snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/feature_store/__init__.py +9 -0
  4. snowflake/ml/feature_store/entity.py +73 -0
  5. snowflake/ml/feature_store/feature_store.py +1657 -0
  6. snowflake/ml/feature_store/feature_view.py +459 -0
  7. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  8. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  9. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  10. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  11. snowflake/ml/model/model_signature.py +72 -16
  12. snowflake/ml/model/type_hints.py +9 -0
  13. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  14. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  15. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
  16. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  17. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
  18. snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
  19. snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
  20. snowflake/ml/modeling/cluster/birch.py +3 -3
  21. snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
  22. snowflake/ml/modeling/cluster/dbscan.py +3 -3
  23. snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
  24. snowflake/ml/modeling/cluster/k_means.py +3 -3
  25. snowflake/ml/modeling/cluster/mean_shift.py +3 -3
  26. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  27. snowflake/ml/modeling/cluster/optics.py +3 -3
  28. snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
  29. snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
  30. snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
  31. snowflake/ml/modeling/compose/column_transformer.py +3 -3
  32. snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
  33. snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
  34. snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
  35. snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
  36. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
  37. snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
  38. snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
  39. snowflake/ml/modeling/covariance/oas.py +3 -3
  40. snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
  41. snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
  42. snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
  43. snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
  44. snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
  45. snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
  46. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
  47. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
  48. snowflake/ml/modeling/decomposition/pca.py +3 -3
  49. snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
  50. snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
  51. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
  52. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
  53. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
  54. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
  55. snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
  56. snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
  57. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
  58. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
  59. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
  60. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
  61. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
  63. snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
  64. snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
  65. snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
  66. snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
  67. snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
  68. snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
  69. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
  70. snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
  71. snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
  72. snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
  73. snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
  74. snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
  75. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
  76. snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
  77. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
  79. snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
  80. snowflake/ml/modeling/impute/knn_imputer.py +3 -3
  81. snowflake/ml/modeling/impute/missing_indicator.py +3 -3
  82. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
  83. snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
  84. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
  85. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
  86. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
  87. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
  88. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
  89. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
  90. snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
  91. snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
  92. snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
  93. snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
  94. snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
  95. snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
  96. snowflake/ml/modeling/linear_model/lars.py +3 -3
  97. snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
  98. snowflake/ml/modeling/linear_model/lasso.py +3 -3
  99. snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
  100. snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
  101. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
  102. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
  103. snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
  104. snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
  105. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
  106. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
  108. snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
  109. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
  110. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
  111. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
  112. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
  113. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  114. snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
  115. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
  116. snowflake/ml/modeling/linear_model/ridge.py +3 -3
  117. snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
  118. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
  119. snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
  120. snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
  121. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
  122. snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
  123. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
  124. snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
  125. snowflake/ml/modeling/manifold/isomap.py +3 -3
  126. snowflake/ml/modeling/manifold/mds.py +3 -3
  127. snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
  128. snowflake/ml/modeling/manifold/tsne.py +3 -3
  129. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
  130. snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
  131. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  132. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
  143. snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
  156. snowflake/ml/modeling/svm/linear_svc.py +3 -3
  157. snowflake/ml/modeling/svm/linear_svr.py +3 -3
  158. snowflake/ml/modeling/svm/nu_svc.py +3 -3
  159. snowflake/ml/modeling/svm/nu_svr.py +3 -3
  160. snowflake/ml/modeling/svm/svc.py +3 -3
  161. snowflake/ml/modeling/svm/svr.py +3 -3
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
  172. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
  173. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  174. /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
  175. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
  176. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
  177. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
  178. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -168,7 +168,7 @@ class SelectKBest(BaseTransformer):
168
168
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
169
169
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
170
170
  self._snowpark_cols: Optional[List[str]] = self.input_cols
171
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
172
172
  self._autogenerated = True
173
173
 
174
174
  def _get_rand_id(self) -> str:
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -167,7 +167,7 @@ class SelectPercentile(BaseTransformer):
167
167
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
168
168
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
169
169
  self._snowpark_cols: Optional[List[str]] = self.input_cols
170
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectPercentile.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
170
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectPercentile.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
171
  self._autogenerated = True
172
172
 
173
173
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -225,7 +225,7 @@ class SequentialFeatureSelector(BaseTransformer):
225
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
226
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
227
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
228
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SequentialFeatureSelector.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SequentialFeatureSelector.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
229
  self._autogenerated = True
230
230
 
231
231
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -158,7 +158,7 @@ class VarianceThreshold(BaseTransformer):
158
158
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
159
159
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
160
160
  self._snowpark_cols: Optional[List[str]] = self.input_cols
161
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
161
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
162
162
  self._autogenerated = True
163
163
 
164
164
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -253,7 +253,7 @@ class GaussianProcessClassifier(BaseTransformer):
253
253
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
254
254
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
255
255
  self._snowpark_cols: Optional[List[str]] = self.input_cols
256
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
256
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
257
257
  self._autogenerated = True
258
258
 
259
259
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -244,7 +244,7 @@ class GaussianProcessRegressor(BaseTransformer):
244
244
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
245
245
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
246
246
  self._snowpark_cols: Optional[List[str]] = self.input_cols
247
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
247
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GaussianProcessRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
248
248
  self._autogenerated = True
249
249
 
