snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +16 -13
- snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
- snowflake/ml/feature_store/__init__.py +9 -0
- snowflake/ml/feature_store/entity.py +73 -0
- snowflake/ml/feature_store/feature_store.py +1657 -0
- snowflake/ml/feature_store/feature_view.py +459 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
- snowflake/ml/model/model_signature.py +72 -16
- snowflake/ml/model/type_hints.py +9 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
- snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
- snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
- snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
- snowflake/ml/modeling/cluster/birch.py +3 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
- snowflake/ml/modeling/cluster/dbscan.py +3 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
- snowflake/ml/modeling/cluster/k_means.py +3 -3
- snowflake/ml/modeling/cluster/mean_shift.py +3 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
- snowflake/ml/modeling/cluster/optics.py +3 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
- snowflake/ml/modeling/compose/column_transformer.py +3 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
- snowflake/ml/modeling/covariance/oas.py +3 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
- snowflake/ml/modeling/decomposition/pca.py +3 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
- snowflake/ml/modeling/impute/knn_imputer.py +3 -3
- snowflake/ml/modeling/impute/missing_indicator.py +3 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/lars.py +3 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
- snowflake/ml/modeling/linear_model/lasso.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/perceptron.py +3 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/ridge.py +3 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
- snowflake/ml/modeling/manifold/isomap.py +3 -3
- snowflake/ml/modeling/manifold/mds.py +3 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
- snowflake/ml/modeling/manifold/tsne.py +3 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
- snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
- snowflake/ml/modeling/svm/linear_svc.py +3 -3
- snowflake/ml/modeling/svm/linear_svr.py +3 -3
- snowflake/ml/modeling/svm/nu_svc.py +3 -3
- snowflake/ml/modeling/svm/nu_svr.py +3 -3
- snowflake/ml/modeling/svm/svc.py +3 -3
- snowflake/ml/modeling/svm/svr.py +3 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
- snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
- /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
- /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
- /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -168,7 +168,7 @@ class SelectKBest(BaseTransformer):
|
|
168
168
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
169
169
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
170
170
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
171
|
-
self._handlers:
|
171
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
172
172
|
self._autogenerated = True
|
173
173
|
|
174
174
|
def _get_rand_id(self) -> str:
|
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -167,7 +167,7 @@ class SelectPercentile(BaseTransformer):
|
|
167
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
168
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
169
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
170
|
-
self._handlers:
|
170
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectPercentile.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
171
|
self._autogenerated = True
|
172
172
|
|
173
173
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -225,7 +225,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
225
225
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
226
226
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
227
227
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
228
|
-
self._handlers:
|
228
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SequentialFeatureSelector.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
229
229
|
self._autogenerated = True
|
230
230
|
|
231
231
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -158,7 +158,7 @@ class VarianceThreshold(BaseTransformer):
|
|
158
158
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
159
159
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
160
160
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
161
|
-
self._handlers:
|
161
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
162
162
|
self._autogenerated = True
|
163
163
|
|
164
164
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -253,7 +253,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
253
253
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
254
254
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
255
255
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
256
|
-
self._handlers:
|
256
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
257
257
|
self._autogenerated = True
|
258
258
|
|
259
259
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -244,7 +244,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
244
244
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
245
245
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
246
246
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
247
|
-
self._handlers:
|
247
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=GaussianProcessRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
248
248
|
self._autogenerated = True
|
249
249
|
|
250
250
|
def _get_rand_id(self) -> str:
|
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -286,7 +286,7 @@ class IterativeImputer(BaseTransformer):
|
|
286
286
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
287
287
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
288
288
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
289
|
-
self._handlers:
|
289
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
290
290
|
self._autogenerated = True
|
291
291
|
|
292
292
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -212,7 +212,7 @@ class KNNImputer(BaseTransformer):
|
|
212
212
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
213
213
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
214
214
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
215
|
-
self._handlers:
|
215
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
216
216
|
self._autogenerated = True
|
217
217
|
|
218
218
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -186,7 +186,7 @@ class MissingIndicator(BaseTransformer):
|
|
186
186
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
187
187
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
188
188
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
189
|
-
self._handlers:
|
189
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
190
190
|
self._autogenerated = True
|
191
191
|
|
192
192
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -161,7 +161,7 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
161
161
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
162
162
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
