torchrl 0.11.0__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cp314-win_amd64.pyd +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/LICENSE +21 -0
- torchrl-0.11.0.dist-info/METADATA +1307 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,327 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
"""GAIL Example.
|
|
6
|
+
|
|
7
|
+
This is a self-contained example of an offline GAIL training script.
|
|
8
|
+
|
|
9
|
+
The helper functions for gail are coded in the gail_utils.py and helper functions for ppo in ppo_utils.
|
|
10
|
+
|
|
11
|
+
"""
|
|
12
|
+
from __future__ import annotations
|
|
13
|
+
|
|
14
|
+
import warnings
|
|
15
|
+
|
|
16
|
+
import hydra
|
|
17
|
+
import numpy as np
|
|
18
|
+
import torch
|
|
19
|
+
import tqdm
|
|
20
|
+
from gail_utils import log_metrics, make_gail_discriminator, make_offline_replay_buffer
|
|
21
|
+
from ppo_utils import eval_model, make_env, make_ppo_models
|
|
22
|
+
from tensordict.nn import CudaGraphModule
|
|
23
|
+
from torchrl._utils import compile_with_warmup, get_available_device, timeit
|
|
24
|
+
from torchrl.collectors import SyncDataCollector
|
|
25
|
+
from torchrl.data import LazyTensorStorage, TensorDictReplayBuffer
|
|
26
|
+
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
|
|
27
|
+
from torchrl.envs import set_gym_backend
|
|
28
|
+
from torchrl.envs.utils import ExplorationType, set_exploration_type
|
|
29
|
+
from torchrl.objectives import ClipPPOLoss, GAILLoss, group_optimizers
|
|
30
|
+
from torchrl.objectives.value.advantages import GAE
|
|
31
|
+
from torchrl.record import VideoRecorder
|
|
32
|
+
from torchrl.record.loggers import generate_exp_name, get_logger
|
|
33
|
+
|
|
34
|
+
torch.set_float32_matmul_precision("high")
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
@hydra.main(config_path="", config_name="config")
|
|
38
|
+
def main(cfg: DictConfig): # noqa: F821
|
|
39
|
+
set_gym_backend(cfg.env.backend).set()
|
|
40
|
+
|
|
41
|
+
device = (
|
|
42
|
+
torch.device(cfg.gail.device) if cfg.gail.device else get_available_device()
|
|
43
|
+
)
|
|
44
|
+
num_mini_batches = (
|
|
45
|
+
cfg.ppo.collector.frames_per_batch // cfg.ppo.loss.mini_batch_size
|
|
46
|
+
)
|
|
47
|
+
total_network_updates = (
|
|
48
|
+
(cfg.ppo.collector.total_frames // cfg.ppo.collector.frames_per_batch)
|
|
49
|
+
* cfg.ppo.loss.ppo_epochs
|
|
50
|
+
* num_mini_batches
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
# Create logger
|
|
54
|
+
exp_name = generate_exp_name("Gail", cfg.logger.exp_name)
|
|
55
|
+
logger = None
|
|
56
|
+
if cfg.logger.backend:
|
|
57
|
+
logger = get_logger(
|
|
58
|
+
logger_type=cfg.logger.backend,
|
|
59
|
+
logger_name="gail_logging",
|
|
60
|
+
experiment_name=exp_name,
|
|
61
|
+
wandb_kwargs={
|
|
62
|
+
"mode": cfg.logger.mode,
|
|
63
|
+
"config": dict(cfg),
|
|
