torchrl 0.11.0__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (394) hide show
  1. benchmarks/benchmark_batched_envs.py +104 -0
  2. benchmarks/conftest.py +91 -0
  3. benchmarks/ecosystem/gym_env_throughput.py +321 -0
  4. benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
  5. benchmarks/requirements.txt +7 -0
  6. benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
  7. benchmarks/test_collectors_benchmark.py +240 -0
  8. benchmarks/test_compressed_storage_benchmark.py +145 -0
  9. benchmarks/test_envs_benchmark.py +133 -0
  10. benchmarks/test_llm.py +101 -0
  11. benchmarks/test_non_tensor_env_benchmark.py +70 -0
  12. benchmarks/test_objectives_benchmarks.py +1199 -0
  13. benchmarks/test_replaybuffer_benchmark.py +254 -0
  14. sota-check/README.md +35 -0
  15. sota-implementations/README.md +142 -0
  16. sota-implementations/a2c/README.md +39 -0
  17. sota-implementations/a2c/a2c_atari.py +291 -0
  18. sota-implementations/a2c/a2c_mujoco.py +273 -0
  19. sota-implementations/a2c/utils_atari.py +240 -0
  20. sota-implementations/a2c/utils_mujoco.py +160 -0
  21. sota-implementations/bandits/README.md +7 -0
  22. sota-implementations/bandits/dqn.py +126 -0
  23. sota-implementations/cql/cql_offline.py +198 -0
  24. sota-implementations/cql/cql_online.py +249 -0
  25. sota-implementations/cql/discrete_cql_offline.py +180 -0
  26. sota-implementations/cql/discrete_cql_online.py +227 -0
  27. sota-implementations/cql/utils.py +471 -0
  28. sota-implementations/crossq/crossq.py +271 -0
  29. sota-implementations/crossq/utils.py +320 -0
  30. sota-implementations/ddpg/ddpg.py +231 -0
  31. sota-implementations/ddpg/utils.py +325 -0
  32. sota-implementations/decision_transformer/dt.py +163 -0
  33. sota-implementations/decision_transformer/lamb.py +167 -0
  34. sota-implementations/decision_transformer/online_dt.py +178 -0
  35. sota-implementations/decision_transformer/utils.py +562 -0
  36. sota-implementations/discrete_sac/discrete_sac.py +243 -0
  37. sota-implementations/discrete_sac/utils.py +324 -0
  38. sota-implementations/dqn/README.md +30 -0
  39. sota-implementations/dqn/dqn_atari.py +272 -0
  40. sota-implementations/dqn/dqn_cartpole.py +236 -0
  41. sota-implementations/dqn/utils_atari.py +132 -0
  42. sota-implementations/dqn/utils_cartpole.py +90 -0
  43. sota-implementations/dreamer/README.md +129 -0
  44. sota-implementations/dreamer/dreamer.py +586 -0
  45. sota-implementations/dreamer/dreamer_utils.py +1107 -0
  46. sota-implementations/expert-iteration/README.md +352 -0
  47. sota-implementations/expert-iteration/ei_utils.py +770 -0
  48. sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
  49. sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
  50. sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
  51. sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
  52. sota-implementations/gail/gail.py +327 -0
  53. sota-implementations/gail/gail_utils.py +68 -0
  54. sota-implementations/gail/ppo_utils.py +157 -0
  55. sota-implementations/grpo/README.md +273 -0
  56. sota-implementations/grpo/grpo-async.py +437 -0
  57. sota-implementations/grpo/grpo-sync.py +435 -0
  58. sota-implementations/grpo/grpo_utils.py +843 -0
  59. sota-implementations/grpo/requirements_gsm8k.txt +11 -0
  60. sota-implementations/grpo/requirements_ifeval.txt +16 -0
  61. sota-implementations/impala/README.md +33 -0
  62. sota-implementations/impala/impala_multi_node_ray.py +292 -0
  63. sota-implementations/impala/impala_multi_node_submitit.py +284 -0
  64. sota-implementations/impala/impala_single_node.py +261 -0
  65. sota-implementations/impala/utils.py +184 -0
  66. sota-implementations/iql/discrete_iql.py +230 -0
  67. sota-implementations/iql/iql_offline.py +164 -0
  68. sota-implementations/iql/iql_online.py +225 -0
  69. sota-implementations/iql/utils.py +437 -0
  70. sota-implementations/multiagent/README.md +74 -0
  71. sota-implementations/multiagent/iql.py +237 -0
  72. sota-implementations/multiagent/maddpg_iddpg.py +266 -0
  73. sota-implementations/multiagent/mappo_ippo.py +267 -0
  74. sota-implementations/multiagent/qmix_vdn.py +271 -0
  75. sota-implementations/multiagent/sac.py +337 -0
  76. sota-implementations/multiagent/utils/__init__.py +4 -0
  77. sota-implementations/multiagent/utils/logging.py +151 -0
  78. sota-implementations/multiagent/utils/utils.py +43 -0
  79. sota-implementations/ppo/README.md +29 -0
  80. sota-implementations/ppo/ppo_atari.py +305 -0
  81. sota-implementations/ppo/ppo_mujoco.py +293 -0
  82. sota-implementations/ppo/utils_atari.py +238 -0
  83. sota-implementations/ppo/utils_mujoco.py +152 -0
  84. sota-implementations/ppo_trainer/train.py +21 -0
  85. sota-implementations/redq/README.md +7 -0
  86. sota-implementations/redq/redq.py +199 -0
  87. sota-implementations/redq/utils.py +1060 -0
  88. sota-implementations/sac/sac-async.py +266 -0
  89. sota-implementations/sac/sac.py +239 -0
  90. sota-implementations/sac/utils.py +381 -0
  91. sota-implementations/sac_trainer/train.py +16 -0
  92. sota-implementations/td3/td3.py +254 -0
  93. sota-implementations/td3/utils.py +319 -0
  94. sota-implementations/td3_bc/td3_bc.py +177 -0
  95. sota-implementations/td3_bc/utils.py +251 -0
  96. torchrl/__init__.py +144 -0
  97. torchrl/_extension.py +74 -0
  98. torchrl/_torchrl.cp314-win_amd64.pyd +0 -0
  99. torchrl/_utils.py +1431 -0
  100. torchrl/collectors/__init__.py +48 -0
  101. torchrl/collectors/_base.py +1058 -0
  102. torchrl/collectors/_constants.py +88 -0
  103. torchrl/collectors/_multi_async.py +324 -0
  104. torchrl/collectors/_multi_base.py +1805 -0
  105. torchrl/collectors/_multi_sync.py +464 -0
  106. torchrl/collectors/_runner.py +581 -0
  107. torchrl/collectors/_single.py +2009 -0
  108. torchrl/collectors/_single_async.py +259 -0
  109. torchrl/collectors/collectors.py +62 -0
  110. torchrl/collectors/distributed/__init__.py +32 -0
  111. torchrl/collectors/distributed/default_configs.py +133 -0
  112. torchrl/collectors/distributed/generic.py +1306 -0
  113. torchrl/collectors/distributed/ray.py +1092 -0
  114. torchrl/collectors/distributed/rpc.py +1006 -0
  115. torchrl/collectors/distributed/sync.py +731 -0
  116. torchrl/collectors/distributed/utils.py +160 -0
  117. torchrl/collectors/llm/__init__.py +10 -0
  118. torchrl/collectors/llm/base.py +494 -0
  119. torchrl/collectors/llm/ray_collector.py +275 -0
  120. torchrl/collectors/llm/utils.py +36 -0
  121. torchrl/collectors/llm/weight_update/__init__.py +10 -0
  122. torchrl/collectors/llm/weight_update/vllm.py +348 -0
  123. torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
  124. torchrl/collectors/utils.py +433 -0
  125. torchrl/collectors/weight_update.py +591 -0
  126. torchrl/csrc/numpy_utils.h +38 -0
  127. torchrl/csrc/pybind.cpp +27 -0
  128. torchrl/csrc/segment_tree.h +458 -0
  129. torchrl/csrc/torch_utils.h +34 -0
  130. torchrl/csrc/utils.cpp +48 -0
  131. torchrl/csrc/utils.h +31 -0
  132. torchrl/data/__init__.py +187 -0
  133. torchrl/data/datasets/__init__.py +58 -0
  134. torchrl/data/datasets/atari_dqn.py +878 -0
  135. torchrl/data/datasets/common.py +281 -0
  136. torchrl/data/datasets/d4rl.py +489 -0
  137. torchrl/data/datasets/d4rl_infos.py +187 -0
  138. torchrl/data/datasets/gen_dgrl.py +375 -0
  139. torchrl/data/datasets/minari_data.py +643 -0
  140. torchrl/data/datasets/openml.py +177 -0
  141. torchrl/data/datasets/openx.py +798 -0
  142. torchrl/data/datasets/roboset.py +363 -0
  143. torchrl/data/datasets/utils.py +11 -0
  144. torchrl/data/datasets/vd4rl.py +432 -0
  145. torchrl/data/llm/__init__.py +34 -0
  146. torchrl/data/llm/dataset.py +491 -0
  147. torchrl/data/llm/history.py +1378 -0
  148. torchrl/data/llm/prompt.py +198 -0
  149. torchrl/data/llm/reward.py +225 -0
  150. torchrl/data/llm/topk.py +186 -0
  151. torchrl/data/llm/utils.py +543 -0
  152. torchrl/data/map/__init__.py +21 -0
  153. torchrl/data/map/hash.py +185 -0
  154. torchrl/data/map/query.py +204 -0
  155. torchrl/data/map/tdstorage.py +363 -0
  156. torchrl/data/map/tree.py +1434 -0
  157. torchrl/data/map/utils.py +103 -0
  158. torchrl/data/postprocs/__init__.py +8 -0
  159. torchrl/data/postprocs/postprocs.py +391 -0
  160. torchrl/data/replay_buffers/__init__.py +99 -0
  161. torchrl/data/replay_buffers/checkpointers.py +622 -0
  162. torchrl/data/replay_buffers/ray_buffer.py +292 -0
  163. torchrl/data/replay_buffers/replay_buffers.py +2376 -0
  164. torchrl/data/replay_buffers/samplers.py +2578 -0
  165. torchrl/data/replay_buffers/scheduler.py +265 -0
  166. torchrl/data/replay_buffers/storages.py +2412 -0
  167. torchrl/data/replay_buffers/utils.py +1042 -0
  168. torchrl/data/replay_buffers/writers.py +781 -0
  169. torchrl/data/tensor_specs.py +7101 -0
  170. torchrl/data/utils.py +334 -0
  171. torchrl/envs/__init__.py +265 -0
  172. torchrl/envs/async_envs.py +1105 -0
  173. torchrl/envs/batched_envs.py +3093 -0
  174. torchrl/envs/common.py +4241 -0
  175. torchrl/envs/custom/__init__.py +11 -0
  176. torchrl/envs/custom/chess.py +617 -0
  177. torchrl/envs/custom/llm.py +214 -0
  178. torchrl/envs/custom/pendulum.py +401 -0
  179. torchrl/envs/custom/san_moves.txt +29274 -0
  180. torchrl/envs/custom/tictactoeenv.py +288 -0
  181. torchrl/envs/env_creator.py +263 -0
  182. torchrl/envs/gym_like.py +752 -0
  183. torchrl/envs/libs/__init__.py +68 -0
  184. torchrl/envs/libs/_gym_utils.py +326 -0
  185. torchrl/envs/libs/brax.py +846 -0
  186. torchrl/envs/libs/dm_control.py +544 -0
  187. torchrl/envs/libs/envpool.py +447 -0
  188. torchrl/envs/libs/gym.py +2239 -0
  189. torchrl/envs/libs/habitat.py +138 -0
  190. torchrl/envs/libs/isaac_lab.py +87 -0
  191. torchrl/envs/libs/isaacgym.py +203 -0
  192. torchrl/envs/libs/jax_utils.py +166 -0
  193. torchrl/envs/libs/jumanji.py +963 -0
  194. torchrl/envs/libs/meltingpot.py +599 -0
  195. torchrl/envs/libs/openml.py +153 -0
  196. torchrl/envs/libs/openspiel.py +652 -0
  197. torchrl/envs/libs/pettingzoo.py +1042 -0
  198. torchrl/envs/libs/procgen.py +351 -0
  199. torchrl/envs/libs/robohive.py +429 -0
  200. torchrl/envs/libs/smacv2.py +645 -0
  201. torchrl/envs/libs/unity_mlagents.py +891 -0
  202. torchrl/envs/libs/utils.py +147 -0
  203. torchrl/envs/libs/vmas.py +813 -0
  204. torchrl/envs/llm/__init__.py +63 -0
  205. torchrl/envs/llm/chat.py +730 -0
  206. torchrl/envs/llm/datasets/README.md +4 -0
  207. torchrl/envs/llm/datasets/__init__.py +17 -0
  208. torchrl/envs/llm/datasets/gsm8k.py +353 -0
  209. torchrl/envs/llm/datasets/ifeval.py +274 -0
  210. torchrl/envs/llm/envs.py +789 -0
  211. torchrl/envs/llm/libs/README.md +3 -0
  212. torchrl/envs/llm/libs/__init__.py +8 -0
  213. torchrl/envs/llm/libs/mlgym.py +869 -0
  214. torchrl/envs/llm/reward/__init__.py +10 -0
  215. torchrl/envs/llm/reward/gsm8k.py +324 -0
  216. torchrl/envs/llm/reward/ifeval/README.md +13 -0
  217. torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
  218. torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
  219. torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
  220. torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
  221. torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
  222. torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
  223. torchrl/envs/llm/transforms/__init__.py +55 -0
  224. torchrl/envs/llm/transforms/browser.py +292 -0
  225. torchrl/envs/llm/transforms/dataloading.py +859 -0
  226. torchrl/envs/llm/transforms/format.py +73 -0
  227. torchrl/envs/llm/transforms/kl.py +1544 -0
  228. torchrl/envs/llm/transforms/policy_version.py +189 -0
  229. torchrl/envs/llm/transforms/reason.py +323 -0
  230. torchrl/envs/llm/transforms/tokenizer.py +321 -0
  231. torchrl/envs/llm/transforms/tools.py +1955 -0
  232. torchrl/envs/model_based/__init__.py +9 -0
  233. torchrl/envs/model_based/common.py +180 -0
  234. torchrl/envs/model_based/dreamer.py +112 -0
  235. torchrl/envs/transforms/__init__.py +147 -0
  236. torchrl/envs/transforms/functional.py +48 -0
  237. torchrl/envs/transforms/gym_transforms.py +203 -0
  238. torchrl/envs/transforms/module.py +341 -0
  239. torchrl/envs/transforms/r3m.py +372 -0
  240. torchrl/envs/transforms/ray_service.py +663 -0
  241. torchrl/envs/transforms/rb_transforms.py +214 -0
  242. torchrl/envs/transforms/transforms.py +11835 -0
  243. torchrl/envs/transforms/utils.py +94 -0
  244. torchrl/envs/transforms/vc1.py +307 -0
  245. torchrl/envs/transforms/vecnorm.py +845 -0
  246. torchrl/envs/transforms/vip.py +407 -0
  247. torchrl/envs/utils.py +1718 -0
  248. torchrl/envs/vec_envs.py +11 -0
  249. torchrl/modules/__init__.py +206 -0
  250. torchrl/modules/distributions/__init__.py +73 -0
  251. torchrl/modules/distributions/continuous.py +830 -0
  252. torchrl/modules/distributions/discrete.py +908 -0
  253. torchrl/modules/distributions/truncated_normal.py +187 -0
  254. torchrl/modules/distributions/utils.py +233 -0
  255. torchrl/modules/llm/__init__.py +62 -0
  256. torchrl/modules/llm/backends/__init__.py +65 -0
  257. torchrl/modules/llm/backends/vllm/__init__.py +94 -0
  258. torchrl/modules/llm/backends/vllm/_models.py +46 -0
  259. torchrl/modules/llm/backends/vllm/base.py +72 -0
  260. torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
  261. torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
  262. torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
  263. torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
  264. torchrl/modules/llm/policies/__init__.py +28 -0
  265. torchrl/modules/llm/policies/common.py +1809 -0
  266. torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
  267. torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
  268. torchrl/modules/llm/utils.py +23 -0
  269. torchrl/modules/mcts/__init__.py +21 -0
  270. torchrl/modules/mcts/scores.py +579 -0
  271. torchrl/modules/models/__init__.py +86 -0
  272. torchrl/modules/models/batchrenorm.py +119 -0
  273. torchrl/modules/models/decision_transformer.py +179 -0
  274. torchrl/modules/models/exploration.py +731 -0
  275. torchrl/modules/models/llm.py +156 -0
  276. torchrl/modules/models/model_based.py +596 -0
  277. torchrl/modules/models/models.py +1712 -0
  278. torchrl/modules/models/multiagent.py +1067 -0
  279. torchrl/modules/models/recipes/impala.py +185 -0
  280. torchrl/modules/models/utils.py +162 -0
  281. torchrl/modules/planners/__init__.py +10 -0
  282. torchrl/modules/planners/cem.py +228 -0
  283. torchrl/modules/planners/common.py +73 -0
  284. torchrl/modules/planners/mppi.py +265 -0
  285. torchrl/modules/tensordict_module/__init__.py +89 -0
  286. torchrl/modules/tensordict_module/actors.py +2457 -0
  287. torchrl/modules/tensordict_module/common.py +529 -0
  288. torchrl/modules/tensordict_module/exploration.py +814 -0
  289. torchrl/modules/tensordict_module/probabilistic.py +321 -0
  290. torchrl/modules/tensordict_module/rnn.py +1639 -0
  291. torchrl/modules/tensordict_module/sequence.py +132 -0
  292. torchrl/modules/tensordict_module/world_models.py +34 -0
  293. torchrl/modules/utils/__init__.py +38 -0
  294. torchrl/modules/utils/mappings.py +9 -0
  295. torchrl/modules/utils/utils.py +89 -0
  296. torchrl/objectives/__init__.py +78 -0
  297. torchrl/objectives/a2c.py +659 -0
  298. torchrl/objectives/common.py +753 -0
  299. torchrl/objectives/cql.py +1346 -0
  300. torchrl/objectives/crossq.py +710 -0
  301. torchrl/objectives/ddpg.py +453 -0
  302. torchrl/objectives/decision_transformer.py +371 -0
  303. torchrl/objectives/deprecated.py +516 -0
  304. torchrl/objectives/dqn.py +683 -0
  305. torchrl/objectives/dreamer.py +488 -0
  306. torchrl/objectives/functional.py +48 -0
  307. torchrl/objectives/gail.py +258 -0
  308. torchrl/objectives/iql.py +996 -0
  309. torchrl/objectives/llm/__init__.py +30 -0
  310. torchrl/objectives/llm/grpo.py +846 -0
  311. torchrl/objectives/llm/sft.py +482 -0
  312. torchrl/objectives/multiagent/__init__.py +8 -0
  313. torchrl/objectives/multiagent/qmixer.py +396 -0
  314. torchrl/objectives/ppo.py +1669 -0
  315. torchrl/objectives/redq.py +683 -0
  316. torchrl/objectives/reinforce.py +530 -0
  317. torchrl/objectives/sac.py +1580 -0
  318. torchrl/objectives/td3.py +570 -0
  319. torchrl/objectives/td3_bc.py +625 -0
  320. torchrl/objectives/utils.py +782 -0
  321. torchrl/objectives/value/__init__.py +28 -0
  322. torchrl/objectives/value/advantages.py +1956 -0
  323. torchrl/objectives/value/functional.py +1459 -0
  324. torchrl/objectives/value/utils.py +360 -0
  325. torchrl/record/__init__.py +17 -0
  326. torchrl/record/loggers/__init__.py +23 -0
  327. torchrl/record/loggers/common.py +48 -0
  328. torchrl/record/loggers/csv.py +226 -0
  329. torchrl/record/loggers/mlflow.py +142 -0
  330. torchrl/record/loggers/tensorboard.py +139 -0
  331. torchrl/record/loggers/trackio.py +163 -0
  332. torchrl/record/loggers/utils.py +78 -0
  333. torchrl/record/loggers/wandb.py +214 -0
  334. torchrl/record/recorder.py +554 -0
  335. torchrl/services/__init__.py +79 -0
  336. torchrl/services/base.py +109 -0
  337. torchrl/services/ray_service.py +453 -0
  338. torchrl/testing/__init__.py +107 -0
  339. torchrl/testing/assertions.py +179 -0
  340. torchrl/testing/dist_utils.py +122 -0
  341. torchrl/testing/env_creators.py +227 -0
  342. torchrl/testing/env_helper.py +35 -0
  343. torchrl/testing/gym_helpers.py +156 -0
  344. torchrl/testing/llm_mocks.py +119 -0
  345. torchrl/testing/mocking_classes.py +2720 -0
  346. torchrl/testing/modules.py +295 -0
  347. torchrl/testing/mp_helpers.py +15 -0
  348. torchrl/testing/ray_helpers.py +293 -0
  349. torchrl/testing/utils.py +190 -0
  350. torchrl/trainers/__init__.py +42 -0
  351. torchrl/trainers/algorithms/__init__.py +11 -0
  352. torchrl/trainers/algorithms/configs/__init__.py +705 -0
  353. torchrl/trainers/algorithms/configs/collectors.py +216 -0
  354. torchrl/trainers/algorithms/configs/common.py +41 -0
  355. torchrl/trainers/algorithms/configs/data.py +308 -0
  356. torchrl/trainers/algorithms/configs/envs.py +104 -0
  357. torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
  358. torchrl/trainers/algorithms/configs/logging.py +80 -0
  359. torchrl/trainers/algorithms/configs/modules.py +570 -0
  360. torchrl/trainers/algorithms/configs/objectives.py +177 -0
  361. torchrl/trainers/algorithms/configs/trainers.py +340 -0
  362. torchrl/trainers/algorithms/configs/transforms.py +955 -0
  363. torchrl/trainers/algorithms/configs/utils.py +252 -0
  364. torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
  365. torchrl/trainers/algorithms/configs/weight_update.py +159 -0
  366. torchrl/trainers/algorithms/ppo.py +373 -0
  367. torchrl/trainers/algorithms/sac.py +308 -0
  368. torchrl/trainers/helpers/__init__.py +40 -0
  369. torchrl/trainers/helpers/collectors.py +416 -0
  370. torchrl/trainers/helpers/envs.py +573 -0
  371. torchrl/trainers/helpers/logger.py +33 -0
  372. torchrl/trainers/helpers/losses.py +132 -0
  373. torchrl/trainers/helpers/models.py +658 -0
  374. torchrl/trainers/helpers/replay_buffer.py +59 -0
  375. torchrl/trainers/helpers/trainers.py +301 -0
  376. torchrl/trainers/trainers.py +2052 -0
  377. torchrl/weight_update/__init__.py +33 -0
  378. torchrl/weight_update/_distributed.py +749 -0
  379. torchrl/weight_update/_mp.py +624 -0
  380. torchrl/weight_update/_noupdate.py +102 -0
  381. torchrl/weight_update/_ray.py +1032 -0
  382. torchrl/weight_update/_rpc.py +284 -0
  383. torchrl/weight_update/_shared.py +891 -0
  384. torchrl/weight_update/llm/__init__.py +32 -0
  385. torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
  386. torchrl/weight_update/llm/vllm_nccl.py +710 -0
  387. torchrl/weight_update/utils.py +73 -0
  388. torchrl/weight_update/weight_sync_schemes.py +1244 -0
  389. torchrl-0.11.0.dist-info/LICENSE +21 -0
  390. torchrl-0.11.0.dist-info/METADATA +1307 -0
  391. torchrl-0.11.0.dist-info/RECORD +394 -0
  392. torchrl-0.11.0.dist-info/WHEEL +5 -0
  393. torchrl-0.11.0.dist-info/entry_points.txt +2 -0
  394. torchrl-0.11.0.dist-info/top_level.txt +7 -0
@@ -0,0 +1,659 @@
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+ from __future__ import annotations
6
+
7
+ import contextlib
8
+ from copy import deepcopy
9
+ from dataclasses import dataclass
10
+
11
+ import torch
12
+ from tensordict import (
13
+ is_tensor_collection,
14
+ TensorDict,
15
+ TensorDictBase,
16
+ TensorDictParams,
17
+ )
18
+ from tensordict.nn import (
19
+ composite_lp_aggregate,
20
+ CompositeDistribution,
21
+ dispatch,
22
+ ProbabilisticTensorDictSequential,
23
+ set_composite_lp_aggregate,
24
+ TensorDictModule,
25
+ )
26
+ from tensordict.utils import NestedKey
27
+ from torch import distributions as d
28
+
29
+ from torchrl.modules.distributions import HAS_ENTROPY
30
+ from torchrl.objectives.common import LossModule
31
+ from torchrl.objectives.utils import (
32
+ _cache_values,
33
+ _clip_value_loss,
34
+ _GAMMA_LMBDA_DEPREC_ERROR,
35
+ _get_default_device,
36
+ _reduce,
37
+ default_value_kwargs,
38
+ distance_loss,
39
+ ValueEstimators,
40
+ )
41
+ from torchrl.objectives.value import (
42
+ GAE,
43
+ TD0Estimator,
44
+ TD1Estimator,
45
+ TDLambdaEstimator,
46
+ ValueEstimatorBase,
47
+ VTrace,
48
+ )
49
+
50
+
51
+ class A2CLoss(LossModule):
52
+ """TorchRL implementation of the A2C loss.
53
+
54
+ A2C (Advantage Actor Critic) is a model-free, online RL algorithm that uses parallel rollouts of n steps to
55
+ update the policy, relying on the REINFORCE estimator to compute the gradient. It also adds an entropy term to the
56
+ objective function to improve exploration.
57
+
58
+ For more details regarding A2C, refer to: "Asynchronous Methods for Deep Reinforcment Learning",
59
+ https://arxiv.org/abs/1602.01783v2
60
+
61
+ Args:
62
+ actor_network (ProbabilisticTensorDictSequential): policy operator.
63
+ critic_network (ValueOperator): value operator.
64
+ entropy_bonus (bool): if ``True``, an entropy bonus will be added to the
65
+ loss to favour exploratory policies.
66
+ samples_mc_entropy (int): if the distribution retrieved from the policy
67
+ operator does not have a closed form
68
+ formula for the entropy, a Monte-Carlo estimate will be used.
69
+ ``samples_mc_entropy`` will control how many
70
+ samples will be used to compute this estimate.
71
+ Defaults to ``1``.
72
+ entropy_coeff (:obj:`float`): the weight of the entropy loss. Defaults to `0.01``.
73
+ critic_coeff (:obj:`float`): the weight of the critic loss. Defaults to ``1.0``. If ``None``, the critic
74
+ loss won't be included and the in-keys will miss the critic inputs.
75
+ loss_critic_type (str): loss function for the value discrepancy.
76
+ Can be one of "l1", "l2" or "smooth_l1". Defaults to ``"smooth_l1"``.
77
+ separate_losses (bool, optional): if ``True``, shared parameters between
78
+ policy and critic will only be trained on the policy loss.
79
+ Defaults to ``False``, i.e., gradients are propagated to shared
80
+ parameters for both policy and critic losses.
81
+ advantage_key (str): [Deprecated, use set_keys(advantage_key=advantage_key) instead]
82
+ The input tensordict key where the advantage is expected to be written. default: "advantage"
83
+ value_target_key (str): [Deprecated, use set_keys() instead] the input
84
+ tensordict key where the target state value is expected to be written. Defaults to ``"value_target"``.
85
+ functional (bool, optional): whether modules should be functionalized.
86
+ Functionalizing permits features like meta-RL, but makes it
87
+ impossible to use distributed models (DDP, FSDP, ...) and comes
88
+ with a little cost. Defaults to ``True``.
89
+ reduction (str, optional): Specifies the reduction to apply to the output:
90
+ ``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
91
+ ``"mean"``: the sum of the output will be divided by the number of
92
+ elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
93
+ clip_value (:obj:`float`, optional): If provided, it will be used to compute a clipped version of the value
94
+ prediction with respect to the input value estimate and use it to calculate the value loss.
95
+ The purpose of clipping is to limit the impact of extreme value predictions, helping stabilize training
96
+ and preventing large updates. However, it will have no impact if the value estimate was done by the current
97
+ version of the value estimator. Defaults to ``None``.
98
+
99
+ .. note:
100
+ The advantage (typically GAE) can be computed by the loss function or
101
+ in the training loop. The latter option is usually preferred, but this is
102
+ up to the user to choose which option is to be preferred.
103
+ If the advantage key (``"advantage`` by default) is not present in the
104
+ input tensordict, the advantage will be computed by the :meth:`~.forward`
105
+ method.
106
+ A custom advantage module can be built using :meth:`~.make_value_estimator`.
107
+ The default is :class:`~torchrl.objectives.value.GAE` with hyperparameters
108
+ dictated by :func:`~torchrl.objectives.utils.default_value_kwargs`.
109
+
110
+ Examples:
111
+ >>> import torch
112
+ >>> from torch import nn
113
+ >>> from torchrl.data import Bounded
114
+ >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
115
+ >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
116
+ >>> from torchrl.modules.tensordict_module.common import SafeModule
117
+ >>> from torchrl.objectives.a2c import A2CLoss
118
+ >>> from tensordict import TensorDict
119
+ >>> n_act, n_obs = 4, 3
120
+ >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
121
+ >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
122
+ >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
123
+ >>> actor = ProbabilisticActor(
124
+ ... module=module,
125
+ ... in_keys=["loc", "scale"],
126
+ ... spec=spec,
127
+ ... distribution_class=TanhNormal)
128
+ >>> module = nn.Linear(n_obs, 1)
129
+ >>> value = ValueOperator(
130
+ ... module=module,
131
+ ... in_keys=["observation"])
132
+ >>> loss = A2CLoss(actor, value, loss_critic_type="l2")
133
+ >>> batch = [2, ]
134
+ >>> action = spec.rand(batch)
135
+ >>> data = TensorDict({
136
+ ... "observation": torch.randn(*batch, n_obs),
137
+ ... "action": action,
138
+ ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
139
+ ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
140
+ ... ("next", "reward"): torch.randn(*batch, 1),
141
+ ... ("next", "observation"): torch.randn(*batch, n_obs),
142
+ ... }, batch)
143
+ >>> loss(data)
144
+ TensorDict(
145
+ fields={
146
+ entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
147
+ loss_critic: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
148
+ loss_entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
149
+ loss_objective: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
150
+ batch_size=torch.Size([]),
151
+ device=None,
152
+ is_shared=False)
153
+
154
+ This class is compatible with non-tensordict based modules too and can be
155
+ used without recurring to any tensordict-related primitive. In this case,
156
+ the expected keyword arguments are:
157
+ ``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and critic.
158
+ The return value is a tuple of tensors in the following order:
159
+ ``["loss_objective"]`` + ``["loss_critic"]`` if critic_coeff is not None + ``["entropy", "loss_entropy"]`` if entropy_bonus is True and critic_coeff is not None
160
+
161
+ Examples:
162
+ >>> import torch
163
+ >>> from torch import nn
164
+ >>> from torchrl.data import Bounded
165
+ >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
166
+ >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
167
+ >>> from torchrl.modules.tensordict_module.common import SafeModule
168
+ >>> from torchrl.objectives.a2c import A2CLoss
169
+ >>> _ = torch.manual_seed(42)
170
+ >>> n_act, n_obs = 4, 3
171
+ >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
172
+ >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
173
+ >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
174
+ >>> actor = ProbabilisticActor(
175
+ ... module=module,
176
+ ... in_keys=["loc", "scale"],
177
+ ... spec=spec,
178
+ ... distribution_class=TanhNormal)
179
+ >>> module = nn.Linear(n_obs, 1)
180
+ >>> value = ValueOperator(
181
+ ... module=module,
182
+ ... in_keys=["observation"])
183
+ >>> loss = A2CLoss(actor, value, loss_critic_type="l2")
184
+ >>> batch = [2, ]
185
+ >>> loss_obj, loss_critic, entropy, loss_entropy = loss(
186
+ ... observation = torch.randn(*batch, n_obs),
187
+ ... action = spec.rand(batch),
188
+ ... next_done = torch.zeros(*batch, 1, dtype=torch.bool),
189
+ ... next_terminated = torch.zeros(*batch, 1, dtype=torch.bool),
190
+ ... next_reward = torch.randn(*batch, 1),
191
+ ... next_observation = torch.randn(*batch, n_obs))
192
+ >>> loss_obj.backward()
193
+
194
+ The output keys can also be filtered using the :meth:`SACLoss.select_out_keys`
195
+ method.
196
+
197
+ Examples:
198
+ >>> loss.select_out_keys('loss_objective', 'loss_critic')
199
+ >>> loss_obj, loss_critic = loss(
200
+ ... observation = torch.randn(*batch, n_obs),
201
+ ... action = spec.rand(batch),
202
+ ... next_done = torch.zeros(*batch, 1, dtype=torch.bool),
203
+ ... next_terminated = torch.zeros(*batch, 1, dtype=torch.bool),
204
+ ... next_reward = torch.randn(*batch, 1),
205
+ ... next_observation = torch.randn(*batch, n_obs))
206
+ >>> loss_obj.backward()
207
+
208
+ .. note::
209
+ There is an exception regarding compatibility with non-tensordict-based modules.
210
+ If the actor network is probabilistic and uses a :class:`~tensordict.nn.distributions.CompositeDistribution`,
211
+ this class must be used with tensordicts and cannot function as a tensordict-independent module.
212
+ This is because composite action spaces inherently rely on the structured representation of data provided by
213
+ tensordicts to handle their actions.
214
+ """
215
+
216
+ @dataclass
217
+ class _AcceptedKeys:
218
+ """Maintains default values for all configurable tensordict keys.
219
+
220
+ This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
221
+ default values.
222
+
223
+ Attributes:
224
+ advantage (NestedKey): The input tensordict key where the advantage is expected.
225
+ Will be used for the underlying value estimator. Defaults to ``"advantage"``.
226
+ value_target (NestedKey): The input tensordict key where the target state value is expected.
227
+ Will be used for the underlying value estimator Defaults to ``"value_target"``.
228
+ value (NestedKey): The input tensordict key where the state value is expected.
229
+ Will be used for the underlying value estimator. Defaults to ``"state_value"``.
230
+ action (NestedKey): The input tensordict key where the action is expected.
231
+ Defaults to ``"action"``.
232
+ reward (NestedKey): The input tensordict key where the reward is expected.
233
+ Will be used for the underlying value estimator. Defaults to ``"reward"``.
234
+ done (NestedKey): The key in the input TensorDict that indicates
235
+ whether a trajectory is done. Will be used for the underlying value estimator.
236
+ Defaults to ``"done"``.
237
+ terminated (NestedKey): The key in the input TensorDict that indicates
238
+ whether a trajectory is terminated. Will be used for the underlying value estimator.
239
+ Defaults to ``"terminated"``.
240
+ sample_log_prob (NestedKey or list of nested keys): The input tensordict key where the
241
+ sample log probability is expected.
242
+ Defaults to ``"sample_log_prob"`` when :func:`~tensordict.nn.composite_lp_aggregate` returns `True`,
243
+ `"action_log_prob"` otherwise.
244
+ """
245
+
246
+ advantage: NestedKey = "advantage"
247
+ value_target: NestedKey = "value_target"
248
+ value: NestedKey = "state_value"
249
+ action: NestedKey = "action"
250
+ reward: NestedKey = "reward"
251
+ done: NestedKey = "done"
252
+ terminated: NestedKey = "terminated"
253
+ sample_log_prob: NestedKey | None = None
254
+
255
+ def __post_init__(self):
256
+ if self.sample_log_prob is None:
257
+ if composite_lp_aggregate(nowarn=True):
258
+ self.sample_log_prob = "sample_log_prob"
259
+ else:
260
+ self.sample_log_prob = "action_log_prob"
261
+
262
+ default_keys = _AcceptedKeys
263
+ tensor_keys: _AcceptedKeys
264
+ default_value_estimator: ValueEstimators = ValueEstimators.GAE
265
+
266
+ actor_network: TensorDictModule
267
+ critic_network: TensorDictModule
268
+ actor_network_params: TensorDictParams | None
269
+ critic_network_params: TensorDictParams | None
270
+ target_actor_network_params: TensorDictParams | None
271
+ target_critic_network_params: TensorDictParams | None
272
+
273
+ def __init__(
274
+ self,
275
+ actor_network: ProbabilisticTensorDictSequential = None,
276
+ critic_network: TensorDictModule = None,
277
+ *,
278
+ entropy_bonus: bool = True,
279
+ samples_mc_entropy: int = 1,
280
+ entropy_coeff: float | None = None,
281
+ critic_coeff: float = 1.0,
282
+ loss_critic_type: str = "smooth_l1",
283
+ gamma: float | None = None,
284
+ separate_losses: bool = False,
285
+ advantage_key: str | None = None,
286
+ value_target_key: str | None = None,
287
+ functional: bool = True,
288
+ actor: ProbabilisticTensorDictSequential = None,
289
+ critic: ProbabilisticTensorDictSequential = None,
290
+ reduction: str | None = None,
291
+ clip_value: float | None = None,
292
+ **kwargs,
293
+ ):
294
+ # entropy_coef has been removed in v0.11
295
+ if "entropy_coef" in kwargs:
296
+ raise TypeError(
297
+ "'entropy_coef' has been removed in torchrl v0.11. Please use 'entropy_coeff' instead."
298
+ )
299
+
300
+ # Set default value if None
301
+ if entropy_coeff is None:
302
+ entropy_coeff = 0.01
303
+
304
+ # critic_coef has been removed in v0.11
305
+ if "critic_coef" in kwargs:
306
+ raise TypeError(
307
+ "'critic_coef' has been removed in torchrl v0.11. Please use 'critic_coeff' instead."
308
+ )
309
+
310
+ if actor is not None:
311
+ actor_network = actor
312
+ del actor
313
+ if critic is not None:
314
+ critic_network = critic
315
+ del critic
316
+ if actor_network is None or critic_network is None:
317
+ raise TypeError(
318
+ "Missing positional arguments actor_network or critic_network."
319
+ )
320
+ if reduction is None:
321
+ reduction = "mean"
322
+
323
+ self._functional = functional
324
+ self._out_keys = None
325
+ super().__init__()
326
+ self._set_deprecated_ctor_keys(
327
+ advantage=advantage_key, value_target=value_target_key
328
+ )
329
+
330
+ if functional:
331
+ self.convert_to_functional(
332
+ actor_network,
333
+ "actor_network",
334
+ )
335
+ else:
336
+ self.actor_network = actor_network
337
+
338
+ if separate_losses:
339
+ # we want to make sure there are no duplicates in the params: the
340
+ # params of critic must be refs to actor if they're shared
341
+ policy_params = list(actor_network.parameters())
342
+ else:
343
+ policy_params = None
344
+ if functional:
345
+ self.convert_to_functional(
346
+ critic_network, "critic_network", compare_against=policy_params
347
+ )
348
+ else:
349
+ self.critic_network = critic_network
350
+ self.target_critic_network_params = None
351
+
352
+ self.samples_mc_entropy = samples_mc_entropy
353
+ self.entropy_bonus = entropy_bonus and entropy_coeff
354
+ self.reduction = reduction
355
+
356
+ device = _get_default_device(self)
357
+
358
+ self.register_buffer(
359
+ "entropy_coeff", torch.as_tensor(entropy_coeff, device=device)
360
+ )
361
+ if critic_coeff is not None:
362
+ self.register_buffer(
363
+ "critic_coeff", torch.as_tensor(critic_coeff, device=device)
364
+ )
365
+ else:
366
+ self.critic_coeff = None
367
+
368
+ if gamma is not None:
369
+ raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
370
+ self.loss_critic_type = loss_critic_type
371
+
372
+ if clip_value is not None:
373
+ if isinstance(clip_value, float):
374
+ clip_value = torch.tensor(clip_value)
375
+ elif isinstance(clip_value, torch.Tensor):
376
+ if clip_value.numel() != 1:
377
+ raise ValueError(
378
+ f"clip_value must be a float or a scalar tensor, got {clip_value}."
379
+ )
380
+ else:
381
+ raise ValueError(
382
+ f"clip_value must be a float or a scalar tensor, got {clip_value}."
383
+ )
384
+ self.register_buffer(
385
+ "clip_value", torch.as_tensor(clip_value, device=device)
386
+ )
387
+ else:
388
+ self.clip_value = None
389
+
390
+ log_prob_keys = self.actor_network.log_prob_keys
391
+ action_keys = self.actor_network.dist_sample_keys
392
+ if len(log_prob_keys) > 1:
393
+ self.set_keys(sample_log_prob=log_prob_keys, action=action_keys)
394
+ else:
395
+ self.set_keys(sample_log_prob=log_prob_keys[0], action=action_keys[0])
396
+
397
+ @property
398
+ def functional(self):
399
+ return self._functional
400
+
401
+ @property
402
+ def in_keys(self):
403
+ keys = [
404
+ self.tensor_keys.action,
405
+ ("next", self.tensor_keys.reward),
406
+ ("next", self.tensor_keys.done),
407
+ ("next", self.tensor_keys.terminated),
408
+ *self.actor_network.in_keys,
409
+ *[("next", key) for key in self.actor_network.in_keys],
410
+ ]
411
+ if self.critic_coeff is not None:
412
+ keys.extend(self.critic_network.in_keys)
413
+ return list(set(keys))
414
+
415
+ @property
416
+ def out_keys(self):
417
+ if self._out_keys is None:
418
+ outs = ["loss_objective"]
419
+ if self.critic_coeff is not None:
420
+ outs.append("loss_critic")
421
+ if self.entropy_bonus:
422
+ outs.append("entropy")
423
+ outs.append("loss_entropy")
424
+ self._out_keys = outs
425
+ return self._out_keys
426
+
427
+ @out_keys.setter
428
+ def out_keys(self, value):
429
+ self._out_keys = value
430
+
431
+ def _forward_value_estimator_keys(self, **kwargs) -> None:
432
+ if self._value_estimator is not None:
433
+ self._value_estimator.set_keys(
434
+ advantage=self.tensor_keys.advantage,
435
+ value_target=self.tensor_keys.value_target,
436
+ value=self.tensor_keys.value,
437
+ reward=self.tensor_keys.reward,
438
+ done=self.tensor_keys.done,
439
+ terminated=self.tensor_keys.terminated,
440
+ )
441
+
442
+ def reset(self) -> None:
443
+ pass
444
+
445
+ @set_composite_lp_aggregate(False)
446
+ def get_entropy_bonus(self, dist: d.Distribution) -> torch.Tensor:
447
+ if HAS_ENTROPY.get(type(dist), False):
448
+ entropy = dist.entropy()
449
+ else:
450
+ x = dist.rsample((self.samples_mc_entropy,))
451
+ log_prob = dist.log_prob(x)
452
+ if is_tensor_collection(log_prob):
453
+ log_prob = sum(log_prob.sum(dim="feature").values(True, True))
454
+ entropy = -log_prob.mean(0)
455
+ return entropy.unsqueeze(-1)
456
+
457
+ @set_composite_lp_aggregate(False)
458
+ def _log_probs(
459
+ self, tensordict: TensorDictBase
460
+ ) -> tuple[torch.Tensor, d.Distribution]:
461
+ # current log_prob of actions
462
+ tensordict_clone = tensordict.select(
463
+ *self.actor_network.in_keys, strict=False
464
+ ).copy()
465
+ with (
466
+ self.actor_network_params.to_module(self.actor_network)
467
+ if self.functional
468
+ else contextlib.nullcontext()
469
+ ):
470
+ dist = self.actor_network.get_dist(tensordict_clone)
471
+ if isinstance(dist, CompositeDistribution):
472
+ action_keys = self.tensor_keys.action
473
+ action = tensordict.select(
474
+ *((action_keys,) if isinstance(action_keys, NestedKey) else action_keys)
475
+ )
476
+ else:
477
+ action = tensordict.get(self.tensor_keys.action)
478
+
479
+ if action.requires_grad:
480
+ raise RuntimeError(
481
+ f"tensordict stored {self.tensor_keys.action} requires grad."
482
+ )
483
+ log_prob = dist.log_prob(action)
484
+ if not isinstance(action, torch.Tensor):
485
+ log_prob = sum(
486
+ dist.log_prob(tensordict).sum(dim="feature").values(True, True)
487
+ )
488
+ log_prob = log_prob.unsqueeze(-1)
489
+ return log_prob, dist
490
+
491
+ def loss_critic(self, tensordict: TensorDictBase) -> tuple[torch.Tensor, float]:
492
+ """Returns the loss value of the critic, multiplied by ``critic_coeff`` if it is not ``None``.
493
+
494
+ Returns the loss and the clip-fraction.
495
+
496
+ """
497
+ if self.clip_value:
498
+ old_state_value = tensordict.get(
499
+ self.tensor_keys.value, None
500
+ ) # TODO: None soon to be removed
501
+ if old_state_value is None:
502
+ raise KeyError(
503
+ f"clip_value is set to {self.clip_value}, but "
504
+ f"the key {self.tensor_keys.value} was not found in the input tensordict. "
505
+ f"Make sure that the value_key passed to A2C exists in the input tensordict."
506
+ )
507
+ old_state_value = old_state_value.clone()
508
+
509
+ # TODO: if the advantage is gathered by forward, this introduces an
510
+ # overhead that we could easily reduce.
511
+ target_return = tensordict.get(
512
+ self.tensor_keys.value_target, None
513
+ ) # TODO: None soon to be removed
514
+ if target_return is None:
515
+ raise KeyError(
516
+ f"the key {self.tensor_keys.value_target} was not found in the input tensordict. "
517
+ f"Make sure you provided the right key and the value_target (i.e. the target "
518
+ f"return) has been retrieved accordingly. Advantage classes such as GAE, "
519
+ f"TDLambdaEstimate and TDEstimate all return a 'value_target' entry that "
520
+ f"can be used for the value loss."
521
+ )
522
+ tensordict_select = tensordict.select(
523
+ *self.critic_network.in_keys, strict=False
524
+ )
525
+ with (
526
+ self.critic_network_params.to_module(self.critic_network)
527
+ if self.functional
528
+ else contextlib.nullcontext()
529
+ ):
530
+ state_value = self.critic_network(
531
+ tensordict_select,
532
+ ).get(self.tensor_keys.value)
533
+ loss_value = distance_loss(
534
+ target_return,
535
+ state_value,
536
+ loss_function=self.loss_critic_type,
537
+ )
538
+ clip_fraction = None
539
+ if self.clip_value:
540
+ loss_value, clip_fraction = _clip_value_loss(
541
+ old_state_value,
542
+ state_value,
543
+ self.clip_value,
544
+ target_return,
545
+ loss_value,
546
+ self.loss_critic_type,
547
+ )
548
+ self._clear_weakrefs(
549
+ tensordict,
550
+ "actor_network_params",
551
+ "critic_network_params",
552
+ "target_actor_network_params",
553
+ "target_critic_network_params",
554
+ )
555
+ if self.critic_coeff is not None:
556
+ return self.critic_coeff * loss_value, clip_fraction
557
+ return loss_value, clip_fraction
558
+
559
+ @property
560
+ @_cache_values
561
+ def _cached_detach_critic_network_params(self):
562
+ if not self.functional:
563
+ return None
564
+ return self.critic_network_params.detach()
565
+
566
+ @dispatch()
567
+ def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
568
+ tensordict = tensordict.clone(False)
569
+ advantage = tensordict.get(self.tensor_keys.advantage, None)
570
+ if advantage is None:
571
+ self.value_estimator(
572
+ tensordict,
573
+ params=self._cached_detach_critic_network_params,
574
+ target_params=self.target_critic_network_params,
575
+ )
576
+ advantage = tensordict.get(self.tensor_keys.advantage)
577
+ log_probs, dist = self._log_probs(tensordict)
578
+ loss = -(log_probs * advantage)
579
+ td_out = TensorDict({"loss_objective": loss}, batch_size=[])
580
+ if self.entropy_bonus:
581
+ entropy = self.get_entropy_bonus(dist)
582
+ td_out.set("entropy", entropy.detach().mean()) # for logging
583
+ td_out.set("loss_entropy", -self.entropy_coeff * entropy)
584
+ if self.critic_coeff is not None:
585
+ loss_critic, value_clip_fraction = self.loss_critic(tensordict)
586
+ td_out.set("loss_critic", loss_critic)
587
+ if value_clip_fraction is not None:
588
+ td_out.set("value_clip_fraction", value_clip_fraction)
589
+ td_out = td_out.named_apply(
590
+ lambda name, value: _reduce(value, reduction=self.reduction).squeeze(-1)
591
+ if name.startswith("loss_")
592
+ else value,
593
+ )
594
+ self._clear_weakrefs(
595
+ tensordict,
596
+ td_out,
597
+ "actor_network_params",
598
+ "critic_network_params",
599
+ "target_actor_network_params",
600
+ "target_critic_network_params",
601
+ )
602
+ return td_out
603
+
604
+ def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
605
+ if value_type is None:
606
+ value_type = self.default_value_estimator
607
+
608
+ # Handle ValueEstimatorBase instance or class
609
+ if isinstance(value_type, ValueEstimatorBase) or (
610
+ isinstance(value_type, type) and issubclass(value_type, ValueEstimatorBase)
611
+ ):
612
+ return LossModule.make_value_estimator(self, value_type, **hyperparams)
613
+
614
+ self.value_type = value_type
615
+ hp = dict(default_value_kwargs(value_type))
616
+ hp.update(hyperparams)
617
+
618
+ device = _get_default_device(self)
619
+ hp["device"] = device
620
+
621
+ if hasattr(self, "gamma"):
622
+ hp["gamma"] = self.gamma
623
+ if value_type == ValueEstimators.TD1:
624
+ self._value_estimator = TD1Estimator(
625
+ value_network=self.critic_network, **hp
626
+ )
627
+ elif value_type == ValueEstimators.TD0:
628
+ self._value_estimator = TD0Estimator(
629
+ value_network=self.critic_network, **hp
630
+ )
631
+ elif value_type == ValueEstimators.GAE:
632
+ self._value_estimator = GAE(value_network=self.critic_network, **hp)
633
+ elif value_type == ValueEstimators.TDLambda:
634
+ self._value_estimator = TDLambdaEstimator(
635
+ value_network=self.critic_network, **hp
636
+ )
637
+ elif value_type == ValueEstimators.VTrace:
638
+ # VTrace currently does not support functional call on the actor
639
+ if self.functional:
640
+ actor_with_params = deepcopy(self.actor_network)
641
+ self.actor_network_params.to_module(actor_with_params)
642
+ else:
643
+ actor_with_params = self.actor_network
644
+ self._value_estimator = VTrace(
645
+ value_network=self.critic_network, actor_network=actor_with_params, **hp
646
+ )
647
+ else:
648
+ raise NotImplementedError(f"Unknown value type {value_type}")
649
+
650
+ tensor_keys = {
651
+ "advantage": self.tensor_keys.advantage,
652
+ "value": self.tensor_keys.value,
653
+ "value_target": self.tensor_keys.value_target,
654
+ "reward": self.tensor_keys.reward,
655
+ "done": self.tensor_keys.done,
656
+ "terminated": self.tensor_keys.terminated,
657
+ "sample_log_prob": self.tensor_keys.sample_log_prob,
658
+ }
659
+ self._value_estimator.set_keys(**tensor_keys)