torchrl 0.11.0__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (394) hide show
  1. benchmarks/benchmark_batched_envs.py +104 -0
  2. benchmarks/conftest.py +91 -0
  3. benchmarks/ecosystem/gym_env_throughput.py +321 -0
  4. benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
  5. benchmarks/requirements.txt +7 -0
  6. benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
  7. benchmarks/test_collectors_benchmark.py +240 -0
  8. benchmarks/test_compressed_storage_benchmark.py +145 -0
  9. benchmarks/test_envs_benchmark.py +133 -0
  10. benchmarks/test_llm.py +101 -0
  11. benchmarks/test_non_tensor_env_benchmark.py +70 -0
  12. benchmarks/test_objectives_benchmarks.py +1199 -0
  13. benchmarks/test_replaybuffer_benchmark.py +254 -0
  14. sota-check/README.md +35 -0
  15. sota-implementations/README.md +142 -0
  16. sota-implementations/a2c/README.md +39 -0
  17. sota-implementations/a2c/a2c_atari.py +291 -0
  18. sota-implementations/a2c/a2c_mujoco.py +273 -0
  19. sota-implementations/a2c/utils_atari.py +240 -0
  20. sota-implementations/a2c/utils_mujoco.py +160 -0
  21. sota-implementations/bandits/README.md +7 -0
  22. sota-implementations/bandits/dqn.py +126 -0
  23. sota-implementations/cql/cql_offline.py +198 -0
  24. sota-implementations/cql/cql_online.py +249 -0
  25. sota-implementations/cql/discrete_cql_offline.py +180 -0
  26. sota-implementations/cql/discrete_cql_online.py +227 -0
  27. sota-implementations/cql/utils.py +471 -0
  28. sota-implementations/crossq/crossq.py +271 -0
  29. sota-implementations/crossq/utils.py +320 -0
  30. sota-implementations/ddpg/ddpg.py +231 -0
  31. sota-implementations/ddpg/utils.py +325 -0
  32. sota-implementations/decision_transformer/dt.py +163 -0
  33. sota-implementations/decision_transformer/lamb.py +167 -0
  34. sota-implementations/decision_transformer/online_dt.py +178 -0
  35. sota-implementations/decision_transformer/utils.py +562 -0
  36. sota-implementations/discrete_sac/discrete_sac.py +243 -0
  37. sota-implementations/discrete_sac/utils.py +324 -0
  38. sota-implementations/dqn/README.md +30 -0
  39. sota-implementations/dqn/dqn_atari.py +272 -0
  40. sota-implementations/dqn/dqn_cartpole.py +236 -0
  41. sota-implementations/dqn/utils_atari.py +132 -0
  42. sota-implementations/dqn/utils_cartpole.py +90 -0
  43. sota-implementations/dreamer/README.md +129 -0
  44. sota-implementations/dreamer/dreamer.py +586 -0
  45. sota-implementations/dreamer/dreamer_utils.py +1107 -0
  46. sota-implementations/expert-iteration/README.md +352 -0
  47. sota-implementations/expert-iteration/ei_utils.py +770 -0
  48. sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
  49. sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
  50. sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
  51. sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
  52. sota-implementations/gail/gail.py +327 -0
  53. sota-implementations/gail/gail_utils.py +68 -0
  54. sota-implementations/gail/ppo_utils.py +157 -0
  55. sota-implementations/grpo/README.md +273 -0
  56. sota-implementations/grpo/grpo-async.py +437 -0
  57. sota-implementations/grpo/grpo-sync.py +435 -0
  58. sota-implementations/grpo/grpo_utils.py +843 -0
  59. sota-implementations/grpo/requirements_gsm8k.txt +11 -0
  60. sota-implementations/grpo/requirements_ifeval.txt +16 -0
  61. sota-implementations/impala/README.md +33 -0
  62. sota-implementations/impala/impala_multi_node_ray.py +292 -0
  63. sota-implementations/impala/impala_multi_node_submitit.py +284 -0
  64. sota-implementations/impala/impala_single_node.py +261 -0
  65. sota-implementations/impala/utils.py +184 -0
  66. sota-implementations/iql/discrete_iql.py +230 -0
  67. sota-implementations/iql/iql_offline.py +164 -0
  68. sota-implementations/iql/iql_online.py +225 -0
  69. sota-implementations/iql/utils.py +437 -0
  70. sota-implementations/multiagent/README.md +74 -0
  71. sota-implementations/multiagent/iql.py +237 -0
  72. sota-implementations/multiagent/maddpg_iddpg.py +266 -0
  73. sota-implementations/multiagent/mappo_ippo.py +267 -0
  74. sota-implementations/multiagent/qmix_vdn.py +271 -0
  75. sota-implementations/multiagent/sac.py +337 -0
  76. sota-implementations/multiagent/utils/__init__.py +4 -0
  77. sota-implementations/multiagent/utils/logging.py +151 -0
  78. sota-implementations/multiagent/utils/utils.py +43 -0
  79. sota-implementations/ppo/README.md +29 -0
  80. sota-implementations/ppo/ppo_atari.py +305 -0
  81. sota-implementations/ppo/ppo_mujoco.py +293 -0
  82. sota-implementations/ppo/utils_atari.py +238 -0
  83. sota-implementations/ppo/utils_mujoco.py +152 -0
  84. sota-implementations/ppo_trainer/train.py +21 -0
  85. sota-implementations/redq/README.md +7 -0
  86. sota-implementations/redq/redq.py +199 -0
  87. sota-implementations/redq/utils.py +1060 -0
  88. sota-implementations/sac/sac-async.py +266 -0
  89. sota-implementations/sac/sac.py +239 -0
  90. sota-implementations/sac/utils.py +381 -0
  91. sota-implementations/sac_trainer/train.py +16 -0
  92. sota-implementations/td3/td3.py +254 -0
  93. sota-implementations/td3/utils.py +319 -0
  94. sota-implementations/td3_bc/td3_bc.py +177 -0
  95. sota-implementations/td3_bc/utils.py +251 -0
  96. torchrl/__init__.py +144 -0
  97. torchrl/_extension.py +74 -0
  98. torchrl/_torchrl.cp314-win_amd64.pyd +0 -0
  99. torchrl/_utils.py +1431 -0
  100. torchrl/collectors/__init__.py +48 -0
  101. torchrl/collectors/_base.py +1058 -0
  102. torchrl/collectors/_constants.py +88 -0
  103. torchrl/collectors/_multi_async.py +324 -0
  104. torchrl/collectors/_multi_base.py +1805 -0
  105. torchrl/collectors/_multi_sync.py +464 -0
  106. torchrl/collectors/_runner.py +581 -0
  107. torchrl/collectors/_single.py +2009 -0
  108. torchrl/collectors/_single_async.py +259 -0
  109. torchrl/collectors/collectors.py +62 -0
  110. torchrl/collectors/distributed/__init__.py +32 -0
  111. torchrl/collectors/distributed/default_configs.py +133 -0
  112. torchrl/collectors/distributed/generic.py +1306 -0
  113. torchrl/collectors/distributed/ray.py +1092 -0
  114. torchrl/collectors/distributed/rpc.py +1006 -0
  115. torchrl/collectors/distributed/sync.py +731 -0
  116. torchrl/collectors/distributed/utils.py +160 -0
  117. torchrl/collectors/llm/__init__.py +10 -0
  118. torchrl/collectors/llm/base.py +494 -0
  119. torchrl/collectors/llm/ray_collector.py +275 -0
  120. torchrl/collectors/llm/utils.py +36 -0
  121. torchrl/collectors/llm/weight_update/__init__.py +10 -0
  122. torchrl/collectors/llm/weight_update/vllm.py +348 -0
  123. torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
  124. torchrl/collectors/utils.py +433 -0
  125. torchrl/collectors/weight_update.py +591 -0
  126. torchrl/csrc/numpy_utils.h +38 -0
  127. torchrl/csrc/pybind.cpp +27 -0
  128. torchrl/csrc/segment_tree.h +458 -0
  129. torchrl/csrc/torch_utils.h +34 -0
  130. torchrl/csrc/utils.cpp +48 -0
  131. torchrl/csrc/utils.h +31 -0
  132. torchrl/data/__init__.py +187 -0
  133. torchrl/data/datasets/__init__.py +58 -0
  134. torchrl/data/datasets/atari_dqn.py +878 -0
  135. torchrl/data/datasets/common.py +281 -0
  136. torchrl/data/datasets/d4rl.py +489 -0
  137. torchrl/data/datasets/d4rl_infos.py +187 -0
  138. torchrl/data/datasets/gen_dgrl.py +375 -0
  139. torchrl/data/datasets/minari_data.py +643 -0
  140. torchrl/data/datasets/openml.py +177 -0
  141. torchrl/data/datasets/openx.py +798 -0
  142. torchrl/data/datasets/roboset.py +363 -0
  143. torchrl/data/datasets/utils.py +11 -0
  144. torchrl/data/datasets/vd4rl.py +432 -0
  145. torchrl/data/llm/__init__.py +34 -0
  146. torchrl/data/llm/dataset.py +491 -0
  147. torchrl/data/llm/history.py +1378 -0
  148. torchrl/data/llm/prompt.py +198 -0
  149. torchrl/data/llm/reward.py +225 -0
  150. torchrl/data/llm/topk.py +186 -0
  151. torchrl/data/llm/utils.py +543 -0
  152. torchrl/data/map/__init__.py +21 -0
  153. torchrl/data/map/hash.py +185 -0
  154. torchrl/data/map/query.py +204 -0
  155. torchrl/data/map/tdstorage.py +363 -0
  156. torchrl/data/map/tree.py +1434 -0
  157. torchrl/data/map/utils.py +103 -0
  158. torchrl/data/postprocs/__init__.py +8 -0
  159. torchrl/data/postprocs/postprocs.py +391 -0
  160. torchrl/data/replay_buffers/__init__.py +99 -0
  161. torchrl/data/replay_buffers/checkpointers.py +622 -0
  162. torchrl/data/replay_buffers/ray_buffer.py +292 -0
  163. torchrl/data/replay_buffers/replay_buffers.py +2376 -0
  164. torchrl/data/replay_buffers/samplers.py +2578 -0
  165. torchrl/data/replay_buffers/scheduler.py +265 -0
  166. torchrl/data/replay_buffers/storages.py +2412 -0
  167. torchrl/data/replay_buffers/utils.py +1042 -0
  168. torchrl/data/replay_buffers/writers.py +781 -0