64
|
+
"project": cfg.logger.project_name,
|
|
65
|
+
"group": cfg.logger.group_name,
|
|
66
|
+
},
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
# Set seeds
|
|
70
|
+
torch.manual_seed(cfg.env.seed)
|
|
71
|
+
np.random.seed(cfg.env.seed)
|
|
72
|
+
|
|
73
|
+
# Create models (check utils_mujoco.py)
|
|
74
|
+
actor, critic = make_ppo_models(
|
|
75
|
+
cfg.env.env_name, compile=cfg.compile.compile, device=device
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
# Create data buffer
|
|
79
|
+
data_buffer = TensorDictReplayBuffer(
|
|
80
|
+
storage=LazyTensorStorage(
|
|
81
|
+
cfg.ppo.collector.frames_per_batch,
|
|
82
|
+
device=device,
|
|
83
|
+
compilable=cfg.compile.compile,
|
|
84
|
+
),
|
|
85
|
+
sampler=SamplerWithoutReplacement(),
|
|
86
|
+
batch_size=cfg.ppo.loss.mini_batch_size,
|
|
87
|
+
compilable=cfg.compile.compile,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
# Create loss and adv modules
|
|
91
|
+
adv_module = GAE(
|
|
92
|
+
gamma=cfg.ppo.loss.gamma,
|
|
93
|
+
lmbda=cfg.ppo.loss.gae_lambda,
|
|
94
|
+
value_network=critic,
|
|
95
|
+
average_gae=False,
|
|
96
|
+
device=device,
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
loss_module = ClipPPOLoss(
|
|
100
|
+
actor_network=actor,
|
|
101
|
+
critic_network=critic,
|
|
102
|
+
clip_epsilon=cfg.ppo.loss.clip_epsilon,
|
|
103
|
+
loss_critic_type=cfg.ppo.loss.loss_critic_type,
|
|
104
|
+
entropy_coeff=cfg.ppo.loss.entropy_coeff,
|
|
105
|
+
critic_coeff=cfg.ppo.loss.critic_coeff,
|
|
106
|
+
normalize_advantage=True,
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
# Create optimizers
|
|
110
|
+
actor_optim = torch.optim.Adam(
|
|
111
|
+
actor.parameters(), lr=torch.tensor(cfg.ppo.optim.lr, device=device), eps=1e-5
|
|
112
|
+
)
|
|
113
|
+
critic_optim = torch.optim.Adam(
|
|
114
|
+
critic.parameters(), lr=torch.tensor(cfg.ppo.optim.lr, device=device), eps=1e-5
|
|
115
|
+
)
|
|
116
|
+
optim = group_optimizers(actor_optim, critic_optim)
|
|
117
|
+
del actor_optim, critic_optim
|
|
118
|
+
|
|
119
|
+
compile_mode = None
|
|
120
|
+
if cfg.compile.compile:
|
|
121
|
+
compile_mode = cfg.compile.compile_mode
|
|
122
|
+
if compile_mode in ("", None):
|
|
123
|
+
if cfg.compile.cudagraphs:
|
|
124
|
+
compile_mode = "default"
|
|
125
|
+
else:
|
|
126
|
+
compile_mode = "reduce-overhead"
|
|
127
|
+
|
|
128
|
+
# Create collector
|
|
129
|
+
collector = SyncDataCollector(
|
|
130
|
+
create_env_fn=make_env(cfg.env.env_name, device),
|
|
131
|
+
policy=actor,
|
|
132
|
+
frames_per_batch=cfg.ppo.collector.frames_per_batch,
|
|
133
|
+
total_frames=cfg.ppo.collector.total_frames,
|
|
134
|
+
device=device,
|
|
135
|
+
max_frames_per_traj=-1,
|
|
136
|
+
compile_policy={"mode": compile_mode} if compile_mode is not None else False,
|
|
137
|
+
cudagraph_policy={"warmup": 10} if cfg.compile.cudagraphs else False,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
# Create replay buffer
|
|
141
|
+
replay_buffer = make_offline_replay_buffer(cfg.replay_buffer)
|
|
142
|
+
|
|
143
|
+
# Create Discriminator
|
|
144
|
+
discriminator = make_gail_discriminator(cfg, collector.env, device)
|
|
145
|
+
|
|
146
|
+
# Create loss
|
|
147
|
+
discriminator_loss = GAILLoss(
|
|
148
|
+
discriminator,
|
|
149
|
+
use_grad_penalty=cfg.gail.use_grad_penalty,
|
|
150
|
+
gp_lambda=cfg.gail.gp_lambda,
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
# Create optimizer
|
|
154
|
+
discriminator_optim = torch.optim.Adam(
|
|
155
|
+
params=discriminator.parameters(), lr=cfg.gail.lr
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# Create test environment
|
|
159
|
+
logger_video = cfg.logger.video
|
|
160
|
+
test_env = make_env(cfg.env.env_name, device, from_pixels=logger_video)
|
|
161
|
+
if logger_video:
|
|
162
|
+
test_env = test_env.append_transform(
|
|
163
|
+
VideoRecorder(logger, tag="rendering/test", in_keys=["pixels"])
|
|
164
|
+
)
|
|
165
|
+
test_env.eval()
|
|
166
|
+
num_network_updates = torch.zeros((), dtype=torch.int64, device=device)
|
|
167
|
+
|
|
168
|
+
def update(data, expert_data, num_network_updates=num_network_updates):
|
|
169
|
+
# Add collector data to expert data
|
|
170
|
+
expert_data.set(
|
|
171
|
+
discriminator_loss.tensor_keys.collector_action,
|
|
172
|
+
data["action"][: expert_data.batch_size[0]],
|
|
173
|
+
)
|
|
174
|
+
expert_data.set(
|
|
175
|
+
discriminator_loss.tensor_keys.collector_observation,
|
|
176
|
+
data["observation"][: expert_data.batch_size[0]],
|
|
177
|
+
)
|
|
178
|
+
d_loss = discriminator_loss(expert_data)
|
|
179
|
+
|
|
180
|
+
# Backward pass
|
|
181
|
+
d_loss.get("loss").backward()
|
|
182
|
+
discriminator_optim.step()
|
|
183
|
+
discriminator_optim.zero_grad(set_to_none=True)
|
|
184
|
+
|
|
185
|
+
# Compute discriminator reward
|
|
186
|
+
with torch.no_grad():
|
|
187
|
+
data = discriminator(data)
|
|
188
|
+
d_rewards = -torch.log(1 - data["d_logits"] + 1e-8)
|
|
189
|
+
|
|
190
|
+
# Set discriminator rewards to tensordict
|
|
191
|
+
data.set(("next", "reward"), d_rewards)
|
|
192
|
+
|
|
193
|
+
# Update PPO
|
|
194
|
+
for _ in range(cfg_loss_ppo_epochs):
|
|
195
|
+
# Compute GAE
|
|
196
|
+
with torch.no_grad():
|
|
197
|
+
data = adv_module(data)
|
|
198
|
+
data_reshape = data.reshape(-1)
|
|
199
|
+
|
|
200
|
+
# Update the data buffer
|
|
201
|
+
data_buffer.empty()
|
|
202
|
+
data_buffer.extend(data_reshape)
|
|
203
|
+
|
|
204
|
+
for batch in data_buffer:
|
|
205
|
+
optim.zero_grad(set_to_none=True)
|
|
206
|
+
|
|
207
|
+
# Linearly decrease the learning rate and clip epsilon
|
|
208
|
+
alpha = torch.ones((), device=device)
|
|
209
|
+
if cfg_optim_anneal_lr:
|
|
210
|
+
alpha = 1 - (num_network_updates / total_network_updates)
|
|
211
|
+
for group in optim.param_groups:
|
|
212
|
+
group["lr"] = cfg_optim_lr * alpha
|
|
213
|
+
if cfg_loss_anneal_clip_eps:
|
|
214
|
+
loss_module.clip_epsilon.copy_(cfg_loss_clip_epsilon * alpha)
|
|
215
|
+
num_network_updates += 1
|
|
216
|
+
|
|
217
|
+
# Forward pass PPO loss
|
|
218
|
+
loss = loss_module(batch)
|
|
219
|
+
critic_loss = loss["loss_critic"]
|
|
220
|
+
actor_loss = loss["loss_objective"] + loss["loss_entropy"]
|
|
221
|
+
|
|
222
|
+
# Backward pass
|
|
223
|
+
(actor_loss + critic_loss).backward()
|
|
224
|
+
|
|
225
|
+
# Update the networks
|
|
226
|
+
optim.step()
|
|
227
|
+
return {"dloss": d_loss, "alpha": alpha}
|
|
228
|
+
|
|
229
|
+
if cfg.compile.compile:
|
|
230
|
+
update = compile_with_warmup(update, warmup=2, mode=compile_mode)
|
|
231
|
+
if cfg.compile.cudagraphs:
|
|
232
|
+
warnings.warn(
|
|
233
|
+
"CudaGraphModule is experimental and may lead to silently wrong results. Use with caution.",
|
|
234
|
+
category=UserWarning,
|
|
235
|
+
)
|
|
236
|
+
update = CudaGraphModule(update, warmup=50)
|
|
237
|
+
|
|
238
|
+
# Training loop
|
|
239
|
+
collected_frames = 0
|
|
240
|
+
pbar = tqdm.tqdm(total=cfg.ppo.collector.total_frames)
|
|
241
|
+
|
|
242
|
+
# extract cfg variables
|
|
243
|
+
cfg_loss_ppo_epochs = cfg.ppo.loss.ppo_epochs
|
|
244
|
+
cfg_optim_anneal_lr = cfg.ppo.optim.anneal_lr
|
|
245
|
+
cfg_optim_lr = cfg.ppo.optim.lr
|
|
246
|
+
cfg_loss_anneal_clip_eps = cfg.ppo.loss.anneal_clip_epsilon
|
|
247
|
+
cfg_loss_clip_epsilon = cfg.ppo.loss.clip_epsilon
|
|
248
|
+
cfg_logger_test_interval = cfg.logger.test_interval
|
|
249
|
+
cfg_logger_num_test_episodes = cfg.logger.num_test_episodes
|
|
250
|
+
|
|
251
|
+
total_iter = len(collector)
|
|
252
|
+
collector_iter = iter(collector)
|
|
253
|
+
for i in range(total_iter):
|
|
254
|
+
|
|
255
|
+
timeit.printevery(1000, total_iter, erase=True)
|
|
256
|
+
|
|
257
|
+
with timeit("collection"):
|
|
258
|
+
data = next(collector_iter)
|
|
259
|
+
|
|
260
|
+
metrics_to_log = {}
|
|
261
|
+
frames_in_batch = data.numel()
|
|
262
|
+
collected_frames += frames_in_batch
|
|
263
|
+
pbar.update(data.numel())
|
|
264
|
+
|
|
265
|
+
with timeit("rb - sample expert"):
|
|
266
|
+
# Get expert data
|
|
267
|
+
expert_data = replay_buffer.sample()
|
|
268
|
+
expert_data = expert_data.to(device)
|
|
269
|
+
|
|
270
|
+
with timeit("update"):
|
|
271
|
+
torch.compiler.cudagraph_mark_step_begin()
|
|
272
|
+
metadata = update(data, expert_data)
|
|
273
|
+
d_loss = metadata["dloss"]
|
|
274
|
+
alpha = metadata["alpha"]
|
|
275
|
+
|
|
276
|
+
# Get training rewards and episode lengths
|
|
277
|
+
episode_rewards = data["next", "episode_reward"][data["next", "done"]]
|
|
278
|
+
if len(episode_rewards) > 0:
|
|
279
|
+
episode_length = data["next", "step_count"][data["next", "done"]]
|
|
280
|
+
|
|
281
|
+
metrics_to_log.update(
|
|
282
|
+
{
|
|
283
|
+
"train/reward": episode_rewards.mean().item(),
|
|
284
|
+
"train/episode_length": episode_length.sum().item()
|
|
285
|
+
/ len(episode_length),
|
|
286
|
+
}
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
metrics_to_log.update(
|
|
290
|
+
{
|
|
291
|
+
"train/discriminator_loss": d_loss["loss"],
|
|
292
|
+
"train/lr": alpha * cfg_optim_lr,
|
|
293
|
+
"train/clip_epsilon": (
|
|
294
|
+
alpha * cfg_loss_clip_epsilon
|
|
295
|
+
if cfg_loss_anneal_clip_eps
|
|
296
|
+
else cfg_loss_clip_epsilon
|
|
297
|
+
),
|
|
298
|
+
}
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
# evaluation
|
|
302
|
+
with torch.no_grad(), set_exploration_type(
|
|
303
|
+
ExplorationType.DETERMINISTIC
|
|
304
|
+
), timeit("eval"):
|
|
305
|
+
if ((i - 1) * frames_in_batch) // cfg_logger_test_interval < (
|
|
306
|
+
i * frames_in_batch
|
|
307
|
+
) // cfg_logger_test_interval:
|
|
308
|
+
actor.eval()
|
|
309
|
+
test_rewards = eval_model(
|
|
310
|
+
actor, test_env, num_episodes=cfg_logger_num_test_episodes
|
|
311
|
+
)
|
|
312
|
+
metrics_to_log.update(
|
|
313
|
+
{
|
|
314
|
+
"eval/reward": test_rewards.mean(),
|
|
315
|
+
}
|
|
316
|
+
)
|
|
317
|
+
actor.train()
|
|
318
|
+
if logger is not None:
|
|
319
|
+
metrics_to_log.update(timeit.todict(prefix="time"))
|
|
320
|
+
metrics_to_log["time/speed"] = pbar.format_dict["rate"]
|
|
321
|
+
log_metrics(logger, metrics_to_log, i)
|
|
322
|
+
|
|
323
|
+
pbar.close()
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
if __name__ == "__main__":
|
|
327
|
+
main()
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import torch.nn as nn
|
|
8
|
+
import torch.optim
|
|
9
|
+
from torchrl.data.datasets.d4rl import D4RLExperienceReplay
|
|
10
|
+
from torchrl.data.replay_buffers import SamplerWithoutReplacement
|
|
11
|
+
from torchrl.envs import DoubleToFloat
|
|
12
|
+
from torchrl.modules import SafeModule
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
# ====================================================================
|
|
16
|
+
# Offline Replay buffer
|
|
17
|
+
# ---------------------------
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def make_offline_replay_buffer(rb_cfg):
|
|
21
|
+
data = D4RLExperienceReplay(
|
|
22
|
+
dataset_id=rb_cfg.dataset,
|
|
23
|
+
split_trajs=False,
|
|
24
|
+
batch_size=rb_cfg.batch_size,
|
|
25
|
+
sampler=SamplerWithoutReplacement(drop_last=False),
|
|
26
|
+
prefetch=4,
|
|
27
|
+
direct_download=True,
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
data.append_transform(DoubleToFloat())
|
|
31
|
+
|
|
32
|
+
return data
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def make_gail_discriminator(cfg, train_env, device="cpu"):
|
|
36
|
+
"""Make GAIL discriminator."""