250
250
  def _get_rand_id(self) -> str:
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -286,7 +286,7 @@ class IterativeImputer(BaseTransformer):
286
286
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
287
287
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
288
288
  self._snowpark_cols: Optional[List[str]] = self.input_cols
289
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
289
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
290
290
  self._autogenerated = True
291
291
 
292
292
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -212,7 +212,7 @@ class KNNImputer(BaseTransformer):
212
212
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
213
213
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
214
214
  self._snowpark_cols: Optional[List[str]] = self.input_cols
215
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
215
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
216
216
  self._autogenerated = True
217
217
 
218
218
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -186,7 +186,7 @@ class MissingIndicator(BaseTransformer):
186
186
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
187
187
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
188
188
  self._snowpark_cols: Optional[List[str]] = self.input_cols
189
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
189
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
190
190
  self._autogenerated = True
191
191
 
192
192
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -161,7 +161,7 @@ class AdditiveChi2Sampler(BaseTransformer):
161
161
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
162
162
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
163
163
  self._snowpark_cols: Optional[List[str]] = self.input_cols
164
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
164
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
165
165
  self._autogenerated = True
166
166
 
167
167
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -209,7 +209,7 @@ class Nystroem(BaseTransformer):
209
209
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
210
210
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
211
211
  self._snowpark_cols: Optional[List[str]] = self.input_cols
212
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
212
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
213
213
  self._autogenerated = True
214
214
 
215
215
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -185,7 +185,7 @@ class PolynomialCountSketch(BaseTransformer):
185
185
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
186
186
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
187
187
  self._snowpark_cols: Optional[List[str]] = self.input_cols
188
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
188
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
189
189
  self._autogenerated = True
190
190
 
191
191
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -172,7 +172,7 @@ class RBFSampler(BaseTransformer):
172
172
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
173
173
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
174
174
  self._snowpark_cols: Optional[List[str]] = self.input_cols
175
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
175
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
176
176
  self._autogenerated = True
177
177
 
178
178
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -170,7 +170,7 @@ class SkewedChi2Sampler(BaseTransformer):
170
170
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
171
171
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
172
172
  self._snowpark_cols: Optional[List[str]] = self.input_cols
173
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
173
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
174
174
  self._autogenerated = True
175
175
 
176
176
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -206,7 +206,7 @@ class KernelRidge(BaseTransformer):
206
206
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
207
207
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
208
208
  self._snowpark_cols: Optional[List[str]] = self.input_cols
209
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
209
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
210
210
  self._autogenerated = True
211
211
 
212
212
  def _get_rand_id(self) -> str:
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
26
  from snowflake.snowpark import DataFrame, Session
27
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
28
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
29
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
31
31
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
34
34
  transform_snowml_obj_to_sklearn_obj,
35
35
  validate_sklearn_args,
36
36
  )
37
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
38
38
 
39
39
  from snowflake.ml.model.model_signature import (
40
40
  DataType,
@@ -194,7 +194,7 @@ class LGBMClassifier(BaseTransformer):
194
194
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
195
195
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
196
196
  self._snowpark_cols: Optional[List[str]] = self.input_cols
197
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
197
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
198
198
  self._autogenerated = True
199
199
 
200
200
  def _get_rand_id(self) -> str:
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
26
  from snowflake.snowpark import DataFrame, Session
27
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
28
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
29
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
31
31
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
34
34
  transform_snowml_obj_to_sklearn_obj,
35
35
  validate_sklearn_args,
36
36
  )
37
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
38
38
 
39
39
  from snowflake.ml.model.model_signature import (
40
40
  DataType,
@@ -194,7 +194,7 @@ class LGBMRegressor(BaseTransformer):
194
194
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
195
195
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
196
196
  self._snowpark_cols: Optional[List[str]] = self.input_cols
197
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
197
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
198
198
  self._autogenerated = True
199
199
 
200
200
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -220,7 +220,7 @@ class ARDRegression(BaseTransformer):
220
220
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
221
221
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
222
222
  self._snowpark_cols: Optional[List[str]] = self.input_cols
223
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
223
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
224
224
  self._autogenerated = True
225
225
 
226
226
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -231,7 +231,7 @@ class BayesianRidge(BaseTransformer):
231
231
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
232
232
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
233
233
  self._snowpark_cols: Optional[List[str]] = self.input_cols
234
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BayesianRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
234
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=BayesianRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
235
235
  self._autogenerated = True
236
236
 
237
237
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -230,7 +230,7 @@ class ElasticNet(BaseTransformer):
230
230
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
231
231
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
232
232
  self._snowpark_cols: Optional[List[str]] = self.input_cols
233
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
233
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
234
234
  self._autogenerated = True
235
235
 
236
236
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -266,7 +266,7 @@ class ElasticNetCV(BaseTransformer):
266
266
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
267
267
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
268
268
  self._snowpark_cols: Optional[List[str]] = self.input_cols
269
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ElasticNetCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
269
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ElasticNetCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
270
270
  self._autogenerated = True
271
271
 
272
272
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -211,7 +211,7 @@ class GammaRegressor(BaseTransformer):
211
211
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
212
212
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
213
213
  self._snowpark_cols: Optional[List[str]] = self.input_cols
214
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GammaRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
214
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GammaRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
215
215
  self._autogenerated = True
216
216
 
217
217
  def _get_rand_id(self) -> str: