torchrl 0.11.0__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cp314-win_amd64.pyd +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/LICENSE +21 -0
- torchrl-0.11.0.dist-info/METADATA +1307 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,554 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import importlib.util
|
|
8
|
+
import math
|
|
9
|
+
from collections.abc import Callable, Sequence
|
|
10
|
+
from copy import copy
|
|
11
|
+
|
|
12
|
+
import numpy as np
|
|
13
|
+
import torch
|
|
14
|
+
from tensordict import NonTensorData, TensorDictBase
|
|
15
|
+
from tensordict.utils import NestedKey
|
|
16
|
+
from torchrl._utils import _can_be_pickled
|
|
17
|
+
from torchrl.data.tensor_specs import NonTensor, TensorSpec, Unbounded
|
|
18
|
+
from torchrl.data.utils import CloudpickleWrapper
|
|
19
|
+
from torchrl.envs import EnvBase
|
|
20
|
+
from torchrl.envs.transforms import ObservationTransform, Transform
|
|
21
|
+
from torchrl.record.loggers import Logger
|
|
22
|
+
|
|
23
|
+
_has_tv = importlib.util.find_spec("torchvision", None) is not None
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class VideoRecorder(ObservationTransform):
|
|
27
|
+
"""Video Recorder transform.
|
|
28
|
+
|
|
29
|
+
Will record a series of observations from an environment and write them
|
|
30
|
+
to a Logger object when needed.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
logger (Logger): a Logger instance where the video
|
|
34
|
+
should be written. To save the video under a memmap tensor or an mp4 file, use
|
|
35
|
+
the :class:`~torchrl.record.loggers.CSVLogger` class.
|
|
36
|
+
tag (str): the video tag in the logger.
|
|
37
|
+
in_keys (Sequence of NestedKey, optional): keys to be read to produce the video.
|
|
38
|
+
Default is :obj:`"pixels"`.
|
|
39
|
+
skip (int): frame interval in the output video.
|
|
40
|
+
Default is ``2`` if the transform has a parent environment, and ``1`` if not.
|
|
41
|
+
center_crop (int, optional): value of square center crop.
|
|
42
|
+
make_grid (bool, optional): if ``True``, a grid is created assuming that a
|
|
43
|
+
tensor of shape [B x W x H x 3] is provided, with B being the batch
|
|
44
|
+
size. Default is ``True`` if the transform has a parent environment, and ``False``
|
|
45
|
+
if not.
|
|
46
|
+
out_keys (sequence of NestedKey, optional): destination keys. Defaults
|
|
47
|
+
to ``in_keys`` if not provided.
|
|
48
|
+
fps (int, optional): Frames per second of the output video. Defaults to the logger predefined ``fps``,
|
|
49
|
+
and overrides it if provided.
|
|
50
|
+
**kwargs (Dict[str, Any], optional): additional keyword arguments for
|
|
51
|
+
:meth:`~torchrl.record.loggers.Logger.log_video`.
|
|
52
|
+
|
|
53
|
+
Examples:
|
|
54
|
+
The following example shows how to save a rollout under a video. First a few imports:
|
|
55
|
+
|
|
56
|
+
>>> from torchrl.record import VideoRecorder
|
|
57
|
+
>>> from torchrl.record.loggers.csv import CSVLogger
|
|
58
|
+
>>> from torchrl.envs import TransformedEnv, DMControlEnv
|
|
59
|
+
|
|
60
|
+
The video format is chosen in the logger. Wandb and tensorboard will take care of that
|
|
61
|
+
on their own, CSV accepts various video formats.
|
|
62
|
+
|
|
63
|
+
>>> logger = CSVLogger(exp_name="cheetah", log_dir="cheetah_videos", video_format="mp4")
|
|
64
|
+
|
|
65
|
+
Some envs (eg, Atari games) natively return images, some require the user to ask for them.
|
|
66
|
+
Check :class:`~torchrl.envs.GymEnv` or :class:`~torchrl.envs.DMControlEnv` to see how to render images
|
|
67
|
+
in these contexts.
|
|
68
|
+
|
|
69
|
+
>>> base_env = DMControlEnv("cheetah", "run", from_pixels=True)
|
|
70
|
+
>>> env = TransformedEnv(base_env, VideoRecorder(logger=logger, tag="run_video"))
|
|
71
|
+
>>> env.rollout(100)
|
|
72
|
+
|
|
73
|
+
All transforms have a dump function, mostly a no-op except for ``VideoRecorder``, and :class:`~torchrl.envs.transforms.Compose`
|
|
74
|
+
which will dispatch the `dumps` to all its members.
|
|
75
|
+
|
|
76
|
+
>>> env.transform.dump()
|
|
77
|
+
|
|
78
|
+
The transform can also be used within a dataset to save the video collected. Unlike in the environment case,
|
|
79
|
+
images will come in a batch. The ``skip`` argument will enable to save the images only at specific intervals.
|
|
80
|
+
|
|
81
|
+
>>> from torchrl.data.datasets import OpenXExperienceReplay
|
|
82
|
+
>>> from torchrl.envs import Compose
|
|
83
|
+
>>> from torchrl.record import VideoRecorder, CSVLogger
|
|
84
|
+
>>> # Create a logger that saves videos as mp4 using 24 frames per sec
|
|
85
|
+
>>> logger = CSVLogger("./dump", video_format="mp4", video_fps=24)
|
|
86
|
+
>>> # We use the VideoRecorder transform to save register the images coming from the batch.
|
|
87
|
+
>>> # Setting the fps to 12 overrides the one set in the logger, not doing so keeps it unchanged.
|
|
88
|
+
>>> t = VideoRecorder(logger=logger, tag="pixels", in_keys=[("next", "observation", "image")], fps=12)
|
|
89
|
+
>>> # Each batch of data will have 10 consecutive videos of 200 frames each (maximum, since strict_length=False)
|
|
90
|
+
>>> dataset = OpenXExperienceReplay("cmu_stretch", batch_size=2000, slice_len=200,
|
|
91
|
+
... download=True, strict_length=False,
|
|
92
|
+
... transform=t)
|
|
93
|
+
>>> # Get a batch of data and visualize it
|
|
94
|
+
>>> for data in dataset:
|
|
95
|
+
... t.dump()
|
|
96
|
+
... break
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
Our video is available under ``./cheetah_videos/cheetah/videos/run_video_0.mp4``!
|
|
100
|
+
|
|
101
|
+
"""
|
|
102
|
+
|
|
103
|
+
def __init__(
|
|
104
|
+
self,
|
|
105
|
+
logger: Logger,
|
|
106
|
+
tag: str,
|
|
107
|
+
in_keys: Sequence[NestedKey] | None = None,
|
|
108
|
+
skip: int | None = None,
|
|
109
|
+
center_crop: int | None = None,
|
|
110
|
+
make_grid: bool | None = None,
|
|
111
|
+
out_keys: Sequence[NestedKey] | None = None,
|
|
112
|
+
fps: int | None = None,
|
|
113
|
+
**kwargs,
|
|
114
|
+
) -> None:
|
|
115
|
+
if in_keys is None:
|
|
116
|
+
in_keys = ["pixels"]
|
|
117
|
+
if out_keys is None:
|
|
118
|
+
out_keys = copy(in_keys)
|
|
119
|
+
super().__init__(in_keys=in_keys, out_keys=out_keys)
|
|
120
|
+
video_kwargs = {}
|
|
121
|
+
video_kwargs.update(kwargs)
|
|
122
|
+
if fps is not None:
|
|
123
|
+
video_kwargs["fps"] = fps
|
|
124
|
+
self.video_kwargs = video_kwargs
|
|
125
|
+
self.iter = 0
|
|
126
|
+
self.skip = skip
|
|
127
|
+
self.logger = logger
|
|
128
|
+
self.tag = tag
|
|
129
|
+
self.count = 0
|
|
130
|
+
self.center_crop = center_crop
|
|
131
|
+
self.make_grid = make_grid
|
|
132
|
+
if center_crop and not _has_tv:
|
|
133
|
+
raise ImportError(
|
|
134
|
+
"Could not load center_crop from torchvision. Make sure torchvision is installed."
|
|
135
|
+
)
|
|
136
|
+
self.obs = []
|
|
137
|
+
|
|
138
|
+
@property
|
|
139
|
+
def make_grid(self):
|
|
140
|
+
make_grid = self._make_grid
|
|
141
|
+
if make_grid is None:
|
|
142
|
+
if self.parent is not None:
|
|
143
|
+
self._make_grid = True
|
|
144
|
+
return True
|
|
145
|
+
self._make_grid = False
|
|
146
|
+
return False
|
|
147
|
+
return make_grid
|
|
148
|
+
|
|
149
|
+
@make_grid.setter
|
|
150
|
+
def make_grid(self, value):
|
|
151
|
+
self._make_grid = value
|
|
152
|
+
|
|
153
|
+
@property
|
|
154
|
+
def skip(self):
|
|
155
|
+
skip = self._skip
|
|
156
|
+
if skip is None:
|
|
157
|
+
if self.parent is not None:
|
|
158
|
+
self._skip = 2
|
|
159
|
+
return 2
|
|
160
|
+
self._skip = 1
|
|
161
|
+
return 1
|
|
162
|
+
return skip
|
|
163
|
+
|
|
164
|
+
@skip.setter
|
|
165
|
+
def skip(self, value):
|
|
166
|
+
self._skip = value
|
|
167
|
+
|
|
168
|
+
def _apply_transform(self, observation: torch.Tensor) -> torch.Tensor:
|
|
169
|
+
if isinstance(observation, NonTensorData):
|
|
170
|
+
observation_trsf = torch.tensor(observation.data)
|
|
171
|
+
else:
|
|
172
|
+
observation_trsf = observation
|
|
173
|
+
self.count += 1
|
|
174
|
+
if self.count % self.skip == 0:
|
|
175
|
+
if (
|
|
176
|
+
observation_trsf.ndim >= 3
|
|
177
|
+
and observation_trsf.shape[-3] == 3
|
|
178
|
+
and observation_trsf.shape[-2] > 3
|
|
179
|
+
and observation_trsf.shape[-1] > 3
|
|
180
|
+
):
|
|
181
|
+
# permute the channels to the last dim
|
|
182
|
+
observation_trsf = observation_trsf.permute(
|
|
183
|
+
*range(observation_trsf.ndim - 3), -2, -1, -3
|
|
184
|
+
)
|
|
185
|
+
if not (
|
|
186
|
+
observation_trsf.shape[-1] == 3 or observation_trsf.ndimension() == 2
|
|
187
|
+
):
|
|
188
|
+
raise RuntimeError(
|
|
189
|
+
f"Invalid observation shape, got: {observation.shape}"
|
|
190
|
+
)
|
|
191
|
+
observation_trsf = observation_trsf.clone()
|
|
192
|
+
|
|
193
|
+
if observation.ndimension() == 2:
|
|
194
|
+
observation_trsf = observation.unsqueeze(-3)
|
|
195
|
+
else:
|
|
196
|
+
if observation_trsf.shape[-1] != 3:
|
|
197
|
+
raise RuntimeError(
|
|
198
|
+
"observation_trsf is expected to have 3 dimensions, "
|
|
199
|
+
f"got {observation_trsf.ndimension()} instead"
|
|
200
|
+
)
|
|
201
|
+
trailing_dim = range(observation_trsf.ndimension() - 3)
|
|
202
|
+
observation_trsf = observation_trsf.permute(*trailing_dim, -1, -3, -2)
|
|
203
|
+
if self.center_crop:
|
|
204
|
+
if not _has_tv:
|
|
205
|
+
raise ImportError(
|
|
206
|
+
"Could not import torchvision, `center_crop` not available. "
|
|
207
|
+
"Make sure torchvision is installed in your environment."
|
|
208
|
+
)
|
|
209
|
+
from torchvision.transforms.functional import (
|
|
210
|
+
center_crop as center_crop_fn,
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
observation_trsf = center_crop_fn(
|
|
214
|
+
observation_trsf, [self.center_crop, self.center_crop]
|
|
215
|
+
)
|
|
216
|
+
if self.make_grid and observation_trsf.ndimension() >= 4:
|
|
217
|
+
if not _has_tv:
|
|
218
|
+
raise ImportError(
|
|
219
|
+
"Could not import torchvision, `make_grid` not available. "
|
|
220
|
+
"Make sure torchvision is installed in your environment."
|
|
221
|
+
)
|
|
222
|
+
from torchvision.utils import make_grid
|
|
223
|
+
|
|
224
|
+
obs_flat = observation_trsf.flatten(0, -4)
|
|
225
|
+
observation_trsf = make_grid(
|
|
226
|
+
obs_flat, nrow=int(math.ceil(math.sqrt(obs_flat.shape[0])))
|
|
227
|
+
)
|
|
228
|
+
self.obs.append(observation_trsf.to("cpu", torch.uint8))
|
|
229
|
+
elif observation_trsf.ndimension() >= 4:
|
|
230
|
+
self.obs.extend(observation_trsf.to("cpu", torch.uint8).flatten(0, -4))
|
|
231
|
+
else:
|
|
232
|
+
self.obs.append(observation_trsf.to("cpu", torch.uint8))
|
|
233
|
+
return observation
|
|
234
|
+
|
|
235
|
+
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
|
236
|
+
return self._call(tensordict)
|
|
237
|
+
|
|
238
|
+
def dump(self, suffix: str | None = None, step: int | None = None) -> None:
|
|
239
|
+
"""Writes the video to the ``self.logger`` attribute.
|
|
240
|
+
|
|
241
|
+
Calling ``dump`` when no image has been stored in a no-op.
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
suffix (str, optional): a suffix for the video to be recorded.
|
|
245
|
+
step (int, optional): the step to log the video at. If not provided,
|
|
246
|
+
uses an internal counter that increments with each dump call.
|
|
247
|
+
"""
|
|
248
|
+
if self.obs:
|
|
249
|
+
obs = torch.stack(self.obs, 0).unsqueeze(0).cpu()
|
|
250
|
+
else:
|
|
251
|
+
obs = None
|
|
252
|
+
self.obs = []
|
|
253
|
+
if obs is not None:
|
|
254
|
+
if suffix is None:
|
|
255
|
+
tag = self.tag
|
|
256
|
+
else:
|
|
257
|
+
tag = "_".join([self.tag, suffix])
|
|
258
|
+
if self.logger is not None:
|
|
259
|
+
self.logger.log_video(
|
|
260
|
+
name=tag,
|
|
261
|
+
video=obs,
|
|
262
|
+
step=step if step is not None else self.iter,
|
|
263
|
+
**self.video_kwargs,
|
|
264
|
+
)
|
|
265
|
+
self.iter += 1
|
|
266
|
+
self.count = 0
|
|
267
|
+
self.obs = []
|
|
268
|
+
|
|
269
|
+
def _reset(
|
|
270
|
+
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
|
|
271
|
+
) -> TensorDictBase:
|
|
272
|
+
self._call(tensordict_reset)
|
|
273
|
+
return tensordict_reset
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
class TensorDictRecorder(Transform):
|
|
277
|
+
"""TensorDict recorder.
|
|
278
|
+
|
|
279
|
+
When the 'dump' method is called, this class will save a stack of the tensordict resulting from :obj:`env.step(td)` in a
|
|
280
|
+
file with a prefix defined by the out_file_base argument.
|
|
281
|
+
|
|
282
|
+
Args:
|
|
283
|
+
out_file_base (str): a string defining the prefix of the file where the tensordict will be written.
|
|
284
|
+
skip_reset (bool): if ``True``, the first TensorDict of the list will be discarded (usually the tensordict
|
|
285
|
+
resulting from the call to :obj:`env.reset()`)
|
|
286
|
+
default: True
|
|
287
|
+
skip (int): frame interval for the saved tensordict.
|
|
288
|
+
default: 4
|
|
289
|
+
|
|
290
|
+
"""
|
|
291
|
+
|
|
292
|
+
def __init__(
|
|
293
|
+
self,
|
|
294
|
+
out_file_base: str,
|
|
295
|
+
skip_reset: bool = True,
|
|
296
|
+
skip: int = 4,
|
|
297
|
+
in_keys: Sequence[str] | None = None,
|
|
298
|
+
) -> None:
|
|
299
|
+
if in_keys is None:
|
|
300
|
+
in_keys = []
|
|
301
|
+
|
|
302
|
+
super().__init__(in_keys=in_keys)
|
|
303
|
+
self.iter = 0
|
|
304
|
+
self.out_file_base = out_file_base
|
|
305
|
+
self.td = []
|
|
306
|
+
self.skip_reset = skip_reset
|
|
307
|
+
self.skip = skip
|
|
308
|
+
self.count = 0
|
|
309
|
+
|
|
310
|
+
def _call(self, next_tensordict: TensorDictBase) -> TensorDictBase:
|
|
311
|
+
self.count += 1
|
|
312
|
+
if self.count % self.skip == 0:
|
|
313
|
+
_td = next_tensordict
|
|
314
|
+
if self.in_keys:
|
|
315
|
+
_td = next_tensordict.select(*self.in_keys).to_tensordict()
|
|
316
|
+
self.td.append(_td)
|
|
317
|
+
return next_tensordict
|
|
318
|
+
|
|
319
|
+
def dump(self, suffix: str | None = None) -> None:
|
|
320
|
+
if suffix is None:
|
|
321
|
+
tag = self.tag
|
|
322
|
+
else:
|
|
323
|
+
tag = "_".join([self.tag, suffix])
|
|
324
|
+
|
|
325
|
+
td = self.td
|
|
326
|
+
if self.skip_reset:
|
|
327
|
+
td = td[1:]
|
|
328
|
+
torch.save(
|
|
329
|
+
torch.stack(td, 0).contiguous(),
|
|
330
|
+
f"{tag}_tensordict.t",
|
|
331
|
+
)
|
|
332
|
+
self.iter += 1
|
|
333
|
+
self.count = 0
|
|
334
|
+
del self.td
|
|
335
|
+
self.td = []
|
|
336
|
+
|
|
337
|
+
def _reset(
|
|
338
|
+
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
|
|
339
|
+
) -> TensorDictBase:
|
|
340
|
+
self._call(tensordict_reset)
|
|
341
|
+
return tensordict_reset
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
class PixelRenderTransform(Transform):
|
|
345
|
+
"""A transform to call render on the parent environment and register the pixel observation in the tensordict.
|
|
346
|
+
|
|
347
|
+
This transform offers an alternative to the ``from_pixels`` syntactic sugar when instantiating an environment
|
|
348
|
+
that offers rendering is expensive, or when ``from_pixels`` is not implemented.
|
|
349
|
+
It can be used within a single environment or over batched environments alike.
|
|
350
|
+
|
|
351
|
+
Args:
|
|
352
|
+
out_keys (List[NestedKey] or Nested): List of keys where to register the pixel observations.
|
|
353
|
+
preproc (Callable, optional): a preproc function. Can be used to reshape the observation, or apply
|
|
354
|
+
any other transformation that makes it possible to register it in the output data.
|
|
355
|
+
as_non_tensor (bool, optional): if ``True``, the data will be written as a :class:`~tensordict.NonTensorData`
|
|
356
|
+
thereby relaxing the shape requirements. If not provided, it will be inferred automatically from the
|
|
357
|
+
input data type and shape.
|
|
358
|
+
render_method (str, optional): the name of the render method. Defaults to ``"render"``.
|
|
359
|
+
pass_tensordict (bool, optional): if ``True``, the input tensordict will be passed to the
|
|
360
|
+
render method. This enables rendering for stateless environments. Defaults to ``False``.
|
|
361
|
+
**kwargs: additional keyword arguments to pass to the render function (e.g. ``mode="rgb_array"``).
|
|
362
|
+
|
|
363
|
+
Examples:
|
|
364
|
+
>>> from torchrl.envs import GymEnv, check_env_specs, ParallelEnv, EnvCreator
|
|
365
|
+
>>> from torchrl.record.loggers import CSVLogger
|
|
366
|
+
>>> from torchrl.record.recorder import PixelRenderTransform, VideoRecorder
|
|
367
|
+
>>>
|
|
368
|
+
>>> def make_env():
|
|
369
|
+
>>> env = GymEnv("CartPole-v1", render_mode="rgb_array")
|
|
370
|
+
>>> env = env.append_transform(PixelRenderTransform())
|
|
371
|
+
>>> return env
|
|
372
|
+
>>>
|
|
373
|
+
>>> if __name__ == "__main__":
|
|
374
|
+
... logger = CSVLogger("dummy", video_format="mp4")
|
|
375
|
+
...
|
|
376
|
+
... env = ParallelEnv(4, EnvCreator(make_env))
|
|
377
|
+
...
|
|
378
|
+
... env = env.append_transform(VideoRecorder(logger=logger, tag="pixels_record"))
|
|
379
|
+
... env.rollout(3)
|
|
380
|
+
...
|
|
381
|
+
... check_env_specs(env)
|
|
382
|
+
...
