snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/feature_store/__init__.py +9 -0
  4. snowflake/ml/feature_store/entity.py +73 -0
  5. snowflake/ml/feature_store/feature_store.py +1657 -0
  6. snowflake/ml/feature_store/feature_view.py +459 -0
  7. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  8. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  9. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  10. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  11. snowflake/ml/model/model_signature.py +72 -16
  12. snowflake/ml/model/type_hints.py +9 -0
  13. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  14. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  15. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
  16. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  17. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
  18. snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
  19. snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
  20. snowflake/ml/modeling/cluster/birch.py +3 -3
  21. snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
  22. snowflake/ml/modeling/cluster/dbscan.py +3 -3
  23. snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
  24. snowflake/ml/modeling/cluster/k_means.py +3 -3
  25. snowflake/ml/modeling/cluster/mean_shift.py +3 -3
  26. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  27. snowflake/ml/modeling/cluster/optics.py +3 -3
  28. snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
  29. snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
  30. snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
  31. snowflake/ml/modeling/compose/column_transformer.py +3 -3
  32. snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
  33. snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
  34. snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
  35. snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
  36. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
  37. snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
  38. snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
  39. snowflake/ml/modeling/covariance/oas.py +3 -3
  40. snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
  41. snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
  42. snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
  43. snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
  44. snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
  45. snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
  46. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
  47. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
  48. snowflake/ml/modeling/decomposition/pca.py +3 -3
  49. snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
  50. snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
  51. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
  52. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
  53. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
  54. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
  55. snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
  56. snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
  57. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
  58. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
  59. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
  60. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
  61. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
  63. snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
  64. snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
  65. snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
  66. snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
  67. snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
  68. snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
  69. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
  70. snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
  71. snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
  72. snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
  73. snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
  74. snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
  75. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
  76. snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
  77. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
  79. snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
  80. snowflake/ml/modeling/impute/knn_imputer.py +3 -3
  81. snowflake/ml/modeling/impute/missing_indicator.py +3 -3
  82. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
  83. snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
  84. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
  85. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
  86. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
  87. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
  88. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
  89. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
  90. snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
  91. snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
  92. snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
  93. snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
  94. snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
  95. snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
  96. snowflake/ml/modeling/linear_model/lars.py +3 -3
  97. snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
  98. snowflake/ml/modeling/linear_model/lasso.py +3 -3
  99. snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
  100. snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
  101. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
  102. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
  103. snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
  104. snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
  105. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
  106. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
  108. snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
  109. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
  110. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
  111. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
  112. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
  113. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  114. snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
  115. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
  116. snowflake/ml/modeling/linear_model/ridge.py +3 -3
  117. snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
  118. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
  119. snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
  120. snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
  121. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
  122. snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
  123. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
  124. snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
  125. snowflake/ml/modeling/manifold/isomap.py +3 -3
  126. snowflake/ml/modeling/manifold/mds.py +3 -3
  127. snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
  128. snowflake/ml/modeling/manifold/tsne.py +3 -3
  129. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
  130. snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
  131. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  132. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
  143. snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
  156. snowflake/ml/modeling/svm/linear_svc.py +3 -3
  157. snowflake/ml/modeling/svm/linear_svr.py +3 -3
  158. snowflake/ml/modeling/svm/nu_svc.py +3 -3
  159. snowflake/ml/modeling/svm/nu_svr.py +3 -3
  160. snowflake/ml/modeling/svm/svc.py +3 -3
  161. snowflake/ml/modeling/svm/svr.py +3 -3
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
  172. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
  173. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  174. /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
  175. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
  176. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
  177. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
  178. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -259,7 +259,7 @@ class RidgeClassifier(BaseTransformer):
259
259
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
260
260
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
261
261
  self._snowpark_cols: Optional[List[str]] = self.input_cols
262
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
262
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RidgeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
263
263
  self._autogenerated = True
264
264
 
265
265
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -210,7 +210,7 @@ class RidgeClassifierCV(BaseTransformer):
210
210
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
211
211
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
212
212
  self._snowpark_cols: Optional[List[str]] = self.input_cols
213
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
213
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RidgeClassifierCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
214
214
  self._autogenerated = True
215
215
 
216
216
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -231,7 +231,7 @@ class RidgeCV(BaseTransformer):
231
231
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
232
232
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
233
233
  self._snowpark_cols: Optional[List[str]] = self.input_cols
234
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
234
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RidgeCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
235
235
  self._autogenerated = True
236
236
 
237
237
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -350,7 +350,7 @@ class SGDClassifier(BaseTransformer):
350
350
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
351
351
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
352
352
  self._snowpark_cols: Optional[List[str]] = self.input_cols
353
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
353
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
354
354
  self._autogenerated = True
355
355
 
356
356
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -248,7 +248,7 @@ class SGDOneClassSVM(BaseTransformer):
248
248
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
249
249
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
250
250
  self._snowpark_cols: Optional[List[str]] = self.input_cols
251
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
251
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
252
252
  self._autogenerated = True
253
253
 
254
254
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -316,7 +316,7 @@ class SGDRegressor(BaseTransformer):
316
316
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
317
317
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
318
318
  self._snowpark_cols: Optional[List[str]] = self.input_cols
319
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
319
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SGDRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
320
320
  self._autogenerated = True
321
321
 
322
322
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -218,7 +218,7 @@ class TheilSenRegressor(BaseTransformer):
218
218
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
219
219
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
220
220
  self._snowpark_cols: Optional[List[str]] = self.input_cols
221
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=TheilSenRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
221
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=TheilSenRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
222
222
  self._autogenerated = True
223
223
 
224
224
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -244,7 +244,7 @@ class TweedieRegressor(BaseTransformer):
244
244
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
245
245
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
246
246
  self._snowpark_cols: Optional[List[str]] = self.input_cols
247
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=TweedieRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
247
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=TweedieRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
248
248
  self._autogenerated = True
249
249
 
250
250
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -240,7 +240,7 @@ class Isomap(BaseTransformer):
240
240
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
241
241
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
242
242
  self._snowpark_cols: Optional[List[str]] = self.input_cols
243
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
243
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
244
244
  self._autogenerated = True
245
245
 
246
246
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -223,7 +223,7 @@ class MDS(BaseTransformer):
223
223
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
224
224
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
225
225
  self._snowpark_cols: Optional[List[str]] = self.input_cols
226
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MDS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
226
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=MDS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
227
227
  self._autogenerated = True
228
228
 
229
229
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -225,7 +225,7 @@ class SpectralEmbedding(BaseTransformer):
225
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
226
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
227
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
228
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralEmbedding.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SpectralEmbedding.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
229
  self._autogenerated = True
230
230
 
231
231
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -284,7 +284,7 @@ class TSNE(BaseTransformer):
284
284
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
285
285
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
286
286
  self._snowpark_cols: Optional[List[str]] = self.input_cols
287
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
287
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
288
288
  self._autogenerated = True
289
289
 
290
290
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -287,7 +287,7 @@ class BayesianGaussianMixture(BaseTransformer):
287
287
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
288
288
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
289
289
  self._snowpark_cols: Optional[List[str]] = self.input_cols
290
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BayesianGaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
290
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=BayesianGaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
291
291
  self._autogenerated = True
292
292
 
293
293
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -260,7 +260,7 @@ class GaussianMixture(BaseTransformer):
260
260
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
261
261
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
262
262
  self._snowpark_cols: Optional[List[str]] = self.input_cols
263
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
263
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
264
264
  self._autogenerated = True
265
265
 
266
266
  def _get_rand_id(self) -> str:
@@ -3,7 +3,6 @@
3
3
  # Do not modify the auto-generated code(except automatic reformatting by precommit hooks).
4
4
  #
5
5
  from typing import Any, Dict, Iterable, List, Optional, Set, Union
6
- from uuid import uuid4
7
6
 
8
7
  import cloudpickle as cp
9
8
  import numpy as np
@@ -22,7 +21,7 @@ from snowflake.ml.model.model_signature import (
22
21
  ModelSignature,
23
22
  _infer_signature,
24
23
  )
25
- from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers
24
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
26
25
  from snowflake.ml.modeling._internal.estimator_utils import (
27
26
  gather_dependencies,
28
27
  original_estimator_has_callable,
@@ -30,7 +29,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
30
29
  validate_sklearn_args,
31
30
  )
32
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
33
- from snowflake.ml.modeling._internal.snowpark_handlers import (
32
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import (
34
33
  SnowparkHandlers as HandlersImpl,
35
34
  )
36
35
  from snowflake.ml.modeling.framework.base import BaseTransformer
@@ -266,20 +265,11 @@ class GridSearchCV(BaseTransformer):
266
265
  self.set_drop_input_cols(drop_input_cols)
267
266
  self.set_sample_weight_col(sample_weight_col)
268
267
  self.set_passthrough_cols(passthrough_cols)
269
- self._handlers: CVHandlers = HandlersImpl(
268
+ self._handlers: TransformerHandlers = HandlersImpl(
270
269
  class_name=self.__class__.__name__,
271
270
  subproject=_SUBPROJECT,
272
271
  )
273
272
 
274
- def _get_rand_id(self) -> str:
275
- """
276
- Generate random id to be used in sproc and stage names.
277
-
278
- Returns:
279
- Random id string usable in sproc, table, and stage names.
280
- """
281
- return str(uuid4()).replace("-", "_").upper()
282
-
283
273
  def _get_active_columns(self) -> List[str]:
284
274
  """ "Get the list of columns that are relevant to the transformer."""
285
275
  selected_cols = (
@@ -1,5 +1,4 @@
1
1
  from typing import Any, Dict, Iterable, List, Optional, Set, Union
2
- from uuid import uuid4
3
2
 
4
3
  import cloudpickle as cp
5
4
  import numpy as np
@@ -19,7 +18,7 @@ from snowflake.ml.model.model_signature import (
19
18
  ModelSignature,
20
19
  _infer_signature,
21
20
  )
22
- from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers
21
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
23
22
  from snowflake.ml.modeling._internal.estimator_utils import (
24
23
  gather_dependencies,
25
24
  original_estimator_has_callable,
@@ -27,7 +26,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
27
26
  validate_sklearn_args,
28
27
  )
29
28
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
- from snowflake.ml.modeling._internal.snowpark_handlers import (
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import (
31
30
  SnowparkHandlers as HandlersImpl,
32
31
  )
33
32
  from snowflake.ml.modeling.framework.base import BaseTransformer
@@ -278,20 +277,11 @@ class RandomizedSearchCV(BaseTransformer):
278
277
  self.set_drop_input_cols(drop_input_cols)
279
278
  self.set_sample_weight_col(sample_weight_col)
280
279
  self.set_passthrough_cols(passthrough_cols)
281
- self._handlers: CVHandlers = HandlersImpl(
280
+ self._handlers: TransformerHandlers = HandlersImpl(
282
281
  class_name=self.__class__.__name__,
283
282
  subproject=_SUBPROJECT,
284
283
  )
285
284
 
286
- def _get_rand_id(self) -> str:
287
- """
288
- Generate random id to be used in sproc and stage names.
289
-
290
- Returns:
291
- Random id string usable in sproc, table, and stage names.
292
- """
293
- return str(uuid4()).replace("-", "_").upper()
294
-
295
285
  def _get_active_columns(self) -> List[str]:
296
286
  """ "Get the list of columns that are relevant to the transformer."""
297
287
  selected_cols = (
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -172,7 +172,7 @@ class OneVsOneClassifier(BaseTransformer):
172
172
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
173
173
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
174
174
  self._snowpark_cols: Optional[List[str]] = self.input_cols
175
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OneVsOneClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
175
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=OneVsOneClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
176
176
  self._autogenerated = True
177
177
 
178
178
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -181,7 +181,7 @@ class OneVsRestClassifier(BaseTransformer):
181
181
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
182
182
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
183
183
  self._snowpark_cols: Optional[List[str]] = self.input_cols
184
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OneVsRestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=OneVsRestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
185
185
  self._autogenerated = True
186
186
 
187
187
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -184,7 +184,7 @@ class OutputCodeClassifier(BaseTransformer):
184
184
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
185
185
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
186
186
  self._snowpark_cols: Optional[List[str]] = self.input_cols
187
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
187
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
188
188
  self._autogenerated = True
189
189
 
190
190
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -184,7 +184,7 @@ class BernoulliNB(BaseTransformer):
184
184
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
185
185
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
186
186
  self._snowpark_cols: Optional[List[str]] = self.input_cols
187
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BernoulliNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
187
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=BernoulliNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
188
188
  self._autogenerated = True
189
189
 
190
190
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -190,7 +190,7 @@ class CategoricalNB(BaseTransformer):
190
190
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
191
191
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
192
192
  self._snowpark_cols: Optional[List[str]] = self.input_cols
193
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=CategoricalNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
193
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=CategoricalNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
194
194
  self._autogenerated = True
195
195
 
196
196
  def _get_rand_id(self) -> str: