|
|
546
|
+
if isinstance(subspec, Composite):
|
|
547
|
+
total += self._compute_composite_spec_numel(subspec, container_shape)
|
|
548
|
+
else:
|
|
549
|
+
total += subspec.shape[len(container_shape) :].numel()
|
|
550
|
+
return total
|
|
551
|
+
|
|
552
|
+
def _forward_value_estimator_keys(self, **kwargs) -> None:
|
|
553
|
+
if self._value_estimator is not None:
|
|
554
|
+
self._value_estimator.set_keys(
|
|
555
|
+
value=self.tensor_keys.value,
|
|
556
|
+
reward=self.tensor_keys.reward,
|
|
557
|
+
done=self.tensor_keys.done,
|
|
558
|
+
terminated=self.tensor_keys.terminated,
|
|
559
|
+
)
|
|
560
|
+
self._set_in_keys()
|
|
561
|
+
|
|
562
|
+
def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
|
|
563
|
+
if value_type is None:
|
|
564
|
+
value_type = self.default_value_estimator
|
|
565
|
+
|
|
566
|
+
# Handle ValueEstimatorBase instance or class
|
|
567
|
+
if isinstance(value_type, ValueEstimatorBase) or (
|
|
568
|
+
isinstance(value_type, type) and issubclass(value_type, ValueEstimatorBase)
|
|
569
|
+
):
|
|
570
|
+
return LossModule.make_value_estimator(self, value_type, **hyperparams)
|
|
571
|
+
|
|
572
|
+
self.value_type = value_type
|
|
573
|
+
if self._version == 1:
|
|
574
|
+
value_net = self.actor_critic
|
|
575
|
+
elif self._version == 2:
|
|
576
|
+
# we will take care of computing the next value inside this module
|
|
577
|
+
value_net = None
|
|
578
|
+
else:
|
|
579
|
+
# unreachable
|
|
580
|
+
raise NotImplementedError
|
|
581
|
+
|
|
582
|
+
hp = dict(default_value_kwargs(value_type))
|
|
583
|
+
hp.update(hyperparams)
|
|
584
|
+
if value_type is ValueEstimators.TD1:
|
|
585
|
+
self._value_estimator = TD1Estimator(
|
|
586
|
+
**hp,
|
|
587
|
+
value_network=value_net,
|
|
588
|
+
deactivate_vmap=self.deactivate_vmap,
|
|
589
|
+
)
|
|
590
|
+
elif value_type is ValueEstimators.TD0:
|
|
591
|
+
self._value_estimator = TD0Estimator(
|
|
592
|
+
**hp,
|
|
593
|
+
value_network=value_net,
|
|
594
|
+
deactivate_vmap=self.deactivate_vmap,
|
|
595
|
+
)
|
|
596
|
+
elif value_type is ValueEstimators.GAE:
|
|
597
|
+
raise NotImplementedError(
|
|
598
|
+
f"Value type {value_type} it not implemented for loss {type(self)}."
|
|
599
|
+
)
|
|
600
|
+
elif value_type is ValueEstimators.TDLambda:
|
|
601
|
+
self._value_estimator = TDLambdaEstimator(
|
|
602
|
+
**hp,
|
|
603
|
+
value_network=value_net,
|
|
604
|
+
deactivate_vmap=self.deactivate_vmap,
|
|
605
|
+
)
|
|
606
|
+
else:
|
|
607
|
+
raise NotImplementedError(f"Unknown value type {value_type}")
|
|
608
|
+
|
|
609
|
+
tensor_keys = {
|
|
610
|
+
"value_target": "value_target",
|
|
611
|
+
"value": self.tensor_keys.value,
|
|
612
|
+
"reward": self.tensor_keys.reward,
|
|
613
|
+
"done": self.tensor_keys.done,
|
|
614
|
+
"terminated": self.tensor_keys.terminated,
|
|
615
|
+
}
|
|
616
|
+
self._value_estimator.set_keys(**tensor_keys)
|
|
617
|
+
|
|
618
|
+
@property
|
|
619
|
+
def device(self) -> torch.device:
|
|
620
|
+
for p in self.parameters():
|
|
621
|
+
return p.device
|
|
622
|
+
raise RuntimeError(
|
|
623
|
+
"At least one of the networks of SACLoss must have trainable " "parameters."
|
|
624
|
+
)
|
|
625
|
+
|
|
626
|
+
def _set_in_keys(self):
|
|
627
|
+
keys = [
|
|
628
|
+
self.tensor_keys.action,
|
|
629
|
+
("next", self.tensor_keys.reward),
|
|
630
|
+
("next", self.tensor_keys.done),
|
|
631
|
+
("next", self.tensor_keys.terminated),
|
|
632
|
+
*self.actor_network.in_keys,
|
|
633
|
+
*[("next", key) for key in self.actor_network.in_keys],
|
|
634
|
+
*self.qvalue_network.in_keys,
|
|
635
|
+
]
|
|
636
|
+
if self._version == 1:
|
|
637
|
+
keys.extend(self.value_network.in_keys)
|
|
638
|
+
self._in_keys = list(set(keys))
|
|
639
|
+
|
|
640
|
+
@property
|
|
641
|
+
def in_keys(self):
|
|
642
|
+
if self._in_keys is None:
|
|
643
|
+
self._set_in_keys()
|
|
644
|
+
return self._in_keys
|
|
645
|
+
|
|
646
|
+
@in_keys.setter
|
|
647
|
+
def in_keys(self, values):
|
|
648
|
+
self._in_keys = values
|
|
649
|
+
|
|
650
|
+
@property
|
|
651
|
+
def out_keys(self):
|
|
652
|
+
if self._out_keys is None:
|
|
653
|
+
keys = ["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy"]
|
|
654
|
+
if self._version == 1:
|
|
655
|
+
keys.append("loss_value")
|
|
656
|
+
self._out_keys = keys
|
|
657
|
+
return self._out_keys
|
|
658
|
+
|
|
659
|
+
@out_keys.setter
|
|
660
|
+
def out_keys(self, values):
|
|
661
|
+
self._out_keys = values
|
|
662
|
+
|
|
663
|
+
@dispatch
|
|
664
|
+
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
|
665
|
+
if self._version == 1:
|
|
666
|
+
loss_qvalue, value_metadata = self.qvalue_v1_loss(tensordict)
|
|
667
|
+
loss_value, _ = self.value_loss(tensordict)
|
|
668
|
+
else:
|
|
669
|
+
loss_qvalue, value_metadata = self.qvalue_v2_loss(tensordict)
|
|
670
|
+
loss_value = None
|
|
671
|
+
loss_actor, metadata_actor = self.actor_loss(tensordict)
|
|
672
|
+
loss_alpha = self._alpha_loss(log_prob=metadata_actor["log_prob"])
|
|
673
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
674
|
+
loss_alpha = _reduce(loss_alpha, reduction=self.reduction, weights=weights)
|
|
675
|
+
tensordict.set(self.tensor_keys.priority, value_metadata["td_error"])
|
|
676
|
+
if (loss_actor.shape != loss_qvalue.shape) or (
|
|
677
|
+
loss_value is not None and loss_actor.shape != loss_value.shape
|
|
678
|
+
):
|
|
679
|
+
raise RuntimeError(
|
|
680
|
+
f"Losses shape mismatch: {loss_actor.shape}, {loss_qvalue.shape} and {loss_value.shape}"
|
|
681
|
+
)
|
|
682
|
+
entropy = -metadata_actor["log_prob"]
|
|
683
|
+
out = {
|
|
684
|
+
"loss_actor": loss_actor,
|
|
685
|
+
"loss_qvalue": loss_qvalue,
|
|
686
|
+
"loss_alpha": loss_alpha,
|
|
687
|
+
"alpha": self._alpha,
|
|
688
|
+
"entropy": entropy.detach().mean(),
|
|
689
|
+
}
|
|
690
|
+
if self._version == 1:
|
|
691
|
+
out["loss_value"] = loss_value
|
|
692
|
+
td_out = TensorDict(out)
|
|
693
|
+
self._clear_weakrefs(
|
|
694
|
+
tensordict,
|
|
695
|
+
td_out,
|
|
696
|
+
"actor_network_params",
|
|
697
|
+
"qvalue_network_params",
|
|
698
|
+
"value_network_params",
|
|
699
|
+
"target_actor_network_params",
|
|
700
|
+
"target_qvalue_network_params",
|
|
701
|
+
"target_value_network_params",
|
|
702
|
+
)
|
|
703
|
+
return td_out
|
|
704
|
+
|
|
705
|
+
@property
|
|
706
|
+
@_cache_values
|
|
707
|
+
def _cached_detached_qvalue_params(self):
|
|
708
|
+
return self.qvalue_network_params.detach()
|
|
709
|
+
|
|
710
|
+
def actor_loss(
|
|
711
|
+
self, tensordict: TensorDictBase
|
|
712
|
+
) -> tuple[Tensor, dict[str, Tensor]]:
|
|
713
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
714
|
+
with set_exploration_type(
|
|
715
|
+
ExplorationType.RANDOM
|
|
716
|
+
), self.actor_network_params.to_module(self.actor_network):
|
|
717
|
+
dist = self.actor_network.get_dist(tensordict)
|
|
718
|
+
a_reparm = dist.rsample()
|
|
719
|
+
log_prob = compute_log_prob(dist, a_reparm, self.tensor_keys.log_prob)
|
|
720
|
+
|
|
721
|
+
td_q = tensordict.select(*self.qvalue_network.in_keys, strict=False)
|
|
722
|
+
td_q.set(self.tensor_keys.action, a_reparm)
|
|
723
|
+
td_q = self._vmap_qnetworkN0(
|
|
724
|
+
td_q,
|
|
725
|
+
self._cached_detached_qvalue_params, # should we clone?