|
|
37
|
+
|
|
38
|
+
state_dim = train_env.observation_spec["observation"].shape[0]
|
|
39
|
+
action_dim = train_env.action_spec.shape[0]
|
|
40
|
+
|
|
41
|
+
hidden_dim = cfg.gail.hidden_dim
|
|
42
|
+
|
|
43
|
+
# Define Discriminator Network
|
|
44
|
+
class Discriminator(nn.Module):
|
|
45
|
+
def __init__(self, state_dim, action_dim):
|
|
46
|
+
super().__init__()
|
|
47
|
+
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
|
|
48
|
+
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
|
49
|
+
self.fc3 = nn.Linear(hidden_dim, 1)
|
|
50
|
+
|
|
51
|
+
def forward(self, state, action):
|
|
52
|
+
x = torch.cat([state, action], dim=1)
|
|
53
|
+
x = torch.relu(self.fc1(x))
|
|
54
|
+
x = torch.relu(self.fc2(x))
|
|
55
|
+
return torch.sigmoid(self.fc3(x))
|
|
56
|
+
|
|
57
|
+
d_module = SafeModule(
|
|
58
|
+
module=Discriminator(state_dim, action_dim),
|
|
59
|
+
in_keys=["observation", "action"],
|
|
60
|
+
out_keys=["d_logits"],
|
|
61
|
+
)
|
|
62
|
+
return d_module.to(device)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def log_metrics(logger, metrics, step):
|
|
66
|
+
if logger is not None:
|
|
67
|
+
for metric_name, metric_value in metrics.items():
|
|
68
|
+
logger.log_scalar(metric_name, metric_value, step)
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import torch.nn
|
|
8
|
+
import torch.optim
|
|
9
|
+
|
|
10
|
+
from tensordict.nn import AddStateIndependentNormalScale, TensorDictModule
|
|
11
|
+
from torchrl.envs import (
|
|
12
|
+
ClipTransform,
|
|
13
|
+
DoubleToFloat,
|
|
14
|
+
ExplorationType,
|
|
15
|
+
RewardSum,
|
|
16
|
+
StepCounter,
|
|
17
|
+
TransformedEnv,
|
|
18
|
+
VecNorm,
|
|
19
|
+
)
|
|
20
|
+
from torchrl.envs.libs.gym import GymEnv
|
|
21
|
+
from torchrl.modules import MLP, ProbabilisticActor, TanhNormal, ValueOperator
|
|
22
|
+
from torchrl.record import VideoRecorder
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
# ====================================================================
|
|
26
|
+
# Environment utils
|
|
27
|
+
# --------------------------------------------------------------------
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def make_env(env_name="HalfCheetah-v4", device="cpu", from_pixels: bool = False):
|
|
31
|
+
env = GymEnv(env_name, device=device, from_pixels=from_pixels, pixels_only=False)
|
|
32
|
+
env = TransformedEnv(env)
|
|
33
|
+
env.append_transform(VecNorm(in_keys=["observation"], decay=0.99999, eps=1e-2))
|
|
34
|
+
env.append_transform(ClipTransform(in_keys=["observation"], low=-10, high=10))
|
|
35
|
+
env.append_transform(RewardSum())
|
|
36
|
+
env.append_transform(StepCounter())
|
|
37
|
+
env.append_transform(DoubleToFloat(in_keys=["observation"]))
|
|
38
|
+
return env
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
# ====================================================================
|
|
42
|
+
# Model utils
|
|
43
|
+
# --------------------------------------------------------------------
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def make_ppo_models_state(proof_environment, compile, device):
|
|
47
|
+
|
|
48
|
+
# Define input shape
|
|
49
|
+
input_shape = proof_environment.observation_spec["observation"].shape
|
|
50
|
+
|
|
51
|
+
# Define policy output distribution class
|
|
52
|
+
num_outputs = proof_environment.action_spec_unbatched.shape[-1]
|
|
53
|
+
distribution_class = TanhNormal
|
|
54
|
+
distribution_kwargs = {
|
|
55
|
+
"low": proof_environment.action_spec_unbatched.space.low.to(device),
|
|
56
|
+
"high": proof_environment.action_spec_unbatched.space.high.to(device),
|
|
57
|
+
"tanh_loc": False,
|
|
58
|
+