|
|
383
|
+
... r = env.rollout(30)
|
|
384
|
+
... print(env)
|
|
385
|
+
... env.transform.dump()
|
|
386
|
+
... env.close()
|
|
387
|
+
|
|
388
|
+
This transform can also be used whenever a batched environment ``render()`` returns a single image:
|
|
389
|
+
|
|
390
|
+
Examples:
|
|
391
|
+
>>> from torchrl.envs import check_env_specs
|
|
392
|
+
>>> from torchrl.envs.libs.vmas import VmasEnv
|
|
393
|
+
>>> from torchrl.record.loggers import CSVLogger
|
|
394
|
+
>>> from torchrl.record.recorder import PixelRenderTransform, VideoRecorder
|
|
395
|
+
>>>
|
|
396
|
+
>>> env = VmasEnv(
|
|
397
|
+
... scenario="flocking",
|
|
398
|
+
... num_envs=32,
|
|
399
|
+
... continuous_actions=True,
|
|
400
|
+
... max_steps=200,
|
|
401
|
+
... device="cpu",
|
|
402
|
+
... seed=None,
|
|
403
|
+
... # Scenario kwargs
|
|
404
|
+
... n_agents=5,
|
|
405
|
+
... )
|
|
406
|
+
>>>
|
|
407
|
+
>>> logger = CSVLogger("dummy", video_format="mp4")
|
|
408
|
+
>>>
|
|
409
|
+
>>> env = env.append_transform(PixelRenderTransform(mode="rgb_array", preproc=lambda x: x.copy()))
|
|
410
|
+
>>> env = env.append_transform(VideoRecorder(logger=logger, tag="pixels_record"))
|
|
411
|
+
>>>
|
|
412
|
+
>>> check_env_specs(env)
|
|
413
|
+
>>>
|
|
414
|
+
>>> r = env.rollout(30)
|
|
415
|
+
>>> env.transform[-1].dump()
|
|
416
|
+
|
|
417
|
+
The transform can be disabled using the :meth:`~torchrl.record.PixelRenderTransform.switch` method, which will
|
|
418
|
+
turn the rendering on if it's off or off if it's on (an argument can also be passed to control this behavior).
|
|
419
|
+
Since transforms are :class:`~torch.nn.Module` instances, :meth:`~torch.nn.Module.apply` can be used to control
|
|
420
|
+
this behavior:
|
|
421
|
+
|
|
422
|
+
>>> def switch(module):
|
|
423
|
+
... if isinstance(module, PixelRenderTransform):
|
|
424
|
+
... module.switch()
|
|
425
|
+
>>> env.apply(switch)
|
|
426
|
+
|
|
427
|
+
"""
|
|
428
|
+
|
|
429
|
+
def __init__(
|
|
430
|
+
self,
|
|
431
|
+
out_keys: list[NestedKey] = None,
|
|
432
|
+
preproc: Callable[
|
|
433
|
+
[np.ndarray | torch.Tensor], np.ndarray | torch.Tensor
|
|
434
|
+
] = None,
|
|
435
|
+
as_non_tensor: bool | None = None,
|
|
436
|
+
render_method: str = "render",
|
|
437
|
+
pass_tensordict: bool = False,
|
|
438
|
+
**kwargs,
|
|
439
|
+
) -> None:
|
|
440
|
+
if out_keys is None:
|
|
441
|
+
out_keys = ["pixels"]
|
|
442
|
+
elif isinstance(out_keys, (str, tuple)):
|
|
443
|
+
out_keys = [out_keys]
|
|
444
|
+
if len(out_keys) != 1:
|
|
445
|
+
raise RuntimeError(
|
|
446
|
+
f"Expected one and only one out_key, got out_keys={out_keys}"
|
|
447
|
+
)
|
|
448
|
+
if preproc is not None and not _can_be_pickled(preproc):
|
|
449
|
+
preproc = CloudpickleWrapper(preproc)
|
|
450
|
+
self.preproc = preproc
|
|
451
|
+
self.as_non_tensor = as_non_tensor
|
|
452
|
+
self.kwargs = kwargs
|
|
453
|
+
self.render_method = render_method
|
|
454
|
+
self._enabled = True
|
|
455
|
+
self.pass_tensordict = pass_tensordict
|
|
456
|
+
super().__init__(in_keys=[], out_keys=out_keys)
|
|
457
|
+
|
|
458
|
+
def _reset(
|
|
459
|
+
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
|
|
460
|
+
) -> TensorDictBase:
|
|
461
|
+
return self._call(tensordict_reset)
|
|
462
|
+
|
|
463
|
+
def _call(self, next_tensordict: TensorDictBase) -> TensorDictBase:
|
|
464
|
+
if not self._enabled:
|
|
465
|
+
return next_tensordict
|
|
466
|
+
|
|
467
|
+
method = getattr(self.parent, self.render_method)
|
|
468
|
+
if not self.pass_tensordict:
|
|
469
|
+
array = method(**self.kwargs)
|
|
470
|
+
else:
|
|
471
|
+
array = method(next_tensordict, **self.kwargs)
|
|
472
|
+
|
|
473
|
+
if self.preproc:
|
|
474
|
+
array = self.preproc(array)
|
|
475
|
+
if self.as_non_tensor is None:
|
|
476
|
+
if isinstance(array, list):
|
|
477
|
+
if isinstance(array[0], np.ndarray):
|
|
478
|
+
array = np.asarray(array)
|
|
479
|
+
else:
|
|
480
|
+
array = torch.as_tensor(array)
|
|
481
|
+
if (
|
|
482
|
+
array.ndim == 3
|
|
483
|
+
and array.shape[-1] == 3
|
|
484
|
+
and self.parent.batch_size != ()
|
|
485
|
+
):
|
|
486
|
+
self.as_non_tensor = True
|
|
487
|
+
else:
|
|
488
|
+
self.as_non_tensor = False
|
|
489
|
+
if not self.as_non_tensor:
|
|
490
|
+
try:
|
|
491
|
+
next_tensordict.set(self.out_keys[0], array)
|
|
492
|
+
except Exception:
|
|
493
|
+
raise RuntimeError(
|
|
494
|
+
f"An exception was raised while writing the rendered array "
|
|
495
|
+
f"(shape={getattr(array, 'shape', None)}, dtype={getattr(array, 'dtype', None)}) in the tensordict with shape {next_tensordict.shape}. "
|
|
496
|
+
f"Consider adapting your preproc function in {type(self).__name__}. You can also "
|
|
497
|
+
f"pass keyword arguments to the render function of the parent environment, or save "
|
|
498
|
+
f"this observation as a non-tensor data with as_non_tensor=True."
|
|
499
|
+
)
|
|
500
|
+
else:
|
|
501
|
+
next_tensordict.set_non_tensor(self.out_keys[0], array)
|
|
502
|
+
return next_tensordict
|
|
503
|
+
|
|
504
|
+
def transform_observation_spec(self, observation_spec: TensorSpec) -> TensorSpec:
|
|
505
|
+
# Adds the pixel observation spec by calling render on the parent env
|
|
506
|
+
switch = False
|
|
507
|
+
if not self.enabled:
|
|
508
|
+
switch = True
|
|
509
|
+
self.switch()
|
|
510
|
+
parent = self.parent
|
|
511
|
+
td_in = parent.reset()
|
|
512
|
+
self._call(td_in)
|
|
513
|
+
obs = td_in.get(self.out_keys[0])
|
|
514
|
+
if isinstance(obs, NonTensorData):
|
|
515
|
+
spec = NonTensor(device=obs.device, dtype=obs.dtype, shape=obs.shape)
|
|
516
|
+
else:
|
|
517
|
+
spec = Unbounded(device=obs.device, dtype=obs.dtype, shape=obs.shape)
|
|
518
|
+
observation_spec[self.out_keys[0]] = spec
|
|
519
|
+
if switch:
|
|
520
|
+
self.switch()
|
|
521
|
+
return observation_spec
|
|
522
|
+
|
|
523
|
+
def switch(self, mode: str | bool = None):
|
|
524
|
+
"""Sets the transform on or off.
|
|
525
|
+
|
|
526
|
+
Args:
|
|
527
|
+
mode (str or bool, optional): if provided, sets the switch to the desired mode.
|
|
528
|
+
``"on"``, ``"off"``, ``True`` and ``False`` are accepted values.
|
|
529
|
+
By default, ``switch`` sets the mode to the opposite of the current one.
|
|
530
|
+
|
|
531
|
+
"""
|
|
532
|
+
if mode is None:
|
|
533
|
+
mode = not self._enabled
|
|
534
|
+
if not isinstance(mode, bool):
|
|
535
|
+
if mode not in ("on", "off"):
|
|
536
|
+
raise ValueError("mode must be either 'on' or 'off', or a boolean.")
|
|
537
|
+
mode = mode == "on"
|
|
538
|
+
self._enabled = mode
|
|
539
|
+
|
|
540
|
+
@property
|
|
541
|
+
def enabled(self) -> bool:
|
|
542
|
+
"""Whether the recorder is enabled."""
|
|
543
|
+
return self._enabled
|
|
544
|
+
|
|
545
|
+
def set_container(self, container: Transform | EnvBase) -> None:
|
|
546
|
+
out = super().set_container(container)
|
|
547
|
+
if isinstance(self.parent, EnvBase):
|
|
548
|
+
# Start the env if needed
|
|
549
|
+
method = getattr(self.parent, self.render_method, None)
|
|
550
|
+
if method is None or not callable(method):
|
|
551
|
+
raise ValueError(
|
|
552
|
+
f"The render method must exist and be a callable. Got render={method}."
|
|
553
|
+
)
|
|
554
|
+
return out
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
"""Distributed service registry for TorchRL.
|
|
7
|
+
|
|
8
|
+
This module provides a service registry for managing distributed actors
|
|
9
|
+
(tokenizers, replay buffers, etc.) that can be accessed across workers.
|
|
10
|
+
|
|
11
|
+
Example:
|
|
12
|
+
>>> from torchrl.services import get_services
|
|
13
|
+
>>>
|
|
14
|
+
>>> # Worker 1: Register a tokenizer service
|
|
15
|
+
>>> services = get_services()
|
|
16
|
+
>>> services.register("tokenizer", TokenizerClass, num_cpus=1, num_gpus=0.1)
|
|
17
|
+
>>>
|
|
18
|
+
>>> # Worker 2: Access the same tokenizer
|
|
19
|
+
>>> services = get_services()
|
|
20
|
+
>>> tokenizer = services["tokenizer"]
|
|
21
|
+
>>> result = tokenizer.encode.remote(text)
|
|
22
|
+
"""
|
|
23
|
+
from __future__ import annotations
|
|
24
|
+
|
|
25
|
+
from torchrl.services.base import ServiceBase
|
|
26
|
+
from torchrl.services.ray_service import RayService
|
|
27
|
+
|
|
28
|
+
__all__ = ["ServiceBase", "RayService", "get_services"]
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def get_services(backend: str = "ray", **init_kwargs) -> ServiceBase:
|
|
32
|
+
"""Get a distributed service registry.
|
|
33
|
+
|
|
34
|
+
This function creates or retrieves a service registry for managing distributed
|
|
35
|
+
actors across workers. Services registered by one worker are immediately visible
|
|
36
|
+
to all other workers in the cluster.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
backend: Service backend to use. Currently only "ray" is supported.
|
|
40
|
+
**init_kwargs: Backend-specific initialization arguments.
|
|
41
|
+
For Ray:
|
|
42
|
+
|
|
43
|
+
- ray_init_config (dict, optional): Arguments to pass to ray.init()
|
|
44
|
+
- namespace (str, optional): Ray namespace for service isolation.
|
|
45
|
+
Defaults to "torchrl_services".
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
ServiceBase: A service registry instance.
|
|
49
|
+
|
|
50
|
+
Raises:
|
|
51
|
+
ValueError: If an unsupported backend is specified.
|
|
52
|
+
ImportError: If the required backend library is not installed.
|
|
53
|
+
|
|
54
|
+
Examples:
|
|
55
|
+
>>> # Basic usage - register and access services
|
|
56
|
+
>>> services = get_services()
|
|
57
|
+
>>> services.register("tokenizer", TokenizerClass, num_cpus=1)
|
|
58
|
+
>>> tokenizer = services["tokenizer"]
|
|
59
|
+
>>>
|
|
60
|
+
>>> # With custom Ray initialization
|
|
61
|
+
>>> services = get_services(
|
|
62
|
+
... backend="ray",
|
|
63
|
+
... ray_init_config={"address": "auto"},
|
|
64
|
+
... namespace="my_experiment"
|
|
65
|
+
... )
|
|
66
|
+
>>>
|
|
67
|
+
>>> # Check if service exists
|
|
68
|
+
>>> if "tokenizer" in services:
|
|
69
|
+
... tokenizer = services["tokenizer"]
|
|
70
|
+
>>>
|
|
71
|
+
>>> # List all registered services
|
|
72
|
+
>>> service_names = services.list()
|
|
73
|
+
"""
|
|
74
|
+
if backend != "ray":
|
|
75
|
+
raise ValueError(
|
|
76
|
+
f"Unsupported backend: {backend}. Currently only 'ray' is supported."
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
return RayService(**init_kwargs)
|