|
|
726
|
+
)
|
|
727
|
+
min_q_logprob = (
|
|
728
|
+
td_q.get(self.tensor_keys.state_action_value).min(0)[0].squeeze(-1)
|
|
729
|
+
)
|
|
730
|
+
|
|
731
|
+
if log_prob.shape != min_q_logprob.shape:
|
|
732
|
+
raise RuntimeError(
|
|
733
|
+
f"Losses shape mismatch: {log_prob.shape} and {min_q_logprob.shape}"
|
|
734
|
+
)
|
|
735
|
+
loss_actor = self._alpha * log_prob - min_q_logprob
|
|
736
|
+
loss_actor = _reduce(loss_actor, reduction=self.reduction, weights=weights)
|
|
737
|
+
return loss_actor, {"log_prob": log_prob.detach()}
|
|
738
|
+
|
|
739
|
+
def alpha_loss(self, log_prob: Tensor) -> Tensor:
|
|
740
|
+
"""Compute the alpha loss for SAC.
|
|
741
|
+
|
|
742
|
+
This method computes the alpha loss which adapts the entropy coefficient
|
|
743
|
+
to maintain the target entropy level.
|
|
744
|
+
|
|
745
|
+
Args:
|
|
746
|
+
log_prob (Tensor): The log probability of actions from the actor network.
|
|
747
|
+
|
|
748
|
+
Returns:
|
|
749
|
+
The alpha loss tensor
|
|
750
|
+
"""
|
|
751
|
+
return self._alpha_loss(log_prob)
|
|
752
|
+
|
|
753
|
+
@property
|
|
754
|
+
def _alpha(self):
|
|
755
|
+
if self.min_log_alpha is not None or self.max_log_alpha is not None:
|
|
756
|
+
self.log_alpha.data.clamp_(self.min_log_alpha, self.max_log_alpha)
|
|
757
|
+
with torch.no_grad():
|
|
758
|
+
alpha = self.log_alpha.exp()
|
|
759
|
+
return alpha
|
|
760
|
+
|
|
761
|
+
@property
|
|
762
|
+
@_cache_values
|
|
763
|
+
def _cached_target_params_actor_value(self):
|
|
764
|
+
return TensorDict._new_unsafe(
|
|
765
|
+
{
|
|
766
|
+
"module": {
|
|
767
|
+
"0": self.target_actor_network_params,
|
|
768
|
+
"1": self.target_value_network_params,
|
|
769
|
+
}
|
|
770
|
+
},
|
|
771
|
+
torch.Size([]),
|
|
772
|
+
)
|
|
773
|
+
|
|
774
|
+
def qvalue_v1_loss(
|
|
775
|
+
self, tensordict: TensorDictBase
|
|
776
|
+
) -> tuple[Tensor, dict[str, Tensor]]:
|
|
777
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
778
|
+
target_params = self._cached_target_params_actor_value
|
|
779
|
+
with set_exploration_type(self.deterministic_sampling_mode):
|
|
780
|
+
target_value = self.value_estimator.value_estimate(
|
|
781
|
+
tensordict, target_params=target_params
|
|
782
|
+
).squeeze(-1)
|
|
783
|
+
|
|
784
|
+
# Q-nets must be trained independently: as such, we split the data in 2
|
|
785
|
+
# if required and train each q-net on one half of the data.
|
|
786
|
+
shape = tensordict.shape
|
|
787
|
+
if shape[0] % self.num_qvalue_nets != 0:
|
|
788
|
+
raise RuntimeError(
|
|
789
|
+
f"Batch size={tensordict.shape} is incompatible "
|
|
790
|
+
f"with num_qvqlue_nets={self.num_qvalue_nets}."
|
|
791
|
+
)
|
|
792
|
+
tensordict_chunks = tensordict.reshape(
|
|
793
|
+
self.num_qvalue_nets, -1, *tensordict.shape[1:]
|
|
794
|
+
)
|
|
795
|
+
target_chunks = target_value.reshape(
|
|
796
|
+
self.num_qvalue_nets, -1, *target_value.shape[1:]
|
|
797
|
+
)
|
|
798
|
+
|
|
799
|
+
# if vmap=True, it is assumed that the input tensordict must be cast to the param shape
|
|
800
|
+
tensordict_chunks = self._vmap_qnetwork00(
|
|
801
|
+
tensordict_chunks, self.qvalue_network_params
|
|
802
|
+
)
|
|
803
|
+
pred_val = tensordict_chunks.get(self.tensor_keys.state_action_value)
|
|
804
|
+
pred_val = pred_val.squeeze(-1)
|
|
805
|
+
loss_value = distance_loss(
|
|
806
|
+
pred_val, target_chunks, loss_function=self.loss_function
|
|
807
|
+
).view(*shape)
|
|
808
|
+
loss_value = _reduce(loss_value, reduction=self.reduction, weights=weights)
|
|
809
|
+
metadata = {"td_error": (pred_val - target_chunks).pow(2).flatten(0, 1)}
|
|
810
|
+
|
|
811
|
+
return loss_value, metadata
|
|
812
|
+
|
|
813
|
+
def _compute_target_v2(self, tensordict) -> Tensor:
|
|
814
|
+
r"""Value network for SAC v2.
|
|
815
|
+
|
|
816
|
+
SAC v2 is based on a value estimate of the form:
|
|
817
|
+
|
|
818
|
+
.. math::
|
|
819
|
+
|
|
820
|
+
V = Q(s,a) - \alpha * \log p(a | s)
|
|
821
|
+
|
|
822
|
+
This class computes this value given the actor and qvalue network
|
|
823
|
+
|
|
824
|
+
"""
|
|
825
|
+
tensordict = tensordict.clone(False)
|
|
826
|
+
# get actions and log-probs
|
|
827
|
+
with torch.no_grad():
|
|
828
|
+
with set_exploration_type(
|
|
829
|
+
ExplorationType.RANDOM
|
|
830
|
+
), self.actor_network_params.to_module(self.actor_network):
|
|
831
|
+
next_tensordict = tensordict.get("next").copy()
|
|
832
|
+
if self.skip_done_states:
|
|
833
|
+
# Check done state and avoid passing these to the actor
|
|
834
|
+
done = next_tensordict.get(self.tensor_keys.done)
|
|
835
|
+
if done is not None and done.any():
|
|
836
|
+
next_tensordict_select = next_tensordict[~done.squeeze(-1)]
|
|
837
|
+
else:
|
|
838
|
+
next_tensordict_select = next_tensordict
|
|
839
|
+
next_dist = self.actor_network.get_dist(next_tensordict_select)
|
|
840
|
+
next_action = next_dist.rsample()
|
|
841
|
+
next_sample_log_prob = compute_log_prob(
|
|
842
|
+
next_dist, next_action, self.tensor_keys.log_prob
|
|
843
|
+
)
|
|
844
|
+
if next_tensordict_select is not next_tensordict:
|
|
845
|
+
mask = ~done.squeeze(-1)
|
|
846
|
+
if mask.ndim < next_action.ndim:
|
|
847
|
+
mask = expand_right(
|
|
848
|
+
mask, (*mask.shape, *next_action.shape[mask.ndim :])
|
|
849
|
+
)
|
|
850
|
+
next_action = next_action.new_zeros(mask.shape).masked_scatter_(
|
|
851
|
+
mask, next_action
|
|
852
|
+
)
|
|
853
|
+
mask = ~done.squeeze(-1)
|
|
854
|
+
if mask.ndim < next_sample_log_prob.ndim:
|
|
855
|
+
mask = expand_right(
|
|
856
|
+
mask,
|
|
857
|
+
(*mask.shape, *next_sample_log_prob.shape[mask.ndim :]),
|
|
858
|
+
)
|
|
859
|
+
next_sample_log_prob = next_sample_log_prob.new_zeros(
|
|
860
|
+
mask.shape
|
|
861
|
+
).masked_scatter_(mask, next_sample_log_prob)
|
|
862
|
+
next_tensordict.set(self.tensor_keys.action, next_action)
|
|
863
|
+
else:
|
|
864
|
+
next_dist = self.actor_network.get_dist(next_tensordict)
|
|
865
|
+
next_action = next_dist.rsample()
|
|
866
|
+
next_tensordict.set(self.tensor_keys.action, next_action)
|
|
867
|
+
next_sample_log_prob = compute_log_prob(
|
|
868
|
+
next_dist, next_action, self.tensor_keys.log_prob
|
|
869
|
+
)
|
|
870
|
+
|
|
871
|
+
# get q-values
|
|
872
|
+
next_tensordict_expand = self._vmap_qnetworkN0(
|
|
873
|
+
next_tensordict, self.target_qvalue_network_params
|
|
874
|
+
)
|
|
875
|
+
state_action_value = next_tensordict_expand.get(
|
|
876
|
+
self.tensor_keys.state_action_value
|
|
877
|
+
)
|
|
878
|
+
if (
|
|
879
|
+
state_action_value.shape[-len(next_sample_log_prob.shape) :]
|
|
880
|
+
!= next_sample_log_prob.shape
|
|
881
|
+
):
|
|
882
|
+
next_sample_log_prob = next_sample_log_prob.unsqueeze(-1)
|
|
883
|
+
next_state_value = state_action_value - self._alpha * next_sample_log_prob
|
|
884
|
+
next_state_value = next_state_value.min(0)[0]
|
|
885
|
+
tensordict.set(
|
|
886
|
+
("next", self.value_estimator.tensor_keys.value), next_state_value
|
|
887
|
+
)
|
|
888
|
+
target_value = self.value_estimator.value_estimate(tensordict).squeeze(-1)
|
|
889
|
+
return target_value
|
|
890
|
+
|
|
891
|
+
def qvalue_v2_loss(
|
|
892
|
+
self, tensordict: TensorDictBase
|
|
893
|
+
) -> tuple[Tensor, dict[str, Tensor]]:
|
|
894
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
895
|
+
# we pass the alpha value to the tensordict. Since it's a scalar, we must erase the batch-size first.
|
|
896
|
+
target_value = self._compute_target_v2(tensordict)
|
|
897
|
+
|
|
898
|
+
tensordict_expand = self._vmap_qnetworkN0(
|
|
899
|
+
tensordict.select(*self.qvalue_network.in_keys, strict=False),
|
|
900
|
+
self.qvalue_network_params,
|
|
901
|
+
)
|
|
902
|
+
pred_val = tensordict_expand.get(self.tensor_keys.state_action_value).squeeze(
|
|
903
|
+
-1
|
|
904
|
+
)
|
|
905
|
+
td_error = abs(pred_val - target_value)
|
|
906
|
+
loss_qval = distance_loss(
|
|
907
|
+
pred_val,
|
|
908
|
+
target_value.expand_as(pred_val),
|
|
909
|
+
loss_function=self.loss_function,
|
|
910
|
+
).sum(0)
|
|
911
|
+
loss_qval = _reduce(loss_qval, reduction=self.reduction, weights=weights)
|
|
912
|
+
metadata = {"td_error": td_error.detach().max(0)[0]}
|
|
913
|
+
return loss_qval, metadata
|
|
914
|
+
|
|
915
|
+
def value_loss(
|
|
916
|
+
self, tensordict: TensorDictBase
|
|
917
|
+
) -> tuple[Tensor, dict[str, Tensor]]:
|
|
918
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
919
|
+
# value loss
|
|
920
|
+
td_copy = tensordict.select(*self.value_network.in_keys, strict=False).detach()
|
|
921
|
+
with self.value_network_params.to_module(self.value_network):
|
|
922
|
+
self.value_network(td_copy)
|
|
923
|
+
pred_val = td_copy.get(self.tensor_keys.value).squeeze(-1)
|
|
924
|
+
with self.target_actor_network_params.to_module(self.actor_network):
|
|
925
|
+
action_dist = self.actor_network.get_dist(td_copy) # resample an action
|
|
926
|
+
action = action_dist.rsample()
|
|
927
|
+
|
|
928
|
+
td_copy.set(self.tensor_keys.action, action, inplace=False)
|
|
929
|
+
|
|
930
|
+
td_copy = self._vmap_qnetworkN0(
|
|
931
|
+
td_copy,
|
|
932
|
+
self.target_qvalue_network_params,
|
|
933
|
+
)
|
|
934
|
+
|
|
935
|
+
min_qval = (
|
|
936
|
+
td_copy.get(self.tensor_keys.state_action_value).squeeze(-1).min(0)[0]
|
|
937
|
+
)
|
|
938
|
+
|
|
939
|
+
log_p = compute_log_prob(action_dist, action, self.tensor_keys.log_prob)
|
|
940
|
+
|
|
941
|
+
if log_p.shape != min_qval.shape:
|
|
942
|
+
raise RuntimeError(
|
|
943
|
+
f"Losses shape mismatch: {min_qval.shape} and {log_p.shape}"
|
|
944
|
+
)
|
|
945
|
+
target_val = min_qval - self._alpha * log_p
|
|
946
|
+
|
|
947
|
+
loss_value = distance_loss(
|
|
948
|
+
pred_val, target_val, loss_function=self.loss_function
|
|
949
|
+
)
|
|
950
|
+
loss_value = _reduce(loss_value, reduction=self.reduction, weights=weights)
|
|
951
|
+
return loss_value, {}
|
|
952
|
+
|
|
953
|
+
def _alpha_loss(self, log_prob: Tensor) -> Tensor:
|
|
954
|
+
if self.target_entropy is not None:
|
|
955
|
+
# we can compute this loss even if log_alpha is not a parameter
|
|
956
|
+
alpha_loss = -self.log_alpha * (log_prob + self.target_entropy)
|
|
957
|
+
else:
|
|
958
|
+
# placeholder
|
|
959
|
+
alpha_loss = torch.zeros_like(log_prob)
|
|
960
|
+
return alpha_loss
|
|
961
|
+
|
|
962
|
+
|
|
963
|
+
class DiscreteSACLoss(LossModule):
|
|
964
|
+
"""Discrete SAC Loss module.
|
|
965
|
+
|
|
966
|
+
Args:
|
|
967
|
+
actor_network (ProbabilisticTensorDictSequential): the actor to be trained
|
|
968
|
+
qvalue_network (TensorDictModule): a single Q-value network that will be multiplicated as many times as needed.
|
|
969
|
+
action_space (str or TensorSpec): Action space. Must be one of
|
|
970
|
+
``"one-hot"``, ``"mult_one_hot"``, ``"binary"`` or ``"categorical"``,
|
|
971
|
+
or an instance of the corresponding specs (:class:`torchrl.data.OneHot`,
|
|
972
|
+
:class:`torchrl.data.MultiOneHot`,
|
|
973
|
+
:class:`torchrl.data.Binary` or :class:`torchrl.data.Categorical`).
|
|
974
|
+
num_actions (int, optional): number of actions in the action space.
|
|
975
|
+
To be provided if target_entropy is set to "auto".
|
|
976
|
+
num_qvalue_nets (int, optional): Number of Q-value networks to be trained. Default is 2.
|
|
977
|
+
loss_function (str, optional): loss function to be used for the Q-value. Can be one of `"smooth_l1"`, "l2",
|
|
978
|
+
"l1", Default is "smooth_l1".
|
|
979
|
+
alpha_init (:obj:`float`, optional): initial entropy multiplier.
|
|
980
|
+
Default is 1.0.
|
|
981
|
+
min_alpha (:obj:`float`, optional): min value of alpha.
|
|
982
|
+
Default is None (no minimum value).
|
|
983
|
+
max_alpha (:obj:`float`, optional): max value of alpha.
|
|
984
|
+
Default is None (no maximum value).
|
|
985
|
+
fixed_alpha (bool, optional): whether alpha should be trained to match a target entropy. Default is ``False``.
|
|
986
|
+
target_entropy_weight (:obj:`float`, optional): weight for the target entropy term.
|
|
987
|
+
target_entropy (Union[str, Number], optional): Target entropy for the
|
|
988
|
+
stochastic policy. Default is "auto", where target entropy is
|
|
989
|
+
computed as :obj:`-target_entropy_weight * log(1 / num_actions)`.
|
|
990
|
+
delay_qvalue (bool, optional): Whether to separate the target Q value networks from the Q value networks used
|
|
991
|
+
for data collection. Default is ``False``.
|
|
992
|
+
priority_key (str, optional): [Deprecated, use .set_keys(priority_key=priority_key) instead]
|
|
993
|
+
Key where to write the priority value for prioritized replay buffers.
|
|
994
|
+
Default is `"td_error"`.
|
|
995
|
+
separate_losses (bool, optional): if ``True``, shared parameters between
|
|
996
|
+
policy and critic will only be trained on the policy loss.
|
|
997
|
+
Defaults to ``False``, i.e., gradients are propagated to shared
|
|
998
|
+
parameters for both policy and critic losses.
|
|
999
|
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
|
1000
|
+
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
|
|
1001
|
+
``"mean"``: the sum of the output will be divided by the number of
|
|
1002
|
+
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
|
|
1003
|
+
skip_done_states (bool, optional): whether the actor network used for value computation should only be run on
|
|
1004
|
+
valid, non-terminating next states. If ``True``, it is assumed that the done state can be broadcast to the
|
|
1005
|
+
shape of the data and that masking the data results in a valid data structure. Among other things, this may
|
|
1006
|
+
not be true in MARL settings or when using RNNs. Defaults to ``False``.
|
|
1007
|
+
deactivate_vmap (bool, optional): whether to deactivate vmap calls and replace them with a plain for loop.
|
|
1008
|
+
Defaults to ``False``.
|
|
1009
|
+
|
|
1010
|
+
Examples:
|
|
1011
|
+
>>> import torch
|
|
1012
|
+
>>> from torch import nn
|
|
1013
|
+
>>> from torchrl.data.tensor_specs import OneHot
|
|
1014
|
+
>>> from torchrl.modules.distributions import NormalParamExtractor, OneHotCategorical
|
|
1015
|
+
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
|
|
1016
|
+
>>> from torchrl.modules.tensordict_module.common import SafeModule
|
|
1017
|
+
>>> from torchrl.objectives.sac import DiscreteSACLoss
|
|
1018
|
+
>>> from tensordict import TensorDict
|
|
1019
|
+
>>> from tensordict.nn import TensorDictModule
|
|
1020
|
+
>>> n_act, n_obs = 4, 3
|
|
1021
|
+
>>> spec = OneHot(n_act)
|
|
1022
|
+
>>> module = TensorDictModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"])
|
|
1023
|
+
>>> actor = ProbabilisticActor(
|
|
1024
|
+
... module=module,
|
|
1025
|
+
... in_keys=["logits"],
|
|
1026
|
+
... out_keys=["action"],
|
|
1027
|
+
... spec=spec,
|
|
1028
|
+
... distribution_class=OneHotCategorical)
|
|
1029
|
+
>>> qvalue = TensorDictModule(
|
|
1030
|
+
... nn.Linear(n_obs, n_act),
|
|
1031
|
+
... in_keys=["observation"],
|
|
1032
|
+
... out_keys=["action_value"],
|
|
1033
|
+
... )
|
|
1034
|
+
>>> loss = DiscreteSACLoss(actor, qvalue, action_space=spec, num_actions=spec.space.n)
|
|
1035
|
+
>>> batch = [2,]
|
|
1036
|
+
>>> action = spec.rand(batch)
|
|
1037
|
+
>>> data = TensorDict({
|
|
1038
|
+
... "observation": torch.randn(*batch, n_obs),
|
|
1039
|
+
... "action": action,
|
|
1040
|
+
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1041
|
+
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1042
|
+
... ("next", "reward"): torch.randn(*batch, 1),
|
|
1043
|
+
... ("next", "observation"): torch.randn(*batch, n_obs),
|
|
1044
|
+
... }, batch)
|
|
1045
|
+
>>> loss(data)
|
|
1046
|
+
TensorDict(
|
|
1047
|
+
fields={
|
|
1048
|
+
alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
1049
|
+
entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
1050
|
+
loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
1051
|
+
loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
1052
|
+
loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
|
|
1053
|
+
batch_size=torch.Size([]),
|
|
1054
|
+
device=None,
|
|
1055
|
+
is_shared=False)
|
|
1056
|
+
|
|
1057
|
+
|
|
1058
|
+
This class is compatible with non-tensordict based modules too and can be
|
|
1059
|
+
used without recurring to any tensordict-related primitive. In this case,
|
|
1060
|
+
the expected keyword arguments are:
|
|
1061
|
+
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and qvalue network.
|
|
1062
|
+
The return value is a tuple of tensors in the following order:
|
|
1063
|
+
``["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy"]``.
|
|
1064
|
+
The output keys can also be filtered using :meth:`DiscreteSACLoss.select_out_keys` method.
|
|
1065
|
+
|
|
1066
|
+
Examples:
|
|
1067
|
+
>>> import torch
|
|
1068
|
+
>>> from torch import nn
|
|
1069
|
+
>>> from torchrl.data.tensor_specs import OneHot
|
|
1070
|
+
>>> from torchrl.modules.distributions import NormalParamExtractor, OneHotCategorical
|
|
1071
|
+
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
|
|
1072
|
+
>>> from torchrl.modules.tensordict_module.common import SafeModule
|
|
1073
|
+
>>> from torchrl.objectives.sac import DiscreteSACLoss
|
|
1074
|
+
>>> n_act, n_obs = 4, 3
|
|
1075
|
+
>>> spec = OneHot(n_act)
|
|
1076
|
+
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
|
|
1077
|
+
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["logits"])
|
|
1078
|
+
>>> actor = ProbabilisticActor(
|
|
1079
|
+
... module=module,
|
|
1080
|
+
... in_keys=["logits"],
|
|
1081
|
+
... out_keys=["action"],
|
|
1082
|
+
... spec=spec,
|
|
1083
|
+
... distribution_class=OneHotCategorical)
|
|
1084
|
+
>>> class ValueClass(nn.Module):
|
|
1085
|
+
... def __init__(self):
|
|
1086
|
+
... super().__init__()
|
|
1087
|
+
... self.linear = nn.Linear(n_obs, n_act)
|
|
1088
|
+
... def forward(self, obs):
|
|
1089
|
+
... return self.linear(obs)
|
|
1090
|
+
>>> module = ValueClass()
|
|
1091
|
+
>>> qvalue = ValueOperator(
|
|
1092
|
+
... module=module,
|
|
1093
|
+
... in_keys=['observation'])
|
|
1094
|
+
>>> loss = DiscreteSACLoss(actor, qvalue, num_actions=actor.spec["action"].space.n)
|
|
1095
|
+
>>> batch = [2, ]
|
|
1096
|
+
>>> action = spec.rand(batch)
|
|
1097
|
+
>>> # filter output keys to "loss_actor", and "loss_qvalue"
|
|
1098
|
+
>>> _ = loss.select_out_keys("loss_actor", "loss_qvalue")
|
|
1099
|
+
>>> loss_actor, loss_qvalue = loss(
|
|
1100
|
+
... observation=torch.randn(*batch, n_obs),
|
|
1101
|
+
... action=action,
|
|
1102
|
+
... next_done=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1103
|
+
... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1104
|
+
... next_observation=torch.zeros(*batch, n_obs),
|
|
1105
|
+
... next_reward=torch.randn(*batch, 1))
|
|
1106
|
+
>>> loss_actor.backward()
|
|
1107
|
+
"""
|
|
1108
|
+
|
|
1109
|
+
@dataclass
|
|
1110
|
+
class _AcceptedKeys:
|
|
1111
|
+
"""Maintains default values for all configurable tensordict keys.
|
|
1112
|
+
|
|
1113
|
+
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
|
|
1114
|
+
default values
|
|
1115
|
+
|
|
1116
|
+
Attributes:
|
|
1117
|
+
action (NestedKey): The input tensordict key where the action is expected.
|
|
1118
|
+
Defaults to ``"action"``.
|
|
1119
|
+
value (NestedKey): The input tensordict key where the state value is expected.
|
|
1120
|
+
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
|
|
1121
|
+
priority (NestedKey): The input tensordict key where the target priority is written to.
|
|
1122
|
+
Defaults to ``"td_error"``.
|
|
1123
|
+
reward (NestedKey): The input tensordict key where the reward is expected.
|
|
1124
|
+
Will be used for the underlying value estimator. Defaults to ``"reward"``.
|
|
1125
|
+
done (NestedKey): The key in the input TensorDict that indicates
|
|
1126
|
+
whether a trajectory is done. Will be used for the underlying value estimator.
|
|
1127
|
+
Defaults to ``"done"``.
|
|
1128
|
+
terminated (NestedKey): The key in the input TensorDict that indicates
|
|
1129
|
+
whether a trajectory is terminated. Will be used for the underlying value estimator.
|
|
1130
|
+
Defaults to ``"terminated"``.
|
|
1131
|
+
"""
|
|
1132
|
+
|
|
1133
|
+
action: NestedKey = "action"
|
|
1134
|
+
value: NestedKey = "state_value"
|
|
1135
|
+
action_value: NestedKey = "action_value"
|
|
1136
|
+
priority: NestedKey = "td_error"
|
|
1137
|
+
reward: NestedKey = "reward"
|
|
1138
|
+
done: NestedKey = "done"
|
|
1139
|
+
terminated: NestedKey = "terminated"
|
|
1140
|
+
log_prob: NestedKey = "log_prob"
|
|
1141
|
+
priority_weight: NestedKey = "priority_weight"
|
|
1142
|
+
|
|
1143
|
+
tensor_keys: _AcceptedKeys
|
|
1144
|
+
default_keys = _AcceptedKeys
|
|
1145
|
+
default_value_estimator = ValueEstimators.TD0
|
|
1146
|
+
delay_actor: bool = False
|
|
1147
|
+
out_keys = [
|
|
1148
|
+
"loss_actor",
|
|
1149
|
+
"loss_qvalue",
|
|
1150
|
+
"loss_alpha",
|
|
1151
|
+
"alpha",
|
|
1152
|
+
"entropy",
|
|
1153
|
+
]
|
|
1154
|
+
|
|
1155
|
+
actor_network: TensorDictModule
|
|
1156
|
+
qvalue_network: TensorDictModule
|
|
1157
|
+
value_network: TensorDictModule | None
|
|
1158
|
+
actor_network_params: TensorDictParams
|
|
1159
|
+
qvalue_network_params: TensorDictParams
|
|
1160
|
+
value_network_params: TensorDictParams | None
|
|
1161
|
+
target_actor_network_params: TensorDictParams
|
|
1162
|
+
target_qvalue_network_params: TensorDictParams
|
|
1163
|
+
target_value_network_params: TensorDictParams | None
|
|
1164
|
+
|
|
1165
|
+
def __init__(
|
|
1166
|
+
self,
|
|
1167
|
+
actor_network: ProbabilisticTensorDictSequential,
|
|
1168
|
+
qvalue_network: TensorDictModule,
|
|
1169
|
+
*,
|
|
1170
|
+
action_space: str | TensorSpec = None,
|
|
1171
|
+
num_actions: int | None = None,
|
|
1172
|
+
num_qvalue_nets: int = 2,
|
|
1173
|
+
loss_function: str = "smooth_l1",
|
|
1174
|
+
alpha_init: float = 1.0,
|
|
1175
|
+
min_alpha: float | None = None,
|
|
1176
|
+
max_alpha: float | None = None,
|
|
1177
|
+
fixed_alpha: bool = False,
|
|
1178
|
+
target_entropy_weight: float = 0.98,
|
|
1179
|
+
target_entropy: str | Number = "auto",
|
|
1180
|
+
delay_qvalue: bool = True,
|
|
1181
|
+
priority_key: str | None = None,
|
|
1182
|
+
separate_losses: bool = False,
|
|
1183
|
+
reduction: str | None = None,
|
|
1184
|
+
skip_done_states: bool = False,
|
|
1185
|
+
deactivate_vmap: bool = False,
|
|
1186
|
+
use_prioritized_weights: str | bool = "auto",
|
|
1187
|
+
):
|
|
1188
|
+
if reduction is None:
|
|
1189
|
+
reduction = "mean"
|
|
1190
|
+
self._in_keys = None
|
|
1191
|
+
super().__init__()
|
|
1192
|
+
self.use_prioritized_weights = use_prioritized_weights
|
|
1193
|
+
self._set_deprecated_ctor_keys(priority_key=priority_key)
|
|
1194
|
+
|
|
1195
|
+
self.convert_to_functional(
|
|
1196
|
+
actor_network,
|
|
1197
|
+
"actor_network",
|
|
1198
|
+
create_target_params=self.delay_actor,
|
|
1199
|
+
)
|
|
1200
|
+
self.deactivate_vmap = deactivate_vmap
|
|
1201
|
+
if separate_losses:
|
|
1202
|
+
# we want to make sure there are no duplicates in the params: the
|
|
1203
|
+
# params of critic must be refs to actor if they're shared
|
|
1204
|
+
policy_params = list(actor_network.parameters())
|
|
1205
|
+
else:
|
|
1206
|
+
policy_params = None
|
|
1207
|
+
self.delay_qvalue = delay_qvalue
|
|
1208
|
+
self.convert_to_functional(
|
|
1209
|
+
qvalue_network,
|
|
1210
|
+
"qvalue_network",
|
|
1211
|
+
num_qvalue_nets,
|
|
1212
|
+
create_target_params=self.delay_qvalue,
|
|
1213
|
+
compare_against=policy_params,
|
|
1214
|
+
)
|
|
1215
|
+
self.num_qvalue_nets = num_qvalue_nets
|
|
1216
|
+
self.loss_function = loss_function
|
|
1217
|
+
|
|
1218
|
+
try:
|
|
1219
|
+
device = next(self.parameters()).device
|
|
1220
|
+
except AttributeError:
|
|
1221
|
+
device = getattr(torch, "get_default_device", lambda: torch.device("cpu"))()
|
|
1222
|
+
|
|
1223
|
+
self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device))
|
|
1224
|
+
if bool(min_alpha) ^ bool(max_alpha):
|
|
1225
|
+
min_alpha = min_alpha if min_alpha else 0.0
|
|
1226
|
+
if max_alpha == 0:
|
|
1227
|
+
raise ValueError("max_alpha must be either None or greater than 0.")
|
|
1228
|
+
max_alpha = max_alpha if max_alpha else 1e9
|
|
1229
|
+
if min_alpha:
|
|
1230
|
+
self.register_buffer(
|
|
1231
|
+
"min_log_alpha", torch.tensor(min_alpha, device=device).log()
|
|
1232
|
+
)
|
|
1233
|
+
else:
|
|
1234
|
+
self.min_log_alpha = None
|
|
1235
|
+
if max_alpha:
|
|
1236
|
+
self.register_buffer(
|
|
1237
|
+
"max_log_alpha", torch.tensor(max_alpha, device=device).log()
|
|
1238
|
+
)
|
|
1239
|
+
else:
|
|
1240
|
+
self.max_log_alpha = None
|
|
1241
|
+
self.fixed_alpha = fixed_alpha
|
|
1242
|
+
if fixed_alpha:
|
|
1243
|
+
self.register_buffer(
|
|
1244
|
+
"log_alpha", torch.tensor(math.log(alpha_init), device=device)
|
|
1245
|
+
)
|
|
1246
|
+
else:
|
|
1247
|
+
self.register_parameter(
|
|
1248
|
+
"log_alpha",
|
|
1249
|
+
torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)),
|
|
1250
|
+
)
|
|
1251
|
+
|
|
1252
|
+
if action_space is None:
|
|
1253
|
+
warnings.warn(
|
|
1254
|
+
"action_space was not specified. DiscreteSACLoss will default to 'one-hot'. "
|
|
1255
|
+
"This behavior will be deprecated soon and a space will have to be passed. "
|
|
1256
|
+
"Check the DiscreteSACLoss documentation to see how to pass the action space. "
|
|
1257
|
+
)
|
|
1258
|
+
action_space = "one-hot"
|
|
1259
|
+
self.action_space = _find_action_space(action_space)
|
|
1260
|
+
if target_entropy == "auto":
|
|
1261
|
+
if num_actions is None:
|
|
1262
|
+
raise ValueError(
|
|
1263
|
+
"num_actions needs to be provided if target_entropy == 'auto'"
|
|
1264
|
+
)
|
|
1265
|
+
target_entropy = -float(np.log(1.0 / num_actions) * target_entropy_weight)
|
|
1266
|
+
self.register_buffer(
|
|
1267
|
+
"target_entropy", torch.tensor(target_entropy, device=device)
|
|
1268
|
+
)
|
|
1269
|
+
self._make_vmap()
|
|
1270
|
+
self.reduction = reduction
|
|
1271
|
+
self.skip_done_states = skip_done_states
|
|
1272
|
+
|
|
1273
|
+
def _make_vmap(self):
|
|
1274
|
+
self._vmap_qnetworkN0 = _vmap_func(
|
|
1275
|
+
self.qvalue_network,
|
|
1276
|
+
(None, 0),
|
|
1277
|
+
randomness=self.vmap_randomness,
|
|
1278
|
+
pseudo_vmap=self.deactivate_vmap,
|
|
1279
|
+
)
|
|
1280
|
+
|
|
1281
|
+
def _forward_value_estimator_keys(self, **kwargs) -> None:
|
|
1282
|
+
if self._value_estimator is not None:
|
|
1283
|
+
self._value_estimator.set_keys(
|
|
1284
|
+
value=self._tensor_keys.value,
|
|
1285
|
+
reward=self.tensor_keys.reward,
|
|
1286
|
+
done=self.tensor_keys.done,
|
|
1287
|
+
terminated=self.tensor_keys.terminated,
|
|
1288
|
+
)
|
|
1289
|
+
self._set_in_keys()
|
|
1290
|
+
|
|
1291
|
+
def _set_in_keys(self):
|
|
1292
|
+
keys = [
|
|
1293
|
+
self.tensor_keys.action,
|
|
1294
|
+
("next", self.tensor_keys.reward),
|
|
1295
|
+
("next", self.tensor_keys.done),
|
|
1296
|
+
("next", self.tensor_keys.terminated),
|
|
1297
|
+
*self.actor_network.in_keys,
|
|
1298
|
+
*[("next", key) for key in self.actor_network.in_keys],
|
|
1299
|
+
*self.qvalue_network.in_keys,
|
|
1300
|
+
]
|
|
1301
|
+
self._in_keys = list(set(keys))
|
|
1302
|
+
|
|
1303
|
+
@property
|
|
1304
|
+
def in_keys(self):
|
|
1305
|
+
if self._in_keys is None:
|
|
1306
|
+
self._set_in_keys()
|
|
1307
|
+
return self._in_keys
|
|
1308
|
+
|
|
1309
|
+
@in_keys.setter
|
|
1310
|
+
def in_keys(self, values):
|
|
1311
|
+
self._in_keys = values
|
|
1312
|
+
|
|
1313
|
+
@dispatch
|
|
1314
|
+
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
|
1315
|
+
loss_qvalue, metadata_value = self.qvalue_loss(tensordict)
|
|
1316
|
+
loss_actor, metadata_actor = self.actor_loss(tensordict)
|
|
1317
|
+
loss_alpha = self._alpha_loss(
|
|
1318
|
+
log_prob=metadata_actor["log_prob"],
|
|
1319
|
+
)
|
|
1320
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
1321
|
+
loss_alpha = _reduce(loss_alpha, reduction=self.reduction, weights=weights)
|
|
1322
|
+
|
|
1323
|
+
tensordict.set(self.tensor_keys.priority, metadata_value["td_error"])
|
|
1324
|
+
if loss_actor.shape != loss_qvalue.shape:
|
|
1325
|
+
raise RuntimeError(
|
|
1326
|
+
f"Losses shape mismatch: {loss_actor.shape}, and {loss_qvalue.shape}"
|
|
1327
|
+
)
|
|
1328
|
+
entropy = -metadata_actor["log_prob"]
|
|
1329
|
+
out = {
|
|
1330
|
+
"loss_actor": loss_actor,
|
|
1331
|
+
"loss_qvalue": loss_qvalue,
|
|
1332
|
+
"loss_alpha": loss_alpha,
|
|
1333
|
+
"alpha": self._alpha,
|
|
1334
|
+
"entropy": entropy.detach().mean(),
|
|
1335
|
+
}
|
|
1336
|
+
td_out = TensorDict(out, [])
|
|
1337
|
+
self._clear_weakrefs(
|
|
1338
|
+
tensordict,
|
|
1339
|
+
td_out,
|
|
1340
|
+
"actor_network_params",
|
|
1341
|
+
"qvalue_network_params",
|
|
1342
|
+
"target_actor_network_params",
|
|
1343
|
+
"target_qvalue_network_params",
|
|
1344
|
+
"target_value_network_params",
|
|
1345
|
+
"value_network_params",
|
|
1346
|
+
)
|
|
1347
|
+
return td_out
|
|
1348
|
+
|
|
1349
|
+
def _compute_target(self, tensordict) -> Tensor:
|
|
1350
|
+
r"""Value network for SAC v2.
|
|
1351
|
+
|
|
1352
|
+
SAC v2 is based on a value estimate of the form:
|
|
1353
|
+
|
|
1354
|
+
.. math::
|
|
1355
|
+
|
|
1356
|
+
V = Q(s,a) - \alpha * \log p(a | s)
|
|
1357
|
+
|
|
1358
|
+
This class computes this value given the actor and qvalue network
|
|
1359
|
+
|
|
1360
|
+
"""
|
|
1361
|
+
tensordict = tensordict.clone(False)
|
|
1362
|
+
# get actions and log-probs
|
|
1363
|
+
with torch.no_grad():
|
|
1364
|
+
next_tensordict = tensordict.get("next").clone(False)
|
|
1365
|
+
|
|
1366
|
+
if self.skip_done_states:
|
|
1367
|
+
done = next_tensordict.get(self.tensor_keys.done)
|
|
1368
|
+
if done is not None and done.any():
|
|
1369
|
+
next_tensordict_select = next_tensordict[~done.squeeze(-1)]
|
|
1370
|
+
else:
|
|
1371
|
+
next_tensordict_select = next_tensordict
|
|
1372
|
+
|
|
1373
|
+
# get probs and log probs for actions computed from "next"
|
|
1374
|
+
with self.actor_network_params.to_module(self.actor_network):
|
|
1375
|
+
next_dist = self.actor_network.get_dist(next_tensordict_select)
|
|
1376
|
+
next_log_prob = next_dist.logits
|
|
1377
|
+
next_prob = next_log_prob.exp()
|
|
1378
|
+
|
|
1379
|
+
# get q-values for all actions
|
|
1380
|
+
next_tensordict_expand = self._vmap_qnetworkN0(
|
|
1381
|
+
next_tensordict_select, self.target_qvalue_network_params
|
|
1382
|
+
)
|
|
1383
|
+
next_action_value = next_tensordict_expand.get(
|
|
1384
|
+
self.tensor_keys.action_value
|
|
1385
|
+
)
|
|
1386
|
+
|
|
1387
|
+
# like in continuous SAC, we take the minimum of the value ensemble and subtract the entropy term
|
|
1388
|
+
next_state_value = (
|
|
1389
|
+
next_action_value.min(0)[0] - self._alpha * next_log_prob
|
|
1390
|
+
)
|
|
1391
|
+
# unlike in continuous SAC, we can compute the exact expectation over all discrete actions
|
|
1392
|
+
next_state_value = (next_prob * next_state_value).sum(-1).unsqueeze(-1)
|
|
1393
|
+
if next_tensordict_select is not next_tensordict:
|
|
1394
|
+
mask = ~done
|
|
1395
|
+
next_state_value = next_state_value.new_zeros(
|
|
1396
|
+
mask.shape
|
|
1397
|
+
).masked_scatter_(mask, next_state_value)
|
|
1398
|
+
else:
|
|
1399
|
+
# get probs and log probs for actions computed from "next"
|
|
1400
|
+
with self.actor_network_params.to_module(self.actor_network):
|
|
1401
|
+
next_dist = self.actor_network.get_dist(next_tensordict)
|
|
1402
|
+
next_prob = next_dist.probs
|
|
1403
|
+
next_log_prob = torch.log(torch.where(next_prob == 0, 1e-8, next_prob))
|
|
1404
|
+
|
|
1405
|
+
# get q-values for all actions
|
|
1406
|
+
next_tensordict_expand = self._vmap_qnetworkN0(
|
|
1407
|
+
next_tensordict, self.target_qvalue_network_params
|
|
1408
|
+
)
|
|
1409
|
+
next_action_value = next_tensordict_expand.get(
|
|
1410
|
+
self.tensor_keys.action_value
|
|
1411
|
+
)
|
|
1412
|
+
# like in continuous SAC, we take the minimum of the value ensemble and subtract the entropy term
|
|
1413
|
+
next_state_value = (
|
|
1414
|
+
next_action_value.min(0)[0] - self._alpha * next_log_prob
|
|
1415
|
+
)
|
|
1416
|
+
# unlike in continuous SAC, we can compute the exact expectation over all discrete actions
|
|
1417
|
+
next_state_value = (next_prob * next_state_value).sum(-1).unsqueeze(-1)
|
|
1418
|
+
|
|
1419
|
+
tensordict.set(
|
|
1420
|
+
("next", self.value_estimator.tensor_keys.value), next_state_value
|
|
1421
|
+
)
|
|
1422
|
+
target_value = self.value_estimator.value_estimate(tensordict).squeeze(-1)
|
|
1423
|
+
return target_value
|
|
1424
|
+
|
|
1425
|
+
def qvalue_loss(
|
|
1426
|
+
self, tensordict: TensorDictBase
|
|
1427
|
+
) -> tuple[Tensor, dict[str, Tensor]]:
|
|
1428
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
1429
|
+
target_value = self._compute_target(tensordict)
|
|
1430
|
+
tensordict_expand = self._vmap_qnetworkN0(
|
|
1431
|
+
tensordict.select(*self.qvalue_network.in_keys, strict=False),
|
|
1432
|
+
self.qvalue_network_params,
|
|
1433
|
+
)
|
|
1434
|
+
|
|
1435
|
+
action_value = tensordict_expand.get(self.tensor_keys.action_value)
|
|
1436
|
+
action = tensordict.get(self.tensor_keys.action)
|
|
1437
|
+
action = action.expand((action_value.shape[0], *action.shape)) # Add vmap dim
|
|
1438
|
+
|
|
1439
|
+
# TODO this block comes from the dqn loss, we need to swap all these with a proper
|
|
1440
|
+
# helper function which selects the value given the action for all discrete spaces
|
|
1441
|
+
if self.action_space == "categorical":
|
|
1442
|
+
if action.shape != action_value.shape:
|
|
1443
|
+
# unsqueeze the action if it lacks on trailing singleton dim
|
|
1444
|
+
action = action.unsqueeze(-1)
|
|
1445
|
+
chosen_action_value = torch.gather(action_value, -1, index=action).squeeze(
|
|
1446
|
+
-1
|
|
1447
|
+
)
|
|
1448
|
+
else:
|
|
1449
|
+
action = action.to(torch.float)
|
|
1450
|
+
chosen_action_value = (action_value * action).sum(-1)
|
|
1451
|
+
|
|
1452
|
+
td_error = torch.abs(chosen_action_value - target_value)
|
|
1453
|
+
loss_qval = distance_loss(
|
|
1454
|
+
chosen_action_value,
|
|
1455
|
+
target_value.expand_as(chosen_action_value),
|
|
1456
|
+
loss_function=self.loss_function,
|
|
1457
|
+
).sum(0)
|
|
1458
|
+
loss_qval = _reduce(loss_qval, reduction=self.reduction, weights=weights)
|
|
1459
|
+
|
|
1460
|
+
metadata = {
|
|
1461
|
+
"td_error": td_error.detach().max(0)[0],
|
|
1462
|
+
}
|
|
1463
|
+
return loss_qval, metadata
|
|
1464
|
+
|
|
1465
|
+
def actor_loss(
|
|
1466
|
+
self, tensordict: TensorDictBase
|
|
1467
|
+
) -> tuple[Tensor, dict[str, Tensor]]:
|
|
1468
|
+
weights = self._maybe_get_priority_weight(tensordict)
|
|
1469
|
+
# get probs and log probs for actions
|
|
1470
|
+
with self.actor_network_params.to_module(self.actor_network):
|
|
1471
|
+
dist = self.actor_network.get_dist(tensordict.clone(False))
|
|
1472
|
+
prob = dist.probs
|
|
1473
|
+
log_prob = dist.logits
|
|
1474
|
+
|
|
1475
|
+
td_q = tensordict.select(*self.qvalue_network.in_keys, strict=False)
|
|
1476
|
+
|
|
1477
|
+
td_q = self._vmap_qnetworkN0(
|
|
1478
|
+
td_q, self._cached_detached_qvalue_params # should we clone?
|
|
1479
|
+
)
|
|
1480
|
+
min_q = td_q.get(self.tensor_keys.action_value).min(0)[0]
|
|
1481
|
+
|
|
1482
|
+
if log_prob.shape != min_q.shape:
|
|
1483
|
+
raise RuntimeError(
|
|
1484
|
+
f"Losses shape mismatch: {log_prob.shape} and {min_q.shape}"
|
|
1485
|
+
)
|
|
1486
|
+
|
|
1487
|
+
# like in continuous SAC, we take the entropy term and subtract the minimum of the value ensemble
|
|
1488
|
+
loss = self._alpha * log_prob - min_q
|
|
1489
|
+
# unlike in continuous SAC, we can compute the exact expectation over all discrete actions
|
|
1490
|
+
loss = (prob * loss).sum(-1)
|
|
1491
|
+
loss = _reduce(loss, reduction=self.reduction, weights=weights)
|
|
1492
|
+
|
|
1493
|
+
return loss, {"log_prob": (log_prob * prob).sum(-1).detach()}
|
|
1494
|
+
|
|
1495
|
+
def _alpha_loss(self, log_prob: Tensor) -> Tensor:
|
|
1496
|
+
if self.target_entropy is not None:
|
|
1497
|
+
# we can compute this loss even if log_alpha is not a parameter
|
|
1498
|
+
alpha_loss = -self.log_alpha * (log_prob + self.target_entropy)
|
|
1499
|
+
else:
|
|
1500
|
+
# placeholder
|
|
1501
|
+
alpha_loss = torch.zeros_like(log_prob)
|
|
1502
|
+
return alpha_loss
|
|
1503
|
+
|
|
1504
|
+
def alpha_loss(self, log_prob: Tensor) -> Tensor:
|
|
1505
|
+
"""Compute the alpha loss for discrete SAC.
|
|
1506
|
+
|
|
1507
|
+
This method computes the alpha loss which adapts the entropy coefficient
|
|
1508
|
+
to maintain the target entropy level for discrete actions.
|
|
1509
|
+
|
|
1510
|
+
Args:
|
|
1511
|
+
log_prob (Tensor): The log probability of actions from the actor network.
|
|
1512
|
+
|
|
1513
|
+
Returns:
|
|
1514
|
+
The alpha loss tensor
|
|
1515
|
+
"""
|
|
1516
|
+
return self._alpha_loss(log_prob)
|
|
1517
|
+
|
|
1518
|
+
@property
|
|
1519
|
+
def _alpha(self):
|
|
1520
|
+
if self.min_log_alpha is not None or self.max_log_alpha is not None:
|
|
1521
|
+
self.log_alpha.data = self.log_alpha.data.clamp(
|
|
1522
|
+
self.min_log_alpha, self.max_log_alpha
|
|
1523
|
+
)
|
|
1524
|
+
with torch.no_grad():
|
|
1525
|
+
alpha = self.log_alpha.exp()
|
|
1526
|
+
return alpha
|
|
1527
|
+
|
|
1528
|
+
@property
|
|
1529
|
+
@_cache_values
|
|
1530
|
+
def _cached_detached_qvalue_params(self):
|
|
1531
|
+
return self.qvalue_network_params.detach()
|
|
1532
|
+
|
|
1533
|
+
def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
|
|
1534
|
+
if value_type is None:
|
|
1535
|
+
value_type = self.default_value_estimator
|
|
1536
|
+
|
|
1537
|
+
# Handle ValueEstimatorBase instance or class
|
|
1538
|
+
if isinstance(value_type, ValueEstimatorBase) or (
|
|
1539
|
+
isinstance(value_type, type) and issubclass(value_type, ValueEstimatorBase)
|
|
1540
|
+
):
|
|
1541
|
+
return LossModule.make_value_estimator(self, value_type, **hyperparams)
|
|
1542
|
+
|
|
1543
|
+
self.value_type = value_type
|
|
1544
|
+
hp = dict(default_value_kwargs(value_type))
|
|
1545
|
+
hp.update(hyperparams)
|
|
1546
|
+
if hasattr(self, "gamma"):
|
|
1547
|
+
hp["gamma"] = self.gamma
|
|
1548
|
+
if value_type is ValueEstimators.TD1:
|
|
1549
|
+
self._value_estimator = TD1Estimator(
|
|
1550
|
+
**hp,
|
|
1551
|
+
value_network=None,
|
|
1552
|
+
deactivate_vmap=self.deactivate_vmap,
|
|
1553
|
+
)
|
|
1554
|
+
elif value_type is ValueEstimators.TD0:
|
|
1555
|
+
self._value_estimator = TD0Estimator(
|
|
1556
|
+
**hp,
|
|
1557
|
+
value_network=None,
|
|
1558
|
+
deactivate_vmap=self.deactivate_vmap,
|
|
1559
|
+
)
|
|
1560
|
+
elif value_type is ValueEstimators.GAE:
|
|
1561
|
+
raise NotImplementedError(
|
|
1562
|
+
f"Value type {value_type} it not implemented for loss {type(self)}."
|
|
1563
|
+
)
|
|
1564
|
+
elif value_type is ValueEstimators.TDLambda:
|
|
1565
|
+
self._value_estimator = TDLambdaEstimator(
|
|
1566
|
+
**hp,
|
|
1567
|
+
value_network=None,
|
|
1568
|
+
deactivate_vmap=self.deactivate_vmap,
|
|
1569
|
+
)
|
|
1570
|
+
else:
|
|
1571
|
+
raise NotImplementedError(f"Unknown value type {value_type}")
|
|
1572
|
+
|
|
1573
|
+
tensor_keys = {
|
|
1574
|
+
"value": self.tensor_keys.value,
|
|
1575
|
+
"value_target": "value_target",
|
|
1576
|
+
"reward": self.tensor_keys.reward,
|
|
1577
|
+
"done": self.tensor_keys.done,
|
|
1578
|
+
"terminated": self.tensor_keys.terminated,
|
|
1579
|
+
}
|
|
1580
|
+
self._value_estimator.set_keys(**tensor_keys)
|