snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/feature_store/__init__.py +9 -0
  4. snowflake/ml/feature_store/entity.py +73 -0
  5. snowflake/ml/feature_store/feature_store.py +1657 -0
  6. snowflake/ml/feature_store/feature_view.py +459 -0
  7. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  8. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  9. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  10. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  11. snowflake/ml/model/model_signature.py +72 -16
  12. snowflake/ml/model/type_hints.py +9 -0
  13. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  14. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  15. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
  16. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  17. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
  18. snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
  19. snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
  20. snowflake/ml/modeling/cluster/birch.py +3 -3
  21. snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
  22. snowflake/ml/modeling/cluster/dbscan.py +3 -3
  23. snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
  24. snowflake/ml/modeling/cluster/k_means.py +3 -3
  25. snowflake/ml/modeling/cluster/mean_shift.py +3 -3
  26. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  27. snowflake/ml/modeling/cluster/optics.py +3 -3
  28. snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
  29. snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
  30. snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
  31. snowflake/ml/modeling/compose/column_transformer.py +3 -3
  32. snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
  33. snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
  34. snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
  35. snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
  36. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
  37. snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
  38. snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
  39. snowflake/ml/modeling/covariance/oas.py +3 -3
  40. snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
  41. snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
  42. snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
  43. snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
  44. snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
  45. snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
  46. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
  47. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
  48. snowflake/ml/modeling/decomposition/pca.py +3 -3
  49. snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
  50. snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
  51. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
  52. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
  53. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
  54. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
  55. snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
  56. snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
  57. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
  58. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
  59. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
  60. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
  61. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
  63. snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
  64. snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
  65. snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
  66. snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
  67. snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
  68. snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
  69. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
  70. snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
  71. snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
  72. snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
  73. snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
  74. snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
  75. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
  76. snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
  77. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
  79. snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
  80. snowflake/ml/modeling/impute/knn_imputer.py +3 -3
  81. snowflake/ml/modeling/impute/missing_indicator.py +3 -3
  82. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
  83. snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
  84. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
  85. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
  86. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
  87. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
  88. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
  89. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
  90. snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
  91. snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
  92. snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
  93. snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
  94. snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
  95. snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
  96. snowflake/ml/modeling/linear_model/lars.py +3 -3
  97. snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
  98. snowflake/ml/modeling/linear_model/lasso.py +3 -3
  99. snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
  100. snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
  101. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
  102. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
  103. snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
  104. snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
  105. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
  106. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
  108. snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
  109. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
  110. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
  111. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
  112. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
  113. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  114. snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
  115. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
  116. snowflake/ml/modeling/linear_model/ridge.py +3 -3
  117. snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
  118. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
  119. snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
  120. snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
  121. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
  122. snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
  123. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
  124. snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
  125. snowflake/ml/modeling/manifold/isomap.py +3 -3
  126. snowflake/ml/modeling/manifold/mds.py +3 -3
  127. snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
  128. snowflake/ml/modeling/manifold/tsne.py +3 -3
  129. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
  130. snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
  131. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  132. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
  143. snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
  156. snowflake/ml/modeling/svm/linear_svc.py +3 -3
  157. snowflake/ml/modeling/svm/linear_svr.py +3 -3
  158. snowflake/ml/modeling/svm/nu_svc.py +3 -3
  159. snowflake/ml/modeling/svm/nu_svr.py +3 -3
  160. snowflake/ml/modeling/svm/svc.py +3 -3
  161. snowflake/ml/modeling/svm/svr.py +3 -3
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
  172. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
  173. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  174. /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
  175. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
  176. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
  177. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
  178. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -184,7 +184,7 @@ class ComplementNB(BaseTransformer):
184
184
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
185
185
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
186
186
  self._snowpark_cols: Optional[List[str]] = self.input_cols
187
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ComplementNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
187
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ComplementNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
188
188
  self._autogenerated = True
189
189
 
190
190
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -165,7 +165,7 @@ class GaussianNB(BaseTransformer):
165
165
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
166
166
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
167
167
  self._snowpark_cols: Optional[List[str]] = self.input_cols
168
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
168
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GaussianNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
169
169
  self._autogenerated = True
170
170
 
171
171
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -178,7 +178,7 @@ class MultinomialNB(BaseTransformer):
178
178
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
179
179
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
180
180
  self._snowpark_cols: Optional[List[str]] = self.input_cols
181
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
181
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
182
182
  self._autogenerated = True
183
183
 
184
184
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -235,7 +235,7 @@ class KNeighborsClassifier(BaseTransformer):
235
235
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
236
236
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
237
237
  self._snowpark_cols: Optional[List[str]] = self.input_cols
238
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
238
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
239
239
  self._autogenerated = True
240
240
 
241
241
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -237,7 +237,7 @@ class KNeighborsRegressor(BaseTransformer):
237
237
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
238
238
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
239
239
  self._snowpark_cols: Optional[List[str]] = self.input_cols
240
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
240
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=KNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
241
241
  self._autogenerated = True
242
242
 
243
243
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -214,7 +214,7 @@ class KernelDensity(BaseTransformer):
214
214
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
215
215
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
216
216
  self._snowpark_cols: Optional[List[str]] = self.input_cols
217
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelDensity.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
217
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=KernelDensity.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
218
218
  self._autogenerated = True
219
219
 
220
220
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -242,7 +242,7 @@ class LocalOutlierFactor(BaseTransformer):
242
242
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
243
243
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
244
244
  self._snowpark_cols: Optional[List[str]] = self.input_cols
245
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LocalOutlierFactor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
245
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LocalOutlierFactor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
246
246
  self._autogenerated = True
247
247
 
248
248
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -175,7 +175,7 @@ class NearestCentroid(BaseTransformer):
175
175
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
176
176
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
177
177
  self._snowpark_cols: Optional[List[str]] = self.input_cols
178
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
178
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
179
179
  self._autogenerated = True
180
180
 
181
181
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -225,7 +225,7 @@ class NearestNeighbors(BaseTransformer):
225
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
226
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
227
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
228
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestNeighbors.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=NearestNeighbors.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
229
  self._autogenerated = True
230
230
 
231
231
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -246,7 +246,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
246
246
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
247
247
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
248
248
  self._snowpark_cols: Optional[List[str]] = self.input_cols
249
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NeighborhoodComponentsAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
249
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=NeighborhoodComponentsAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
250
250
  self._autogenerated = True
251
251
 
252
252
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -247,7 +247,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
247
247
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
248
248
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
249
249
  self._snowpark_cols: Optional[List[str]] = self.input_cols
250
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
250
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
251
251
  self._autogenerated = True
252
252
 
253
253
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -237,7 +237,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
237
237
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
238
238
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
239
239
  self._snowpark_cols: Optional[List[str]] = self.input_cols
240
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
240
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RadiusNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
241
241
  self._autogenerated = True
242
242
 
243
243
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -194,7 +194,7 @@ class BernoulliRBM(BaseTransformer):
194
194
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
195
195
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
196
196
  self._snowpark_cols: Optional[List[str]] = self.input_cols
197
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BernoulliRBM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
197
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=BernoulliRBM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
198
198
  self._autogenerated = True
199
199
 
200
200
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -349,7 +349,7 @@ class MLPClassifier(BaseTransformer):
349
349
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
350
350
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
351
351
  self._snowpark_cols: Optional[List[str]] = self.input_cols
352
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
352
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
353
353
  self._autogenerated = True
354
354
 
355
355
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -345,7 +345,7 @@ class MLPRegressor(BaseTransformer):
345
345
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
346
346
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
347
347
  self._snowpark_cols: Optional[List[str]] = self.input_cols
348
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
348
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=MLPRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
349
349
  self._autogenerated = True
350
350
 
351
351
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -184,7 +184,7 @@ class PolynomialFeatures(BaseTransformer):
184
184
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
185
185
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
186
186
  self._snowpark_cols: Optional[List[str]] = self.input_cols
187
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialFeatures.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
187
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=PolynomialFeatures.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
188
188
  self._autogenerated = True
189
189
 
190
190
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -190,7 +190,7 @@ class LabelPropagation(BaseTransformer):
190
190
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
191
191
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
192
192
  self._snowpark_cols: Optional[List[str]] = self.input_cols
193
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
193
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LabelPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
194
194
  self._autogenerated = True
195
195
 
196
196
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -199,7 +199,7 @@ class LabelSpreading(BaseTransformer):
199
199
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
200
200
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
201
201
  self._snowpark_cols: Optional[List[str]] = self.input_cols
202
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelSpreading.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
202
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LabelSpreading.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
203
203
  self._autogenerated = True
204
204
 
205
205
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -255,7 +255,7 @@ class LinearSVC(BaseTransformer):
255
255
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
256
256
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
257
257
  self._snowpark_cols: Optional[List[str]] = self.input_cols
258
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
258
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LinearSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
259
259
  self._autogenerated = True
260
260
 
261
261
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -227,7 +227,7 @@ class LinearSVR(BaseTransformer):
227
227
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
228
228
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
229
229
  self._snowpark_cols: Optional[List[str]] = self.input_cols
230
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
230
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LinearSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
231
231
  self._autogenerated = True
232
232
 
233
233
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -261,7 +261,7 @@ class NuSVC(BaseTransformer):
261
261
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
262
262
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
263
263
  self._snowpark_cols: Optional[List[str]] = self.input_cols
264
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
264
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
265
265
  self._autogenerated = True
266
266
 
267
267
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -222,7 +222,7 @@ class NuSVR(BaseTransformer):
222
222
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
223
223
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
224
224
  self._snowpark_cols: Optional[List[str]] = self.input_cols
225
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
225
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
226
226
  self._autogenerated = True
227
227
 
228
228
  def _get_rand_id(self) -> str: