torchrl 0.11.0__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cp314-win_amd64.pyd +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/LICENSE +21 -0
- torchrl-0.11.0.dist-info/METADATA +1307 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,683 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import math
|
|
8
|
+
from dataclasses import dataclass
|
|
9
|
+
from numbers import Number
|
|
10
|
+
|
|
11
|
+
import torch
|
|
12
|
+
from tensordict import TensorDict, TensorDictBase, TensorDictParams
|
|
13
|
+
from tensordict.nn import composite_lp_aggregate, dispatch, TensorDictModule
|
|
14
|
+
from tensordict.utils import NestedKey
|
|
15
|
+
from torch import Tensor
|
|
16
|
+
|
|
17
|
+
from torchrl.data.tensor_specs import Composite
|
|
18
|
+
from torchrl.envs.utils import ExplorationType, set_exploration_type, step_mdp
|
|
19
|
+
from torchrl.objectives.common import LossModule
|
|
20
|
+
from torchrl.objectives.utils import (
|
|
21
|
+
_cache_values,
|
|
22
|
+
_GAMMA_LMBDA_DEPREC_ERROR,
|
|
23
|
+
_reduce,
|
|
24
|
+
_vmap_func,
|
|
25
|
+
default_value_kwargs,
|
|
26
|
+
distance_loss,
|
|
27
|
+
ValueEstimators,
|
|
28
|
+
)
|
|
29
|
+
from torchrl.objectives.value import (
|
|
30
|
+
TD0Estimator,
|
|
31
|
+
TD1Estimator,
|
|
32
|
+
TDLambdaEstimator,
|
|
33
|
+
ValueEstimatorBase,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class REDQLoss(LossModule):
|
|
38
|
+
"""REDQ Loss module.
|
|
39
|
+
|
|
40
|
+
REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL
|
|
41
|
+
https://openreview.net/pdf?id=AY8zfZm0tDd) generalizes the idea of using an ensemble of Q-value functions to
|
|
42
|
+
train a SAC-like algorithm.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
actor_network (TensorDictModule): the actor to be trained
|
|
46
|
+
qvalue_network (TensorDictModule): a single Q-value network or a list of Q-value networks.
|
|
47
|
+
If a single instance of `qvalue_network` is provided, it will be duplicated ``num_qvalue_nets``
|
|
48
|
+
times. If a list of modules is passed, their
|
|
49
|
+
parameters will be stacked unless they share the same identity (in which case
|
|
50
|
+
the original parameter will be expanded).
|
|
51
|
+
|
|
52
|
+
.. warning:: When a list of parameters if passed, it will **not** be compared against the policy parameters
|
|
53
|
+
and all the parameters will be considered as untied.
|
|
54
|
+
|
|
55
|
+
Keyword Args:
|
|
56
|
+
num_qvalue_nets (int, optional): Number of Q-value networks to be trained.
|
|
57
|
+
Default is ``10``.
|
|
58
|
+
sub_sample_len (int, optional): number of Q-value networks to be
|
|
59
|
+
subsampled to evaluate the next state value
|
|
60
|
+
Default is ``2``.
|
|
61
|
+
loss_function (str, optional): loss function to be used for the Q-value.
|
|
62
|
+
Can be one of ``"smooth_l1"``, ``"l2"``,
|
|
63
|
+
``"l1"``, Default is ``"smooth_l1"``.
|
|
64
|
+
alpha_init (:obj:`float`, optional): initial entropy multiplier.
|
|
65
|
+
Default is ``1.0``.
|
|
66
|
+
min_alpha (:obj:`float`, optional): min value of alpha.
|
|
67
|
+
Default is ``0.1``.
|
|
68
|
+
max_alpha (:obj:`float`, optional): max value of alpha.
|
|
69
|
+
Default is ``10.0``.
|
|
70
|
+
action_spec (TensorSpec, optional): the action tensor spec. If not provided
|
|
71
|
+
and the target entropy is ``"auto"``, it will be retrieved from
|
|
72
|
+
the actor.
|
|
73
|
+
fixed_alpha (bool, optional): whether alpha should be trained to match
|
|
74
|
+
a target entropy. Default is ``False``.
|
|
75
|
+
target_entropy (Union[str, Number], optional): Target entropy for the
|
|
76
|
+
stochastic policy. Default is "auto", where target entropy is
|
|
77
|
+
computed as :obj:`-prod(n_actions)`.
|
|
78
|
+
delay_qvalue (bool, optional): Whether to separate the target Q value
|
|
79
|
+
networks from the Q value networks used
|
|
80
|
+
for data collection. Default is ``False``.
|
|
81
|
+
gSDE (bool, optional): Knowing if gSDE is used is necessary to create
|
|
82
|
+
random noise variables.
|
|
83
|
+
Default is ``False``.
|
|
84
|
+
priority_key (str, optional): [Deprecated, use .set_keys() instead] Key where to write the priority value
|
|
85
|
+
for prioritized replay buffers. Default is
|
|
86
|
+
``"td_error"``.
|
|
87
|
+
separate_losses (bool, optional): if ``True``, shared parameters between
|
|
88
|
+
policy and critic will only be trained on the policy loss.
|
|
89
|
+
Defaults to ``False``, i.e., gradients are propagated to shared
|
|
90
|
+
parameters for both policy and critic losses.
|
|
91
|
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
|
92
|
+
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
|
|
93
|
+
``"mean"``: the sum of the output will be divided by the number of
|
|
94
|
+
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
|
|
95
|
+
deactivate_vmap (bool, optional): whether to deactivate vmap calls and replace them with a plain for loop.
|
|
96
|
+
Defaults to ``False``.
|
|
97
|
+
|
|
98
|
+
Examples:
|
|
99
|
+
>>> import torch
|
|
100
|
+
>>> from torch import nn
|
|
101
|
+
>>> from torchrl.data import Bounded
|
|
102
|
+
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
|
|
103
|
+
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
|
|
104
|
+
>>> from torchrl.modules.tensordict_module.common import SafeModule
|
|
105
|
+
>>> from torchrl.objectives.redq import REDQLoss
|
|
106
|
+
>>> from tensordict import TensorDict
|
|
107
|
+
>>> n_act, n_obs = 4, 3
|
|
108
|
+
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
|
|
109
|
+
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
|
|
110
|
+
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
|
|
111
|
+
>>> actor = ProbabilisticActor(
|
|
112
|
+
... module=module,
|
|
113
|
+
... in_keys=["loc", "scale"],
|
|
114
|
+
... spec=spec,
|
|
115
|
+
... distribution_class=TanhNormal)
|
|
116
|
+
>>> class ValueClass(nn.Module):
|
|
117
|
+
... def __init__(self):
|
|
118
|
+
... super().__init__()
|
|
119
|
+
... self.linear = nn.Linear(n_obs + n_act, 1)
|
|
120
|
+
... def forward(self, obs, act):
|
|
121
|
+
... return self.linear(torch.cat([obs, act], -1))
|
|
122
|
+
>>> module = ValueClass()
|
|
123
|
+
>>> qvalue = ValueOperator(
|
|
124
|
+
... module=module,
|
|
125
|
+
... in_keys=['observation', 'action'])
|
|
126
|
+
>>> loss = REDQLoss(actor, qvalue)
|
|
127
|
+
>>> batch = [2, ]
|
|
128
|
+
>>> action = spec.rand(batch)
|
|
129
|
+
>>> data = TensorDict({
|
|
130
|
+
... "observation": torch.randn(*batch, n_obs),
|
|
131
|
+
... "action": action,
|
|
132
|
+
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
|
|
133
|
+
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
|
|
134
|
+
... ("next", "reward"): torch.randn(*batch, 1),
|
|
135
|
+
... ("next", "observation"): torch.randn(*batch, n_obs),
|
|
136
|
+
... }, batch)
|
|
137
|
+
>>> loss(data)
|
|
138
|
+
TensorDict(
|
|
139
|
+
fields={
|
|
140
|
+
action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
141
|
+
alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
142
|
+
entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
143
|
+
loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
144
|
+
loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
145
|
+
loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
146
|
+
next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
147
|
+
state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
148
|
+
target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
|
|
149
|
+
batch_size=torch.Size([]),
|
|
150
|
+
device=None,
|
|
151
|
+
is_shared=False)
|
|
152
|
+
|
|
153
|
+
This class is compatible with non-tensordict based modules too and can be
|
|
154
|
+
used without recurring to any tensordict-related primitive. In this case,
|
|
155
|
+
the expected keyword arguments are:
|
|
156
|
+
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and qvalue network
|
|
157
|
+
The return value is a tuple of tensors in the following order:
|
|
158
|
+
``["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]``.
|
|
159
|
+
|
|
160
|
+
Examples:
|
|
161
|
+
>>> import torch
|
|
162
|
+
>>> from torch import nn
|
|
163
|
+
>>> from torchrl.data import Bounded
|
|
164
|
+
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
|
|
165
|
+
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
|
|
166
|
+
>>> from torchrl.modules.tensordict_module.common import SafeModule
|
|
167
|
+
>>> from torchrl.objectives.redq import REDQLoss
|
|
168
|
+
>>> n_act, n_obs = 4, 3
|
|
169
|
+
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
|
|
170
|
+
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
|
|
171
|
+
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
|
|
172
|
+
>>> actor = ProbabilisticActor(
|
|
173
|
+
... module=module,
|
|
174
|
+
... in_keys=["loc", "scale"],
|
|
175
|
+
... spec=spec,
|
|
176
|
+
... distribution_class=TanhNormal)
|
|
177
|
+
>>> class ValueClass(nn.Module):
|
|
178
|
+
... def __init__(self):
|
|
179
|
+
... super().__init__()
|
|
180
|
+
... self.linear = nn.Linear(n_obs + n_act, 1)
|
|
181
|
+
... def forward(self, obs, act):
|
|
182
|
+
... return self.linear(torch.cat([obs, act], -1))
|
|
183
|
+
>>> module = ValueClass()
|
|
184
|
+
>>> qvalue = ValueOperator(
|
|
185
|
+
... module=module,
|
|
186
|
+
... in_keys=['observation', 'action'])
|
|
187
|
+
>>> loss = REDQLoss(actor, qvalue)
|
|
188
|
+
>>> batch = [2, ]
|
|
189
|
+
>>> action = spec.rand(batch)
|
|
190
|
+
>>> # filter output keys to "loss_actor", and "loss_qvalue"
|
|
191
|
+
>>> _ = loss.select_out_keys("loss_actor", "loss_qvalue")
|
|
192
|
+
>>> loss_actor, loss_qvalue = loss(
|
|
193
|
+
... observation=torch.randn(*batch, n_obs),
|
|
194
|
+
... action=action,
|
|
195
|
+
... next_done=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
196
|
+
... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
|
|
197
|
+
... next_reward=torch.randn(*batch, 1),
|
|
198
|
+
... next_observation=torch.randn(*batch, n_obs))
|
|
199
|
+
>>> loss_actor.backward()
|
|
200
|
+
|
|
201
|
+
"""
|
|
202
|
+
|
|
203
|
+
@dataclass
|
|
204
|
+
class _AcceptedKeys:
|
|
205
|
+
"""Maintains default values for all configurable tensordict keys.
|
|
206
|
+
|
|
207
|
+
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
|
|
208
|
+
default values
|
|
209
|
+
|
|
210
|
+
Attributes:
|
|
211
|
+
value (NestedKey): The input tensordict key where the state value is expected.
|
|
212
|
+
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
|
|
213
|
+
action (NestedKey): The input tensordict key where the action is expected. Defaults to ``"action"``.
|
|
214
|
+
sample_log_prob (NestedKey): The input tensordict key where the
|
|
215
|
+
sample log probability is expected.
|
|
216
|
+
Defaults to ``"sample_log_prob"`` when :func:`~tensordict.nn.composite_lp_aggregate` returns `True`,
|
|
217
|
+
`"action_log_prob"` otherwise.
|
|
218
|
+
priority (NestedKey): The input tensordict key where the target
|
|
219
|
+
priority is written to. Defaults to ``"td_error"``.
|
|
220
|
+
state_action_value (NestedKey): The input tensordict key where the
|
|
221
|
+
state action value is expected. Defaults to ``"state_action_value"``.
|
|
222
|
+
reward (NestedKey): The input tensordict key where the reward is expected.
|
|
223
|
+
Will be used for the underlying value estimator. Defaults to ``"reward"``.
|
|
224
|
+
done (NestedKey): The key in the input TensorDict that indicates
|
|
225
|
+
whether a trajectory is done. Will be used for the underlying value estimator.
|
|
226
|
+
Defaults to ``"done"``.
|
|
227
|
+
terminated (NestedKey): The key in the input TensorDict that indicates
|
|
228
|
+
whether a trajectory is terminated. Will be used for the underlying value estimator.
|
|
229
|
+
Defaults to ``"terminated"``.
|
|
230
|
+
"""
|
|
231
|
+
|
|
232
|
+
action: NestedKey = "action"
|
|
233
|
+
value: NestedKey = "state_value"
|
|
234
|
+
sample_log_prob: NestedKey | None = None
|
|
235
|
+
priority: NestedKey = "td_error"
|
|
236
|
+
state_action_value: NestedKey = "state_action_value"
|
|
237
|
+
reward: NestedKey = "reward"
|
|
238
|
+
done: NestedKey = "done"
|
|
239
|
+
terminated: NestedKey = "terminated"
|
|
240
|
+
|
|
241
|
+
def __post_init__(self):
|
|
242
|
+
if self.sample_log_prob is None:
|
|
243
|
+
if composite_lp_aggregate(nowarn=True):
|
|
244
|
+
self.sample_log_prob = "sample_log_prob"
|
|
245
|
+
else:
|
|
246
|
+
self.sample_log_prob = "action_log_prob"
|
|
247
|
+
|
|
248
|
+
tensor_keys: _AcceptedKeys
|
|
249
|
+
default_keys = _AcceptedKeys
|
|
250
|
+
delay_actor: bool = False
|
|
251
|
+
default_value_estimator = ValueEstimators.TD0
|
|
252
|
+
out_keys = [
|
|
253
|
+
"loss_actor",
|
|
254
|
+
"loss_qvalue",
|
|
255
|
+
"loss_alpha",
|
|
256
|
+
"alpha",
|
|
257
|
+
"entropy",
|
|
258
|
+
"state_action_value_actor",
|
|
259
|
+
"action_log_prob_actor",
|
|
260
|
+
"next.state_value",
|
|
261
|
+
"target_value",
|
|
262
|
+
]
|
|
263
|
+
|
|
264
|
+
actor_network: TensorDictModule
|
|
265
|
+
qvalue_network: TensorDictModule
|
|
266
|
+
actor_network_params: TensorDictParams
|
|
267
|
+
qvalue_network_params: TensorDictParams
|
|
268
|
+
target_actor_network_params: TensorDictParams
|
|
269
|
+
target_qvalue_network_params: TensorDictParams
|
|
270
|
+
|
|
271
|
+
def __init__(
|
|
272
|
+
self,
|
|
273
|
+
actor_network: TensorDictModule,
|
|
274
|
+
qvalue_network: TensorDictModule | list[TensorDictModule],
|
|
275
|
+
*,
|
|
276
|
+
num_qvalue_nets: int = 10,
|
|
277
|
+
sub_sample_len: int = 2,
|
|
278
|
+
loss_function: str = "smooth_l1",
|
|
279
|
+
alpha_init: float = 1.0,
|
|
280
|
+
min_alpha: float = 0.1,
|
|
281
|
+
max_alpha: float = 10.0,
|
|
282
|
+
action_spec=None,
|
|
283
|
+
fixed_alpha: bool = False,
|
|
284
|
+
target_entropy: str | Number = "auto",
|
|
285
|
+
delay_qvalue: bool = True,
|
|
286
|
+
gSDE: bool = False,
|
|
287
|
+
gamma: float | None = None,
|
|
288
|
+
priority_key: str | None = None,
|
|
289
|
+
separate_losses: bool = False,
|
|
290
|
+
reduction: str | None = None,
|
|
291
|
+
deactivate_vmap: bool = False,
|
|
292
|
+
):
|
|
293
|
+
if reduction is None:
|
|
294
|
+
reduction = "mean"
|
|
295
|
+
super().__init__()
|
|
296
|
+
self._in_keys = None
|
|
297
|
+
self._set_deprecated_ctor_keys(priority_key=priority_key)
|
|
298
|
+
|
|
299
|
+
self.convert_to_functional(
|
|
300
|
+
actor_network,
|
|
301
|
+
"actor_network",
|
|
302
|
+
create_target_params=self.delay_actor,
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
# let's make sure that actor_network has `return_log_prob` set to True
|
|
306
|
+
self.actor_network.return_log_prob = True
|
|
307
|
+
self.deactivate_vmap = deactivate_vmap
|
|
308
|
+
if separate_losses:
|
|
309
|
+
# we want to make sure there are no duplicates in the params: the
|
|
310
|
+
# params of critic must be refs to actor if they're shared
|
|
311
|
+
policy_params = list(actor_network.parameters())
|
|
312
|
+
else:
|
|
313
|
+
policy_params = None
|
|
314
|
+
self.delay_qvalue = delay_qvalue
|
|
315
|
+
self.convert_to_functional(
|
|
316
|
+
qvalue_network,
|
|
317
|
+
"qvalue_network",
|
|
318
|
+
num_qvalue_nets,
|
|
319
|
+
create_target_params=self.delay_qvalue,
|
|
320
|
+
compare_against=policy_params,
|
|
321
|
+
)
|
|
322
|
+
self.num_qvalue_nets = num_qvalue_nets
|
|
323
|
+
self.sub_sample_len = max(1, min(sub_sample_len, num_qvalue_nets - 1))
|
|
324
|
+
self.loss_function = loss_function
|
|
325
|
+
|
|
326
|
+
try:
|
|
327
|
+
device = next(self.parameters()).device
|
|
328
|
+
except AttributeError:
|
|
329
|
+
device = getattr(torch, "get_default_device", lambda: torch.device("cpu"))()
|
|
330
|
+
|
|
331
|
+
self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device))
|
|
332
|
+
self.register_buffer(
|
|
333
|
+
"min_log_alpha", torch.tensor(min_alpha, device=device).log()
|
|
334
|
+
)
|
|
335
|
+
self.register_buffer(
|
|
336
|
+
"max_log_alpha", torch.tensor(max_alpha, device=device).log()
|
|
337
|
+
)
|
|
338
|
+
self.fixed_alpha = fixed_alpha
|
|
339
|
+
if fixed_alpha:
|
|
340
|
+
self.register_buffer(
|
|
341
|
+
"log_alpha", torch.tensor(math.log(alpha_init), device=device)
|
|
342
|
+
)
|
|
343
|
+
else:
|
|
344
|
+
self.register_parameter(
|
|
345
|
+
"log_alpha",
|
|
346
|
+
torch.nn.Parameter(
|
|
347
|
+
torch.tensor(
|
|
348
|
+
math.log(alpha_init), device=device, requires_grad=True
|
|
349
|
+
)
|
|
350
|
+
),
|
|
351
|
+
)
|
|
352
|
+
|
|
353
|
+
self._target_entropy = target_entropy
|
|
354
|
+
self._action_spec = action_spec
|
|
355
|
+
self.target_entropy_buffer = None
|
|
356
|
+
self.reduction = reduction
|
|
357
|
+
self.gSDE = gSDE
|
|
358
|
+
if gamma is not None:
|
|
359
|
+
raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
|
|
360
|
+
self._make_vmap()
|
|
361
|
+
|
|
362
|
+
def _make_vmap(self):
|
|
363
|
+
self._vmap_qvalue_network00 = _vmap_func(
|
|
364
|
+
self.qvalue_network,
|
|
365
|
+
randomness=self.vmap_randomness,
|
|
366
|
+
pseudo_vmap=self.deactivate_vmap,
|
|
367
|
+
)
|
|
368
|
+
self._vmap_getdist = _vmap_func(
|
|
369
|
+
self.actor_network,
|
|
370
|
+
func="get_dist_params",
|
|
371
|
+
randomness=self.vmap_randomness,
|
|
372
|
+
pseudo_vmap=self.deactivate_vmap,
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
@property
|
|
376
|
+
def target_entropy(self):
|
|
377
|
+
target_entropy = self.target_entropy_buffer
|
|
378
|
+
if target_entropy is None:
|
|
379
|
+
delattr(self, "target_entropy_buffer")
|
|
380
|
+
target_entropy = self._target_entropy
|
|
381
|
+
action_spec = self._action_spec
|
|
382
|
+
actor_network = self.actor_network
|
|
383
|
+
device = next(self.parameters()).device
|
|
384
|
+
if target_entropy == "auto":
|
|
385
|
+
action_spec = (
|
|
386
|
+
action_spec
|
|
387
|
+
if action_spec is not None
|
|
388
|
+
else getattr(actor_network, "spec", None)
|
|
389
|
+
)
|
|
390
|
+
if action_spec is None:
|
|
391
|
+
raise RuntimeError(
|
|
392
|
+
"Cannot infer the dimensionality of the action. Consider providing "
|
|
393
|
+
"the target entropy explicitly or provide the spec of the "
|
|
394
|
+
"action tensor in the actor network."
|
|
395
|
+
)
|
|
396
|
+
if not isinstance(action_spec, Composite):
|
|
397
|
+
action_spec = Composite({self.tensor_keys.action: action_spec})
|
|
398
|
+
if (
|
|
399
|
+
isinstance(self.tensor_keys.action, tuple)
|
|
400
|
+
and len(self.tensor_keys.action) > 1
|
|
401
|
+
):
|
|
402
|
+
action_container_shape = action_spec[
|
|
403
|
+
self.tensor_keys.action[:-1]
|
|
404
|
+
].shape
|
|
405
|
+
else:
|
|
406
|
+
action_container_shape = action_spec.shape
|
|
407
|
+
target_entropy = -float(
|
|
408
|
+
action_spec[self.tensor_keys.action]
|
|
409
|
+
.shape[len(action_container_shape) :]
|
|
410
|
+
.numel()
|
|
411
|
+
)
|
|
412
|
+
self.register_buffer(
|
|
413
|
+
"target_entropy_buffer", torch.tensor(target_entropy, device=device)
|
|
414
|
+
)
|
|
415
|
+
return self.target_entropy_buffer
|
|
416
|
+
return target_entropy
|
|
417
|
+
|
|
418
|
+
def _forward_value_estimator_keys(self, **kwargs) -> None:
|
|
419
|
+
if self._value_estimator is not None:
|
|
420
|
+
self._value_estimator.set_keys(
|
|
421
|
+
value=self._tensor_keys.value,
|
|
422
|
+
reward=self.tensor_keys.reward,
|
|
423
|
+
done=self.tensor_keys.done,
|
|
424
|
+
terminated=self.tensor_keys.terminated,
|
|
425
|
+
)
|
|
426
|
+
self._set_in_keys()
|
|
427
|
+
|
|
428
|
+
@property
|
|
429
|
+
def alpha(self):
|
|
430
|
+
with torch.no_grad():
|
|
431
|
+
return self.log_alpha.clamp(self.min_log_alpha, self.max_log_alpha).exp()
|
|
432
|
+
|
|
433
|
+
def _set_in_keys(self):
|
|
434
|
+
keys = [
|
|
435
|
+
self.tensor_keys.action,
|
|
436
|
+
self.tensor_keys.sample_log_prob,
|
|
437
|
+
("next", self.tensor_keys.reward),
|
|
438
|
+
("next", self.tensor_keys.done),
|
|
439
|
+
("next", self.tensor_keys.terminated),
|
|
440
|
+
*self.actor_network.in_keys,
|
|
441
|
+
*[("next", key) for key in self.actor_network.in_keys],
|
|
442
|
+
*self.qvalue_network.in_keys,
|
|
443
|
+
]
|
|
444
|
+
self._in_keys = list(set(keys))
|
|
445
|
+
|
|
446
|
+
@property
|
|
447
|
+
def in_keys(self):
|
|
448
|
+
if self._in_keys is None:
|
|
449
|
+
self._set_in_keys()
|
|
450
|
+
return self._in_keys
|
|
451
|
+
|
|
452
|
+
@in_keys.setter
|
|
453
|
+
def in_keys(self, values):
|
|
454
|
+
self._in_keys = values
|
|
455
|
+
|
|
456
|
+
@property
|
|
457
|
+
@_cache_values
|
|
458
|
+
def _cached_detach_qvalue_network_params(self):
|
|
459
|
+
return self.qvalue_network_params.detach()
|
|
460
|
+
|
|
461
|
+
def _qvalue_params_cat(self, selected_q_params):
|
|
462
|
+
qvalue_params = torch.cat(
|
|
463
|
+
[
|
|
464
|
+
self._cached_detach_qvalue_network_params,
|
|
465
|
+
selected_q_params,
|
|
466
|
+
self.qvalue_network_params,
|
|
467
|
+
],
|
|
468
|
+
0,
|
|
469
|
+
)
|
|
470
|
+
return qvalue_params
|
|
471
|
+
|
|
472
|
+
@dispatch
|
|
473
|
+
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
|
474
|
+
obs_keys = self.actor_network.in_keys
|
|
475
|
+
tensordict_select = tensordict.select(
|
|
476
|
+
"next", *obs_keys, self.tensor_keys.action, strict=False
|
|
477
|
+
)
|
|
478
|
+
# We need to copy bc select does not copy sub-tds
|
|
479
|
+
tensordict_select = tensordict_select.copy()
|
|
480
|
+
|
|
481
|
+
selected_models_idx = torch.randperm(self.num_qvalue_nets)[
|
|
482
|
+
: self.sub_sample_len
|
|
483
|
+
].sort()[0]
|
|
484
|
+
selected_q_params = self.target_qvalue_network_params[selected_models_idx]
|
|
485
|
+
|
|
486
|
+
actor_params = torch.stack(
|
|
487
|
+
[self.actor_network_params, self.target_actor_network_params], 0
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
tensordict_actor_grad = tensordict_select.select(
|
|
491
|
+
*obs_keys, strict=False
|
|
492
|
+
) # to avoid overwriting keys
|
|
493
|
+
next_td_actor = step_mdp(tensordict_select).select(
|
|
494
|
+
*self.actor_network.in_keys, strict=False
|
|
495
|
+
) # next_observation ->
|
|
496
|
+
tensordict_actor = torch.stack([tensordict_actor_grad, next_td_actor], 0)
|
|
497
|
+
|
|
498
|
+
with set_exploration_type(ExplorationType.RANDOM):
|
|
499
|
+
if self.gSDE:
|
|
500
|
+
tensordict_actor.set(
|
|
501
|
+
"_eps_gSDE",
|
|
502
|
+
torch.zeros(tensordict_actor.shape, device=tensordict_actor.device),
|
|
503
|
+
)
|
|
504
|
+
# vmap doesn't support sampling, so we take it out from the vmap
|
|
505
|
+
td_params = self._vmap_getdist(
|
|
506
|
+
tensordict_actor,
|
|
507
|
+
actor_params,
|
|
508
|
+
)
|
|
509
|
+
sample_key = self.tensor_keys.action
|
|
510
|
+
sample_key_lp = self.tensor_keys.sample_log_prob
|
|
511
|
+
tensordict_actor_dist = self.actor_network.build_dist_from_params(td_params)
|
|
512
|
+
tensordict_actor.set(sample_key, tensordict_actor_dist.rsample())
|
|
513
|
+
tensordict_actor.set(
|
|
514
|
+
sample_key_lp,
|
|
515
|
+
tensordict_actor_dist.log_prob(tensordict_actor.get(sample_key)),
|
|
516
|
+
)
|
|
517
|
+
|
|
518
|
+
# repeat tensordict_actor to match the qvalue size
|
|
519
|
+
_actor_loss_td = (
|
|
520
|
+
tensordict_actor[0]
|
|
521
|
+
.select(*self.qvalue_network.in_keys)
|
|
522
|
+
.expand(self.num_qvalue_nets, *tensordict_actor[0].batch_size)
|
|
523
|
+
) # for actor loss
|
|
524
|
+
_qval_td = tensordict_select.select(*self.qvalue_network.in_keys).expand(
|
|
525
|
+
self.num_qvalue_nets,
|
|
526
|
+
*tensordict_select.select(*self.qvalue_network.in_keys).batch_size,
|
|
527
|
+
) # for qvalue loss
|
|
528
|
+
_next_val_td = (
|
|
529
|
+
tensordict_actor[1]
|
|
530
|
+
.select(*self.qvalue_network.in_keys)
|
|
531
|
+
.expand(self.sub_sample_len, *tensordict_actor[1].batch_size)
|
|
532
|
+
) # for next value estimation
|
|
533
|
+
tensordict_qval = torch.cat(
|
|
534
|
+
[
|
|
535
|
+
_actor_loss_td,
|
|
536
|
+
_next_val_td,
|
|
537
|
+
_qval_td,
|
|
538
|
+
],
|
|
539
|
+
0,
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
# cat params
|
|
543
|
+
tensordict_qval = self._vmap_qvalue_network00(
|
|
544
|
+
tensordict_qval,
|
|
545
|
+
self._qvalue_params_cat(selected_q_params),
|
|
546
|
+
)
|
|
547
|
+
|
|
548
|
+
state_action_value = tensordict_qval.get(
|
|
549
|
+
self.tensor_keys.state_action_value
|
|
550
|
+
).squeeze(-1)
|
|
551
|
+
(
|
|
552
|
+
state_action_value_actor,
|
|
553
|
+
next_state_action_value_qvalue,
|
|
554
|
+
state_action_value_qvalue,
|
|
555
|
+
) = state_action_value.split(
|
|
556
|
+
[self.num_qvalue_nets, self.sub_sample_len, self.num_qvalue_nets],
|
|
557
|
+
dim=0,
|
|
558
|
+
)
|
|
559
|
+
sample_log_prob = tensordict_actor.get(
|
|
560
|
+
self.tensor_keys.sample_log_prob
|
|
561
|
+
).squeeze(-1)
|
|
562
|
+
(
|
|
563
|
+
action_log_prob_actor,
|
|
564
|
+
next_action_log_prob_qvalue,
|
|
565
|
+
) = sample_log_prob.unbind(0)
|
|
566
|
+
|
|
567
|
+
loss_actor = -(state_action_value_actor - self.alpha * action_log_prob_actor)
|
|
568
|
+
|
|
569
|
+
next_state_value = (
|
|
570
|
+
next_state_action_value_qvalue - self.alpha * next_action_log_prob_qvalue
|
|
571
|
+
)
|
|
572
|
+
next_state_value = next_state_value.min(0)[0]
|
|
573
|
+
|
|
574
|
+
tensordict_select.set(
|
|
575
|
+
("next", self.tensor_keys.value), next_state_value.unsqueeze(-1)
|
|
576
|
+
)
|
|
577
|
+
target_value = self.value_estimator.value_estimate(tensordict_select).squeeze(
|
|
578
|
+
-1
|
|
579
|
+
)
|
|
580
|
+
|
|
581
|
+
pred_val = state_action_value_qvalue
|
|
582
|
+
td_error = (pred_val - target_value).pow(2)
|
|
583
|
+
loss_qval = distance_loss(
|
|
584
|
+
pred_val,
|
|
585
|
+
target_value.expand_as(pred_val),
|
|
586
|
+
loss_function=self.loss_function,
|
|
587
|
+
)
|
|
588
|
+
|
|
589
|
+
tensordict.set(self.tensor_keys.priority, td_error.detach().max(0)[0])
|
|
590
|
+
|
|
591
|
+
loss_alpha = self._loss_alpha(sample_log_prob)
|
|
592
|
+
if not loss_qval.shape == loss_actor.shape:
|
|
593
|
+
raise RuntimeError(
|
|
594
|
+
f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}"
|
|
595
|
+
)
|
|
596
|
+
td_out = TensorDict(
|
|
597
|
+
{
|
|
598
|
+
"loss_actor": loss_actor,
|
|
599
|
+
"loss_qvalue": loss_qval,
|
|
600
|
+
"loss_alpha": loss_alpha,
|
|
601
|
+
"alpha": self.alpha.detach(),
|
|
602
|
+
"entropy": -sample_log_prob.detach().mean(),
|
|
603
|
+
"state_action_value_actor": state_action_value_actor.detach(),
|
|
604
|
+
"action_log_prob_actor": action_log_prob_actor.detach(),
|
|
605
|
+
"next.state_value": next_state_value.detach(),
|
|
606
|
+
"target_value": target_value.detach(),
|
|
607
|
+
},
|
|
608
|
+
[],
|
|
609
|
+
)
|
|
610
|
+
td_out = td_out.named_apply(
|
|
611
|
+
lambda name, value: _reduce(value, reduction=self.reduction)
|
|
612
|
+
if name.startswith("loss_")
|
|
613
|
+
else value,
|
|
614
|
+
)
|
|
615
|
+
self._clear_weakrefs(
|
|
616
|
+
tensordict,
|
|
617
|
+
td_out,
|
|
618
|
+
"actor_network_params",
|
|
619
|
+
"qvalue_network_params",
|
|
620
|
+
"target_actor_network_params",
|
|
621
|
+
"target_qvalue_network_params",
|
|
622
|
+
)
|
|
623
|
+
return td_out
|
|
624
|
+
|
|
625
|
+
def _loss_alpha(self, log_pi: Tensor) -> Tensor:
|
|
626
|
+
if torch.is_grad_enabled() and not log_pi.requires_grad:
|
|
627
|
+
raise RuntimeError(
|
|
628
|
+
"expected log_pi to require gradient for the alpha loss)"
|
|
629
|
+
)
|
|
630
|
+
if self.target_entropy is not None:
|
|
631
|
+
# we can compute this loss even if log_alpha is not a parameter
|
|
632
|
+
alpha_loss = -self._safe_log_alpha.exp() * (
|
|
633
|
+
log_pi.detach() + self.target_entropy
|
|
634
|
+
)
|
|
635
|
+
else:
|
|
636
|
+
# placeholder
|
|
637
|
+
alpha_loss = torch.zeros_like(log_pi)
|
|
638
|
+
return alpha_loss
|
|
639
|
+
|
|
640
|
+
@property
|
|
641
|
+
def _safe_log_alpha(self):
|
|
642
|
+
log_alpha = self.log_alpha
|
|
643
|
+
with torch.no_grad():
|
|
644
|
+
log_alpha_clamp = log_alpha.clamp(self.min_log_alpha, self.max_log_alpha)
|
|
645
|
+
log_alpha_det = log_alpha.detach()
|
|
646
|
+
return log_alpha - log_alpha_det + log_alpha_clamp
|
|
647
|
+
|
|
648
|
+
def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
|
|
649
|
+
if value_type is None:
|
|
650
|
+
value_type = self.default_value_estimator
|
|
651
|
+
|
|
652
|
+
# Handle ValueEstimatorBase instance or class
|
|
653
|
+
if isinstance(value_type, ValueEstimatorBase) or (
|
|
654
|
+
isinstance(value_type, type) and issubclass(value_type, ValueEstimatorBase)
|
|
655
|
+
):
|
|
656
|
+
return LossModule.make_value_estimator(self, value_type, **hyperparams)
|
|
657
|
+
|
|
658
|
+
self.value_type = value_type
|
|
659
|
+
hp = dict(default_value_kwargs(value_type))
|
|
660
|
+
if hasattr(self, "gamma"):
|
|
661
|
+
hp["gamma"] = self.gamma
|
|
662
|
+
hp.update(hyperparams)
|
|
663
|
+
# we do not need a value network bc the next state value is already passed
|
|
664
|
+
if value_type == ValueEstimators.TD1:
|
|
665
|
+
self._value_estimator = TD1Estimator(value_network=None, **hp)
|
|
666
|
+
elif value_type == ValueEstimators.TD0:
|
|
667
|
+
self._value_estimator = TD0Estimator(value_network=None, **hp)
|
|
668
|
+
elif value_type == ValueEstimators.GAE:
|
|
669
|
+
raise NotImplementedError(
|
|
670
|
+
f"Value type {value_type} it not implemented for loss {type(self)}."
|
|
671
|
+
)
|
|
672
|
+
elif value_type == ValueEstimators.TDLambda:
|
|
673
|
+
self._value_estimator = TDLambdaEstimator(value_network=None, **hp)
|
|
674
|
+
else:
|
|
675
|
+
raise NotImplementedError(f"Unknown value type {value_type}")
|
|
676
|
+
|
|
677
|
+
tensor_keys = {
|
|
678
|
+
"value": self.tensor_keys.value,
|
|
679
|
+
"reward": self.tensor_keys.reward,
|
|
680
|
+
"done": self.tensor_keys.done,
|
|
681
|
+
"terminated": self.tensor_keys.terminated,
|
|
682
|
+
}
|
|
683
|
+
self._value_estimator.set_keys(**tensor_keys)
|