  169. torchrl/data/tensor_specs.py +7101 -0
  170. torchrl/data/utils.py +334 -0
  171. torchrl/envs/__init__.py +265 -0
  172. torchrl/envs/async_envs.py +1105 -0
  173. torchrl/envs/batched_envs.py +3093 -0
  174. torchrl/envs/common.py +4241 -0
  175. torchrl/envs/custom/__init__.py +11 -0
  176. torchrl/envs/custom/chess.py +617 -0
  177. torchrl/envs/custom/llm.py +214 -0
  178. torchrl/envs/custom/pendulum.py +401 -0
  179. torchrl/envs/custom/san_moves.txt +29274 -0
  180. torchrl/envs/custom/tictactoeenv.py +288 -0
  181. torchrl/envs/env_creator.py +263 -0
  182. torchrl/envs/gym_like.py +752 -0
  183. torchrl/envs/libs/__init__.py +68 -0
  184. torchrl/envs/libs/_gym_utils.py +326 -0
  185. torchrl/envs/libs/brax.py +846 -0
  186. torchrl/envs/libs/dm_control.py +544 -0
  187. torchrl/envs/libs/envpool.py +447 -0
  188. torchrl/envs/libs/gym.py +2239 -0
  189. torchrl/envs/libs/habitat.py +138 -0
  190. torchrl/envs/libs/isaac_lab.py +87 -0
  191. torchrl/envs/libs/isaacgym.py +203 -0
  192. torchrl/envs/libs/jax_utils.py +166 -0
  193. torchrl/envs/libs/jumanji.py +963 -0
  194. torchrl/envs/libs/meltingpot.py +599 -0
  195. torchrl/envs/libs/openml.py +153 -0
  196. torchrl/envs/libs/openspiel.py +652 -0
  197. torchrl/envs/libs/pettingzoo.py +1042 -0
  198. torchrl/envs/libs/procgen.py +351 -0
  199. torchrl/envs/libs/robohive.py +429 -0
  200. torchrl/envs/libs/smacv2.py +645 -0
  201. torchrl/envs/libs/unity_mlagents.py +891 -0
  202. torchrl/envs/libs/utils.py +147 -0
  203. torchrl/envs/libs/vmas.py +813 -0
  204. torchrl/envs/llm/__init__.py +63 -0
  205. torchrl/envs/llm/chat.py +730 -0
  206. torchrl/envs/llm/datasets/README.md +4 -0
  207. torchrl/envs/llm/datasets/__init__.py +17 -0
  208. torchrl/envs/llm/datasets/gsm8k.py +353 -0
  209. torchrl/envs/llm/datasets/ifeval.py +274 -0
  210. torchrl/envs/llm/envs.py +789 -0
  211. torchrl/envs/llm/libs/README.md +3 -0
  212. torchrl/envs/llm/libs/__init__.py +8 -0
  213. torchrl/envs/llm/libs/mlgym.py +869 -0
  214. torchrl/envs/llm/reward/__init__.py +10 -0
  215. torchrl/envs/llm/reward/gsm8k.py +324 -0
  216. torchrl/envs/llm/reward/ifeval/README.md +13 -0
  217. torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
  218. torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
  219. torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
  220. torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
  221. torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
  222. torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
  223. torchrl/envs/llm/transforms/__init__.py +55 -0
  224. torchrl/envs/llm/transforms/browser.py +292 -0
  225. torchrl/envs/llm/transforms/dataloading.py +859 -0
  226. torchrl/envs/llm/transforms/format.py +73 -0
  227. torchrl/envs/llm/transforms/kl.py +1544 -0
  228. torchrl/envs/llm/transforms/policy_version.py +189 -0
  229. torchrl/envs/llm/transforms/reason.py +323 -0
  230. torchrl/envs/llm/transforms/tokenizer.py +321 -0
  231. torchrl/envs/llm/transforms/tools.py +1955 -0
  232. torchrl/envs/model_based/__init__.py +9 -0
  233. torchrl/envs/model_based/common.py +180 -0
  234. torchrl/envs/model_based/dreamer.py +112 -0
  235. torchrl/envs/transforms/__init__.py +147 -0
  236. torchrl/envs/transforms/functional.py +48 -0
  237. torchrl/envs/transforms/gym_transforms.py +203 -0
  238. torchrl/envs/transforms/module.py +341 -0
  239. torchrl/envs/transforms/r3m.py +372 -0
  240. torchrl/envs/transforms/ray_service.py +663 -0
  241. torchrl/envs/transforms/rb_transforms.py +214 -0
  242. torchrl/envs/transforms/transforms.py +11835 -0
  243. torchrl/envs/transforms/utils.py +94 -0
  244. torchrl/envs/transforms/vc1.py +307 -0
  245. torchrl/envs/transforms/vecnorm.py +845 -0
  246. torchrl/envs/transforms/vip.py +407 -0
  247. torchrl/envs/utils.py +1718 -0
  248. torchrl/envs/vec_envs.py +11 -0
  249. torchrl/modules/__init__.py +206 -0
  250. torchrl/modules/distributions/__init__.py +73 -0
  251. torchrl/modules/distributions/continuous.py +830 -0
  252. torchrl/modules/distributions/discrete.py +908 -0
  253. torchrl/modules/distributions/truncated_normal.py +187 -0
  254. torchrl/modules/distributions/utils.py +233 -0
  255. torchrl/modules/llm/__init__.py +62 -0
  256. torchrl/modules/llm/backends/__init__.py +65 -0
  257. torchrl/modules/llm/backends/vllm/__init__.py +94 -0
  258. torchrl/modules/llm/backends/vllm/_models.py +46 -0
  259. torchrl/modules/llm/backends/vllm/base.py +72 -0
  260. torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
  261. torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
  262. torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
  263. torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
  264. torchrl/modules/llm/policies/__init__.py +28 -0
  265. torchrl/modules/llm/policies/common.py +1809 -0
  266. torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
  267. torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
  268. torchrl/modules/llm/utils.py +23 -0
  269. torchrl/modules/mcts/__init__.py +21 -0
  270. torchrl/modules/mcts/scores.py +579 -0
  271. torchrl/modules/models/__init__.py +86 -0
  272. torchrl/modules/models/batchrenorm.py +119 -0
  273. torchrl/modules/models/decision_transformer.py +179 -0
  274. torchrl/modules/models/exploration.py +731 -0
  275. torchrl/modules/models/llm.py +156 -0
  276. torchrl/modules/models/model_based.py +596 -0
  277. torchrl/modules/models/models.py +1712 -0
  278. torchrl/modules/models/multiagent.py +1067 -0
  279. torchrl/modules/models/recipes/impala.py +185 -0
  280. torchrl/modules/models/utils.py +162 -0
  281. torchrl/modules/planners/__init__.py +10 -0
  282. torchrl/modules/planners/cem.py +228 -0
  283. torchrl/modules/planners/common.py +73 -0
  284. torchrl/modules/planners/mppi.py +265 -0
  285. torchrl/modules/tensordict_module/__init__.py +89 -0
  286. torchrl/modules/tensordict_module/actors.py +2457 -0
  287. torchrl/modules/tensordict_module/common.py +529 -0
  288. torchrl/modules/tensordict_module/exploration.py +814 -0
  289. torchrl/modules/tensordict_module/probabilistic.py +321 -0
  290. torchrl/modules/tensordict_module/rnn.py +1639 -0
  291. torchrl/modules/tensordict_module/sequence.py +132 -0
  292. torchrl/modules/tensordict_module/world_models.py +34 -0
  293. torchrl/modules/utils/__init__.py +38 -0
  294. torchrl/modules/utils/mappings.py +9 -0
  295. torchrl/modules/utils/utils.py +89 -0
  296. torchrl/objectives/__init__.py +78 -0
  297. torchrl/objectives/a2c.py +659 -0
  298. torchrl/objectives/common.py +753 -0
  299. torchrl/objectives/cql.py +1346 -0
  300. torchrl/objectives/crossq.py +710 -0
  301. torchrl/objectives/ddpg.py +453 -0
  302. torchrl/objectives/decision_transformer.py +371 -0
  303. torchrl/objectives/deprecated.py +516 -0
  304. torchrl/objectives/dqn.py +683 -0
  305. torchrl/objectives/dreamer.py +488 -0
  306. torchrl/objectives/functional.py +48 -0
  307. torchrl/objectives/gail.py +258 -0
  308. torchrl/objectives/iql.py +996 -0
  309. torchrl/objectives/llm/__init__.py +30 -0
  310. torchrl/objectives/llm/grpo.py +846 -0
  311. torchrl/objectives/llm/sft.py +482 -0
  312. torchrl/objectives/multiagent/__init__.py +8 -0
  313. torchrl/objectives/multiagent/qmixer.py +396 -0
  314. torchrl/objectives/ppo.py +1669 -0
  315. torchrl/objectives/redq.py +683 -0
  316. torchrl/objectives/reinforce.py +530 -0
  317. torchrl/objectives/sac.py +1580 -0
  318. torchrl/objectives/td3.py +570 -0
  319. torchrl/objectives/td3_bc.py +625 -0
  320. torchrl/objectives/utils.py +782 -0
  321. torchrl/objectives/value/__init__.py +28 -0
  322. torchrl/objectives/value/advantages.py +1956 -0
  323. torchrl/objectives/value/functional.py +1459 -0
  324. torchrl/objectives/value/utils.py +360 -0
  325. torchrl/record/__init__.py +17 -0
  326. torchrl/record/loggers/__init__.py +23 -0
  327. torchrl/record/loggers/common.py +48 -0
  328. torchrl/record/loggers/csv.py +226 -0
  329. torchrl/record/loggers/mlflow.py +142 -0
  330. torchrl/record/loggers/tensorboard.py +139 -0
  331. torchrl/record/loggers/trackio.py +163 -0
  332. torchrl/record/loggers/utils.py +78 -0
  333. torchrl/record/loggers/wandb.py +214 -0
  334. torchrl/record/recorder.py +554 -0
  335. torchrl/services/__init__.py +79 -0
  336. torchrl/services/base.py +109 -0
  337. torchrl/services/ray_service.py +453 -0
  338. torchrl/testing/__init__.py +107 -0
  339. torchrl/testing/assertions.py +179 -0
  340. torchrl/testing/dist_utils.py +122 -0
  341. torchrl/testing/env_creators.py +227 -0
  342. torchrl/testing/env_helper.py +35 -0
  343. torchrl/testing/gym_helpers.py +156 -0
  344. torchrl/testing/llm_mocks.py +119 -0
  345. torchrl/testing/mocking_classes.py +2720 -0
  346. torchrl/testing/modules.py +295 -0
  347. torchrl/testing/mp_helpers.py +15 -0
  348. torchrl/testing/ray_helpers.py +293 -0
  349. torchrl/testing/utils.py +190 -0
  350. torchrl/trainers/__init__.py +42 -0
  351. torchrl/trainers/algorithms/__init__.py +11 -0
  352. torchrl/trainers/algorithms/configs/__init__.py +705 -0
  353. torchrl/trainers/algorithms/configs/collectors.py +216 -0
  354. torchrl/trainers/algorithms/configs/common.py +41 -0
  355. torchrl/trainers/algorithms/configs/data.py +308 -0
  356. torchrl/trainers/algorithms/configs/envs.py +104 -0
  357. torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
  358. torchrl/trainers/algorithms/configs/logging.py +80 -0
  359. torchrl/trainers/algorithms/configs/modules.py +570 -0
  360. torchrl/trainers/algorithms/configs/objectives.py +177 -0
  361. torchrl/trainers/algorithms/configs/trainers.py +340 -0
  362. torchrl/trainers/algorithms/configs/transforms.py +955 -0
  363. torchrl/trainers/algorithms/configs/utils.py +252 -0
  364. torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
  365. torchrl/trainers/algorithms/configs/weight_update.py +159 -0
  366. torchrl/trainers/algorithms/ppo.py +373 -0
  367. torchrl/trainers/algorithms/sac.py +308 -0
  368. torchrl/trainers/helpers/__init__.py +40 -0
  369. torchrl/trainers/helpers/collectors.py +416 -0
  370. torchrl/trainers/helpers/envs.py +573 -0
  371. torchrl/trainers/helpers/logger.py +33 -0
  372. torchrl/trainers/helpers/losses.py +132 -0
  373. torchrl/trainers/helpers/models.py +658 -0
  374. torchrl/trainers/helpers/replay_buffer.py +59 -0
  375. torchrl/trainers/helpers/trainers.py +301 -0
  376. torchrl/trainers/trainers.py +2052 -0
  377. torchrl/weight_update/__init__.py +33 -0
  378. torchrl/weight_update/_distributed.py +749 -0
  379. torchrl/weight_update/_mp.py +624 -0
  380. torchrl/weight_update/_noupdate.py +102 -0
  381. torchrl/weight_update/_ray.py +1032 -0
  382. torchrl/weight_update/_rpc.py +284 -0
  383. torchrl/weight_update/_shared.py +891 -0
  384. torchrl/weight_update/llm/__init__.py +32 -0
  385. torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
  386. torchrl/weight_update/llm/vllm_nccl.py +710 -0
  387. torchrl/weight_update/utils.py +73 -0
  388. torchrl/weight_update/weight_sync_schemes.py +1244 -0
  389. torchrl-0.11.0.dist-info/LICENSE +21 -0
  390. torchrl-0.11.0.dist-info/METADATA +1307 -0
  391. torchrl-0.11.0.dist-info/RECORD +394 -0
  392. torchrl-0.11.0.dist-info/WHEEL +5 -0
  393. torchrl-0.11.0.dist-info/entry_points.txt +2 -0
  394. torchrl-0.11.0.dist-info/top_level.txt +7 -0
@@ -0,0 +1,1306 @@
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ r"""Generic distributed data-collector using torch.distributed backend."""
7
+ from __future__ import annotations
8
+
9
+ import os
10
+ import socket
11
+ import warnings
12
+ from collections import OrderedDict
13
+ from collections.abc import Callable, Sequence
14
+ from copy import copy, deepcopy
15
+ from datetime import timedelta
16
+ from typing import Any
17
+
18
+ import torch.cuda
19
+ from tensordict import TensorDict, TensorDictBase
20
+ from tensordict.nn import TensorDictModuleBase
21
+ from torch import nn
22
+ from torchrl._utils import (
23
+ _get_mp_ctx,
24
+ _ProcessNoWarn,
25
+ logger as torchrl_logger,
26
+ VERBOSE,
27
+ )
28
+ from torchrl.collectors._base import _LegacyCollectorMeta, BaseCollector
29
+ from torchrl.collectors._constants import DEFAULT_EXPLORATION_TYPE
30
+ from torchrl.collectors._multi_async import MultiAsyncCollector
31
+ from torchrl.collectors._multi_base import MultiCollector
32
+ from torchrl.collectors._multi_sync import MultiSyncCollector
33
+ from torchrl.collectors._single import Collector
34
+ from torchrl.collectors.distributed.default_configs import (
35
+ _create_tcpstore_with_retry,
36
+ DEFAULT_SLURM_CONF,
37
+ MAX_TIME_TO_CONNECT,
38
+ TCP_PORT,
39
+ )
40
+ from torchrl.collectors.utils import _cast, _NON_NN_POLICY_WEIGHTS, split_trajectories
41
+ from torchrl.collectors.weight_update import WeightUpdaterBase
42
+ from torchrl.data.utils import CloudpickleWrapper
43
+ from torchrl.envs.common import EnvBase
44
+ from torchrl.envs.env_creator import EnvCreator
45
+ from torchrl.weight_update import DistributedWeightSyncScheme
46
+ from torchrl.weight_update.weight_sync_schemes import WeightSyncScheme
47
+
48
+ SUBMITIT_ERR = None
49
+ try:
50
+ import submitit
51
+
52
+ _has_submitit = True
53
+ except ModuleNotFoundError as err:
54
+ _has_submitit = False
55
+ SUBMITIT_ERR = err
56
+
57
+
58
+ def _node_init_dist(rank, world_size, backend, rank0_ip, tcpport, verbose):
59
+ os.environ["MASTER_ADDR"] = str(rank0_ip)
60
+ os.environ["MASTER_PORT"] = str(tcpport)
61
+
62
+ if verbose:
63
+ torchrl_logger.debug(
64
+ f"Rank0 IP address: '{rank0_ip}' \ttcp port: '{tcpport}', backend={backend}."
65
+ )
66
+ torchrl_logger.debug(
67
+ f"RANK {rank} with world_size {world_size} -- launching distributed"
68
+ )
69
+ torch.distributed.init_process_group(
70
+ backend,
71
+ rank=rank,
72
+ world_size=world_size,
73
+ timeout=timedelta(MAX_TIME_TO_CONNECT),
74
+ init_method=f"tcp://{rank0_ip}:{tcpport}",
75
+ )
76
+ if verbose:
77
+ torchrl_logger.debug(f"Connected!\nRANK {rank} -- creating store")
78
+
79
+ # Receive actual store port from master via broadcast (master may have used retry)
80
+ store_port_tensor = torch.zeros(1, dtype=torch.int64)
81
+ torch.distributed.broadcast(store_port_tensor, src=0)
82
+ actual_store_port = int(store_port_tensor.item())
83
+ if verbose:
84
+ torchrl_logger.debug(
85
+ f"RANK {rank} -- received store port {actual_store_port} from master"
86
+ )
87
+
88
+ # The store carries instructions for the node
89
+ _store = torch.distributed.TCPStore(
90
+ host_name=rank0_ip,
91
+ port=actual_store_port,
92
+ world_size=world_size,
93
+ is_master=False,
94
+ timeout=timedelta(10),
95
+ )
96
+ return _store
97
+
98
+
99
+ def _distributed_init_delayed(
100
+ rank,
101
+ backend,
102
+ rank0_ip,
103
+ tcpport,
104
+ world_size,
105
+ verbose=False,
106
+ ):
107
+ """Initializer for contexts where jobs cannot be launched from main node.
108
+
109
+ This function will wait for the main worker to send the launch command.
110
+ """
111
+ _store = _node_init_dist(rank, world_size, backend, rank0_ip, tcpport, verbose)
112
+ # wait...
113
+ objects = [
114
+ None,
115
+ ] * world_size
116
+ output_list = [None]
117
+ torch.distributed.scatter_object_list(output_list, objects, src=0)
118
+ output = output_list[0]
119
+ sync = output["sync"]
120
+ collector_class = output["collector_class"]
121
+ num_workers = output["num_workers"]
122
+ env_make = output["env_make"]
123
+ policy = output["policy"]
124
+ frames_per_batch = output["frames_per_batch"]
125
+ collector_kwargs = output["collector_kwargs"]
126
+ _run_collector(
127
+ _store=_store,
128
+ sync=sync,
129
+ collector_class=collector_class,
130
+ num_workers=num_workers,
131
+ env_make=env_make,
132
+ policy=policy,
133
+ frames_per_batch=frames_per_batch,
134
+ collector_kwargs=collector_kwargs,
135
+ verbose=verbose,
136
+ )
137
+
138
+
139
+ def _distributed_init_collection_node(
140
+ *,
141
+ rank,
142
+ rank0_ip,
143
+ tcpport,
144
+ sync,
145
+ world_size,
146
+ backend,
147
+ collector_class,
148
+ num_workers,
149
+ env_make,
150
+ policy,
151
+ policy_factory,
152
+ frames_per_batch,
153
+ collector_kwargs,
154
+ weight_sync_schemes,
155
+ verbose=True,
156
+ ):
157
+ _store = _node_init_dist(rank, world_size, backend, rank0_ip, tcpport, verbose)
158
+ _run_collector(
159
+ _store=_store,
160
+ sync=sync,
161
+ collector_class=collector_class,
162
+ num_workers=num_workers,
163
+ env_make=env_make,
164
+ policy=policy,
165
+ policy_factory=policy_factory,
166
+ frames_per_batch=frames_per_batch,
167
+ weight_sync_schemes=weight_sync_schemes,
168
+ collector_kwargs=collector_kwargs,
169
+ verbose=verbose,
170
+ )
171
+
172
+
173
+ def _run_collector(
174
+ *,
175
+ _store,
176
+ sync,
177
+ collector_class,
178
+ num_workers,
179
+ env_make,
180
+ policy,
181
+ policy_factory,
182
+ frames_per_batch,
183
+ collector_kwargs,
184
+ weight_sync_schemes: dict[str, DistributedWeightSyncScheme],
185
+ verbose=True,
186
+ ):
187
+ rank = torch.distributed.get_rank()
188
+ if verbose:
189
+ torchrl_logger.debug(
190
+ f"RANK {rank} -- creating collector of type {collector_class}"
191
+ )
192
+ if not issubclass(collector_class, Collector):
193
+ env_make = [env_make] * num_workers
194
+ else:
195
+ collector_kwargs["return_same_td"] = True
196
+ if num_workers != 1:
197
+ raise RuntimeError(
198
+ "Collector and subclasses can only support a single environment."
199
+ )
200
+
201
+ if issubclass(collector_class, MultiCollector) and (
202
+ (not isinstance(policy_factory, Sequence) and policy_factory is not None)
203
+ or (isinstance(policy_factory, Sequence) and any(policy_factory))
204
+ ):
205
+ # We build an intermediate policy to get the weights from for weight updates. This is slow
206
+ # (main -> dist worker -> mp worker), but in some cases there is no alternative
207
+ policy = (
208
+ policy_factory[0]()
209
+ if isinstance(policy_factory, Sequence)
210
+ else policy_factory()
211
+ )
212
+
213
+ if isinstance(policy, nn.Module):
214
+ policy_weights = TensorDict.from_module(policy)
215
+ policy_weights = policy_weights.data.apply(_cast, policy_weights).lock_()
216
+ else:
217
+ if collector_kwargs.get("weight_updater") is None and (
218
+ policy_factory is None
219
+ or (isinstance(policy_factory, Sequence) and not any(policy_factory))
220
+ ):
221
+ warnings.warn(_NON_NN_POLICY_WEIGHTS)
222
+ policy_weights = TensorDict(lock=True)
223
+
224
+ # NOTE:
225
+ # - `weight_sync_schemes` here are the *distributed* schemes used to send
226
+ # weights from the main process to this node.
227
+ # - Inner multi-process collectors (e.g., MultiSyncCollector) should
228
+ # manage their own local weight sync schemes (SharedMem / MP) for their
229
+ # sub-workers.
230
+ # Therefore, we do NOT pass `weight_sync_schemes` down into
231
+ # `collector_class` so that it can set up its own local schemes.
232
+ collector = collector_class(
233
+ env_make,
234
+ policy=policy,
235
+ policy_factory=policy_factory,
236
+ frames_per_batch=frames_per_batch,
237
+ total_frames=-1,
238
+ split_trajs=False,
239
+ **collector_kwargs,
240
+ )
241
+
242
+ if weight_sync_schemes is not None:
243
+ for model_id, scheme in weight_sync_schemes.items():
244
+ # Provide both collector context and distributed store / rank so the
245
+ # scheme can wire its transport correctly.
246
+ scheme.init_on_receiver(
247
+ model_id=model_id,
248
+ context=collector,
249
+ # store=_store,
250
+ worker_idx=rank,
251
+ )
252
+ scheme.connect()
253
+
254
+ total_frames = 0
255
+ while True:
256
+ if verbose:
257
+ torchrl_logger.debug(f"RANK {rank} -- waiting for instructions")
258
+ instruction = _store.get(f"NODE_{rank}_in")
259
+ if verbose:
260
+ torchrl_logger.debug(f"RANK {rank} -- new instruction: {instruction}")
261
+ _store.delete_key(f"NODE_{rank}_in")
262
+ if instruction == b"continue":
263
+ _store.set(f"NODE_{rank}_status", b"busy")
264
+ if verbose:
265
+ torchrl_logger.debug(f"RANK {rank} -- collecting new data")
266
+ data = collector.next()
267
+ total_frames += data.numel()
268
+ if verbose:
269
+ torchrl_logger.debug(
270
+ f"RANK {rank} -- got data, total frames = {total_frames}"
271
+ )
272
+ torchrl_logger.debug(
273
+ f"RANK {rank} -- sending TensorDict payload to rank 0"
274
+ )
275
+
276
+ if _store.get("TRAINER_status") == b"alive":
277
+ data.isend(dst=0)
278
+ if verbose:
279
+ torchrl_logger.debug(f"RANK {rank} -- setting to 'done'")
280
+ if not sync:
281
+ _store.set(f"NODE_{rank}_status", b"done")
282
+ if verbose:
283
+ torchrl_logger.debug(f"RANK {rank} -- set to 'done'")
284
+
285
+ elif instruction == b"shutdown":
286
+ if verbose:
287
+ torchrl_logger.debug(f"RANK {rank} -- shutting down")
288
+ # Shutdown weight sync schemes first (stops background threads)
289
+ if weight_sync_schemes is not None:
290
+ for scheme in weight_sync_schemes.values():
291
+ try:
292
+ scheme.shutdown()
293
+ except Exception:
294
+ pass
295
+ try:
296
+ collector.shutdown()
297
+ except Exception:
298
+ pass
299
+ _store.set(f"NODE_{rank}_out", b"down")
300
+ break
301
+
302
+ elif instruction == b"update_weights":
303
+ if verbose:
304
+ torchrl_logger.debug(f"RANK {rank} -- updating weights")
305
+
306
+ if weight_sync_schemes is not None:
307
+ if verbose:
308
+ torchrl_logger.debug(
309
+ f"RANK {rank} -- using weight sync schemes for update"
310
+ )
311
+ # Receive fresh weights from the main process for each model.
312
+ # scheme.receive() handles both applying weights locally and
313
+ # cascading to sub-collectors via context.update_policy_weights_().
314
+ for model_id, scheme in weight_sync_schemes.items():
315
+ if verbose:
316
+ torchrl_logger.debug(
317
+ f"RANK {rank} -- receiving weights for model '{model_id}'"
318
+ )
319
+ scheme.receive()
320
+ if verbose:
321
+ torchrl_logger.debug(
322
+ f"RANK {rank} -- received and cascaded weights for model '{model_id}'"
323
+ )
324
+
325
+ # Acknowledgment is handled by the transport (send_ack in the
326
+ # WeightReceiver), so we can continue without touching the
327
+ # TCPStore here.
328
+ continue
329
+ if sync:
330
+ policy_weights.recv(0)
331
+ else:
332
+ # without further arguments, irecv blocks until weights have
333
+ # been updated
334
+ policy_weights.irecv(0)
335
+ # the policy has been updated: we can simply update the weights
336
+ collector.update_policy_weights_(policy_weights=policy_weights)
337
+ _store.set(f"NODE_{rank}_out", b"updated")
338
+ elif instruction.startswith(b"seeding"):
339
+ seed = int(instruction.split(b"seeding_"))
340
+ new_seed = collector.set_seed(seed)
341
+ _store.set(f"NODE_{rank}_out", b"seeded")
342
+ _store.set(f"NODE_{rank}_seed", str(new_seed).encode("utf-8"))
343
+ else:
344
+ raise RuntimeError(f"Instruction {instruction} is not recognised")
345
+ if not collector.closed:
346
+ collector.shutdown()
347
+ del collector
348
+ return
349
+
350
+
351
+ class DistributedCollector(BaseCollector):
352
+ """A distributed data collector with torch.distributed backend.
353
+
354
+ Supports sync and async data collection.
355
+
356
+ Args:
357
+ create_env_fn (Callable or List[Callabled]): list of Callables, each returning an
358
+ instance of :class:`~torchrl.envs.EnvBase`.
359
+ policy (Callable): Policy to be executed in the environment.
360
+ Must accept :class:`tensordict.tensordict.TensorDictBase` object as input.
361
+ If ``None`` is provided, the policy used will be a
362
+ :class:`~torchrl.collectors.RandomPolicy` instance with the environment
363
+ ``action_spec``.
364
+ Accepted policies are usually subclasses of :class:`~tensordict.nn.TensorDictModuleBase`.
365
+ This is the recommended usage of the collector.
366
+ Other callables are accepted too:
367
+ If the policy is not a ``TensorDictModuleBase`` (e.g., a regular :class:`~torch.nn.Module`
368
+ instances) it will be wrapped in a `nn.Module` first.
369
+ Then, the collector will try to assess if these
370
+ modules require wrapping in a :class:`~tensordict.nn.TensorDictModule` or not.
371
+
372
+ - If the policy forward signature matches any of ``forward(self, tensordict)``,
373
+ ``forward(self, td)`` or ``forward(self, <anything>: TensorDictBase)`` (or
374
+ any typing with a single argument typed as a subclass of ``TensorDictBase``)
375
+ then the policy won't be wrapped in a :class:`~tensordict.nn.TensorDictModule`.
376
+
377
+ - In all other cases an attempt to wrap it will be undergone as such: ``TensorDictModule(policy, in_keys=env_obs_key, out_keys=env.action_keys)``.
378
+
379
+ .. note:: If the policy needs to be passed as a policy factory (e.g., in case it mustn't be serialized /
380
+ pickled directly), the ``policy_factory`` should be used instead.
381
+
382
+ Keyword Args:
383
+ policy_factory (Callable[[], Callable], list of Callable[[], Callable], optional): a callable
384
+ (or list of callables) that returns a policy instance. This is exclusive with the `policy` argument.
385
+
386
+ .. note:: `policy_factory` comes in handy whenever the policy cannot be serialized.
387
+
388
+ frames_per_batch (int): A keyword-only argument representing the total
389
+ number of elements in a batch.
390
+ total_frames (int): A keyword-only argument representing the total
391
+ number of frames returned by the collector
392
+ during its lifespan. If the ``total_frames`` is not divisible by
393
+ ``frames_per_batch``, an exception is raised.
394
+ Endless collectors can be created by passing ``total_frames=-1``.
395
+ Defaults to ``-1`` (endless collector).
396
+ device (int, str or torch.device, optional): The generic device of the
397
+ collector. The ``device`` args fills any non-specified device: if
398
+ ``device`` is not ``None`` and any of ``storing_device``, ``policy_device`` or
399
+ ``env_device`` is not specified, its value will be set to ``device``.
400
+ Defaults to ``None`` (No default device).
401
+ Lists of devices are supported.
402
+ storing_device (int, str or torch.device, optional): The *remote* device on which
403
+ the output :class:`~tensordict.TensorDict` will be stored.
404
+ If ``device`` is passed and ``storing_device`` is ``None``, it will
405
+ default to the value indicated by ``device``.
406
+ For long trajectories, it may be necessary to store the data on a different
407
+ device than the one where the policy and env are executed.
408
+ Defaults to ``None`` (the output tensordict isn't on a specific device,
409
+ leaf tensors sit on the device where they were created).
410
+ Lists of devices are supported.
411
+ env_device (int, str or torch.device, optional): The *remote* device on which
412
+ the environment should be cast (or executed if that functionality is
413
+ supported). If not specified and the env has a non-``None`` device,
414
+ ``env_device`` will default to that value. If ``device`` is passed
415
+ and ``env_device=None``, it will default to ``device``. If the value
416
+ as such specified of ``env_device`` differs from ``policy_device``
417
+ and one of them is not ``None``, the data will be cast to ``env_device``
418
+ before being passed to the env (i.e., passing different devices to
419
+ policy and env is supported). Defaults to ``None``.
420
+ Lists of devices are supported.
421
+ policy_device (int, str or torch.device, optional): The *remote* device on which
422
+ the policy should be cast.
423
+ If ``device`` is passed and ``policy_device=None``, it will default
424
+ to ``device``. If the value as such specified of ``policy_device``
425
+ differs from ``env_device`` and one of them is not ``None``,
426
+ the data will be cast to ``policy_device`` before being passed to
427
+ the policy (i.e., passing different devices to policy and env is
428
+ supported). Defaults to ``None``.
429
+ Lists of devices are supported.
430
+ max_frames_per_traj (int, optional): Maximum steps per trajectory.
431
+ Note that a trajectory can span across multiple batches (unless
432
+ ``reset_at_each_iter`` is set to ``True``, see below).
433
+ Once a trajectory reaches ``n_steps``, the environment is reset.
434
+ If the environment wraps multiple environments together, the number
435
+ of steps is tracked for each environment independently. Negative
436
+ values are allowed, in which case this argument is ignored.
437
+ Defaults to ``None`` (i.e., no maximum number of steps).
438
+ init_random_frames (int, optional): Number of frames for which the
439
+ policy is ignored before it is called. This feature is mainly
440
+ intended to be used in offline/model-based settings, where a
441
+ batch of random trajectories can be used to initialize training.
442
+ If provided, it will be rounded up to the closest multiple of frames_per_batch.
443
+ Defaults to ``None`` (i.e. no random frames).
444
+ reset_at_each_iter (bool, optional): Whether environments should be reset
445
+ at the beginning of a batch collection.
446
+ Defaults to ``False``.
447
+ postproc (Callable, optional): A post-processing transform, such as
448
+ a :class:`~torchrl.envs.Transform` or a :class:`~torchrl.data.postprocs.MultiStep`
449
+ instance.
450
+ Defaults to ``None``.
451
+ split_trajs (bool, optional): Boolean indicating whether the resulting
452
+ TensorDict should be split according to the trajectories.
453
+ See :func:`~torchrl.collectors.utils.split_trajectories` for more
454
+ information.
455
+ Defaults to ``False``.
456
+ exploration_type (ExplorationType, optional): interaction mode to be used when
457
+ collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
458
+ ``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
459
+ or ``torchrl.envs.utils.ExplorationType.MEAN``.
460
+ collector_class (Type or str, optional): a collector class for the remote node. Can be
461
+ :class:`~torchrl.collectors.Collector`,
462
+ :class:`~torchrl.collectors.MultiSyncCollector`,
463
+ :class:`~torchrl.collectors.MultiAsyncCollector`
464
+ or a derived class of these. The strings "single", "sync" and
465
+ "async" correspond to respective class.
466
+ Defaults to :class:`~torchrl.collectors.Collector`.
467
+ collector_kwargs (dict or list, optional): a dictionary of parameters to be passed to the
468
+ remote data-collector. If a list is provided, each element will
469
+ correspond to an individual set of keyword arguments for the
470
+ dedicated collector.
471
+ num_workers_per_collector (int, optional): the number of copies of the
472
+ env constructor that is to be used on the remote nodes.
473
+ Defaults to 1 (a single env per collector).
474
+ On a single worker node all the sub-workers will be
475
+ executing the same environment. If different environments need to
476
+ be executed, they should be dispatched across worker nodes, not
477
+ subnodes.
478
+ sync (bool, optional): if ``True``, the resulting tensordict is a stack of all the
479
+ tensordicts collected on each node. If ``False`` (default), each
480
+ tensordict results from a separate node in a "first-ready,
481
+ first-served" fashion.
482
+ slurm_kwargs (dict): a dictionary of parameters to be passed to the
483
+ submitit executor.
484
+ backend (str, optional): must a string "<distributed_backed>" where
485
+ <distributed_backed> is one of ``"gloo"``, ``"mpi"``, ``"nccl"`` or ``"ucc"``. See
486
+ the torch.distributed documentation for more information.
487
+ Defaults to ``"gloo"``.
488
+ update_after_each_batch (bool, optional): if ``True``, the weights will
489
+ be updated after each collection. For ``sync=True``, this means that
490
+ all workers will see their weights updated. For ``sync=False``,
491
+ only the worker from which the data has been gathered will be
492
+ updated.
493
+ Defaults to ``False``, ie. updates have to be executed manually
494
+ through
495
+ :meth:`~torchrl.collectors.distributed.DistributedDataCollector.update_policy_weights_`.
496
+ max_weight_update_interval (int, optional): the maximum number of
497
+ batches that can be collected before the policy weights of a worker
498
+ is updated.
499
+ For sync collections, this parameter is overwritten by ``update_after_each_batch``.
500
+ For async collections, it may be that one worker has not seen its
501
+ parameters being updated for a certain time even if ``update_after_each_batch``
502
+ is turned on.
503
+ Defaults to -1 (no forced update).
504
+ launcher (str, optional): how jobs should be launched.
505
+ Can be one of "submitit" or "mp" for multiprocessing.
506
+ Use "submitit_delayed" if your cluster does not support spawning
507
+ jobs from existing jobs.
508
+ The former can launch jobs across multiple nodes, whilst the latter will only
509
+ launch jobs on a single machine. "submitit" requires the homonymous
510
+ library to be installed.
511
+ To find more about submitit, visit
512
+ https://github.com/facebookincubator/submitit and check our examples
513
+ to learn more.
514
+ Defaults to ``"submitit"``.
515
+ tcp_port (int, optional): the TCP port to be used. Defaults to 10003.
516
+ weight_updater (WeightUpdaterBase or constructor, optional): An instance of :class:`~torchrl.collectors.WeightUpdaterBase`
517
+ or its subclass, responsible for updating the policy weights on distributed inference workers.
518
+ If not provided, a :class:`~torchrl.collectors.distributed.DistributedWeightUpdater` will be used by
519
+ default, which handles weight synchronization across distributed workers.
520
+ Consider using a constructor if the updater needs to be serialized.
521
+ weight_sync_schemes (dict[str, WeightSyncScheme], optional): Dictionary of weight sync schemes for
522
+ SENDING weights to distributed worker collectors. Keys are model identifiers (e.g., "policy")
523
+ and values are WeightSyncScheme instances configured to send weights via torch.distributed.
524
+ If not provided, a :class:`~torchrl.weight_update.DistributedWeightSyncScheme` will be used by default.
525
+ This is for propagating weights from the main process to distributed workers.
526
+ weight_recv_schemes (dict[str, WeightSyncScheme], optional): Dictionary of weight sync schemes for
527
+ RECEIVING weights from a parent process or training loop. Keys are model identifiers (e.g., "policy")
528
+ and values are WeightSyncScheme instances configured to receive weights.
529
+ This is typically used when DistributedDataCollector is itself a worker in a larger distributed setup.
530
+ Defaults to ``None``.
531
+
532
+ """
533
+
534
+ _VERBOSE = VERBOSE # for debugging
535
+
536
+ def __init__(
537
+ self,
538
+ create_env_fn,
539
+ policy: Callable[[TensorDictBase], TensorDictBase] | None = None,
540
+ *,
541
+ policy_factory: Callable[[], Callable]
542
+ | list[Callable[[] | Callable]]
543
+ | None = None,
544
+ frames_per_batch: int,
545
+ total_frames: int = -1,
546
+ device: torch.device | list[torch.device] | None = None,
547
+ storing_device: torch.device | list[torch.device] | None = None,
548
+ env_device: torch.device | list[torch.device] | None = None,
549
+ policy_device: torch.device | list[torch.device] | None = None,
550
+ max_frames_per_traj: int = -1,
551
+ init_random_frames: int = -1,
552
+ reset_at_each_iter: bool = False,
553
+ postproc: Callable | None = None,
554
+ split_trajs: bool = False,
555
+ exploration_type: ExporationType = DEFAULT_EXPLORATION_TYPE, # noqa
556
+ collector_class: type = Collector,
557
+ collector_kwargs: dict[str, Any] | None = None,
558
+ num_workers_per_collector: int = 1,
559
+ sync: bool = False,
560
+ slurm_kwargs: dict[str, Any] | None = None,
561
+ backend: str = "gloo",
562
+ update_after_each_batch: bool = False,
563
+ max_weight_update_interval: int = -1,
564
+ update_interval: int | None = None,
565
+ launcher: str = "submitit",
566
+ tcp_port: int | None = None,
567
+ weight_updater: WeightUpdaterBase
568
+ | Callable[[], WeightUpdaterBase]
569
+ | None = None,
570
+ weight_sync_schemes: dict[str, WeightSyncScheme] | None = None,
571
+ weight_recv_schemes: dict[str, WeightSyncScheme] | None = None,
572
+ ):
573
+
574
+ if self._VERBOSE:
575
+ torchrl_logger.setLevel("DEBUG")
576
+
577
+ if collector_class == "async":
578
+ collector_class = MultiAsyncCollector
579
+ elif collector_class == "sync":
580
+ collector_class = MultiSyncCollector
581
+ elif collector_class == "single":
582
+ collector_class = Collector
583
+ self.collector_class = collector_class
584
+ self.env_constructors = create_env_fn
585
+ if not isinstance(policy_factory, Sequence):
586
+ policy_factory = [policy_factory for _ in range(len(self.env_constructors))]
587
+ self.policy_factory = policy_factory
588
+ if isinstance(policy, nn.Module):
589
+ policy_weights = TensorDict.from_module(policy)
590
+ policy_weights = policy_weights.data.lock_()
591
+ elif any(policy_factory):
592
+ policy_weights = None
593
+ else:
594
+ if not any(policy_factory):
595
+ warnings.warn(_NON_NN_POLICY_WEIGHTS)
596
+ policy_weights = TensorDict(lock=True)
597
+ self.policy = policy
598
+ self._policy_to_send = policy if not any(policy_factory) else None
599
+ self.policy_weights = policy_weights
600
+ self.num_workers = len(create_env_fn)
601
+ self.frames_per_batch = frames_per_batch
602
+ self.requested_frames_per_batch = frames_per_batch
603
+
604
+ self.device = device
605
+ self.storing_device = storing_device
606
+ self.env_device = env_device
607
+ self.policy_device = policy_device
608
+
609
+ # make private to avoid changes from users during collection
610
+ self._sync = sync
611
+ self.update_after_each_batch = update_after_each_batch
612
+ self.max_weight_update_interval = max_weight_update_interval
613
+ if update_interval is not None and update_interval < 1:
614
+ raise ValueError(
615
+ "`update_interval` must be >= 1 when provided. "
616
+ f"Got update_interval={update_interval}."
617
+ )
618
+ self.update_interval = update_interval
619
+ if self.update_after_each_batch and self.max_weight_update_interval > -1:
620
+ raise RuntimeError(
621
+ "Got conflicting update instructions: `update_after_each_batch` "
622
+ "`max_weight_update_interval` are incompatible."
623
+ )
624
+ self.launcher = launcher
625
+ self._batches_since_weight_update = [0 for _ in range(self.num_workers)]
626
+ if tcp_port is None:
627
+ self.tcp_port = os.environ.get("TCP_PORT", TCP_PORT)
628
+ else:
629
+ self.tcp_port = str(tcp_port)
630
+
631
+ if self._sync:
632
+ if self.frames_per_batch % self.num_workers != 0:
633
+ raise RuntimeError(
634
+ f"Cannot dispatch {self.frames_per_batch} frames across {self.num_workers}. "
635
+ f"Consider using a number of frames per batch that is divisible by the number of workers."
636
+ )
637
+ self._frames_per_batch_corrected = self.frames_per_batch // self.num_workers
638
+ else:
639
+ self._frames_per_batch_corrected = self.frames_per_batch
640
+
641
+ self.num_workers_per_collector = num_workers_per_collector
642
+ self.total_frames = total_frames
643
+ self.slurm_kwargs = copy(DEFAULT_SLURM_CONF)
644
+ if slurm_kwargs is not None:
645
+ self.slurm_kwargs.update(slurm_kwargs)
646
+ collector_kwargs = collector_kwargs if collector_kwargs is not None else {}
647
+ self.collector_kwargs = (
648
+ deepcopy(collector_kwargs)
649
+ if isinstance(collector_kwargs, (list, tuple))
650
+ else [copy(collector_kwargs) for _ in range(self.num_workers)]
651
+ )
652
+
653
+ # update collector kwargs
654
+ for i, collector_kwarg in enumerate(self.collector_kwargs):
655
+ collector_kwarg["max_frames_per_traj"] = max_frames_per_traj
656
+ collector_kwarg["init_random_frames"] = (
657
+ init_random_frames // self.num_workers
658
+ )
659
+ if not self._sync and init_random_frames > 0:
660
+ warnings.warn(
661
+ "async distributed data collection with init_random_frames > 0 "
662
+ "may have unforeseen consequences as we do not control that once "
663
+ "non-random data is being collected all nodes are returning non-random data. "
664
+ "If this is a feature that you feel should be fixed, please raise an issue on "
665
+ "torchrl's repo."
666
+ )
667
+ collector_kwarg["reset_at_each_iter"] = reset_at_each_iter
668
+ collector_kwarg["exploration_type"] = exploration_type
669
+ collector_kwarg["device"] = self.device[i]
670
+ collector_kwarg["storing_device"] = self.storing_device[i]
671
+ collector_kwarg["env_device"] = self.env_device[i]
672
+ collector_kwarg["policy_device"] = self.policy_device[i]
673
+
674
+ self.postproc = postproc
675
+ self.split_trajs = split_trajs
676
+
677
+ self.backend = backend
678
+
679
+ # Set up weight synchronization - prefer new schemes over legacy updater
680
+ if weight_updater is None and weight_sync_schemes is None:
681
+ # Default to Distributed weight sync scheme for distributed collectors
682
+ from torchrl.weight_update import DistributedWeightSyncScheme
683
+
684
+ weight_sync_schemes = {
685
+ "policy": DistributedWeightSyncScheme(backend=backend, sync=self._sync)
686
+ }
687
+
688
+ if weight_sync_schemes is not None:
689
+ torchrl_logger.debug("RANK 0 -- Using weight sync schemes")
690
+ # Use new weight synchronization system
691
+ self._weight_sync_schemes = weight_sync_schemes
692
+ self.weight_updater = None
693
+ else:
694
+ torchrl_logger.debug("RANK 0 -- Using weight updater")
695
+ # Fall back to legacy weight updater system
696
+ if weight_updater is None:
697
+ weight_updater = DistributedWeightUpdater(
698
+ store=self._store,
699
+ policy_weights=self.policy_weights,
700
+ num_workers=self.num_workers,
701
+ sync=self._sync,
702
+ )
703
+ self.weight_updater = weight_updater
704
+ self._weight_sync_schemes = None
705
+
706
+ if self._weight_sync_schemes is not None:
707
+ # Initialize schemes on the sender (main process) side now that
708
+ # worker processes and the store have been created.
709
+ for model_id, scheme in self._weight_sync_schemes.items():
710
+ scheme.init_on_sender(
711
+ num_workers=self.num_workers, context=self, model_id=model_id
712
+ )
713
+
714
+ self._init_workers()
715
+
716
+ # Set up weight receivers if provided
717
+ if weight_recv_schemes is not None:
718
+ self.register_scheme_receiver(weight_recv_schemes)
719
+
720
+ self._make_container()
721
+ if self._weight_sync_schemes is not None:
722
+ for scheme in self._weight_sync_schemes.values():
723
+ scheme.connect()
724
+
725
+ @property
726
+ def device(self) -> list[torch.device]:
727
+ return self._device
728
+
729
+ @property
730
+ def storing_device(self) -> list[torch.device]:
731
+ return self._storing_device
732
+
733
+ @property
734
+ def env_device(self) -> list[torch.device]:
735
+ return self._env_device
736
+
737
+ @property
738
+ def policy_device(self) -> list[torch.device]:
739
+ return self._policy_device
740
+
741
+ @device.setter
742
+ def device(self, value):
743
+ if isinstance(value, (tuple, list)):
744
+ if len(value) != self.num_workers:
745
+ raise RuntimeError(
746
+ "The number of devices passed to the collector must match the number of workers."
747
+ )
748
+ self._device = value
749
+ else:
750
+ self._device = [value] * self.num_workers
751
+
752
+ @storing_device.setter
753
+ def storing_device(self, value):
754
+ if isinstance(value, (tuple, list)):
755
+ if len(value) != self.num_workers:
756
+ raise RuntimeError(
757
+ "The number of devices passed to the collector must match the number of workers."
758
+ )
759
+ self._storing_device = value
760
+ else:
761
+ self._storing_device = [value] * self.num_workers
762
+
763
+ @env_device.setter
764
+ def env_device(self, value):
765
+ if isinstance(value, (tuple, list)):
766
+ if len(value) != self.num_workers:
767
+ raise RuntimeError(
768
+ "The number of devices passed to the collector must match the number of workers."
769
+ )
770
+ self._env_device = value
771
+ else:
772
+ self._env_device = [value] * self.num_workers
773
+
774
+ @policy_device.setter
775
+ def policy_device(self, value):
776
+ if isinstance(value, (tuple, list)):
777
+ if len(value) != self.num_workers:
778
+ raise RuntimeError(
779
+ "The number of devices passed to the collector must match the number of workers."
780
+ )
781
+ self._policy_device = value
782
+ else:
783
+ self._policy_device = [value] * self.num_workers
784
+
785
+ def _init_master_dist(
786
+ self,
787
+ world_size,
788
+ backend,
789
+ ):
790
+ torchrl_logger.debug(
791
+ f"RANK 0 -- launching main node with tcp port '{self.tcp_port}' and "
792
+ f"IP '{self.IPAddr}'. rank: 0, world_size: {world_size}, backend={backend}."
793
+ )
794
+ os.environ["MASTER_ADDR"] = str(self.IPAddr)
795
+ os.environ["MASTER_PORT"] = str(self.tcp_port)
796
+
797
+ TCP_PORT = self.tcp_port
798
+ torch.distributed.init_process_group(
799
+ backend,
800
+ rank=0,
801
+ world_size=world_size,
802
+ timeout=timedelta(MAX_TIME_TO_CONNECT),
803
+ init_method=f"tcp://{self.IPAddr}:{TCP_PORT}",
804
+ )
805
+ torchrl_logger.debug("RANK 0 -- main initiated! Launching store...")
806
+ # Use retry logic to handle port conflicts
807
+ self._store, self._store_port = _create_tcpstore_with_retry(
808
+ host_name=self.IPAddr,
809
+ port=int(TCP_PORT) + 1,
810
+ world_size=self.num_workers + 1,
811
+ is_master=True,
812
+ timeout=10.0,
813
+ wait_for_workers=False, # Don't wait - we need to broadcast port first
814
+ )
815
+ torchrl_logger.debug(
816
+ f"RANK 0 -- store created on port {self._store_port}. Broadcasting to workers..."
817
+ )
818
+ # Broadcast actual store port to all workers
819
+ store_port_tensor = torch.tensor([self._store_port], dtype=torch.int64)
820
+ torch.distributed.broadcast(store_port_tensor, src=0)
821
+ torchrl_logger.debug("RANK 0 -- done. Setting status to 'alive'")
822
+ self._store.set("TRAINER_status", b"alive")
823
+
824
+ def _make_container(self):
825
+ torchrl_logger.debug("RANK 0 -- making container")
826
+ env_constructor = self.env_constructors[0]
827
+ kwargs = self.collector_kwargs[
828
+ 0
829
+ ].copy() # Create a copy to avoid modifying the original
830
+ # Mirror the Collector configuration used on the workers so
831
+ # that the dummy batch structure matches what remote ranks will send.
832
+ # _run_collector always sets return_same_td=True for Collector,
833
+ # so we must do the same here to ensure structural consistency.
834
+ kwargs["return_same_td"] = True
835
+ pseudo_collector = Collector(
836
+ env_constructor,
837
+ policy=self.policy if not self.policy_factory[0] else None,
838
+ policy_factory=self.policy_factory[0],
839
+ frames_per_batch=self._frames_per_batch_corrected,
840
+ total_frames=-1,
841
+ split_trajs=False,
842
+ **kwargs,
843
+ )
844
+ for _data in pseudo_collector:
845
+ break
846
+ torchrl_logger.debug(f"RANK 0 -- got dummy batch: {_data}")
847
+ torchrl_logger.debug("RANK 0 -- expanding...")
848
+ self._tensordict_out = (
849
+ _data.expand((self.num_workers, *_data.shape)).clone().to_lazystack(0)
850
+ )
851
+ torchrl_logger.debug(
852
+ f"RANK 0 -- expanded recv buffer spec: {self._tensordict_out}"
853
+ )
854
+ torchrl_logger.debug("RANK 0 -- locking")
855
+ if self._sync:
856
+ self._tensordict_out.lock_()
857
+ self._tensordict_out_unbind = self._tensordict_out.unbind(0)
858
+ for td in self._tensordict_out_unbind:
859
+ td.lock_()
860
+ else:
861
+ self._tensordict_out = self._tensordict_out.unbind(0)
862
+ for td in self._tensordict_out:
863
+ td.lock_()
864
+ torchrl_logger.debug("RANK 0 -- storage created:")
865
+ torchrl_logger.debug("RANK 0 -- shutting down...")
866
+ pseudo_collector.shutdown()
867
+ torchrl_logger.debug("RANK 0 -- dummy collector shut down!")
868
+ del pseudo_collector
869
+
870
+ def _init_worker_dist_submitit(self, executor, i):
871
+ env_make = self.env_constructors[i]
872
+ if not isinstance(env_make, (EnvBase, EnvCreator)):
873
+ env_make = CloudpickleWrapper(env_make)
874
+ TCP_PORT = self.tcp_port
875
+ job = executor.submit(
876
+ _distributed_init_collection_node,
877
+ rank=i + 1,
878
+ rank0_ip=self.IPAddr,
879
+ tcpport=int(TCP_PORT),
880
+ sync=self._sync,
881
+ world_size=self.num_workers + 1,
882
+ backend=self.backend,
883
+ collector_class=self.collector_class,
884
+ num_workers=self.num_workers_per_collector,
885
+ env_make=env_make,
886
+ policy=self._policy_to_send,
887
+ policy_factory=self.policy_factory[i],
888
+ frames_per_batch=self._frames_per_batch_corrected,
889
+ weight_sync_schemes=self._weight_sync_schemes,
890
+ collector_kwargs=self.collector_kwargs[i],
891
+ verbose=self._VERBOSE,
892
+ )
893
+ return job
894
+
895
+ def _init_worker_dist_submitit_delayed(self):
896
+ def get_env_make(i):
897
+ env_make = self.env_constructors[i]
898
+ if not isinstance(env_make, (EnvBase, EnvCreator)):
899
+ env_make = CloudpickleWrapper(env_make)
900
+ return env_make
901
+
902
+ self._init_master_dist(self.num_workers + 1, self.backend)
903
+ objects = [
904
+ {
905
+ "sync": self._sync,
906
+ "collector_class": self.collector_class,
907
+ "num_workers": self.num_workers_per_collector,
908
+ "env_make": get_env_make(i),
909
+ "policy": self.policy,
910
+ "policy_factory": self.policy_factory[i],
911
+ "frames_per_batch": self._frames_per_batch_corrected,
912
+ "collector_kwargs": self.collector_kwargs[i],
913
+ }
914
+ for i in range(self.num_workers)
915
+ ]
916
+ objects = [None] + objects
917
+ torch.distributed.scatter_object_list([None], objects, src=0)
918
+
919
+ def _init_worker_dist_mp(self, i):
920
+ env_make = self.env_constructors[i]
921
+ if not isinstance(env_make, (EnvBase, EnvCreator)):
922
+ env_make = CloudpickleWrapper(env_make)
923
+ TCP_PORT = self.tcp_port
924
+ job = _ProcessNoWarn(
925
+ target=_distributed_init_collection_node,
926
+ _start_method=_get_mp_ctx().get_start_method(),
927
+ kwargs=dict( # noqa: C408
928
+ rank=i + 1,
929
+ rank0_ip=self.IPAddr,
930
+ tcpport=int(TCP_PORT),
931
+ sync=self._sync,
932
+ world_size=self.num_workers + 1,
933
+ backend=self.backend,
934
+ collector_class=self.collector_class,
935
+ num_workers=self.num_workers_per_collector,
936
+ env_make=env_make,
937
+ policy=self._policy_to_send,
938
+ policy_factory=self.policy_factory[i],
939
+ frames_per_batch=self._frames_per_batch_corrected,
940
+ collector_kwargs=self.collector_kwargs[i],
941
+ weight_sync_schemes=self._weight_sync_schemes,
942
+ verbose=self._VERBOSE,
943
+ ),
944
+ )
945
+ job.start()
946
+ return job
947
+
948
+ def _init_workers(self):
949
+
950
+ if self.launcher != "mp":
951
+ hostname = socket.gethostname()
952
+ IPAddr = socket.gethostbyname(hostname)
953
+ else:
954
+ IPAddr = "localhost"
955
+ torchrl_logger.debug(f"RANK 0 -- Server IP address: {IPAddr}")
956
+ self.IPAddr = IPAddr
957
+ os.environ["MASTER_ADDR"] = str(self.IPAddr)
958
+ os.environ["MASTER_PORT"] = str(self.tcp_port)
959
+
960
+ self.jobs = []
961
+ if self.launcher == "submitit":
962
+ if not _has_submitit:
963
+ raise ImportError("submitit not found.") from SUBMITIT_ERR
964
+ executor = submitit.AutoExecutor(folder="log_test")
965
+ executor.update_parameters(**self.slurm_kwargs)
966
+ if self.launcher == "submitit_delayed":
967
+ self._init_worker_dist_submitit_delayed()
968
+ else:
969
+ for i in range(self.num_workers):
970
+ torchrl_logger.debug("RANK 0 -- Submitting job")
971
+ if self.launcher == "submitit":
972
+ job = self._init_worker_dist_submitit(
973
+ executor,
974
+ i,
975
+ )
976
+ torchrl_logger.debug(
977
+ f"RANK 0 -- job id {job.job_id}"
978
+ ) # ID of your job
979
+ elif self.launcher == "mp":
980
+ job = self._init_worker_dist_mp(
981
+ i,
982
+ )
983
+ torchrl_logger.debug("RANK 0 -- job launched")
984
+ self.jobs.append(job)
985
+ self._init_master_dist(self.num_workers + 1, self.backend)
986
+
987
+ def iterator(self):
988
+ yield from self._iterator_dist()
989
+
990
+ def _iterator_dist(self):
991
+ torchrl_logger.debug("RANK 0 -- iterating...")
992
+
993
+ total_frames = 0
994
+ num_batches_yielded = 0
995
+ if not self._sync:
996
+ for rank in range(1, self.num_workers + 1):
997
+ torchrl_logger.debug(f"RANK 0 -- sending 'continue' to {rank}")
998
+ self._store.set(f"NODE_{rank}_in", b"continue")
999
+ trackers = []
1000
+ for i in range(self.num_workers):
1001
+ rank = i + 1
1002
+ torchrl_logger.debug(f"RANK 0 -- receiving {rank=}")
1003
+ trackers.append(
1004
+ self._tensordict_out[i].irecv(src=rank, return_premature=True)
1005
+ )
1006
+ torchrl_logger.debug(f"RANK 0 -- trackers: {trackers}")
1007
+
1008
+ while total_frames < self.total_frames:
1009
+ if self._sync:
1010
+ data, total_frames = self._next_sync(total_frames)
1011
+ else:
1012
+ data, total_frames, ready_worker_idx = self._next_async(
1013
+ total_frames, trackers
1014
+ )
1015
+
1016
+ if self.split_trajs:
1017
+ data = split_trajectories(data)
1018
+ if self.postproc is not None:
1019
+ data = self.postproc(data)
1020
+ yield data
1021
+ num_batches_yielded += 1
1022
+ has_more = total_frames < self.total_frames
1023
+
1024
+ # Automatic weight update hook: update_interval controls how often we
1025
+ # propagate weights through the registered weight sync schemes.
1026
+ #
1027
+ # Important: for async collection, we do this *after* yielding the batch
1028
+ # (so the user can mutate policy weights) but *before* letting the worker
1029
+ # continue, to ensure the next batch reflects the new weights.
1030
+ if (
1031
+ has_more
1032
+ and self.update_interval is not None
1033
+ and self._weight_sync_schemes is not None
1034
+ and num_batches_yielded % self.update_interval == 0
1035
+ ):
1036
+ if self._sync:
1037
+ # Sync case: all workers will proceed next, update everyone.
1038
+ for scheme in self._weight_sync_schemes.values():
1039
+ scheme.send()
1040
+ else:
1041
+ # Async case: only release the worker that just produced data.
1042
+ for scheme in self._weight_sync_schemes.values():
1043
+ scheme.send(worker_ids=ready_worker_idx)
1044
+
1045
+ if (not self._sync) and has_more:
1046
+ # Release the worker that produced the last batch and restart its
1047
+ # receive tracker *after* any weight update has been propagated.
1048
+ rank = ready_worker_idx + 1
1049
+ torchrl_logger.debug(f"RANK 0 -- sending 'continue' to {rank}")
1050
+ self._store.set(f"NODE_{rank}_in", b"continue")
1051
+ trackers[ready_worker_idx] = self._tensordict_out[
1052
+ ready_worker_idx
1053
+ ].irecv(src=rank, return_premature=True)
1054
+
1055
+ if self.max_weight_update_interval > -1:
1056
+ for j in range(self.num_workers):
1057
+ rank = j + 1
1058
+ if (
1059
+ self._batches_since_weight_update[j]
1060
+ > self.max_weight_update_interval
1061
+ ):
1062
+ torchrl_logger.debug(f"RANK 0 -- updating weights for {rank=}")
1063
+ self.update_policy_weights_(
1064
+ policy_weights=None, worker_ids=rank
1065
+ )
1066
+
1067
+ for i in range(self.num_workers):
1068
+ rank = i + 1
1069
+ torchrl_logger.debug(f"RANK 0 -- shutting down rank {rank}.")
1070
+ self._store.set(f"NODE_{rank}_in", b"shutdown")
1071
+
1072
+ def _next_sync(self, total_frames):
1073
+ # in the 'sync' case we should update before collecting the data
1074
+ if self.update_after_each_batch:
1075
+ torchrl_logger.debug(
1076
+ f"RANK 0 -- updating weights for {total_frames=} in _next_sync."
1077
+ )
1078
+ self.update_policy_weights_()
1079
+ else:
1080
+ for j in range(self.num_workers):
1081
+ self._batches_since_weight_update[j] += 1
1082
+
1083
+ if total_frames < self.total_frames:
1084
+ for rank in range(1, self.num_workers + 1):
1085
+ torchrl_logger.debug(f"RANK 0 -- sending 'continue' to {rank}")
1086
+ self._store.set(f"NODE_{rank}_in", b"continue")
1087
+ trackers = []
1088
+ for i in range(self.num_workers):
1089
+ rank = i + 1
1090
+ torchrl_logger.debug(f"RANK 0 -- receiving {rank=} in _next_sync.")
1091
+ trackers.append(
1092
+ self._tensordict_out_unbind[i].irecv(src=rank, return_premature=True)
1093
+ )
1094
+ for tracker in trackers:
1095
+ for _tracker in tracker:
1096
+ _tracker.wait()
1097
+ data = self._tensordict_out.clone()
1098
+ traj_ids = data.get(("collector", "traj_ids"), None)
1099
+ if traj_ids is not None:
1100
+ for i in range(1, self.num_workers):
1101
+ traj_ids[i] += traj_ids[i - 1].max()
1102
+ data.set_(("collector", "traj_ids"), traj_ids)
1103
+ total_frames += data.numel()
1104
+ return data, total_frames
1105
+
1106
+ def _next_async(self, total_frames, trackers):
1107
+ data = None
1108
+ ready_worker_idx = None
1109
+ while data is None:
1110
+ for i in range(self.num_workers):
1111
+ rank = i + 1
1112
+ torchrl_logger.debug(f"RANK 0 -- checking {rank=} in _next_async.")
1113
+ if self._store.get(f"NODE_{rank}_status") == b"done":
1114
+ torchrl_logger.debug(f"RANK 0 -- receiving {rank=} in _next_async.")
1115
+ for _tracker in trackers[i]:
1116
+ _tracker.wait()
1117
+ torchrl_logger.debug(f"RANK 0 -- received {rank=} in _next_async.")
1118
+ data = self._tensordict_out[i].clone()
1119
+ if self.update_after_each_batch:
1120
+ torchrl_logger.debug(
1121
+ f"RANK 0 -- updating weights for {rank=} in _next_async."
1122
+ )
1123
+ self.update_policy_weights_(worker_ids=rank)
1124
+ total_frames += data.numel()
1125
+ ready_worker_idx = i
1126
+ for j in range(self.num_workers):
1127
+ self._batches_since_weight_update[j] += j != i
1128
+ break
1129
+ if ready_worker_idx is None:
1130
+ raise RuntimeError(
1131
+ "Failed to find a ready worker in async collection loop."
1132
+ )
1133
+ return data, total_frames, ready_worker_idx
1134
+
1135
+ def set_seed(self, seed: int, static_seed: bool = False) -> int:
1136
+ for i in range(self.num_workers):
1137
+ rank = i + 1
1138
+ self._store.set(f"NODE_{rank}_in", f"seeding_{seed}".encode())
1139
+ status = self._store.get(f"NODE_{rank}_out")
1140
+ if status != b"updated":
1141
+ raise RuntimeError(f"Expected 'seeded' but got status {status}.")
1142
+ self._store.delete_key(f"NODE_{rank}_out")
1143
+ new_seed = self._store.get(f"NODE_{rank}_seed")
1144
+ self._store.delete_key(f"NODE_{rank}_seed")
1145
+ seed = int(new_seed)
1146
+ return seed
1147
+
1148
+ def state_dict(self) -> OrderedDict:
1149
+ raise NotImplementedError
1150
+
1151
+ def load_state_dict(self, state_dict: OrderedDict) -> None:
1152
+ raise NotImplementedError
1153
+
1154
+ def shutdown(self, timeout: float | None = None) -> None:
1155
+ # Prevent double shutdown
1156
+ if getattr(self, "_shutdown", False):
1157
+ return
1158
+ self._shutdown = True
1159
+
1160
+ self._store.set("TRAINER_status", b"shutdown")
1161
+ for i in range(self.num_workers):
1162
+ rank = i + 1
1163
+ torchrl_logger.debug(f"shutting down node with rank={rank}")
1164
+ self._store.set(f"NODE_{rank}_in", b"shutdown")
1165
+ for i in range(self.num_workers):
1166
+ rank = i + 1
1167
+ torchrl_logger.debug(f"getting status of node {rank}")
1168
+ status = self._store.get(f"NODE_{rank}_out")
1169
+ if status != b"down":
1170
+ raise RuntimeError(f"Expected 'down' but got status {status}.")
1171
+ self._store.delete_key(f"NODE_{rank}_out")
1172
+ for i in range(self.num_workers):
1173
+ if self.launcher == "mp":
1174
+ if not self.jobs[i].is_alive():
1175
+ continue
1176
+ self.jobs[i].join(timeout=10)
1177
+ elif self.launcher == "submitit":
1178
+ self.jobs[i].result()
1179
+ elif self.launcher == "submitit_delayed":
1180
+ pass
1181
+
1182
+ # Clean up weight sync schemes AFTER workers have exited
1183
+ # (workers have their own scheme instances that they clean up)
1184
+ if self._weight_sync_schemes is not None:
1185
+ torchrl_logger.debug("shutting down weight sync schemes")
1186
+ for scheme in self._weight_sync_schemes.values():
1187
+ try:
1188
+ scheme.shutdown()
1189
+ except Exception as e:
1190
+ torchrl_logger.warning(
1191
+ f"Error shutting down weight sync scheme: {e}"
1192
+ )
1193
+ self._weight_sync_schemes = None
1194
+
1195
+ # Destroy torch.distributed process group
1196
+ if torch.distributed.is_initialized():
1197
+ torchrl_logger.debug("destroying process group")
1198
+ torch.distributed.destroy_process_group()
1199
+
1200
+ torchrl_logger.debug("collector shut down")
1201
+
1202
+
1203
+ class DistributedWeightUpdater(WeightUpdaterBase):
1204
+ """A remote weight updater for synchronizing policy weights across distributed workers.
1205
+
1206
+ .. warning::
1207
+ This class has been deprecated in favor of the :class:`~torchrl.weight_update.DistributedWeightSyncScheme`
1208
+ API.
1209
+
1210
+ The `DistributedWeightUpdater` class provides a mechanism for updating the weights
1211
+ of a policy across distributed inference workers. It is designed to work with the
1212
+ :class:`~torchrl.collectors.distributed.DistributedDataCollector` to ensure that each worker receives the latest policy weights.
1213
+ This class is typically used in distributed data collection scenarios where multiple workers
1214
+ need to be kept in sync with the central policy weights.
1215
+
1216
+ Args:
1217
+ store (dict[str, str]): A dictionary-like store used for communication between the server
1218
+ and the distributed workers.
1219
+ policy_weights (TensorDictBase): The current weights of the policy that need to be distributed
1220
+ to the workers.
1221
+ num_workers (int): The number of distributed workers that will receive the updated policy weights.
1222
+ sync (bool): if ``True``, the sync happens synchronously (the server waits for the worker to have completed
1223
+ the update to restart the run).
1224
+
1225
+ Methods:
1226
+ update_weights: Updates the weights on specified or all distributed workers.
1227
+ all_worker_ids: Returns a list of all worker identifiers (not implemented in this class).
1228
+ _sync_weights_with_worker: Synchronizes the server weights with a specific worker (not implemented).
1229
+ _get_server_weights: Retrieves the latest weights from the server (not implemented).
1230
+ _maybe_map_weights: Optionally maps server weights before distribution (not implemented).
1231
+
1232
+ .. note::
1233
+ This class assumes that the server weights can be directly applied to the distributed workers
1234
+ without any additional processing. If your use case requires more complex weight mapping or
1235
+ synchronization logic, consider extending `WeightUpdaterBase` with a custom implementation.
1236
+
1237
+ Raises:
1238
+ RuntimeError: If the worker rank is less than 1 or if the status returned by the store is not "updated".
1239
+
1240
+ .. seealso:: :class:`~torchrl.collectors.WeightUpdaterBase` and
1241
+ :class:`~torchrl.collectors.distributed.DistributedDataCollector`.
1242
+
1243
+ """
1244
+
1245
+ _VERBOSE = False
1246
+
1247
+ def __init__(
1248
+ self,
1249
+ store: dict[str, str],
1250
+ policy_weights: TensorDictBase,
1251
+ num_workers: int,
1252
+ sync: bool,
1253
+ ):
1254
+ self._store = store
1255
+ self.policy_weights = policy_weights
1256
+ self.num_workers = num_workers
1257
+ self._sync = sync
1258
+ self._batches_since_weight_update = [0 for _ in range(self.num_workers)]
1259
+
1260
+ def _sync_weights_with_worker(
1261
+ self, worker_id: int | torch.device, server_weights: TensorDictBase
1262
+ ) -> TensorDictBase:
1263
+ raise NotImplementedError
1264
+
1265
+ def _get_server_weights(self) -> TensorDictBase:
1266
+ raise NotImplementedError
1267
+
1268
+ def _maybe_map_weights(self, server_weights: TensorDictBase) -> TensorDictBase:
1269
+ raise NotImplementedError
1270
+
1271
+ def all_worker_ids(self) -> list[int] | list[torch.device]:
1272
+ raise NotImplementedError
1273
+
1274
+ def _push_weights(
1275
+ self,
1276
+ policy_or_weights: TensorDictModuleBase | TensorDictBase | dict | None = None,
1277
+ worker_ids: torch.device | int | list[int] | list[torch.device] | None = None,
1278
+ ):
1279
+ worker_rank = worker_ids
1280
+ if isinstance(worker_ids, int):
1281
+ if worker_rank is not None and worker_rank < 1:
1282
+ raise RuntimeError("worker_rank must be greater than 1")
1283
+ worker_rank = [worker_rank - 1]
1284
+ workers = range(self.num_workers) if worker_rank is None else worker_rank
1285
+ weights = (
1286
+ self.policy_weights if policy_or_weights is None else policy_or_weights
1287
+ )
1288
+ for i in workers:
1289
+ rank = i + 1
1290
+ torchrl_logger.debug(f"updating weights of {rank}")
1291
+ self._store.set(f"NODE_{rank}_in", b"update_weights")
1292
+ if self._sync:
1293
+ weights.send(rank)
1294
+ else:
1295
+ weights.isend(rank)
1296
+ self._batches_since_weight_update[i] = 0
1297
+ status = self._store.get(f"NODE_{rank}_out")
1298
+ if status != b"updated":
1299
+ raise RuntimeError(f"Expected 'updated' but got status {status}.")
1300
+ self._store.delete_key(f"NODE_{rank}_out")
1301
+
1302
+
1303
+ class DistributedDataCollector(DistributedCollector, metaclass=_LegacyCollectorMeta):
1304
+ """Deprecated version of :class:`~torchrl.collectors.distributed.DistributedCollector`."""
1305
+
1306
+ ...