# "safe_tanh": not compile,
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
# Define policy architecture
|
|
62
|
+
policy_mlp = MLP(
|
|
63
|
+
in_features=input_shape[-1],
|
|
64
|
+
activation_class=torch.nn.Tanh,
|
|
65
|
+
out_features=num_outputs, # predict only loc
|
|
66
|
+
num_cells=[64, 64],
|
|
67
|
+
device=device,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Initialize policy weights
|
|
71
|
+
for layer in policy_mlp.modules():
|
|
72
|
+
if isinstance(layer, torch.nn.Linear):
|
|
73
|
+
torch.nn.init.orthogonal_(layer.weight, 1.0)
|
|
74
|
+
layer.bias.data.zero_()
|
|
75
|
+
|
|
76
|
+
# Add state-independent normal scale
|
|
77
|
+
policy_mlp = torch.nn.Sequential(
|
|
78
|
+
policy_mlp,
|
|
79
|
+
AddStateIndependentNormalScale(
|
|
80
|
+
proof_environment.action_spec_unbatched.shape[-1],
|
|
81
|
+
scale_lb=1e-8,
|
|
82
|
+
device=device,
|
|
83
|
+
),
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
# Add probabilistic sampling of the actions
|
|
87
|
+
policy_module = ProbabilisticActor(
|
|
88
|
+
TensorDictModule(
|
|
89
|
+
module=policy_mlp,
|
|
90
|
+
in_keys=["observation"],
|
|
91
|
+
out_keys=["loc", "scale"],
|
|
92
|
+
),
|
|
93
|
+
in_keys=["loc", "scale"],
|
|
94
|
+
spec=proof_environment.full_action_spec_unbatched.to(device),
|
|
95
|
+
distribution_class=distribution_class,
|
|
96
|
+
distribution_kwargs=distribution_kwargs,
|
|
97
|
+
return_log_prob=True,
|
|
98
|
+
default_interaction_type=ExplorationType.RANDOM,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Define value architecture
|
|
102
|
+
value_mlp = MLP(
|
|
103
|
+
in_features=input_shape[-1],
|
|
104
|
+
activation_class=torch.nn.Tanh,
|
|
105
|
+
out_features=1,
|
|
106
|
+
num_cells=[64, 64],
|
|
107
|
+
device=device,
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
# Initialize value weights
|
|
111
|
+
for layer in value_mlp.modules():
|
|
112
|
+
if isinstance(layer, torch.nn.Linear):
|
|
113
|
+
torch.nn.init.orthogonal_(layer.weight, 0.01)
|
|
114
|
+
layer.bias.data.zero_()
|
|
115
|
+
|
|
116
|
+
# Define value module
|
|
117
|
+
value_module = ValueOperator(
|
|
118
|
+
value_mlp,
|
|
119
|
+
in_keys=["observation"],
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
return policy_module, value_module
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def make_ppo_models(env_name, compile, device):
|
|
126
|
+
proof_environment = make_env(env_name, device=device)
|
|
127
|
+
actor, critic = make_ppo_models_state(
|
|
128
|
+
proof_environment, compile=compile, device=device
|
|
129
|
+
)
|
|
130
|
+
return actor, critic
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
# ====================================================================
|
|
134
|
+
# Evaluation utils
|
|
135
|
+
# --------------------------------------------------------------------
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def dump_video(module):
|
|
139
|
+
if isinstance(module, VideoRecorder):
|
|
140
|
+
module.dump()
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
def eval_model(actor, test_env, num_episodes=3):
|
|
144
|
+
test_rewards = []
|
|
145
|
+
for _ in range(num_episodes):
|
|
146
|
+
td_test = test_env.rollout(
|
|
147
|
+
policy=actor,
|
|
148
|
+
auto_reset=True,
|
|
149
|
+
auto_cast_to_device=True,
|
|
150
|
+
break_when_any_done=True,
|
|
151
|
+
max_steps=10_000_000,
|
|
152
|
+
)
|
|
153
|
+
reward = td_test["next", "episode_reward"][td_test["next", "done"]]
|
|
154
|
+
test_rewards.append(reward.cpu())
|
|
155
|
+
test_env.apply(dump_video)
|
|
156
|
+
del td_test
|
|
157
|
+
return torch.cat(test_rewards, 0).mean()
|