163
163
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
164
|
-
self._handlers:
|
164
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
165
165
|
self._autogenerated = True
|
166
166
|
|
167
167
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -209,7 +209,7 @@ class Nystroem(BaseTransformer):
|
|
209
209
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
210
210
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
211
211
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
212
|
-
self._handlers:
|
212
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
213
213
|
self._autogenerated = True
|
214
214
|
|
215
215
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -185,7 +185,7 @@ class PolynomialCountSketch(BaseTransformer):
|
|
185
185
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
186
186
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
187
187
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
188
|
-
self._handlers:
|
188
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
189
189
|
self._autogenerated = True
|
190
190
|
|
191
191
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -172,7 +172,7 @@ class RBFSampler(BaseTransformer):
|
|
172
172
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
173
173
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
174
174
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
175
|
-
self._handlers:
|
175
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=RBFSampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
176
176
|
self._autogenerated = True
|
177
177
|
|
178
178
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -170,7 +170,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
170
170
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
171
171
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
172
172
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
173
|
-
self._handlers:
|
173
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
174
174
|
self._autogenerated = True
|
175
175
|
|
176
176
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -206,7 +206,7 @@ class KernelRidge(BaseTransformer):
|
|
206
206
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
207
207
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
208
208
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
209
|
-
self._handlers:
|
209
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
210
210
|
self._autogenerated = True
|
211
211
|
|
212
212
|
def _get_rand_id(self) -> str:
|
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
25
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
26
|
from snowflake.snowpark import DataFrame, Session
|
27
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
28
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
29
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
31
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
34
34
|
transform_snowml_obj_to_sklearn_obj,
|
35
35
|
validate_sklearn_args,
|
36
36
|
)
|
37
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
37
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
38
38
|
|
39
39
|
from snowflake.ml.model.model_signature import (
|
40
40
|
DataType,
|
@@ -194,7 +194,7 @@ class LGBMClassifier(BaseTransformer):
|
|
194
194
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
195
195
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
196
196
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
197
|
-
self._handlers:
|
197
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
198
198
|
self._autogenerated = True
|
199
199
|
|
200
200
|
def _get_rand_id(self) -> str:
|
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
25
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
26
|
from snowflake.snowpark import DataFrame, Session
|
27
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
28
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
29
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
31
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
34
34
|
transform_snowml_obj_to_sklearn_obj,
|
35
35
|
validate_sklearn_args,
|
36
36
|
)
|
37
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
37
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
38
38
|
|
39
39
|
from snowflake.ml.model.model_signature import (
|
40
40
|
DataType,
|
@@ -194,7 +194,7 @@ class LGBMRegressor(BaseTransformer):
|
|
194
194
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
195
195
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
196
196
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
197
|
-
self._handlers:
|
197
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
198
198
|
self._autogenerated = True
|
199
199
|
|
200
200
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -220,7 +220,7 @@ class ARDRegression(BaseTransformer):
|
|
220
220
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
221
221
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
222
222
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
223
|
-
self._handlers:
|
223
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
224
224
|
self._autogenerated = True
|
225
225
|
|
226
226
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -231,7 +231,7 @@ class BayesianRidge(BaseTransformer):
|
|
231
231
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
232
232
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
233
233
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
234
|
-
self._handlers:
|
234
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=BayesianRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
235
235
|
self._autogenerated = True
|
236
236
|
|
237
237
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -230,7 +230,7 @@ class ElasticNet(BaseTransformer):
|
|
230
230
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
231
231
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
232
232
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
233
|
-
self._handlers:
|
233
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=ElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
234
234
|
self._autogenerated = True
|
235
235
|
|
236
236
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -266,7 +266,7 @@ class ElasticNetCV(BaseTransformer):
|
|
266
266
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
267
267
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
268
268
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
269
|
-
self._handlers:
|
269
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=ElasticNetCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
270
270
|
self._autogenerated = True
|
271
271
|
|
272
272
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -211,7 +211,7 @@ class GammaRegressor(BaseTransformer):
|
|
211
211
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
212
212
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
213
213
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
214
|
-
self._handlers:
|
214
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=GammaRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
215
215
|
self._autogenerated = True
|
216
216
|
|
217
217
|
def _get_rand_id(self) -> str:
|